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Abstract. Let G be a compact, simply connected Lie group. A prime p is called regular
for G if G has the homotopy type of the product of odd spheres at p-local. When p is
regular for G, the localization of G at p, G(p), is known to be homotopy nilpotent. We
determine the homotopy nilpotency class of G(p) when p is regular for G.

1. Introduction

Let p be a prime. We denote the localization at p by −(p) throughout. Each space is
assumed to have the homotopy type of a CW-complex. Quite often, we identify maps with
their homotopy classes ambiguously.

Let us first recall words and facts on finite H-spaces. Let X be a connected H-space
with dimH∗(X;Q) < ∞. By the Hopf theorem, one has

X(0) ≅ S2n1−1
(0) × · · · × S2nl−1

(0) ,

where −(0) means the rationalization. In this case, we say that X is of type (n1, . . . , nl).
The types of compact, connected, simple Lie groups are listed in the following table.

Al (2, 3, . . . , l + 1) G2 (2, 6)
Bl (2, 4, . . . , 2l) F4 (2, 6, 8, 12)
Cl (2, 4, . . . , 2l) E6 (2, 5, 6, 8, 9, 12)
Dl (2, 4, . . . , 2l − 2, l) E7 (2, 6, 8, 10, 12, 14, 18)

E8 (2, 8, 12, 14, 18, 20, 24, 30)

Let G be a compact, connected Lie group of type (n1, . . . , nl) with n1 ≤ · · · ≤ nl. Serre
[16] defined that a prime p is regular for G if there is a homotopy equivalence

(1.1) G(p) ≅ S2n1−1
(p) × · · · × S2nl−1

(p) .

It is shown that p is regular for G if and only if p ≥ nl when G is simple. Kumpel [9]
generalized Serre’s result above as follows. Let X be a p-local, simply connected finite
H-space of type (n1, . . . , nl) with n1 ≤ · · · ≤ nl. Kumpel [9] showed that if p ≥ nl−n1 +2,
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then p is regular for X in the sense of Serre. In particular, if p is regular for X, the mod
p cohomology of X is given by

H∗(X;Z/p) = Λ(x1, . . . , xl), |xi| = 2ni − 1.

Moreover, it is known that if X has a classifying space BX, then

H∗(BX;Z/p) = Z/p[y1, . . . , yl], |yi| = 2ni

and generators yi of H∗(X;Z/p) can be chosen as

(1.2) yi = σ(xi),

where σ denotes the cohomology suspension.
For simplicity, we make a convention that each loop space is assumed to be strictly

associative in the standard way.
We consider the group structure of a loop space X in a homotopy theoretical point of

view. Here, we avoid the complexity of considering general homotopy associative H-spaces.
Regarding the group structure of X, the commutator map

γ : X × X → X, (x, y) 7→ xyx−1y−1

is obviously important. We say that X is homotopy commutative if γ is null-homotopic,
that is, X is an abelian group up to homotopy.

The homotopy commutativity of H-spaces has been extensively studied. In particular,
regarding finite H-spaces, Hubbuck [5] got the celebrated result that a connected, homo-
topy commutative, finite H-space is equivalent to a torus. Meanwhile, McGibbon [11]
studied the homotopy commutativity of localized Lie groups, which are infinite H-spaces,
and proved:

Theorem 1.1 (McGibbon [11]). Let G be a compact, simply connected, simple Lie group
of type (n1, . . . , nl) with n1 ≤ · · · ≤ nl.

(1) If p > 2nl, then G(p) is homotopy commutative.
(2) If p < 2nl, then G(p) is not homotopy commutative except for the cases that

(G, p) = (Sp(2), 3), (G2, 5).

There are several generalizations of the notion of the homotopy commutativity. One
generalization is the higher commutativity which gives levels between the homotopy com-
mutativity and the strict commutativity. This notion is first formulated by Sugawara [17]
and later refined by Williams [19]. Saumell [15] generalized McGibbon’s result above along
this direction.

On the other hand, one way of generalizing the notion of the homotopy commutativity
of a loop space X is the homotopy nilpotency which measures how non-commutative X

is. The precise definition of the homotopy nilpotency is as follows. Let X be a connected
loop space and let γk : Xk+1 → X denote the k-iterated commutator map

γk = γ ◦ (1 × γ) ◦ · · · ◦ (1 × · · · × 1 × γ) : Xk+1 → X,
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where Xk+1 denotes the direct product of (k+1)-copies of X. We say that X is homotopy
nilpotent if there exists a positive integer N such that γN is null-homotopic, that is, X is a
nilpotent group up to homotopy. The homotopy nilpotency class of a homotopy nilpotent
loop space X is defined as the least number n such that γn is null-homotopic, and denoted
by nil(X), which, of course, corresponds to the class of a nilpotent group. In particular,
X is homotopy commutative if and only if nil(X) = 1. The reader may refer to [21] for
general facts on the homotopy nilpotency.

The homotopy nilpotency of H-spaces has been extensively studied as well as the
homotopy commutativity. In particular, Hopkins [4] made a big progress by giving
(co)homological criteria for homotopy associative finite H-spaces to be homotopy nilpo-
tent. For example, he showed that if a homotopy associative H-space has no torsion in the
integral homology, then it is homotopy nilpotent. Later, Rao [14] showed that the con-
verse of the above criterion is true in the case of Spin(n) and SO(n). Eventually, Yagita
[20] proved that, when G is a compact, simply connected Lie group, G(p) is homotopy
nilpotent if and only if it has no torsion in the integral homology. Although many results
on the homotopy nilpotency are obtained as above, the homotopy nilpotency classes have
not been determined in almost all cases.

The aim of this paper is to generalize McGibbon’s result above along the concept of the
homotopy nilpotency. Precisely, we determine the homotopy nilpotency class of compact,
simply connected, simple Lie groups localized at regular primes as follows. Of course, from
this result, we can see the homotopy nilpotency classes of compact, simply connected Lie
groups localized at regular primes which are not necessarily simple.

Theorem 1.2. Let G be a compact, simply connected, simple Lie group of type (n1, . . . , nl)
with n1 ≤ · · · ≤ nl. If p is regular, then G(p) is homotopy nilpotent with:

(1) If 3
2nl < p < 2nl, then nil(G(p)) = 2.

(2) If nl ≤ p ≤ 3
2nl, then nil(G(p)) = 3 except for the cases that (G, p) = (F4, 17),

(E6, 17), (E8, 41), (E8, 43) or rankG = 1 with p = 2.
(3) In the above exceptional cases, nil(G(p)) = 2

The organization of this paper is as follows. In §2, we consider the homotopy nilpotency
of p-local finite loop space X when p is regular for X. We decompose the above iterated
commutator map γn into smaller pieces which can be detected by iterated Samelson prod-
ucts in π∗(X). Moreover, we see that such Samelson products can be handled with the
data of homotopy groups of spheres. Then we prove some of Theorem 1.2 in a more general
setting. As a consequence, the proof of Theorem 1.2 is reduced to find non-trivial iterated
Samelson products on a case-by-case analysis.

In §3, we deal with the case of classical groups by use of the result of Bott [1].
In §4 and §5, we consider the cases of E7 with p = 23 and E8 with p = 37 respectively.

The main idea to search for non-trivial Samelson products is due to Kono and Ōshima
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[10], which detects non-zero Samelson products by the primary operation ℘1. Then we
will make some cohomology calculations.

In §6, we deal with the remaining cases by referring Hamanaka and Kono [6] and by an
easy dimension counting.

2. Generalized Samelson products

We begin this section with an elementary commutator calculus. Let H be a group
generated by x1, . . . , xn and let [a, b] denote the commutator of a, b ∈ H, that is, [a, b] =
aba−1b−1. We define a subset Zk of H inductively by

Z0 = {xν
i |1 ≤ i ≤ n, ν = ±1}, Zk = {[a, b]|a ∈ Z0, b ∈ Zk−1}.

Denote the subgroup of H generated by
∪∞

i=k Zi by Z̄k. Using the formulae

[x, yz] = [x, y][y, [x, z]][x, z], [xy, z] = [x, [y, z]][y, z][x, z],

one can see the following by induction on k and on the word lengths of a1 in [a1, [· · · [ak, ak+1] · · · ]],
where a1, . . . , ak+1 ∈ H.

Lemma 2.1. Define the subgroup Hk of H by H0 = H and Hi = [H,Hi−1], the group
generated by {[a, b]|a ∈ H, b ∈ Hi−1}. Then we have

Hk = Z̄k.

Let us recall the definition of generalized Samelson products. Let X be a loop space.
The generalized Samelson product of maps α : A → X and β : B → X is defined as the
composition of maps

A ∧ B
α∧β−→ X ∧ X

γ̄→ X

and denoted by 〈α, β〉, where γ̄ is the reduced commutator map of X. Then it is a usual
Samelson product in π∗(X) if both A and B are spheres. Let {α, β} denote the composition

A × B
α×β−→ X × X

γ→ X,

where γ : X ×X → X is the unreduced commutator map of X as in the previous section.
Note that π∗ : [A1,∧ · · ·∧Ak, X] → [A1×· · ·×Ak, X] is monic, where π : A1 ×· · ·×Ak →
A1 ∧ · · · ∧ Ak is the projection. Actually, it is an isomorphism onto a direct summand.
Then, for αi : Ai → X (i = 1, . . . , k), we have 〈α1, 〈· · · 〈αk−1, αk〉 · · · 〉〉 = 0 if and only if
{α1, {· · · {αk−1, αk} · · · }} = 0. Here we mean by f = 0 that a map f is null homotopic
and we shall make use of this notation unless any confusion occurs.

By definition, X is homotopy nilpotent of class nil(X) < k if and only if the k-iterated
commutator {1X , {· · · {1X , 1X} · · · }} = 0. Then we shall consider this map.

Let X be a p-local, simply connected finite loop space of type (n1, . . . , nl) with n1 ≤
· · · ≤ nl. We denote a generator of a free part of π2ni−1(X), that is, Z(p) in π2ni−1(X),
corresponding to the entry ni in the type of X by ϵi. Define a map

ι : S2n1−1 × · · · × S2nl−1 → X
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by
ι(x1, . . . , xl) = ϵ1(x1) · · · ϵl(xl).

Suppose that p is regular for X. Then the homotopy equivalence (1.1) is given by the map
ι(p) : S2n1−1

(p) × · · · × S2nl−1
(p) → X. Hence it follows that

(2.1) 1X(x) = ϵ′1(x) · · · ϵ′l(x)

for x ∈ X, where ϵ′i = (ϵi)(p)◦πi◦ι−1
(p) for the projection πi : S2n1−1

(p) ×· · ·×S2nl−1
(p) → S2ni−1

(p) .
Now we decompose the iterated commutator {1X , {1X , {· · · {1X , 1X} · · · }}}. Let us

consider the group [Xn, X], where the group structure of [Xn, X] is given by the point-
wise multiplication. Let ρj : Xn → X denote the j-th projection. We define a subset Zn

of [Xn, X] by
Zn = {(ϵ′i ◦ ρj)ν |1 ≤ i ≤ l, 1 ≤ j ≤ n, ν = ±1}.

We consider the subgroup Hn of [Xn, X] generated by Zn. Let Z̄n
k denote the subgroup

of [Xn, X] corresponding to Z̄k in Lemma 2.1 putting Z0 = Zn

We denote the commutator of [Xn, X] by [ · , · ]n. For αi ∈ [Xk+1, X] (i = 1, . . . , k +1),
one can see that the k-iterated commutator [α1, [· · · [αk, αk+1]k+1 · · · ]k+1]k+1 in [Xk+1, X]
is the composition

(2.2) Xk+1 ∆→ X(k+1)2 α1×···×αk+1−−−−−−−−→ Xk+1 {1X ,{···{1X ,1X}··· }}−−−−−−−−−−−−−→ X.

Then it follows from the formula

(2.3) (ρ1 × · · · × ρk+1) ◦ ∆ = 1Xk+1

that the k-iterated commutator can be written down as

{1X , {· · · {1X , 1X} · · · }} = [ρ1, [· · · [ρk, ρk+1]k+1 · · · ]k+1]k+1

(cf. Lemma 2.6.1 in [21]). Hence, for (2.3) and (2.1), we can apply Lemma 2.1 to the
group Hk+1 and obtain:

Proposition 2.1. Let X be a p-local, simply connected finite loop space. If p is regular
for X, then the k-iterated commutator {1X , {· · · {1X , 1X} · · · }} belongs to Z̄k+1

k .

Corollary 2.1. Let X and p be as in Proposition 2.1. Then nil(X) < k if and only if
〈ϵi1 , 〈· · · 〈ϵik , ϵik+1

〉 · · · 〉〉 = 0 for each 1 ≤ i1, . . . , ik+1 ≤ l.

Proof. From Proposition 2.1 and (2.2), one can see that the k-iterated commutator

{1X , {· · · {1X , 1X} · · · }} = 0

if and only if

[(ϵ′i1 ◦ ρj1)
ν1 , [· · · [(ϵ′ik ◦ ρjk

)νk , (ϵ′ik+1
◦ ρjk+1

)νk+1 ]k+1 · · · ]k+1]k+1 = 0

for each 1 ≤ i1, . . . , ik+1, j1, . . . , jk+1 ≤ l and νi = ±1. Moreover, (2.2) and (2.3) yield
that the above holds if and only if

{(ϵ′i1)
ν1 , {· · · {(ϵ′ik)νk , (ϵ′ik+1

)νk+1} · · · }} = 0
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for each 1 ≤ i1, . . . , ik+1 ≤ l and νi = ±1. For the above observation on the generalized
Samelson products and commutators, this is equivalent to that

〈(ϵ′i1)
ν1 , 〈· · · 〈(ϵ′ik)νk , (ϵ′ik+1

)νk+1〉 · · · 〉〉 = 0

for each 1 ≤ i1, . . . , ik+1 ≤ l and νi = ±1. Since (πi1 ◦ ι−1
(p) ∧ · · · ∧ πik+1

◦ ι−1
(p))

∗ : [S
2ni1

−1

(p) ∧

· · · ∧ S
2nik+1

−1

(p) , X] → [∧k+1X,X] is monic, the above condition is equivalent to that

〈ϵν1
i1

, 〈· · · 〈ϵνk
ik

, ϵ
νk+1

ik+1
〉 · · · 〉〉 = 0

for each 1 ≤ i1, . . . , ik+1 ≤ l and νi = ±1. Then, for that Samelson products are bilinear
and that ϵ−1

i = −ϵi ∈ π∗(X), we have established Corollary 2.1. ¤

Remark 2.1. The reader may compare Corollary 2.1 with the result in the first author’s
paper [8] concerning the rational homotopy.

In order to proceed the observation on the homotopy nilpotency, let us recall some facts
on the p-primary components of the unstable homotopy groups of odd spheres for an odd
prime p (see [18] for details).

Fact 2.1. π2n−1+k(S2n−1)(p) =

{
Z/p k = 2p − 3
0 0 < k < 4p − 6, k ̸= 2p − 3.

Let α1(3) denote a generator of π2p(S3) = Z/p and α1(n) the suspension Σn−3α1(3).

Fact 2.2. The homotopy group π2n+2p−4(S2n−1)(p) = Z/p is generated by α1(2n − 1).

Fact 2.3. α1(3) ◦ α1(2p) ̸= 0 and α1(2n − 1) ◦ α1(2n + 2p − 4) = 0 for n > 2.

Let X and ϵi be as above. Suppose that p is an odd prime and that

p > nl −
n1

2
+ 1.

Then p is a regular prime for X. Now we consider the Samelson product 〈ϵi, ϵj〉. Since X(0)

is homotopy commutative, r ◦ 〈ϵi, ϵj〉 = 0, where r : X → X(0) denotes the rationalization.
Then 〈ϵi, ϵj〉 ∈ π2(ni+nj−1)(X) is a torsion element. Fact 2.1 and Fact 2.2 yield that

πns ◦ 〈ϵi, ϵj〉 =

{
Nα1(2ns − 1) ni + nj = ns + p − 1
0 ni + nj ̸= ns + p − 1

for N ∈ Z/p, not necessarily non-zero. Then it follows from Fact 2.3 that if πnt◦〈ϵk, (ϵs)(p)◦
πns ◦ 〈ϵi, ϵj〉〉 ̸= 0, then

(2.4) nt = 2, ni + nj = ns + p − 1, nk + ns = p + 1.

In particular, for a dimensional consideration, if p > 3
2nl, then

πnt ◦ 〈ϵk, (ϵs)(p) ◦ πns ◦ 〈ϵi, ϵj〉〉 = 0

for each 1 ≤ i, j, k, s, t ≤ l. On the other hand, from Fact 2.3, one has

Σ2πnt ◦ 〈ϵk, (ϵs)(p) ◦ πns ◦ 〈ϵi, ϵj〉〉 = 0
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for any i, j, k, s, t. Then it follows that

πnu ◦ 〈ϵm, (ϵt)(p) ◦ πnt ◦ 〈ϵk, (ϵs)(p) ◦ πns ◦ 〈ϵi, ϵj〉〉〉 = 0

for each 1 ≤ i, j, k,m, s, t, u ≤ l.
By a quite similar commutator calculus at the beginning of this section, one can see that

the k-iterated Samelson product 〈ϵi1 , 〈· · · 〈ϵik , ϵik+1
〉 · · · 〉〉 = 0 for each 1 ≤ i1, . . . , ik+1 ≤ l

if and only if πj1 ◦ 〈ϵi1 , (ϵi1)(p) ◦ πj2 ◦ 〈· · · (ϵik)(p) ◦ πjk
◦ 〈ϵik , ϵik+1

〉 · · · 〉〉 = 0 for each
1 ≤ i1, . . . , ik+1, j1 . . . , jk ≤ l, here we need this discussion for the possibility that ni = ni+1

for some i.
Summarizing the above observation, one has that if an odd prime p satisfies p > nl −

nl
2 − 1, then nil(X) ≤ 3 by Corollary 2.1. Moreover, if p > 3

2nl, then one has nil(X) ≤ 2
by Corollary 2.1.

On the other hand, James and Thomas [7] showed that if nl − n1 + 2 ≤ p < 2nl, then
X is not homotopy commutative, equivalently, nil(X) ≥ 2. Hence we have obtained:

Theorem 2.1. Let X be a p-local, simply connected finite loops space of type (n1, . . . , nl)
with n1 ≤ · · · ≤ nl and let p be an odd prime with p > nl − n1

2 + 1. Then X is homotopy
nilpotent with:

(1) If 3
2nl < p < 2nl, then nil(X) = 2.

(2) If nl − n1
2 + 1 < p ≤ 3

2nl, then 2 ≤ nil(X) ≤ 3.

Remark 2.2. Actually, we have nil(X) = 2 if nl − n1
2 + 1 < p < 2nl and n1 > 2, where X

is as in Theorem 2.1.

Remark 2.3. Let X be as in Theorem 2.1. For a dimensional consideration, one can see
that 〈ϵi, ϵj〉 = 0 for each 1 ≤ i, j ≤ l if p > 2nl − n1 + 1 as well. Equivalently, X is
homotopy commutative if p > 2nl − n1 + 1 by Corollary 2.1. Then one can consequently
deduce from Theorem 2.1 that the prime p cannot be in the range 2nl −n1 + 1 < p < 2nl.
This can be seen also from the observation of James and Thomas [7] using the primary
operation ℘1.

In most of cases, Theorem 2.1 reduces the proof of Theorem 1.2 to finding non-zero
2-iterated Samelson products when the prime is in the range in (2) of Theorem 2.1.

3. The case of classical groups

3.1. The 2-local rank one case. Let us first consider the case that the rank of a classical
group G is one, equivalently, the case that G ∼= S3. It is well-known that the Samelson
product 〈1G, 1G〉 is a generator of π6(G) = Z/12 (see, for example, the result of Bott
below). On the other hand, since π9(G) = Z/3 by Toda [18], we have l2◦〈1G, 〈1G, 1G〉〉 = 0,
where l2 : G → G(2) is the 2-localization. Then one has nil(G(2)) = 2.

For the rest of this section, the ranks of classical groups are assumed to be greater than
one.
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3.2. The case of SU(n). We denote a generator of π2i−1(SU(n)) = Z (i = 2, . . . , n) by
ϵi. We can deduce from the result of Bott [1] that if i + j > n, then the order of the
Samelson product 〈ϵi, ϵj〉 is a non-zero multiple of

(i + j − 1)!
(i − 1)!(j − 1)!

.

Let p be a prime with n < p ≤ 3
2n. Then one has

〈ϵ̄n, ϵ̄p−n+1〉 ̸= 0, 〈ϵ̄n, ϵ̄2p−2n〉 ̸= 0,

where ϵ̄ni = lp ◦ ϵni for the p-localization lp : SU(n) → SU(n)(p). For Fact 2.1, 〈ϵ̄n, ϵ̄2p−2n〉
takes values in S2p−2n+1

(p) ⊂ SU(n)(p). Then, from Fact 2.2 and Fact 2.3, it follows that

〈ϵ̄n, 〈ϵ̄n, ϵ̄2p−2n〉〉 ̸= 0

and hence, in this case, Theorem 1.2 follows from Theorem 2.1.
Next, we consider the case that n = p which is not included in Theorem 2.1. Quite

similarly to the above calculation, one can see that

〈ϵ̄p−1, 〈ϵ̄p−1, ϵ̄2〉〉 ̸= 0

and then

(3.1) nil(SU(p)(p)) ≥ 3.

To proceed our observation, let us recall some more facts on the p-primary component
of the unstable homotopy groups of odd spheres for an odd prime p (see [18]).

Fact 3.1. π2n−1+4p−5(S2n−1)(p) = Z/p.

Let α2(3) denote a generator of π4p−2(S3)(p) = Z/p and α2(n) the suspension Σn−3α2(3).

Fact 3.2. The homotopy group π2n−1+4p−5(S2n−1)(p) = Z/p is generated by α2(2n − 1).

For a dimensional consideration, the only possible non-zero 3-iterated Samelson prod-
ucts in π∗(SU(p))(p) are

〈ϵ̄p−1, 〈ϵ̄p−1, 〈ϵ̄p, ϵ̄p〉〉〉, 〈ϵ̄p−1, 〈ϵ̄p, 〈ϵ̄p−1, ϵ̄p〉〉〉.

By Fact 3.1 and Fact 3.2, the above iterated Samelson products are the non-zero multiple
of

α1(3) ◦ α1(2p) ◦ α2(4p − 3), α1(3) ◦ α2(2p) ◦ α1(6p − 5)

respectively. Since α1(k) ◦ α2(k + 2p − 3) = −α2(k) ◦ α1(k + 4p − 5), one has

α1(3)◦α1(2p)◦α2(4p−3) = −α1(3)◦α2(2p)◦α1(6p−5) = α2(3)◦α1(4p−2)◦α1(6p−5) = 0

by Fact 2.3 and hence, for Corollary 2.1 and (3.1), we have obtained that

nil(SU(p)(p)) = 3.



HOMOTOPY NILPOTENCY IN LOCALIZED GROUPS 9

3.3. The case of Sp(n). Let ϵ′i denote a generator of π4i−1(Sp(n)) = Z (i = 1, . . . , n).
We can also deduce from the result of Bott [1] that if i + j > n, then the order of the
Samelson product 〈ϵ′i, ϵ′j〉 is a non-zero multiple of

(2i + 2j − 1)!
(2i − 1)!(2j − 1)!

.

Hence we can find quite similarly to the case of SU(n) a non-zero 2-iterated Samelson
product in Sp(n)(p) for 2n < p ≤ 3n and then, in the case of Sp(n), Theorem 1.2 follows
from Theorem 2.1.

3.4. The case of Spin(n). Let i : Spin(2k−1) → Spin(2k) denote the natural inclusion.
Harris [3] showed that the fibration

Spin(2k − 1)(p)

i(p)−→ Spin(2k)(p) → S2k−1
(p)

splits if p is odd. Then (i(p))∗ : π∗(Spin(2k − 1)(p)) → π∗(Spin(2k)(p)) is monic and hence
the case of Spin(2k) can be deduced from the case of Spin(2k − 1), here we use the fact
that p is regular for Spin(2k − 1) if and only if so is for Spin(2k). Friedlander [2] gave an
A∞-equivalence

Spin(2k − 1)(p)
∼= Sp(k − 1)(p)

when p is an odd prime. Then the above consideration of Sp(n) shows that, when p is
regular for Sp(n), there exists a non-zero 2-iterated Samelson product in Spin(2k − 1)(p)

and hence in Spin(2k)(p). Therefore, for Theorem 2.1, the proof of Theorem 1.2 in the
case of Spin(n) is completed.

4. The case of E7 with p = 23

In order to prove Theorem 1.2 in the case of E7 with p = 23, we will show that there
exists a non-zero 2-iterated Samelson product in (E7)(p), as in the previous section. To do
so, we will exploit the following method of Kono and Ōshima [10].

Let X be a p-local finite loop space of type (n1, . . . , nl) and let p be a regular prime for
X. As in §1, the mod p cohomology of BX is given by

H∗(BX;Z/p) = Z/p[y1, . . . , yl], |yi| = 2ni.

As in §2, we denote a generator of Z(p) in π2ni−1(X) corresponding to the entry ni in the
type of X by ϵi. The Samelson product 〈ϵi, ϵj〉 ∈ π2(ni+nj−1)(X) can be detected by the
primary operation ℘1 as:

Lemma 4.1. If ℘1yk includes the term δyiyj with δ ̸= 0, then 〈ϵi, ϵj〉 ̸= 0.

Proof. Suppose that 〈ϵi, ϵj〉 = 0, equivalently, the Whitehead product [ϵ̂i, ϵ̂j ] = 0, where
ϵ̂m : S2m → BX denotes the adjoint of ϵm. Then there exists a map κ : S2ni ×S2nj → BX
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satisfying the following homotopy commutative diagram.

S2ni ∨ S2nj
ϵ̂i∨ϵ̂j //

T

BX ∨ BX

∇
²²

S2ni × S2nj
κ // BX,

where ∇ is the folding map. For (1.1) and (1.2), one has

(ϵ̂i)∗(σ(yj)) = δijs2ni ,

where sn is a generator of H∗(Sn;Z/p). Hence one can see

κ∗(℘1yk) = δs2ni ⊗ s2nj ̸= 0.

On the other hand,

κ∗(℘1yk) = ℘1(κ∗(yk)) = 0

and this is a contradiction. Therefore Lemma 4.1 is accomplished. ¤

Let us prepare some notations of symmetric polynomials. We consider the polynomial
ring Z/p[t1, . . . , tn]. Let ck (k = 1, . . . , n) denote the k-th elementary symmetric function
in t1, . . . , tn, that is,

n∏
i=1

(1 + ti) = 1 + c1 + · · · + cn.

Define a polynomial pk (k = 1, . . . , n) by
n∏

i=1

(1 − t2i ) = 1 − p1 + · · · + (−1)npn.

We denote the k-the power sum in t21, . . . , t
2
n by Ti (k = 1, . . . , n). Namely,

Tk = t2k
1 + · · · + t2k

n .

Then one has the Girard’s formula

(4.1) Tk = (−1)kk
∑

i1+2i2+···+nin=k

(−1)i1+···+in (i1 + · · · + in − 1)!
i1! · · · in!

pi1
1 · · · pin

n

(see [12]).
Note that, by taking a maximal torus in Spin(2n), we can regard the above cn and

pi (i = 1, . . . , n − 1) the universal Euler class and the universal i-th Pontrjagin class in
H∗(BSpin(2n);Z/p) respectively.

Hereafter, p is fixed to 23 throughout this section. We calculate the action of ℘1 on
H∗(BE7;Z/p) in virtue of Lemma 4.1. To do so, we make use of the following commutative
diagram.

Spin(10)

i1
²²

Spin(10)

i2
²²

E6
j // E7,
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where i1, i2 and j are the natural inclusions. It is well-known that the mod p cohomology
of BSpin(10), BE6 and BE7 are given by

H∗(BSpin(10);Z/p) = Z/p[p1, p2, p3, p4, c5],

H∗(BE6;Z/p) = Z/p[ȳ4, ȳ10, ȳ12, ȳ16, ȳ18, ȳ24], |ȳi| = i

H∗(BE7;Z/p) = Z/p[y4, y12, y16, y20, y24, y28, y36], |yi| = i.

Hamanaka and Kono [6] showed that we can choose generators ȳi and yi such that

j∗(y4) = ȳ4, j∗(y12) = ȳ12, j∗(y16) = ȳ16, j∗(y20) = ȳ2
10, j∗(y28) = ȳ10ȳ18,

i∗1(ȳ4) = p1, i∗1(ȳ10) = c5, i∗1(ȳ12) = −6p3 + p1p2, i∗1(ȳ16) = 12p4 + p2
2 − 1

2p2
1p2.

Then one has

(4.2) i∗2(y4) = p1, i∗2(y12) = −6p3 + p1p2, i∗2(y16) = 12p4 + p2
2 − 1

2p2
1p2, i∗2(y20) = c4

5.

For a dimensional reason, one has

i∗1(ȳ18) = δ1p
2
1c5 − δ2p2c5

and hence, for (4.2),

(4.3) i∗2(y28) = δ1p
2
1c

2
5 − δ2p2c

2
5.

From the above facts, we shall prove:

Proposition 4.1. ℘1y4 includes the term δy12y36 (δ ̸= 0).

Proposition 4.2. ℘1y12 includes the term δ1y20y36 (δ1 ̸= 0) or δ2y28y28 (δ2 ̸= 0).

From Lemma 4.1 and Proposition 4.1, it follows that

〈ϵ18, ϵ6〉 ̸= 0,

where ϵi denotes a generator of π2i−1((E7)(p)) = Z(p). Similarly, from Lemma 4.1 and
Proposition 4.2, it follows that

〈ϵ10, ϵ18〉 ̸= 0 or 〈ϵ14, ϵ14〉 ̸= 0.

For Fact 2.1, 〈ϵ10, ϵ18〉 and 〈ϵ14, ϵ14〉 take values in S11
(p) ⊂ (E7)(p). Then, by Fact 2.2 and

Fact 2.3, we obtain
〈ϵ18, 〈ϵ10, ϵ18〉〉 ̸= 0 or 〈ϵ18, 〈ϵ14, ϵ14〉〉 ̸= 0.

Therefore Theorem 2.1 completes the proof of Theorem 1.2 in the case of E7 with p = 23.

Proof of Proposition 4.1. We define a ring homomorphism

π : Z/p[p1, . . . , p4, c5] → Z/p[a2, . . . , a4, b5]/(a3
2, a

2
3, a

2
4, b

3
5, 12a4 + a2

2)

by
π(p1) = 0, π(pi) = ai (i = 2, 3, 4), π(c5) = b5.

Then, for (4.2) and (4.3), one has

(4.4) π(i∗2(y4)) = π(i∗2(y16)) = π(i∗2(y
2
12)) = π(i∗2(y28y20)) = 0.
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Put ℘1y4 = δy12y36+other terms. Then one can see that

π(i∗2(℘
1y4)) = δπ(i∗2(y12y36)).

On the other hand, since p1 = T1 and ℘1T1 = 2T12, Girard’s formula (4.1) yields that

π(℘1p1) = −15a3a4b
2
5 ̸= 0.

Thus δ ̸= 0 and this completes the proof. ¤

Proof of Proposition 4.2. We define a ring homomorphism

π : Z/p[p1, . . . , p4, c5] → Z/p[a2, a4, b5]/(a3
2, a

2
4, b

5
5, 12a4 + a2

2)

by
π(pi) = 0 (i = 1, 3), π(pj) = aj (j = 2, 4), π(c5) = b5.

Then, for (4.2) and (4.3), we have

(4.5) π(i∗2(y4)) = π(i∗2(y12)) = π(i∗2(y16)) = 0.

Put ℘1y12 = δ1y20y36 + δ2y28y28+other terms. Then one has

π(i∗2(℘
1y12)) = δ1π(i∗2(y20y36)) + δ2π(i∗2(y28y28)).

Let us calculate π(i∗2(℘
1y12)) directly. From Girard’s formula (4.1), it follows that

π(℘1p1) = π(℘1T1) = π(2T12) = −a2b
4
5, π(℘1T3) = π(6T14) = −9a4b

4
5.

Since T3 = p3
1 − 3p1p2 + 3p3, one has

π(℘1p3) = 9a4b
4
5.

For (4.2), one can see
π(℘1(i∗2(y12))) = −19a4b

4
5 ̸= 0.

Then we have obtained δ1 ̸= 0 or δ2 ̸= 0 and this completes the proof. ¤

5. The case of E8 with p = 37

We employ Proposition 4.1 to find a non-zero 2-iterated Samelson product in (E8)(p) as
well as in the previous section, where p = 37 throughout this section.

The mod p cohomology of BE8 is given by

H∗(BE8;Z/p) = Z/p[y4, y16, y24, y28, y36, y40, y48, y60], |yi| = i.

In order to calculate the action of ℘1 on H∗(BE8;Z/p), we shall arrange generators yi.
Let αi (i = 1, . . . , 8) and α̃ be respectively the simple roots and the dominant root of E8

as indicated in the following extended Dynkin diagram of E8 (see [13] for details).

b b b b b b b s
b

α1 α3 α4 α5 α6 α7 α8 α̃

α2
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Let W (E8) denote the Weyl group of E8. Let W and ϕ be the subgroup of W (E8)
generated by the reflections corresponding to αi (i = 2, . . . , 8) and α̃, and the elements
of W (E8) corresponding to α1 respectively. Then, by choosing appropriate generators
t1, . . . , t8 ∈ H∗(BT ;Z/p), Hamanaka and Kono [6] showed that

H∗(BT ;Z/p)W = Z/p[p1, . . . , p7, c8],

where pi and ci are as in the previous section. Since W (E8) is generated by W and ϕ, one
has

H∗(BT ;Z/p)W (E8) = H∗(BT ;Z/p)ϕ ∩ Z/p[p1, . . . , p7, c8].

Then the projection ρ : BT → BE8 induces an isomorphism

ρ∗ : H∗(BE8;Z/p)
∼=→ H∗(BT ;Z/p)ϕ ∩ Z/p[p1, . . . , p7, c8].

With the above choice of generators t1, . . . , t8 ∈ H∗(BT ;Z/p), Hamanaka and Kono [6]
showed that the automorphism ϕ is given by

ϕ(c1) = −c1, ϕ(c2) = c2, ϕ(c8) = c8 − 1
4c1c7, ϕ(p1) = p1

and

(5.1) ϕ(pi) ≡ pi + c1hi mod (c2
1)

for i = 2, . . . , 7, where

h2 = 3
2c3, h3 = −1

2(5c5 + c2c3), h4 = 1
2(7c7 + 3c2c5 − c3c4),

h5 = −1
2(5c2c7 − 3c3c6 + c4c5), h6 = −1

2(5c3c8 − 3c4c7 + c5c6), h7 = 1
2(3c5c8 − c6c7).

It is obvious that we can choose a generator y4 of H∗(BE8;Z/p) such that

(5.2) ρ∗(y4) = p1.

Moreover, we have:

Proposition 5.1 (Hamanaka and Kono [6]). If f̃16 ∈ H16(BT ;Z/p) and f̃24 ∈ H24(BT ;Z/p)
satisfy ϕ(f̃16) ≡ f̃16 mod (c2

1) and ϕ(f̃24) ≡ f̃24 mod (c2
1, c

2
2), then

f16 ≡ a1f16 mod (p4
1), f24 ≡ a2f̃24 mod (p2

1),

where a1, a2 ∈ Z/p and

f16 = 120p4 + 1680c8 + p2
1p2 − 36p1p3 + 10p2

2,

f24 = 60p6 − p1p2p3 − 5p1p5 + 5
36p3

2 − 5p2p4 + 110p2c8 + 3p2
3

Corollary 5.1 (Hamanaka and Kono [6]). Let f16 and f24 be as in Proposition 5.1. We
can choose generators y16 and y24 of H∗(BE8;Z/p) such that

ρ∗(y16) = f16, ρ∗(y24) ≡ f24 mod (p2
1).
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Now let us proceed to calculate invariant polynomials in H∗(BT ;Z/p). For a dimen-
sional consideration, invariant homogeneous polynomials of degree 28 is given by

δ1p7 + δ2p
2
2p3 + δ3p2p5 + δ4p3c8 + δ5p3p4 mod (p1)

for δi ∈ Z/p. It is straightforward to check that

ϕ(p2
2p3) ≡ p2

2p3 + 6c1c
3
3c4 − 12c1c3c4c6 − 10c1c

2
4c5,

ϕ(p2p5) ≡ p2p5 + 3c1c
2
3c7 + 3

2c1c3c
2
5 − c1c

2
4c5,

ϕ(p3p4) ≡ p3p4 − 1
2c1c

3
3c4 + 7

2c1c
2
3c7 + c1c3c4c6 + 5c1c3c

2
5 − 5

2c1c
2
4c5 − 5c1c5c8 − 7c1c6c7,

ϕ(p3c8) ≡ p3c8 − 1
4c1c

2
3c7 − 5

2c1c5c8 + 1
2c1c6c7 mod (c2

1, c2).

Then it follows that:

Proposition 5.2. If f̃28 ∈ H28(BT ;Z/p) satisfy ϕ(f̃28) ≡ f̃28 mod (c2
1, c2), then

f̃28 ≡ δf28 mod (p1),

where δ ∈ Z/p and

f28 = 480p7 − p2
2p3 + 40p2p5 − 12p3p4 + 312p3c8

Corollary 5.2. Let f28 be as in Proposition 5.2. We can choose a generator y28 of
H∗(BE8;Z/p) such that

ρ∗(y28) ≡ f28 mod (p1).

From the above arrangement of generators of H∗(BE8;Z/p), we can deduce the action
of ℘1 on H∗(BE8;Z/p) as follows.

Proposition 5.3. ℘1y4 includes the term δy16y60 (δ ̸= 0).

Proposition 5.4. ℘1y16 includes the term δy40y48 (δ ̸= 0).

From Lemma 4.1, Proposition 5.3 and Proposition 5.4, it follows that

〈ϵ30, ϵ8〉 ̸= 0, 〈ϵ20, ϵ24〉 ̸= 0,

where ϵi denotes a generator of π2i−1((E8)(p)) = Z(p). For Fact 2.1, 〈ϵ20, ϵ24〉 takes values
in S15

(p) ⊂ (E8)(p). Then, for Fact 2.2 and Fact 2.3, one has

〈ϵ30, 〈ϵ20, ϵ24〉〉 ̸= 0.

Therefore Theorem 2.1 completes the proof of Theorem 1.2 in the case of E8 with p = 37

Proof of Proposition 5.3. We define a ring homomorphism

π : Z/p[p1, . . . , p7, c8] → Z/p[a3, a4, a7, b8]/(a2
3, a

2
4, a

2
7, b

4
8,−a3a4 + 26a3b8 + 40a7)

by

π(pi) = 0 (i = 1, 2, 5, 6), π(pj) = aj (j = 3, 4, 7), π(c8) = b8.
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Then it follows from Corollary 5.2 and a dimensional consideration that

π(i∗2(y4)) = π(i∗2(y24)) = π(i∗2(y28)) = π(i∗2(y36)) = 0.

Hence, by Setting ℘1y4 = δy16y60+other terms, one has

π(i∗2(℘
1y4)) = δπ(i∗2(y16y60)).

On the other hand, it follows from Girard’s formula (4.1) that

π(i∗2(℘
1y4)) = π(℘1T1) = π(2T19) = 2a4a7b

2
8 ̸= 0.

Then δ ̸= 0 and the proof is completed. ¤

Proof of Proposition 5.4. Define a ring homomorphism

π : Z/p[p1, . . . , p7, c8] → Z/p[a2, a4, b8]/(a2
2, a

6
4, b

6
8, a4 + 14b8)

by

π(pi) = 0 (i = 1, 3, 5, 6, 7), π(pj) = aj (j = 2, 4), π(c8) = b8.

Then, for Corollary 5.1 and a dimensional reason, we have

π(i∗2(y4)) = π(i∗2(y16)) = π(i∗2(y28)) = π(i∗2(y
2
24)) = 0.

Put ℘1y16 = δy40y48+other terms. We can deduce that

π(i∗2(℘
1y16)) = δπ(i∗2(y40y48)).

Let us make a direct calculation of π(i∗2(℘
1y16)). From Girard’s formula (4.1), it follows

that

π(℘1T2) = π(4T20) = −6b5
8, π(℘1T4) = π(8T22) = 16a2b

5
8, π(℘1c8) = π(T18c8) = 26a2b

5
8.

Since T2 = p2
1 − 2p2 and T4 = p4

1 − 4p2
1p2 + 4p1p3 + 2p2

2 − 4p4, we have

π(℘1p2) = 3b5
8, π(℘1p4) = −a2b

5
8.

Then, for Corollary 5.1, one can see that

π(i∗2(℘
1y16)) = 120π(℘1p4) + 1680π(℘1c8) + 20a2π(℘1p2) = −3a2b

5
8 ̸= 0.

Hence δ ̸= 0 and this completes the proof. ¤

6. The remaining cases

In the cases of (G, p) = (G2, 7), (F4, 13), (E6, 13), (E7, 19), (E8, 31), Hamanaka and Kono
[6] showed that there exist non-zero 2-iterated Samelson products in G(p). Then Theorem
2.1 completes the proof of Theorem 1.2 in these cases.

In other remaining cases, (2.4) does not hold for the entries of types and then there is
no non-zero 3-iterated Samelson product. Hence, for Corollary 2.1 and Theorem 2.1, we
have established Theorem 1.2.
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