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Introduction

Let K be a number field and OK the ring of integers of K. Let (E, h) be a
hermitian finitely generated flat OK-module. For an OK-submodule F of E, let
us denote by hF↪→E the submetric of F induced by h. It is well known that the
set of all saturated OK-submodules F with d̂eg(F, hF↪→E) ≥ c is finite for any real
numbers c (for details, see [4, the proof of Proposition 3.5]).

In this note, we would like to give its generalization on a projective arithmetic
variety. Let X be a normal and projective arithmetic variety. Here we assume that
X is an arithmetic surface to avoid several complicated technical definitions on a
higher dimensional arithmetic variety. Let us fix a nef and big C∞-hermitian invert-
ible sheaf H on X as a polarization of X. Then we have the following finiteness of
saturated subsheaves with bounded arithmetic degree, which is also a generalization
of a partial result [5, Corollary 2.2].

Theorem A (cf. Theorem 3.1). Let E be a torsion free coherent sheaf on X and
h a C∞-hermitian metric of E on X(C). For any real number c, the set of all
saturated OX-subsheaves F of E with d̂eg(ĉ1(H) · ĉ1(F, hF↪→E)) ≥ c is finite.

For a non-zero C∞-hermitian torsion free coherent sheaf G on X, the arithmetic
slope µ̂H(G) of G with respect to H is defined by

µ̂H(G) =
d̂eg(ĉ1(H) · ĉ1(G))

rkG
.

As defined in the paper [5], (E, h) is said to be arithmetically µ-semistable with
respect to H if, for any non-zero saturated OX -subsheaf F of E,

µ̂H(F, hF↪→E) ≤ µ̂H(E, h).

The above semistability yields an arithmetic analogue of the Harder-Narasimham
filtration of a torsion free sheaf on an algebraic variety as follows: A filtration

0 = E0 ( E1 ( · · · ( El = E

of E is called an arithmetic Harder-Narasimham filtration of (E, h) with respect to
H if

(1) Ei/Ei−1 is torsion free for every 1 ≤ i ≤ l.
(2) Let hEi/Ei−1 be a C∞-hermitian metric of Ei/Ei−1 induced by h, that is,

hEi/Ei−1 = (hEi↪→E)Ei³Ei/Ei−1 = (hE³E/Ei−1)Ei/Ei−1↪→E/Ei−1
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(for details, see Proposition 1.1.1). Then (Ei/Ei−1, hEi/Ei−1) is arithmeti-
cally µ-semistable with respect to H.

(3) µ̂H(E1/E0, hE1/E0) > µ̂H(E2/E1, hE2/E1) > · · · > µ̂H(El/El−1, hEl/El−1).
As a consequence of the above theorem, we can show the unique existence of an
arithmetic Harder-Narasimham filtration:

Theorem B (cf. Theorem 5.1). There is a unique arithmetic Harder-Narasimham
filtration of (E, h).

1. Preliminaries

1.1. Hermitian vector space. In this subsection, let us recall several basic facts
of hermitian complex vector spaces.

Let (V, h) be a finite dimensional hermitian complex vector space, i.e., V is
a finite dimensional vector space over C and h is a hermitian metric of V . Let
φ : V ′ → V be an injective homomorphism of complex vector spaces. If we set
h′(x, y) = h(φ(x), φ(y)), then h′ is a hermitian metric of V ′. This metric h′ is
called the submetric of V ′ induced by h and V ′ → V , and it is denoted by hV ′↪→V .

Let ψ : V → V ′′ be a surjective homomorphism of complex vector spaces. Let
W be the orthogonal complement of Ker(ψ) with respect to h. Let hW↪→V be
the submetric of W induced by h and W → V . Then there is a unique hermitian
metric h′′ of V ′′ such that the isomorphism ψ|W : W → V ′′ gives rise to an isometry
(W,hW↪→V ) ∼−→ (V ′′, h′′). The metric h′′ is called the quotient metric of V ′′ induced
by h and V → V ′′, and it is denoted by hV ³V ′′ .

For simplicity, the submetric hV ′↪→V and the quotient metric hV ³V ′′ are often
denoted by hV ′ and hV ′′ respectively. It is easy to see the following proposition:

Proposition 1.1.1. Let V, V ′, V ′′ be finite dimensional complex vector spaces with
V ′′ ⊆ V ′ ⊆ V . Let h be a hermitian metric of V . Then

(hV ′↪→V )V ′³V ′/V ′′ = (hV ³V/V ′′)V ′/V ′′↪→V/V ′′

as hermitian metrics of V ′/V ′′.

More generally, we have the following lemma:

Lemma 1.1.2. Let (V, h) be a finite dimensional hermitian complex vector space.
Let W and U be subspaces of V . Let us consider a natural homomorphism

φ : W ↪→ V → V/U

of complex vector spaces. Let Q be the image of φ. Let us consider two natural
hermitian metrics h1 and h2 of Q given by

h1 = (hW↪→V )W³Q and h2 = (hV ³V/U )Q↪→V/U .

Then h1(x, x) ≥ h2(x, x) for all x ∈ Q. In particular, if {x1, . . . , xs} is a basis of
Q, then det(h1(xi, xj)) ≥ det(h2(xi, xj)).

Proof. Let T be the orthogonal complement of Ker(φ : W → Q) with respect
to hW↪→V . Then h(v, v) = h1(φ(v), φ(v)) for all v ∈ T . Let U⊥ be the orthogonal
complement of U with respect to h. Then, for v ∈ T , we can set v = u + u′ with
u ∈ U and u′ ∈ U⊥. Then h2(φ(v), φ(v)) = h(u′, u′). Thus

h2(φ(v), φ(v)) = h(u′, u′) ≤ h(v, v) = h1(φ(v), φ(v)).

For the last assertion, see [4, Lemma 3.4]. 2



SUBSHEAVES OF A HERMITIAN TORSION FREE COHERENT SHEAF 3

Let e1, . . . , en be an orthonormal basis of V with respect to h. Let V ∨ be the
dual space of V and e∨1 , . . . , e∨n the dual basis of e1, . . . , en. For φ, ψ ∈ V ∨, we set

h∨(φ, ψ) =
n∑

i=1

aib̄i,

where φ = a1e
∨
1 + · · · + ane∨n and ψ = b1e

∨
1 + · · · + bne∨n . It is easy to see that h∨

does not depend on the choice of the orthonormal basis of V , so that the hermitian
metric h∨ of V ∨ is called the dual hermitian metric of h. Moreover we can easily
check the following facts:

Proposition 1.1.3. (1) h∨(φ, φ) = sup
x∈V \{0}

|φ(x)|2

h(x, x)
.

(2) Let x1, . . . , xn be a basis of V and x∨
1 , . . . , x∨

n be the dual basis of V ∨. If
we set H = (h(xi, xj)) and H∨ = (h∨(x∨

i , x∨
j )), then H∨ = H

−1
.

(3) Let 0 → V1 → V2 → V3 → 0 be an exact sequence of finite dimensional com-
plex vector spaces and h1, h2, h3 hermitian metrics of V1, V2, V3 respectively.
We assume that h1 = (h2)V1↪→V2 and h3 = (h2)V2³V3 . Let us consider the
dual exact sequence 0 → V ∨

3 → V ∨
2 → V ∨

1 → 0 of 0 → V1 → V2 → V3 → 0
and the dual hermitian metrics h∨

1 , h∨
2 , h∨

3 of h1, h2, h3 respectively. Then
h∨

3 = (h∨
2 )V ∨

3 ↪→V ∨
2

and h∨
1 = (h∨

2 )V ∨
2 ³V ∨

1
.

Let (U, hU ) and (W,hW ) be finite dimensional hermitian vector spaces over C.
Then U ⊗C W has the standard hermitian metric hU ⊗ hW defined by

(hU ⊗ hW )(u ⊗ w, u′ ⊗ w′) = hU (u, u′)hW (w,w′).

Thus the standard hermitian metric of
⊗r

V is given by

(
r⊗

h)(v1 ⊗ · · · vr, v
′
1 ⊗ · · · ⊗ v′

r) = h(v1, v
′
1) · · ·h(vr, v

′
r).

Let π :
⊗r

V →
∧r

V be the natural surjective homomorphism and
∧r

h a hermit-
ian metric of

∧r
V given by

r∧
h = r!(

r⊗
h)Nr V ³Vr V .

Then we have the following:

Proposition 1.1.4. (
∧r

h)(x1 ∧ · · · ∧ xr, x1 ∧ · · · ∧ xr) = det(h(xi, xj)).

Proof. For a1, . . . , ar ∈ V , we set

φ(a1, . . . , ar) =
1
r!

∑
σ∈Sr

sgn(σ)aσ(1) ⊗ · · · ⊗ aσ(r).

Then, by an easy calculation, for σ ∈ Sr and a1, . . . , ar, b1, . . . , br ∈ V , we can see

(1.1.4.1) (
r⊗

h)(aσ(1) ⊗ · · · ⊗ aσ(r), φ(b1, . . . , br)) =

sgn(σ)(
r⊗

h)(a1 ⊗ · · · ⊗ ar, φ(b1, . . . , br))

Note that Ker(π) is generated by elements of type

a1 ⊗ · · · ⊗ ar,
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where ai = aj for some i ̸= j. Therefore, by (1.1.4.1), φ(x1, . . . , xr) ∈ Ker(π)⊥ for
all x1, . . . , xr ∈ V . Thus, since

π(φ(x1, . . . , xr)) = x1 ∧ · · · ∧ xr,

we have

(
r⊗

h)Nr V ³Vr V (x1∧· · ·∧xr, x1∧· · ·∧xr) = (
r⊗

h)(φ(x1, . . . , xr), φ(x1, . . . , xr)).

On the other hand, by using (1.1.4.1) again, we can check

(
r⊗

h)(φ(x1, . . . , xr), φ(x1, . . . , xr)) =
1
r!

det(h(xi, xj)).

Therefore we get our assertion. 2

1.2. Finitely generated modules over a 1-dimensional noetherian integral
domain. Let R be a noetherian integral domain with dim R = 1, and K the
quotient field of R. For a ∈ R\{0}, we set ordR(a) = lengthR(R/aR), which yields
a homomorphism ordR : R \ {0} → Z, that is, ordR(ab) = ordR(a) + ordR(b) for
a, b ∈ R \ {0}. Thus it extends to a homomorphism on K× given by ordR(a/b) =
ordR(a) − ordR(b).

Proposition 1.2.1. Let E be a finitely generated R-module. Let s1, . . . , sr and
s′1, . . . , s

′
r be sequences of elements of E such that s1, . . . , sr and s′1, . . . , s

′
r form

bases of E ⊗R K respectively. Let A = (aij) be an r × r-matrix such that aij ∈ K
for all i, j and s′i =

∑r
j=1 aijsj in E ⊗R K for all i. Then

lengthR(E/Rs′1 + · · · + Rs′r) = lengthR(E/Rs1 + · · · + Rsr) + ordR(det(A)).

Proof. We set M = Rs1 + · · ·+Rsr and M ′ = Rs′1 + · · ·+Rs′r. First we assume
that M ′ ⊆ M . Then aij ∈ R. An exact sequence

0 → M/M ′ → E/M ′ → E/M → 0.

yields
lengthR(E/M ′) = lengthR(E/M) + lengthR(M/M ′).

Note that M is a free R-module. Let φ : M → M be an endomorphism given
by φ(si) = s′i. Then, by [EGA IV, Lemme 21.10.17.3], lengthR(M/φ(M)) =
lengthR(R/ det(φ)R). Thus we get

lengthR(E/M ′) = lengthR(E/M) + lengthR(R/ det(A)R).

Next we consider a general case. Since E/M is a torsion module, there is b ∈
R \ {0} with bM ′ ⊆ M . Thus, by the previous observation,

lengthR(E/bM ′) = lengthR(E/M) + lengthR(R/ det(bA)R)

because bsi =
∑r

j=1 baijsj in E ⊗R K for all i. Moreover

lengthR(E/bM ′) = lengthR(E/M ′) + lengthR(R/brR).

Hence the proposition follows. 2
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Corollary 1.2.2. (1) Let {x1, . . . , xr} be a basis of E⊗RK. Let s1, . . . , sr ∈ E
and a ∈ R \ {0} such that axi = si in E ⊗R K for all i. Then the number

lengthR(E/Rs1 + · · · + Rsr) − r ordR(a)

does not depend on the choice of s1, . . . , sr and a, so that it is denoted by
ℓR(E; x1, . . . , xr).

(2) Let {x1, . . . , xr} and {x′
1, . . . , x

′
r} be bases of E ⊗R K. Let B = (bij) be an

r × r matrix such that x′
i =

∑r
j=1 bijxj for all i. Then

ℓR(E; x′
1, . . . , x

′
r) = ℓR(E;x1, . . . , xr) + ordR(det(B)).

Proof. (1) Let s′1, . . . , s
′
r ∈ E and a′ ∈ R \ {0} be another choice with a′xi = s′i

in E ⊗R K for all i. Then s′i = (a′/a)si in E ⊗R K. Thus, by the previous
proposition,

lengthR(E/Rs′1 + · · · + Rs′r) = lengthR(E/Rs1 + · · · + Rsr) + ordR((a′/a)r),

which yields the assertion.

(2) Let us choose a, b ∈ R \ {0} and s1, . . . , sr ∈ E such that axi = si in E ⊗R K
for all i and bbij ∈ R for all i, j. If we set s′i =

∑
j(bbij)si, then abx′

i = s′i in E⊗R K
for all i. Thus

ℓR(E; x1, . . . , xr) = lengthR(E/Rs1 + · · · + Rsr) − r ordR(a)

ℓR(E; x′
1, . . . , x

′
r) = lengthR(E/Rs′1 + · · · + Rs′r) − r ordR(ab).

On the other hand, by the previous proposition,

lengthR(E/Rs′1 + · · · + Rs′r) = lengthR(E/Rs1 + · · · + Rsr) + ordR(det(bB)).

Hence we obtain (2). 2

1.3. Subsheaves of a torsion free coherent sheaf. In this subsection, we con-
sider how we can get a saturated subsheaf.

Proposition 1.3.1. Let X be an irreducible noetherian integral scheme, η the
generic point of X, and K = OX,η the function field of X. Let E be a torsion
free coherent sheaf on X. Let Σ(X,E) be the set of all saturated OX-subsheaves
of E and Σ(K,Eη) the set of all vector subspaces of Eη over K. Then the map
γ : Σ(X,E) → Σ(K,Eη) given by γ(F ) = Fη is bijective. For a vector subspace W
of Eη over K, the subsheaf given by γ−1(W ) is called the saturated OX -subsheaf
of E induced by W and is denoted by OX(W ; E).

Proof. Let us begin with the following lemma:

Lemma 1.3.2. Let F,G be OX-subsheaves of E such that F is saturated in E and
Fη = Gη. Then F ⊇ G.

Proof. Let us consider a homomorphism φ : G → E → E/F . Then φη = 0.
Since E/F is torsion free, we have φ = 0, which means that G ⊆ F . 2

The injectivity of γ is a consequence of the above lemma. Let W be a vector
subspace of Eη over K. We set F (U) = W ∩E(U) for any Zariski open set U of X.
Then Fη = W . We need to see that F is saturated in E. Since F is the kernel of the
natural homomorphism E → Eη → Eη/W , we have an injection E/F ↪→ Eη/W ,
so that E/F is torsion free. 2
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Proposition 1.3.3. Let X be a noetherian scheme and E a locally free coherent
sheaf on X. Let π : P = Proj(

⊕
d≥0 Symd(E∨)) → X be the projective bundle and

OP (1) the tautological line bundle of P → X. Let Γ(X,P ) be the set of all sections
of π : P → X. Moreover let Σ′

1(X,E) be the set of all OX-subsheaves L such that
L is invertible and E/L is locally free. For s ∈ Γ(X,P ), let

φs : s∗(OP (−1)) → s∗π∗(E) = E

be a homomorphism obtained from the dual homomorphism OP (−1) → π∗(E) of
the natural homomorphism π∗(E∨) → OP (1) by applying s∗. We denote the image
of φs : s∗(OP (−1)) → E by L(s). Then L(s) ∈ Σ′

1(X,E) for all s ∈ Γ(X,P ) and a
map

Γ(X,P ) → Σ′
1(X,E)

given by s 7→ L(s) is bijective.

Proof. See [1, Theorem 7.1 and Proposition 7.12]. 2

1.4. Hermitian locally free coherent sheaf on a smooth variety. Let X be
a smooth variety over C, η be the generic point of X, and K = OX,η the function
field of X.

Proposition 1.4.1. Let (E, h) and (E′, h′) be C∞-hermitian locally free coherent
sheaves on X. If there is a dense Zariski open set U of X such that (E, h)|U is
isometric to (E′, h′)|U , then this isometry extends to an isometry over X.

Proof. Since V = Eη is isomorphic to E′
η, we may assume that E′ is a subsheaf

of V . Then (E, h)|U coincides with (E′, h′)|U .
First let us see that E = E′. For this purpose, it is sufficient to see that Eγ = E′

γ

for all codimension one points γ. Let {ω1, . . . , ωr} and {ω′
1, . . . , ω

′
r} be local bases

of Eγ and E′
γ respectively. Then there are r × r-matrices (aij) and (bij) such that

aij , bij ∈ K for all i, j and

ω′
i =

r∑
j=1

aijωj , ωi =
r∑

j=1

bijω
′
j

for all i. Clearly (aij)(bij) = (bij)(aij) = (δij).

Claim 1.4.1.1. aij , bij ∈ OX,γ for all i, j.

For each i, we set ei = min1≤j≤r{ordγ(aij)}. We assume that ei < 0. Let t be
a local parameter of OX,γ . Then t−eiaij ∈ OX,γ for all j. Thus t−eiω′

i ∈ Eγ and
t−eiω′

i ̸= 0 in Eγ ⊗κ(γ). Let Γ be the Zariski closure of {γ}. If we choose a general
closed point x0 of Γ, then ω′

i ̸= 0 in E′
x0

⊗κ(x0) and t−eiω′
i ̸= 0 in Ex0 ⊗κ(x0). On

the other hand, there is an open neighborhood Ux0 of x0 such that

h(t−eiω′
i, t

−eiω′
i)(x) = h′(t−eiω′

i, t
−eiω′

i)(x)

for x ∈ Ux0 ∩ U . Thus if we set

f(x) = h(t−eiω′
i, t

−eiω′
i)(x) = |t|−2eih′(ω′

i, ω
′
i)(x)

on Ux0 ∩ U , then limx→x0 f(x) = h(t−eiω′
i, t

−eiω′
i)(x0) = 0 because t = 0 at x0.

This is a contradiction because t−eiω′
i ̸= 0 in Ex0 ⊗κ(y). Therefore we can see that

aij ∈ OX,γ for all i, j. In the same way, bij ∈ OX,γ for all i, j.
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By the above claim, {ω1, . . . , ωr} and {ω′
1, . . . , ω

′
r} generate the same OX,γ-

module in V . Thus Eγ = E′
γ . Hence we get E = E′.

Let x be an arbitrary closed point of X. Let v, v′ ∈ Ex⊗κ(x). Choose ω, ω′ ∈ Ex

such that ω and ω′ give rise to v and v′ in Ex⊗κ(x). Then there is a neighborhood
Ux of x such that h(ω, ω′)(y) = h′(ω, ω′)(y) for all y ∈ Ux ∩ U . Thus

h(ω, ω′)(x) = lim
y→x

h(ω, ω′)(y) = lim
y→x

h′(ω, ω′)(y) = h′(ω, ω′)(x),

which means that hx(v, v′) = h′
x(v, v′). 2

Proposition 1.4.2. Let (E, h) be a C∞-hermitian locally free coherent sheaf on X.
Let x1, . . . , xr be a K-linearly independent elements of Eη. Then log(det(h(xi, xj)))
is a locally integrable function.

Proof. Let W be a vector subspace of Eη generated by x1, . . . , xr. By Proposi-
tion 1.3.1, there is a saturated OX -subsheaf F of E with Fη = W . First we assume
that F and E/F are locally free. For a closed point x ∈ X, let {ω1, . . . , ωr} be a
local basis of Fx. Then we can find a matrix A = (aij) such that aij ∈ K for all
i, j and xi =

∑r
j=1 aijωj for all i. Then

det(h(xi, xj)) = |det(A)|2 det(h(ωi, ωj)).

Since F and E/F are locally free, det(h(ωi, ωj)) is a non-zero C∞-function around
x and det(A) is a non-zero rational function on X. Thus log(det(h(xi, xj))) is
locally integrable around x.

In general, if we set Q = E/F , then there is a proper birational morphism
µ : Y → X of smooth algebraic varieties over C such that

µ∗(Q)/(the torsion part of µ∗(Q))

is locally free. We set F ′ = Ker(µ∗(E) → µ∗(Q)/(the torsion part of µ∗(Q))).
Then F ′ and µ∗(E)/F ′ are locally free. Thus, since F ′

η = W ,

log(det(µ∗(h)(xi, xj))) = µ∗(log(det(h(xi, xj))))

is a locally integrable function on Y . Therefore so is log det(h(xi, xj)) on X by
virtue of [3, Proposition 1.2.5] 2

1.5. Arakelov geometry. For basic definitions concerning Arakelov geometry, we
refer to [6, Section 1]. Let X be a projective arithmetic variety. We use several
kinds of positivity of a C∞-hermitian invertible sheaf on X (like ampleness, nefness
and bigness) as defined in [6, Section 2]. Let H = (H1, . . . , Hd) be a sequence of nef
C∞-hermitian invertible sheaves on X, where d = dim XQ. Note that the sequence
is empty in the case of d = 0. We say H is fine if (X;H1, . . . , Hd) gives rise to
a fine polarization of the function field of X (for details, see [7, Section 6.1]). For
example, if Hi’s are nef and big, then H is fine. Finally we consider the following
lemma.

Lemma 1.5.1. Let X be a generically smooth arithmetic variety and U a Zariski
open set of X with codim(X \ U) ≥ 2. Then the natural homomorphism

ĈH
1

D(X) → ĈH
1

D(U)

is injective.
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Proof. Let (D,T ) be an arithmetic cycle of codimension one on X. We assume
that (D|U , T |U ) = (̂φ|U ) for some non-zero rational function φ on X. Then, since
codim(X \ U) ≥ 2, we have (D,T ) = (̂φ). 2

2. Birationally C∞-hermitian torsion free coherent sheaves
on a normal arithmetic variety

Let X be a normal arithmetic variety. Let E be a torsion free coherent sheaf on
X. We say a pair (E, h) is called a birationally C∞-hermitian torsion free coherent
sheaf on X if there are a proper birational morphism µ : X ′ → X of normal
arithmetic varieties, a C∞-hermitian locally free coherent sheaf (E′, h′) on X ′, and
a Zariski open set U of X with the following properties:

(1) X ′ and U are generically smooth.
(2) codim(X \ U) ≥ 2.
(3) µ : X ′ → X is an isomorphism over U , that is, if we set U ′ = µ−1(U), then

µ|U ′ : U ′ ∼−→ U .
(4) E is locally free on U and h is a C∞-hermitian metric of E|U over U(C).
(5) (µ|U ′)∗( (E, h)|U ) is isometric to (E′, h′)|U ′ .

This C∞-hermitian locally free coherent sheaf (E′, h′) is called a model of (E, h) in
terms of µ : X ′ → X. Note that if µ′ : X ′′ → X ′ is a proper birational morphism of
normal and generically smooth arithmetic varieties, then µ′∗(E′, h′) is also a model
of (E, h) in terms of µ ◦ µ′ : X ′′ → X. For, let X ′

0 be the maximal Zariski open
set over which µ′ is an isomorphism. Then codim(X ′ \ X0) ≥ 2. Thus if we set
V = µ(U ′ ∩ X ′

0), then we can see the above properties for V .

Proposition 2.1. Let X be a normal arithmetic variety and (E, h) a birationally
C∞-hermitian torsion free coherent sheaf on X. Let F be a saturated OX-subsheaf
of E. Let hF↪→E (resp. hE³E/F ) be the submetric of F induced by F ↪→ E and h
(resp. the quotient metric of E/F induced by E ³ E/F and h) on a big Zariski open
set of X, i.e., a Zariski open set whose complement has the codimension greater
than or equal to 2. Then (F, hF↪→E) and (E/F, hE³E/F ) are also a birationally
C∞-hermitian torsion free coherent sheaf on X.

Proof. Let η be the generic point of X. Let (E′, h′) be a model of (E, h) in
terms of µ : X ′ → X. Let F ′ be a saturated OX′-subsheaf F ′ of E′ with F ′

η = Fη

(cf. Proposition 1.3.1). We set Q = E′/F ′. By [8, Theorem 1 in Chapter 4], there
is a proper birational morphism µ′ : X ′′ → X ′ of normal and generically smooth
arithmetic varieties such that µ′∗(Q)/(torsion) is locally free. Let

F ′′ = Ker(µ′∗(E′) → µ′∗(Q)/(torsion)).

Then F ′′ and µ′∗(E′)/F ′′ are locally free. Thus

(F ′′, µ′∗(h′)F ′′↪→µ′∗(E′)) and (µ′∗(E′)/F ′′, µ′∗(h′)µ′∗(E′)³µ′∗(E′)/F ′′)

yield models of (F, hF↪→E) and (E/F, hE³E/F ) respectively because µ′∗(E′, h′)
gives rise to a model of (E, h). 2

Proposition 2.2. We assume that X is projective. Let H = (H1, . . . , Hd) be a
sequence of nef C∞-hermitian invertible sheaves on X, where d = dimXQ. Then
the quantity

d̂eg(ĉ1(µ∗(H1)) · · · ĉ1(µ∗(Hd)) · ĉ1(E′, h′))
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does not depend on the choice of a model (E′, h′) in terms of µ : X ′ → X. It is
denoted by d̂egH(E, h) and is called the arithmetic degree of (E, h) with respect to
H.

Proof. Let us begin with the following lemma.

Lemma 2.3. Let ν : Y → X be a birational morphism of normal and projective
arithmetic varieties such that Y is generically smooth. Let (E, h) and (E′, h′) be
C∞-hermitian locally free coherent sheaves on Y . We assume that there is a Zariski
open set U of X such that codim(X \U) ≥ 2 and ν is an isomorphism over U , that
is, if we set V = ν−1(U), then ν|V : V

∼−→ U . Let L1, . . . , Ld be C∞-hermitian
invertible sheaves on X, where d = dim XQ. If (E, h)|V is isometric to (E′, h′)|V ,
then

d̂eg(ĉ1(ν∗(L1)) · · · ĉ1(ν∗(Ld)) · ĉ1(E, h))

= d̂eg(ĉ1(ν∗(L1)) · · · ĉ1(ν∗(Ld)) · ĉ1(E′, h′)).

Proof. Let η be the generic point of Y and x1, . . . , xr a basis of Eη. Let
x′

1, . . . , x
′
r be the corresponding basis of E′

η with x1, . . . , xr. Let Y (1) be the set of
all codimension one points of Y . Then ĉ1(E, h) and ĉ1(E′, h′) are represented by ∑

γ∈Y (1)

ℓOY,γ
(E;x1, . . . , xr){γ}, − log(det(h(xi, xj)))


and  ∑

γ∈Y (1)

ℓOY,γ (E′;x′
1, . . . , x

′
r){γ}, − log(det(h′(x′

i, x
′
j)))


respectively. By Proposition 1.4.1, we can see that

det(h(xi, xj)) = det(h′(x′
i, x

′
j))

on Y (C). Here
ℓOY,γ

(E; x1, . . . , xr) = ℓOY,γ
(E′; x′

1, . . . , x
′
r)

for all γ ∈ V (1). Moreover, for γ ∈ Y (1) \ V (1), since codim(ν({γ})) ≥ 2,

d̂eg(ĉ1(ν∗(L1)) · · · ĉ1(ν∗(Ld)) · ({γ}, 0)) = 0

by the projection formula (cf. [6, Proposition 1.2 and Proposition 1.3]). Thus we
have our lemma. 2

Let us go back to the proof of Proposition 2.2. Let (E1, h1) and (E2, h2) be two
models of (E, h) in terms of µ1 : X1 → X and µ2 : X2 → X respectively. We
can choose a normal, projective and generically smooth arithmetic variety Y and
birational morphisms π1 : Y → X1 and π2 : Y → X2 with µ1 ◦ π1 = µ2 ◦ π2. We
set ν = µ1 ◦ π1 = µ2 ◦ π2. First of all, by the projection formula, we have

d̂eg(ĉ1(µ∗
1(H1)) · · · ĉ1(µ∗

1(Hd)) · ĉ1(E1, h1))

= d̂eg(ĉ1(ν∗(H1)) · · · ĉ1(ν∗(Hd)) · ĉ1(π∗
1(E1, h1)))
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and

d̂eg(ĉ1(µ2
∗(H1)) · · · ĉ1(µ2

∗(Hd)) · ĉ1(E2, h2))

= d̂eg(ĉ1(ν∗(H1)) · · · ĉ1(ν∗(Hd)) · ĉ1(π∗
2(E2, h2))).

Moreover, by Lemma 2.3,

d̂eg(ĉ1(ν∗(H1)) · · · ĉ1(ν∗(Hd)) · ĉ1(π∗
1(E1, h1)))

= d̂eg(ĉ1(ν∗(H1)) · · · ĉ1(ν∗(Hd)) · ĉ1(π∗
2(E2, h2))).

Thus we get the assertion. 2

Let X be a normal arithmetic variety and (E, h) a birationally C∞-hermitian
torsion free sheaf on X. Let π : X ′ → X be a proper birational morphism of normal
arithmetic varieties and (E′, h′) a birationally C∞-hermitian torsion free sheaf on
X ′. We say (E, h) is birationally dominated by (E′, h′) by means of π : X ′ → X if
there is a Zariski open set U of X with the following properties:

(1) codim(X \ U) ≥ 2 and U is generically smooth.
(2) (E, h) is a C∞-hermitian locally free sheaf over U .
(3) If we set U ′ = π−1(U), then π|U ′ : U ′ ∼−→ U .
(4) (π|U ′)∗( (E, h)|U ) is isometric to (E′, h′)|U ′ .

Then we have the following:

Proposition 2.4. The notation is the same as above. We assume that (E, h) is
birationally dominated by (E′, h′) by means of π : X ′ → X.

(1) Let F be a saturated OX-subsheaf of E and F ′ the corresponding saturated
OX′-subsheaf of E′ with F . Then (F, hF↪→E) and (E/F, hE³E/F ) are bi-
rationally dominated by (F ′, h′

F ′↪→E′) and (E′/F ′, h′
E′³E′/F ′) respectively.

(2) We assume that X and X ′ are projective. Let H = (H1, . . . , Hd) be a
sequence of nef C∞-hermitian invertible sheaves on X, where d = dim XQ.
Then d̂egH(E, h) = d̂egπ∗(H)(E

′, h′).

Proof. (1) There is a Zariski open set U1 such that U1 ⊆ U , codim(X \ U1) ≥
2 and that E|U1

and E/F |U1
are locally free. We set U ′

1 = π−1(U1). Then
(π|U ′)∗( (F, hF↪→E)|U1

) is isometric to (F ′, h′
F ′↪→E′)|U ′

1
. Thus our assertions fol-

low.

(2) Let (E′′, h′′) be a model of (E′, h′) in terms of a birational morphism µ :
Y → X ′. Then it is easy to see that (E′′, h′′) is a model of (E, h) in terms of
π ◦ µ : Y → X. Thus we have (2) by Proposition 2.2. 2

3. Finiteness of subsheaves with bounded arithmetic degree

In this section, we would like to give the proof of the main theorem of this note.

Theorem 3.1. Let X be a normal projective arithmetic variety and (E, h) a bira-
tionally C∞-hermitian torsion free coherent sheaf on X. Let H = (H1, . . . , Hd) be
a fine sequence of nef C∞-hermitian invertible sheaves on X, where d = dim XQ.
For any real number c, the set of all non-zero saturated OX-subsheaf F of E with
d̂egH(ĉ1(F, hF↪→E)) ≥ c is finite, where hF↪→E is the submetric of F induced by h
over a big open set.
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Proof. Let (E′, h′) be a model of (E, h) in terms of µ : X ′ → X. Let η be
the generic point of X. For each vector subspace W of Eη, let F (resp. F ′) be a
saturated OX -subsheaf of E (resp. OX′-subsheaf of E′) induced by W . Then, by
Proposition 2.4,

d̂egH(F, hF↪→E) = d̂egµ∗(H)(F
′, hF ′↪→E′).

Therefore we may assume that X is generically smooth, E is locally free and h is
a C∞-hermitian metric of E.

For each 0 < s < rkE, let Σs(X,E) be the set of all saturated rank s OX -
subsheaves of E. First let us see that, for any real number c, the set

{L ∈ Σ1(X,E) | d̂egH(F, hF↪→E) ≥ c}

is finite. Let π : P = Proj(
⊕

d≥0 Symd(E∨)) → X be the projective bundle and
OP (1) the tautological line bundle of P . Let hP be the quotient hermitian metric
of OP (1) by using the surjective homomorphism π∗(E∨) → OP (1) and the her-
mitian metric π∗(h∨). In other words, the metric h−1

P of OP (−1) is the submetric
induced by the injective homomorphism OP (−1) → π∗(E) and π∗(h) (cf. (3) of
Proposition 1.1.3). Let Pη be the generic fiber of π : P → X, and K the function
field of X.

For a K-rational point x of Pη, let us introduce ∆x, Ux, Vx and sx as follows:
∆x is the Zariski closure of x in P and Ux is the maximal open set of X over which
π|∆x

: ∆x → X is an isomorphism. Further Vx = (π|∆x
)−1(Ux) and sx : Ux → P

is the section induced by the isomorphism π|Vx
: Vx → Ux

Let Σ1(K,Eη) be the set of all 1-dimensional vector subspaces of Eη over K.
Then, by Proposition 1.3.3, there is a natural bijection

Pη(K) → Σ1(K,Eη).

Moreover let Σ1(X,E) be the set of all saturated rank one OX -subsheaves of E.
By Proposition 1.3.1, we have a bijective map

Σ1(X,E) → Σ1(K,Eη).

Therefore there is a natural bijection between Pη(K) and Σ1(X,E). For a K-
rational point x of Pη, the corresponding saturated rank one OX -subsheaf of E
is denoted by L(x). Then, by using Proposition 1.3.3, we can see that L(x) has
the following property: Let s∗x(OP (−1)) → s∗xπ∗(E) = E|Ux

be the homomorphism
from the natural homomorphism OP (−1) → π∗(E) by applying s∗x. Then the image
of s∗x(OP (−1)) → E|Ux

is L(x)|Ux
. Let hx be the submetric of L(x) induced by h.

Claim 3.1.1. ĉ1(L(x), hx) = (π|∆x
)∗

(
ĉ1

(
(OP (−1), h−1

P )
∣∣
∆x

))
.

Since the metric h−1
P is the submetric of OP (−1) induced by π∗(h), we can

see that s∗x(OP (−1), h−1
P ) is isometric to (L(x), hx)|Ux

. Thus (OP (−1), h−1
P )

∣∣
Vx

is
isometric to (π|Vx

)∗( (L(x), hx)|Ux
), which implies that

(π|Vx
)∗

(
ĉ1

(
(OP (−1), h−1

P )
∣∣
Vx

))
= (π|Vx

)∗
(
ĉ1

(
(π|Vx

)∗( (L(x), hx)|Ux
)
))

= ĉ1( (L(x), hx)|Ux
).

This means that the assertion of the claim holds over Ux. Thus so does over X by
Lemma 1.5.1.
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For a K-rational point x of Pη, the height hO(1)(x) with respect to OP (1) and
(X, H) is given by

hO(1)(x) = d̂eg
(
ĉ1((π|∆x

)∗(H1)) · · · ĉ1((π|∆x
)∗(Hd)) · ĉ1

(
(OP (1), hP )|∆x

))
.

By using the above claim and the projection formula,

−hOP (1)(x) = d̂eg
(
ĉ1((π|∆x

)∗(H1)) · · · ĉ1((π|∆x
)∗(Hd)) · ĉ1

(
(OP (−1), h−1

P )
∣∣
∆x

))
= d̂eg

(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(L(x), hx)

)
= d̂egH(L(x), hx).

Thus we have a bijective correspondence between

{L ∈ Σ1(X,E) | d̂egH(F, hF↪→E) ≥ c}

and
{x ∈ Pη(K) | h(x) ≤ −c}.

On the other hand, by virtue of Northcott’s theorem over finitely generated field
(cf. [6, Theorem 4.3]), {x ∈ Pη(K) | h(x) ≤ −c} is a finite set. Therefore we get
the case where s = 1.

For F ∈ Σs(X,E), let λ(F ) be the saturation of
s∧

F/(the torsion part of
s∧

F )

in
∧s

E.

Claim 3.1.2. If λ(F ) = λ(F ′), then F = F ′.

We assume that λ(F ) = λ(F ′). Let K be the function field of X. Then, using
Plücker coordinates over K, we can see that F⊗K = F ′⊗K. Thus, by Lemma 1.3.2,
F ′ = F .

Let hλ(F ) = (
∧s

h)λ(F )↪→
Vs E . Then, by Proposition 1.1.4,

ĉ1(F, hF ) = ĉ1(λ(F ), hλ(F )).

Therefore, by using the above claim and the case where s = 1, our theorem follows.
2

Let X be a normal and projective arithmetic variety and (E, h) a birationally
C∞-hermitian torsion free coherent sheaf on X. Let H = (H1, . . . , Hd) be a fine
sequence of nef C∞-hermitian invertible sheaves on X. For a non-zero saturated
OX -subsheaf G of E, we set

µ̂H(G,hG↪→E) =
d̂egH(G,hG↪→E)

rkG
.

A saturated OX -subsheaf F of E is called a maximal slope sheaf of (E, h) with
respect to H if µ̂H(F, hF↪→E) gives rise to the maximal value of the set

{µ̂H(G,hG↪→E) | G is a non-zero saturated OX -subsheaf of E} .

Moreover a maximal slope sheaf F of (E, h) is called a maximal destabilizing sheaf
of (E, h) with respect to H if rkF is maximal among all maximal slope sheaves of
(E, h). As a corollary of Theorem 3.1, we have the following:

Corollary 3.2. There is a maximal destabilizing sheaf of (E, h) with respect to H.
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4. Arithmetic first Chern class of a subsheaf

Let X be a normal and generically smooth arithmetic variety and η the generic
point of X. Let (E, h) be a C∞-hermitian locally free sheaf on X. Let F be an
OX -subsheaf of E. Let x1, . . . , xr be a basis of Fη. Let us consider an arithmetic
codimension one cycle z(F ; x1, . . . , xr) (i.e., an element of ∈ Ẑ1

D(X)) given by

z(F ;x1, . . . , xr) =

(∑
Γ

ℓOX,Γ(FΓ; x1, . . . , xr)Γ,− log det(h(xi, xj))

)
.

Note that log det(h(xi, xj)) is locally integrable on X(C) by Proposition 1.4.2. Let
x′

1, . . . , x
′
r be another basis of Fη. There is an r × r-matrix A = (aij) with x′

i =∑r
j=1 aijxj . Using (2) of Corollary 1.2.2, we can see that

z(F ; x′
1, . . . , x

′
r) = z(F ; x1, . . . , xr) + ̂(det(A)).

Therefore the class of z(F ; x1, . . . , xr) in ĈH
1

D(X) does not depend on the choice

of x1, . . . , xr. We denote the class of z(F ; x1, . . . , xr) in ĈH
1

D(X) by ĉ1(F ↪→ E, h).
If F = E, then ĉ1(E ↪→ E, h) is equal to the usual ĉ1(E, h). Note that

ĉ1(F ↪→ E, h) = ĉ1(F, hF↪→E)

if F is saturated in E. More generally, we have the following:

Proposition 4.1. Let F be an OX-subsheaf of E and F̃ the saturation of F in E.
Then ĉ1(F̃ , h

eF↪→E) − ĉ1(F ↪→ E, h) is represented by an arithmetic divisor ∑
Γ : prime divisor

lengthOX,Γ
(F̃Γ/FΓ)Γ, 0

 .

In particular, if H = (H1, . . . , Hd) is a sequence of nef C∞-hermitian invertible
sheaves on X, then

d̂eg(ĉ1(H1) · · · ĉ1(Hd) · ĉ1(F ↪→ E, h)) ≤ d̂eg(ĉ1(H1) · · · ĉ1(Hd) · ĉ1(F̃ , h
eF↪→E)).

Proof. Let η be the generic point of X. Let {x1, . . . , xr} be a basis of Fη. Then
{x1, . . . , xr} also gives rise to a basis of F̃η. Thus ĉ1(F̃ , h

eF↪→E) − ĉ1(F ↪→ E, h) is
represented by(∑

Γ

(ℓOX,Γ(F̃Γ;x1, . . . , xr) − ℓOX,Γ(FΓ; x1, . . . , xr))Γ, 0

)
.

Hence it is sufficient to see that

ℓOX,Γ(F̃Γ;x1, . . . , xr) − ℓOX,Γ(FΓ; x1, . . . , xr) = lengthOX,Γ
(F̃Γ/FΓ)

for all Γ. Let a be an element of OX,Γ \ {0} such that axi ∈ OX,Γ for all i. Then

ℓOX,Γ(F̃Γ; x1, . . . , xr) = lengthOX,Γ
(F̃Γ/OX,Γax1 + · · · + OX,Γaxr) − r ordΓ(a),

ℓOX,Γ(FΓ; x1, . . . , xr) = lengthOX,Γ
(FΓ/OX,Γax1 + · · · + OX,Γaxr) − r ordΓ(a).

Therefore we get our proposition. 2
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5. Arithmetic Harder-Narasimham filtration

Let X be a normal and projective arithmetic variety and H = (H1, . . . , Hd) a
fine sequence of nef C∞-hermitian invertible sheaves. Let (E, h) be a birationally
C∞-hermitian torsion free coherent sheaf on X. (E, h) is said to be arithmetically
µ-semistable with respect to H if, for any non-zero saturated OX -subsheaf F of E,

µ̂H(F, hF↪→E) ≤ µ̂H(E, h).

A filtration
0 = E0 ( E1 ( · · · ( El = E

of OX -subsheaves of E is called a saturated filtration of E if Ei/Ei−1 is torsion free
for every 1 ≤ i ≤ l. Moreover we say a saturated filtration 0 = E0 ( E1 ( · · · (
El = E of E is an arithmetic Harder-Narasimham filtration of (E, h) with respect
to H if

(1) Let hEi/Ei−1 be a C∞-hermitian metric of Ei/Ei−1 induced by h, that is,

hEi/Ei−1 = (hEi↪→E)Ei³Ei/Ei−1 = (hE³E/Ei−1)Ei/Ei−1↪→E/Ei−1 .

Then (Ei/Ei−1, hEi/Ei−1) is arithmetically µ-semistable with respect to H.
(2) µ̂H(E1/E0, hE1/E0) > µ̂H(E2/E1, hE2/E1) > · · · > µ̂H(El/El−1, hEl/El−1).

In the case where X is generically smooth and (E, h) is a C∞-hermitian locally
free coherent sheaf on X, for a non-zero OX -subsheaf G of E, we set

µ̂H(G ↪→ E, h) =
d̂eg(ĉ1(H1) · · · ĉ1(Hd) · ĉ1(G ↪→ E, h))

rkG
.

The purpose of this section is to prove the following unique existence of an
arithmetic Harder-Narasimham filtration:

Theorem 5.1. Let X be a normal and projective arithmetic variety. Let (E, h) be a
birationally C∞-hermitian torsion free coherent sheaf on X. Let H = (H1, . . . , Hd)
be a fine sequence of nef C∞-hermitian invertible sheaves. Then there exists uniquely
an arithmetic Harder-Narasimham filtration of (E, h) with respect to H. Moreover,
if (E, h) is not arithmetically µ-semistable with respect to H, then a maximal desta-
bilizing sheaf of (E, h) is unique.

We need several lemmas to prove the above theorem.

Lemma 5.2. Let (E, h) and (E′, h′) be birationally C∞-hermitian torsion free
coherent sheaves on normal projective arithmetic varieties X and X ′ respectively.
Let H = (H1, . . . , Hd) be a fine sequence of nef C∞-hermitian invertible sheaves
on X. We assume that there is a birational morphism π : X ′ → X and (E, h) is
dominated by (E′, h′) by means of π : X ′ → X. Then we have the followings:

(1) (E, h) is arithmetically µ-semistable with respect to H if and only if so is
(E′, h′) with respect to π∗(H).

(2) Let F be a saturated OX-subsheaf of E and F ′ the corresponding saturated
OX′-subsheaf of E′. Then F is a maximal destabilizing sheaf of (E, h) with
respect to H if and only if so is F ′ with respect to π∗(H).
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(3) Let 0 = E0 ( E1 ( · · · ( El = E be a saturated filtration of E and
0 = E′

0 ( E′
1 ( · · · ( E′

l = E′ the corresponding saturated filtration of E′.
Then 0 = E0 ( E1 ( · · · ( El = E is a Harder-Narasimham filtration with
respect to H if and only if so is 0 = E′

0 ( E′
1 ( · · · ( E′

l = E′ with respect
to π∗(H).

Proof. This is a consequence of Proposition 2.4. 2

Lemma 5.3. Let (E, h) be a birationally C∞-hermitian torsion free coherent sheaf
on a normal projective arithmetic variety X. If (E, h) is not arithmetically µ-
semistable with respect to H and F is a maximal slope sheaf of (E, h), then

µ̂H(F, hF↪→E) > µ̂H(E/F, hE³E/F ).

Proof. We set a = rk(F ) and b = rk(E/F ). Then

µ̂H(E, h) =
a

a + b
µ̂H(F, hF↪→E) +

b

a + b
µ̂H(E/F, hE³E/F ).

Thus, since µ̂H(F, hF↪→E) > µ̂H(E, h), we get our lemma. 2

Lemma 5.4. Let (E, h) be a birationally C∞-hermitian torsion free coherent sheaf
on a normal projective arithmetic variety X. Let H = (H1, . . . , Hd) be a fine
sequence of nef C∞-hermitian invertible sheaves. Then there are a model (E′, h′) of
(E, h) in terms of a birational morphism µ : Y → X of normal projective arithmetic
varieties and a Harder-Narasimham filtration

0 = E′
0 ( E′

1 ( · · · ( E′
l = E′

of (E′, h′) with respect to µ∗(H) such that E′
i/E′

i−1 is locally free for every i =
1, . . . , l.

Proof. Let (E′, h′) be a model of (E, h) in terms of µ : Y → X. By Propo-
sition 2.4, (E, h) is arithmetically µ-semistable with respect to H if and only if
so is (E′, h′) with respect to µ∗(H). Thus we may assume that (E, h) is not
arithmetically µ-semistable with respect to H. Let E′

1 be a maximal destabilizing
sheaf of (E′, h′). Considering Proposition 2.4 and a suitable birational morphism
µ′ : Y ′ → Y of normal, projective and generically smooth arithmetic varieties to
remove the pinching points of E′/E′

1, we may assume that E′
1 and E′/E′

1 are lo-
cally free. If (E′/E′

1, h
′
E′³E′/E′

1
) is arithmetically µ-semistable, then we are done.

Otherwise, let E′
2 be a saturated OY -subsheaf of E′ such that E′

1 ( E′
2 and E′

2/E′
1

is a maximal destabilizing sheaf of (E′/E′
1, h

′
E′³E′/E′

1
). Changing Y as before, we

may assume that E′
2 and E′/E′

2 are locally free. Moreover, by Lemma 5.3,

µ̂µ∗(H)(E
′
1, hE′

1↪→E′) = µ̂µ∗(H)(E
′
1, (hE′

2↪→E)E′
1↪→E′

2
)

> µ̂µ∗(H)(E
′
2/E′

1, (hE′
2↪→E)E′

2³E′
2/E′

1
).

Thus, continuing this construction, we have our lemma. 2

Lemma 5.5. Let (E, h) be a C∞-hermitian locally free coherent sheaf on a normal
projective and generically smooth arithmetic variety X. Let H = (H1, . . . , Hd) be
a fine sequence of nef C∞-hermitian invertible sheaves. Let 0 = E0 ( E1 ( · · · (
El = E be an arithmetic Harder-Narasimham filtration of (E, h) such that Ei/Ei−1

is locally free for every i = 1, . . . , l. If F is a maximal slope sheaf of (E, h), then
F ⊆ E1 and µ̂H(F ↪→ E, h) = µ̂H(E1 ↪→ E, h).
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Proof. We choose i such that F ⊆ Ei and F ̸⊆ Ei−1. We assume that i ≥ 2.
Let Q be the image of F → Ei/Ei−1. Let hQ be the quotient metric of Q induced
by hF↪→E and F → Q, that is, hQ = (hF↪→E)F³Q. Then, by virtue of Lemma 1.1.2,

µ̂H(Q,hQ) ≤ µ̂H(Q ↪→ Ei/Ei−1, hEi/Ei−1).

On the other hand, since (F, hF↪→E) and (Ei/Ei−1, hEi/Ei−1) are arithmetically
µ-semistable,

µ̂H(F, hF↪→E) ≤ µ̂H(Q, hQ)
and

µ̂H(Q ↪→ Ei/Ei−1, hEi/Ei−1) ≤ µ̂H(Ei/Ei−1, hEi/Ei−1).
Therefore,

µ̂H(F, hF↪→E) ≤ µ̂H(Ei/Ei−1, hEi/Ei−1) < µ̂H(E1, hE1↪→E),

which contradicts to the maximality of µ̂H(F, hF↪→E). Thus F ⊆ E1. Moreover,
since (E1, hE1↪→E) is arithmetically µ-semistable, µ̂H(F, hF↪→E) ≤ µ̂H(E1, hE1↪→E).
Therefore µ̂H(F, hF↪→E) = µ̂H(E1, hE1↪→E) by the maximality of µ̂H(F, hF↪→E).

2

Let us start the proof of Theorem 5.1. The existence of a Harder-Narasimham
filtration is a consequence of Lemma 5.4 and Proposition 2.4. Let us see the
uniqueness of a Harder-Narasimham filtration. Clearly we may assume that (E, h)
is not arithmetically µ-semistable. Let 0 = E0 ( E1 ( · · · ( El = E and
0 = G0 ( G1 ( · · · ( Gl′ = E be Harder-Narasimham filtration of (E, h).
Let (E′, h′) be a model of (E, h) in terms of µ : Y → X. Let 0 = E′

0 (
E′

1 ( · · · ( E′
l = E′ and 0 = G′

0 ( G′
1 ( · · · ( G′

l′ = E′ be corresponding
Harder-Narasimham filtration of (E′, h′) with 0 = E0 ( E1 ( · · · ( El = E and
0 = G0 ( G1 ( · · · ( Gl′ = E respectively. By taking a birational morphism
µ′ : Y ′ → Y , we may assume that E′

i/E′
i−1 and G′

j/G′
j−1 are locally free for all

i = 1, . . . , l and j = 1, . . . , l′. Let F ′ be a maximal destabilizing sheaf of (E′, h′).
Then, by Lemma 5.5, F ′ ⊆ E′

1 and µ̂µ∗(H)(F
′, hF ′↪→E′) = µ̂µ∗(H)(E

′
1, hE′

1↪→E′).
Thus F ′ = E′

1. In the same way, F ′ = G′
1. Hence, by considering a Harder-

Narasimham filtration of (E′/F ′, hE′³E′/F ′) and induction on the rank, we have
l = l′ and E′

i = G′
i for all i.

The above observation also show the uniqueness of a maximal destabilizing sheaf.
2
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