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Abstract

We prove that the category of representations of the /N-Kronecker
quiver and that of coherent sheaves on the noncommutative projective
scheme of R = k(Xu,.. .,XN)/(Z?]=1 X?) are derived equivalent. The
quadratic relation Zf’: 1 X? naturally arises from Auslander-Reiten The-
ory.

0 Introduction

In noncommutative projective algebraic geometry one thinks of qgr R as the
category of coherent sheaves on noncommutative projective scheme proj R of
graded ring R ([AZ],[SvB],[Po]).

The main result of this paper is following.

Theorem 0.1 (Theorem 2.12). Let k be an algebraically closed field, let A =
kaN be the path algebra of the N-Kronecker quiver (! N (see Figure 1) and let

N
R=kX,...,Xn)/ (X1, X2).
For N > 2 we have the following equivalence of derived categories :

D’(mod-A) = D(qgr(R)).

Figure 1: the N-Kronecker quiver ﬁ N

It is well known that there is a finite dimensional algebra B such that the
category mod-B of finite B-modules is derived equivalent to the category coh P}
of coherent sheaves on P}CV . Although the projective space P}} is a basic object
in algebraic geometry, the corresponding finite dimensional algebra B is not



basic. The main theorem states that in noncommutative projective algebraic
geometry there is an object qgr R corresponding to k€2 x which is one of the
simplest non-trivial finite dimensional algebra.

In [KR], Kontsevich and Rosenberg constructed the category Spaces; of
“noncommutative spaces” and showed that the functor which is represented
by projective space P} in (commutative) algebraic geometry is represented by
an object NP} of Spaces,. They prove that cohn NP} is derived equivalent

to mod-k€l . Therefore it is natural to consider whether the graded ring
k(Xl,...,XN)/(Eé\;1 X?) may be the coordinate ring of NP} i.e., coh NP}
is equivalent to qgrk(X1, ..., Xn)/ (X, X2).

To prove Theorem(.1 we use the result on the derived Picard group by
J. Miyachi and A. Yekutieli. They computed the derived Picard groups of
finite dimensional path algebras of quivers by using Happel’s derived version of
Auslander-Reiten Theory from which the quadratic relation Zfil X? naturally
arises.

The organization of this paper is as follows. In Section 1 we introduce some
definitions and results. In Section 2 we prove Theorem 0.1 (Theorem 2.12).
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1 Preliminaries

In this section we introduce some definitions and results. One is about noncom-
mutative projective schemes and the other is about derived Picard groups.

1.1 Noncommutative Projective Schemes

This subsection is a summary of the paper [Po] by A. Polishchuk. We only
treat N-graded algebras although Z-algebras which is the more general notion
are treated in [Po].

Let k£ be afield and let R = k® R; ®Ra®- - - be a connected graded coherent
ring. Gr R (resp. gr R) denote the category of graded right R-modules (resp.
finitely generated graded right R-modules). Tor R (resp. tor R) denote the full
subcategory of torsion modules (resp. finite k-dimensional modules). Note that
Tor R and tor R are dense subcategories of Gr R and gr R respectively, hence the
quotient categories QGr R = Gr R/ Tor R and qgr R = gr R/ tor R are abelian
categories.

The degree shift operator (1) : coh R — coh R induces the autoquivalence
(1) on qgr R. We denote by R the image in qgr R of the regular module Rg.
The (coherent) noncommutative projective scheme proj R associated to R is the
triple (qgr R, R, (1)). The autequivalence (1) is called the canonical polization
on proj R.



Let (C, O, s) be a triple consisting of a k-linear abelian category C , an object
O and an autequivalence s on C. For F € C, we define

. (F) = @&n>o Home (O, Fn)),
where F(n) = s"F, and we set
R=T.(C,0,s) =T.(0).

Multiplication is defined as follows:
If x € Home (O, F(1)), b € Hom¢ (O, O(m)) and a € Hom¢ (O, O(n)) then

z-a=8"(x)oa and a-b=3s"(a)ob

With this low of composition, I',(F) become a graded right module over the
graded algebra R over k.

Definition 1.1 ([AZ] Section 4.2, [Po] Section 2). Let (C,0,s) be a triple as
above. Then s is called ample if the following conditions hold:

(1) For every object F € C, there are positive integers l1,dots,l, and an epi-
morphism &F_, O(—=1;) — F.

(2) For every epimorphism f : F — G, there exists an integer no such that
for every n > ng the induced map Home (O, F(n)) — Home (O, G(n)) is
surjective.

Let 7 : Gr R — QGr R be the quotient functor. Set T, = woL,.

Theorem 1.2 ([Po] Theorem 2.4). Let (C,0,s) be a triple as above. If s
is ample, then the graded ring R = T, (C,O,s) is coherent, T.(F) is finitely
generated R-module for F € C and the functor T, : C — qgr R is equivalence
of triples, i.e., Ty : C — qgr R is equivalence of categories, T,(0) = R and
Tios=(1)oTl,.

It is well known that there is an eqivalence of triangulated categories D®(coh P!) =

Db(mod—kﬁ)Q) (See [Be]). Therefore by Theorem 0.1 coh P! and qgr(k(X1, X»2)/(X? + X3))
are derived equivalent. However, it turns out that these two categories are equiv-
alent.

Example 1.1 ([SvB] Section 3). Let o : P! — PL, [z1 : 5] = [z2 : —21] De
the automorphism of P! = projk[X:,Xs] and set s = 0.(— ®0,, Op1). Then s
is ample on the triple (coh(P'), Opi(1),s) and

L. (P, Op1, 8) 22 k(X1, X) /(XT + X3).

(Traditionally the graded ring T.(P!, Op1,s) is denoted by B(P!,Opi(1),0)
and is called the twisted homogeneous coordinate ring associated to the pair

(Op1(1),5).)

By Theorem1.2 there is an equivalence

coh P! 1= qer(k(X1, Xo)/(XT] + X3)).



1.2 Derived Picard Groups of Finite Dimensional Hered-
itary Algebras

This subsection is a summary of [MY] by J. Miyachi and A. Yekutieli.

First note that we work with right modules, hence the defintion of Reidtmann
quiver differs from that of [Ha] and [MY]. (They work with left modules.)

Let A be a finite dimensional k-algebra. A complex T € D?(Mod-A ®
A°P) is called a two-sided tilting complex if there exists another complex TV €
D(Mod-A ®j, A°P) such that T ®@% TV =2 TV @% T = A. The derived Picard
group of A (relative to k) is

DPici(A) := {two-sided tilting complexes}/isomorphisms

with the identity element A, product (T1,T2) — Ty ®% T» and inverse T +~
TV := RHom 4(T, A).
A tilting complex induces an equivalence of triangulated categories,

— ®%4 T : D*(Mod-A4) — D®(Mod-A).

See [Y], [MY] for more details.

Let A = (ZO,Z’ ) be a finite quiver. The Reidtmann quiver ZA of X
is defined as follows : The set of vertices ZA )o is given by Z x AO, given
an arrow @ : £ — y in A there are the arrows (n,a) : (n,y) — (n,z) and
(nya)* : (n,z) = (n+ 1,y). The translation 7 and the polization u on X are
defined by 7(n,z) = (n—1,z) and p(n,a) = (n—1,a)*, p((n,a)*) = (n,a). For
an arrow « : £ &> nin Z A , we have p(a) : 7(n) — &.

The path category k{Z ) (in the sence of [MY]) is a category whose set of
objects is ( Z A)g, morphisms are generated by identites and the arrows and the
only relations arise from 1nc0mposab111ty of paths.

Let 5 be a vertex of A let &, -+ ,&p be complete representative of the set
{& | there is an arrowa : £ — 1} and let {a“} -, be the set of arrows from &; to
7. The mesh ending at 7 is the subquiver of ZA with vertex {n, u(n),&1,...,&}
and arrows {a;;, u(ag;) |i=1,...,p,j =1,...,d;}. The mesh ideal in the path
category k(ZA) is the ideal generated by the elements

Zzaz] azg € Homk(ZZ) (N(U)a’?)-

i=1 j=1

The mesh category k ZZ I,,) is defined as the quotient category of the path
category modulo mesh 1dea1

Let A = kA be the path algebra of x and let mod-A denote the category of
finite right A-modules. The k-dual A* = Homy (A, k) of A is a two-sided tilting
complex. We write 74 € DPicy(A) for the element represented by A*[1]. Let us
agree that 74 also denotes the autequivalence — ®% A* of D’(mod-A).



Let P, be the indecomposable projective right A-module corresponding to a
vertex x € AO Define B C D?(mod-A) to be the full subcategory with objects
{m}P; |z € Ao,n €Z}.

Theorem 1.3 ([MY] Theorem 2.6). There is a k-linear equivalence
G:KZE,I,) — B, G(n,z)=1;"P,.

The equivalence G sends the mesh ending at = (n,y) to the exact triangle
called Auslander-Reiten triangle

p d;

(1) (@) = Grm) “LE PP ae) L am) L

i=1 j=1
where 3;; = p(aj).
By the definition of the path category the sets of arrows {a“} i, and

{B”}]":1 are basis for Homk@»A’Im)(é}, n) and Homk@)A,Im)( 7(n),&;) respec-
tively.
Fix isomorphisms

Hom, 2%, (&,n) = Hom, 22 (7(n),&)"
Qjj ,B:;
where {; }?":1 is the dual basis of {8;;}%,.
Set V; = Homk(zz,lm(&,n) = Homk(iﬂ,lm)(T(n)7fi)*' Then there are
canonical morphisms

(2) @i Vier G(&) — G(n), vi:T1a(G(n) — Vi®r G(&)-
Then the Auslander-Reiten triangle (1) has the following form:
P
(3) ra(G) 24 Vi &i G(&) 28 6
i=1
Let Aut( ZA be the permutation group of the vertex set ZA )o and

let Aut( zA )o; d)<T> be the subgroup of permutations which preserves arrow-
multlphctles and commute with 7 , namely

Aw((Z R)o; d)™ = {r € Aut(Z R)o | d(w,y) = d(x(z), n(y)) for allz,y € (Z R)o, and 77 = 77}
where d(z,y) denotes the arrow-multiplicity from z to y.

_>
Theorem 1.4 ([MY] Theorem 3.8.). Let A be a finite quiver without oriented

cycles and let A = kA be the path algebra of /A over an algebraically closed field
k. If A has infinite representation type then there is an isomorphism of groups

DPic; A 2 (Aut((Z & )o;d) x Out®(4)) x Z

where Outg (A) denotes the identity component of the group of outer automor-
phisms Outg(A).



Remark 1.1. In [MY], the case of the finite representation type is also com-
puted.

2 Proof of Theorem 0.1

From now on we assume that k is an algebraically closed field and N > 2.
We denote by R, the degree n component of the graded ring R = ®p>0R, =

KXy, XN/ (S, XP).
The following Lemma is easy to show.

Lemma 2.1. For each n > 1, there is a following short exact sequences of
k-vector spaces.

(4) 0— Rn 1 — Ry ®k Ry —2 Rpy1 — 0,
where the second and third morphisms are defined as follows

QR QLR fQrpr— fre Ry

N
U:R, 17,1+ ZX, ®k Xirn—1 € By ® Ry,

i=1

Let A be the path algebra of the N-Kronecker quiver ﬁ ~ shown in Figure
1. We denote by Py, P, indecomposable projective right A-modules associated
to vertices 0,1 of ﬁ ~, and Sp, S7 simple A modules associated to vertices 0,1
of Qn. Then S; = P, and P, is the projective cover of Sp.

The Reidetmann quiver ﬁ ~ of the N-Kronecker quiver 3 ~ is shown in
Figure 2 below. (In Figure 2 vertices (—n, 1) and (—n,0) are replaced by 774 P;
and 7% Py respectively.)

P TP 7(n=1) p,
7—n+1P0 TnPO

Figure 2: Reidetmann quiver Zﬁ N

It is easy to see that

Aw(Z )0 d) = 2

and there is a genertor p such that p(0,1) = (0,0),p(0,0) = (1,0). This p
satisfies the relation p~2 = 7. By Theorem1.4 there exists the two-sided tilting
complex py such that p,> = 74 and paP, = P.

From now on we write p = p4 and 7 = 74.



For M" € D%(mod-A) we use the following notation

——f
prM =M @G p %G --- &Y p.

Since Py = pPy and p? = 771 it follows that 7-nP, = p>" Py, 1" Py = p?ntl,

Hence the Reidetmann quiver ~ has forms shown in Figure 3.
Py PPy p* Py
NN
pP1 p3P1

Figure 3: Reidetmann quiver Zﬁ N

Set V = Hom 4 (P;, Py). The set of arrows x1,...,zy is a basis for V. The
graded vector space ®>, Hom(Py, p"P;) has graded algebra structure as in the
same way of Section 1.1.

By the mesh relation and Theorem1.3 we have the following:

Proposition 2.2. There is an isomrphism of graded algebras ® >y, Hom(P;, p"P;) —
R which sends z; € V to X; € Ry fori=1,...,N.

Fix isomorphisms V' 2 Hom pe(mog-4) (0" P1, p"t1P) for n > 0 and identify
with V' and its dual V* by sending x; — 2}. Then the canonical morphisms ¢;
and v; in (2) of Section 1.2 have following forms:

©: V& p"PL — p" P, v ® pr = v(pn),

N
$:p" T PL— V@ p P, pn1 o Y3 @ Ti(Pao1)-

i=1

The Auslander-Reiten triangle (3) has following form:

(Sn) pn—lpl ~k Rk p"_lpl i) 1% Rk pnPI i} pn+1P1 ﬂ) .

Proposition 2.3. p" = peL---®% p is a pure module forn > 0, (i.e.,H(p") =
0 for alli #0).

Proof. Since A =2 P, @ pP, , it suffices to show that p”+1P1 is pure for n > 1.
By induction we may assume that p"~'P; and p"P, are pure. Then the long
cohomology sequence of (S,) implies that H*(p?*'P;) = 0 for i # —1,0 .

If i = —1, then since A = P; @ pP, and P is a projective module, we have
only to show that Ext;'(Py, p"t'P;) = Homa (P, H ' (p"t'P)) =0 .

Observe that taking Hom(Py,—) of exact triangles (S,) yields exact se-
quences (4) of Lemma 2.1 under isomorphismes R,, = Hom(Fy, p" P,) of propo-
sition 2.2. By induction hypothes Ext ;' (Py, p"Py) = 0, hence the injectivity of
R,+1 =V ® R, implies Extzl (Py, p"t1Py) = 0. O



Corollary 2.4.

(1) 7™F1[1] are pure modules for all n > 0.

(2) p~™So are pure modules for all n > 0.

Proof. (1) By Proposition 2.3 77 = p?" is pure for n > 0. Hence 77F1[1] =
T @ A* = (77™)* is pure for n > 0.

(2) By the direct calculation we have S; = P; ®% A* = (p~1[1])Py. Hence
p~2S; = 7711 Py and p~ (37t = nH1[1]R,. |

Remark 2.1. In this paper we assume N > 2. When N =1 it is known that
73 =2 A[-2] ([MY] Theorem 4.1). Hence above corollary fails.

Reversing Serre vanishing theorem we define as the following.

Definition 2.5. The fullsubcategory D?>=° (resp. DP<0) of Db(mod-A) con-
sists of objects M which satisfies

RHom (P, p"M’) € D2°(k — vect) forn >0
(resp. RHom' (Pi,p"M') € D=°(k —vect) for n>> 0)

Remark 2.2. Since A = P, @ pP,, M" € D?Z° (resp.D?=<%) if and only if
p" M € DZ%(mod-A) (resp.D<%(mod-A)) for n>> 0

Proposition 2.6. The pair of fullsubcategories D? = (D#2° DP<0) js q ¢-
structure in D®(mod-A).

Proof. Since the other two axioms of t-structure are obvious by above Remark
2.2, it suffices to show that for every complex M" € D?(mod-A) there is an exact
triangle

A —p
such that A" € D70 and B' € D721 = Dr20[—1].

By [Ha] Lemma 1.5.2 an indecomposable object of D¥(mod-A) is of the
form M[—i], where M € mod-A and i € Z. By Lemma 2.3, p"M[-i] €
D=1l (mod-A). Hence M[—i] € D”2' for i > 2 and M[—i] € D”=C for
i <0.

The case when ¢ = —1 is reduced to the following Lemma. O

Lemma 2.7. For every M € mod-A there exists a submodule M' such that
Hom(Py, p"M') = 0 for n > 0 and Ext (P, p"M") = 0 for n > ng, where
we set M" = M/M'.

Proof. Define T, = {N € mod-A | Nis generated by p"Sp} and F, = {N €
mod-A | Homa(p~"Sy, N) = 0}. Since Ext!y(p="Sy, p~"S,) = Extly (P, P,) =
0 and A is hereditary, by [Ha] Lemma IT1.4.2, the pair (7,, F,) is a torsion theory
on the abelian category mod-A. So, if we set t,,(M), (M) to be the image and
cokernel of the canonical morphism Hom(p~"S1, M) ®x M — M, then t,(M) €



Tny fu(M) € F,. Since the canonical morphism V ®j p~("t1) 8 — p="8 is
surjective. Hence t,,(M) C t,4+1(M). Since dimy M < oo , there is an integer ng
such that ¢, (M) = tn, (M) for all n > ng. Then by definition f,(M) = fn,(M)
for all n > ng. Set M' =t,,(M), M" = fn,(M).

Tt is easy to see that Hom(Py, p"N) = 0 for N € T,, and Ext ' (P, p"N) =
Homy(p ™51, N) = 0 for N € F,,. Therefore Hom (P, p"M') = 0 for n > ng
and Ext;\l(Po,p"M”) =0forn>ng O

Remark 2.3. Set T = {N € mod-A | Hom(P;,p"N) = 0forn > 0} and
F = {N € mod-A | Ext™'(Py,p"N) = 0 forn > 0}. Then by the Lemma 2.7 it
is easy to see that (T ,F) is a torsion pair on mod-A.

We can define a t-structure on D®(mod-A) from this torsin pair by

D'2% .= {M" € D*(mod-4)2° | F*(M") € F}
D'=%:= {M" € D’(mod-A)=' | H'(M') € T}.

(See [HRS] Proposition 1.2.1). However, this is not a new t-structure. It is easy
to see that (D'20, D'S0) = (D20, DP-<0),

Let H? be the heart of the t-structure D?. By Proposition 2.3, P, € H*.
Now le us consider the triple (H”, Py, p).

Proposition 2.8. p is ample on the triple (H?, Py, p).

Proof. We check the conditions (1) and (2) of Definiton 1.1.

First note that the cokernel of the morphism f : M' — N' in the abelian
category H? is 74, (Cone(f)), where 74, : D’(mod-4) — D?*20 is the trunca-
tion functor (See [GM] IV.4). So f is surjective in H” if and only if Cone(f) €
DP7S_1.

(1) It is easy to see that for every M € mod-A there is an exact sequence

0 — Homua (P, M) ®r P, — M — Homu(Py, M) ® So — 0

which is functorial in M. So for every M" € D°(A-mod) and for every n there
is an exact triangle

RHom (Py, p"M") 4 p~"Pi —s M" —s RHom (Py, p"*M") @5 p~"Ss b

Since Hom(Py, p™ "Sy) = Hom(Py, p™ ™ 1Pi[1]) = 0 for m > n + 1, hence
p~"So € Drs—1

Now assume that M € H” and take an intger n such that the complex
RHom (Py, p" M) is pure. Then RHom (Py, p" 1 M") ®;, p~"Sp € D»<~1.

(2) Let

LNt

be a triangle such that M, N* € H? and L' € DP<—1,

Take an intger n such that Hom(P;, p"L’) = 0. Then the induced morphism
Hom(Py, p"M') — Hom(Py, p"N") is surjective. O



Combining Proposition 2.2 and Proposition 2.8 and applying Theorem 1.2
we obtain :

Proposition 2.9. The triple (H?, Py, p) is equivalent to proj R as triples.
The functor

Iy :mod-A — GrR, T, (M) :=®;>oHom(P,M @4 p")

is right exact. Let LI, be the left derived functor of I',. A finite projective
A-module P is of the form P = PP" @ PP™ for some n,m € Z>o. Then
T.(P) = R®" @ R(1)®™ is a finite R module Hence for M' € D?(mod-A),
LT, (M) has coherent cohomologies.

Thus there is an exact functor

LT, : D’(mod-A) — D}, z(Gr R).

Since the quotient functor = : Gr R — QGr R is exact by [Pop] Theorem
4.3.8, this functor can be extended to the exact functor = : Dé’r r(GrR) —

ClgTR(QGr R). Define LT, := 7 o LT,.

Lemma 2.10. The set {R, R(1)} generates D*(qgr R), i.e., the minimal trian-
gulated full subcategory of D®(qgr R) containing R and R(1) is D(qgr R) itself.

Proof. The canonical functor ¢ : D®(qgr R) — Dqgr r(QGr R) is an egivalence
by [BvB] Lemma 4.3.3.
There is a following commutative diagram :

LI,
(5) D®(mod-A) D!, r(QGr R)
’iA CT
p— T > qgr R—"> D¥(qgr R)

where i4,ig are inclusions. L
It is clear that qgr R generates D®(qgr R). Thus LT, is essentially surjective.
Since the set {P;, Py} generates D®(mod-A), R = LT, (P;) and R(1) = LT (R)
generate D?(qgr R). O
R

Lemma 2.11. The_set{ ,R(1)} is a strongly exceptional sequence in Db(ﬂgr ,
i.e., Hom pu(ger gy (R, R(1) z]) = 0 for every i # 0 and Hom pe (e, g) (R(1), R[i]) =
0 for every 1.

Proof. By Appendix of [Be2] there exists an exact functor F : DY(HP) —
D’(mod-A) and following commutative diagram

Db (H?) — > D¥(mod-A) ,

1T

10



where if,14 are inclusions.

The restriction LT, o F|y to HP is equal to coigo T. with the notation in
the diagram (5). Hence LT, o F is an equivalence. Therefore, the morhpism of
Hom-sets

LF—*(M',N'[n]) : Home(mod-A) (M', N[TL]) — Hom

cohprojR

(Q@rry (LT« (M), LT (N")[n])

is surjective for M", N* € D’(mod-A) and n € Z. Now it is easy to prove the
statement because P, P} is a strongly exceptional sequence in D®(mod-A) and
R=LI.(P),R(1) = LT.(F). O

Since QGr R has enough injectives by [Pop] Theorem 4.5.2, Theorem 6.2 of
[Bo] completes the proof of Theorem 0.1.

Theorem 2.12 (Theorem 0.1). Let k be an algebraically closed field, let A =
kﬁN be the path algebra of the N -Kronecker quiver 6N andlet R = k(X;,... ,XN)/(Z?L1 X2).

Set T := R® R(1). For N > 2, the functor
RHom p (ggr gy (T, —) D’(qgr(R)) — D®(mod-A)
is an equivalence of triangulated categories.

Remark 2.4. It is known that the functor — @Y% T is a quasi-inverse to the
functor RHom (T, —).
It is easy to see that there is a following commutaive diagram:
LT,

Db(mod-A) — DggrR(QGr R) .

T

D%(qgr R)

_ Thus the functors LT, and — ®ﬁ T are essentially isomorphic. In paticular
LT, is an equivalence.
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