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ABSTRACT. We introduce the volume function for C∞-hermitian invertible sheaves on
an arithmetic variety as an analogue of the geometric volume function. The main result of
this paper is the continuity of the arithmetic volume function. As a consequence, we have
the arithmetic Hilbert-Samuel formula for a nef C∞-hermitian invertible sheaf. We also
give another applications, for example, a generalized Hodge index theorem, an arithmetic
Bogomolov-Gieseker’s inequality, etc.

INTRODUCTION

Let X be a d-dimensional projective arithmetic variety and P̂ic(X) the group of iso-
morphism classes of C∞-hermitian invertible sheaves on X . For L ∈ P̂ic(X), the volume
v̂ol(L) of L is defined by

v̂ol(L) = lim sup
m→∞

log #{s ∈ H0(X,mL) | ∥s∥sup ≤ 1}
md/d!

.

For example, if L is ample, then v̂ol(L) = d̂eg(ĉ(L)·d) (cf. Lemma 3.1). This is an
arithmetic analogue of the volume function for invertible sheaves on a projective variety
over a field. The geometric volume function plays a crucial role for the birational geometry
via big invertible sheaves. In this sense, to introduce the arithmetic analogue of it is very
significant.

The first important property of the volume function is the characterization of a big C∞-
hermitian invertible sheaf by the positivity of its volume (cf. Theorem 4.5). The second
one is the homogeneity of the volume function, namely, v̂ol(nL) = ndv̂ol(L) for all non-
negative integers n (cf. Proposition 4.7). By this property, it can be extended to P̂ic(X) ⊗
Q. From viewpoint of arithmetic analogue, the most important and fundamental question
is the continuity of

v̂ol : P̂ic(X) ⊗ Q → R,

that is, the validity of the formula:

lim
ϵ1,...,ϵn∈Q

ϵ1→0,...,ϵn→0

v̂ol(L + ϵ1A1 + · · · + ϵnAn) = v̂ol(L)

for any L,A1, . . . , An ∈ P̂ic(X) ⊗ Q. The main purpose of this paper is to give an
affirmative answer for the above question (cf. Theorem 5.4). As a consequence, we have
the following arithmetic Hilbert-Samuel formula for a nef C∞-hermitian invertible sheaf:

Date: 5/January/2007, 17:30(JP), (Version 2.0).
1991 Mathematics Subject Classification. 14G40, 11G50.

1



2 ATSUSHI MORIWAKI

Theorem A (cf. Corollary 5.5). Let L and N be C∞-hermitian invertible sheaves on X .
If L is nef, then

log #{s ∈ H0(X,mL + N) | ∥s∥sup ≤ 1} =
d̂eg(ĉ1(L)·d)

d!
md + o(md) (m ≫ 1).

In particular, v̂ol(L) = d̂eg(ĉ1(L)·d), and L is big if and only if d̂eg(ĉ1(L)·d) > 0.

In a more general setting, we have the following generalized Hodge index theorem:

Theorem B (cf. Theorem 6.2). Let L be a C∞-hermitian invertible sheaf on X . We
assume the following:

(i) LQ is nef on XQ.
(ii) c1(L) is semipositive on X(C).

(iii) L has moderate growth of positive even cohomologies, that is, there are a generic
resolution of singularities µ : Y → X and an ample invertible sheaf A on Y such
that, for any positive integer n, there is a positive integer m0 such that

log #(H2i(Y,m(nµ∗(L) + A))) = o(md)

for all m ≥ m0 and for all i > 0.

Then we have an inequality v̂ol(L) ≥ d̂eg(ĉ1(L)·d).

Theorem B implies that if L is nef on every geometric fiber of X → Spec(Z), c1(L)
is semipositive on X(C), and d̂eg(ĉ1(L)·d) > 0, then L is big (cf. Corollary 6.4). This is
a generalization of [17, Corollary (1.9)]. Moreover we can see the arithmetic Bogomolov-
Gieseker’s inequality as an application of Theorem B (cf. Corollary 6.5).

In the geometric case, the above Theorem A can be proved by using the Riemann-
Roch formula and Fujita’s vanishing theorem. In the arithmetic case, the proof in terms
of the arithmetic Riemann-Roch theorem seems to be difficult. Instead of it, we prove the
continuity of the volume function by direct estimates. For this purpose, the technical core
is the following theorem, which was inspired by Yuan’s paper [16].

Theorem C (cf. Theorem 3.4). Let X be a projective and generically smooth arithmetic
variety of dimension d ≥ 2. Let L and A be C∞-hermitian invertible sheaves on X . We
assume the following:

(i) A and L + A are very ample over Q.
(ii) The first Chern forms c1(A) and c1(L + A) on X(C) are positive.

(iii) There is a non-zero section s ∈ H0(X,A) such that the vertical component of
div(s) is contained in the regular locus of X and that the horizontal component
of div(s) is smooth over Q.

Then there are positive constants a0, C and D depending only on X , L and A such that

log #{s ∈ H0(X, aL + (b − c)A) | ∥s∥sup ≤ 1}
≤ log #{s ∈ H0(X, aL − cA) | ∥s∥sup ≤ 1}

+ Cbad−1 + Dad−1 log(a)

for all integers a, b, c with a ≥ b ≥ c ≥ 0 and a ≥ a0.

In order to explain the technical aspects of the above theorem, let us consider it in the
geometric case, namely, we assume that X is a projective smooth variety over C, and we
try to estimate

∆ = h0(X, aL + (b − c)A) − h0(X, aL − cA).
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The first elegant way: Let us choose an infinite sequence {Yi}∞i=1 of distinct smooth
members of |A| such that

h0(Yi, nL + mA|Yi
) = h0(Yj , nL + mA|Yj

)

for all i, j and all integers n,m. Then an exact sequence

0 → H0(X, aL − cA) → H0(X, aL + (b − c)A) →
b⊕

i=1

H0(Yi, aL + (b − c)A|Yi
)

gives rise to ∆ ≤ b · h0(Y1, a(L + A)|Y1
). This argument does not work in the arithmetic

situation.
The second way: In the paper [16], for a fixed smooth member Y ∈ |A|, Yuan consid-

ered an exact sequence

0 → aL + (k − 1 − c)A → aL + (k − c)A → aL + (k − c)A|Y → 0

for each 1 ≤ k ≤ b, which yields

∆ ≤
b∑

k=1

h0(Y, aL + (k − c)A|Y ) ≤ b · h0(Y, a(L + A)|Y ).

This second way works if we consider the arithmetic χ̂ instead of the number of small
sections. In this way, Yuan [16] obtained an arithmetic analogue of a theorem of Siu.
However, if we estimate the number of small sections by using the above way, the growth
of the contribution from error terms is larger than the main term.

The third way: An exact sequence

0 → aL − cA → aL + (b − c)A → aL + (b − c)A|bY → 0

gives rise to
∆ ≤ h0(bY, aL + (b − c)A|bY ).

On the other hand, using exact sequences

0 → aL + (b − c − k)A|Y → aL + (b − c)A|(k+1)Y → aL + (b − c)A|kY → 0,

we have

h0(bY, aL + (b − c)A|bY ) ≤
b−1∑
k=0

h0(Y, aL + (b − c − k)A|Y )

≤ b · h0(Y, a(L + A)|Y ).

In the arithmetic context, the behavior of the error terms by this way is better than the sec-
ond way, so that we could get the desired estimate. Of course, this way is very complicated
because it involves non-reduced schemes.

The paper is organized as follows: In Section 1, we prepare several estimates of norms
on complex manifolds. In Section 2, many formulae concerning the number of small sec-
tions are discussed. Through Section 3, we give the proof of the main technical estimate of
the number of small sections. In Section 4, we introduce the volume function on an arith-
metic variety and consider several basic properties. In Section 5, we prove the continuity
of the volume function and the arithmetic Hilbert-Samuel formula for a nef C∞-hermitian
invertible sheaf. Finally, in Section 6, we consider the generalized Hodge index theorem
and the arithmetic Bogomolov-Gieseker’s inequality.

Finally we would like to thank Prof. Mochizuki for valuable correspondences.
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Conventions and terminology. We fix several conventions and terminology of this paper.

1. For a real number x ∈ R, the round-up ⌈x⌉, the round-down ⌊x⌋ and the fractional part
{x} are defined by

⌈x⌉ := min{k ∈ Z | x ≤ k}, ⌊x⌋ := max{k ∈ Z | k ≤ x} and {x} = x − ⌊x⌋.

2. For a complex vector z = (z1, . . . , zn) ∈ Cn, two norms |z| and |z|′ are defined by

|z| =
√
|z1|2 + · · · + |zn|2 and |z|′ = |z1| + · · · + |zn|.

Note that |z| ≤ |z|′ ≤
√

n|z| for all z ∈ Cn.

3. Let (V, σ) be a finite dimensional normed vector space over R. The norm σ is some-
times denoted by ∥ · ∥. Let f : W → V be an injective homomorphism of vector spaces
over R. Then the norm σ on V yields a norm σ′ on W given by σ′(x) = σ(f(x)). This
norm σ′ is denoted by σW↪→V and is called the subnorm of σ. Let g : V → Q be a
surjective homomorphism of vector spaces over R. Then a norm σ′′ on Q is defined by

σ′′(y) = inf{σ(x) | x ∈ g−1(y)}.
This norm σ′′ is denoted by σV ³Q and is called the quotient norm of σ. Let

0 → V ′ → V → V ′′ → 0

be an exact sequence of finite dimensional vector spaces over R. Let σ′, σ and σ′′ be norms
of V ′, V and V ′′ respectively. We say

0 → (V ′, σ′) → (V, σ) → (V ′′, σ′′) → 0

is an exact sequence of normed vector spaces if σ′ = σV ′↪→V and σ′′ = σV ³V ′′ . Let V ∨

be the dual space of V , that is, V ∨ = HomR(V, R). The dual norm σ∨ of V ∨ is given by

σ∨(φ) = sup{|φ(x)| | x ∈ V and σ(x) ≤ 1}.

4. Let X be either a scheme or a complex space. Let L1, . . . , Ln be invertible sheaves
on X and m1, . . . ,mn integers. In this paper, the tensor product L⊗m1

1 ⊗ · · · ⊗ Lmn
n of

invertible sheaves is usually denoted by

m1L1 + · · · + mnLn

in the additive way like divisors.

5. Let X be a compact complex manifold and Ω a volume form on X . Let L = (L, | · |L)
be a C∞-hermitian invertible sheaf on X . Then the natural L2-norm ∥ · ∥L

L2,Ω and the

sup-norm ∥ · ∥L
sup on H0(X,L) are defined by

∥s∥L
L2,Ω =

(∫
X

|s|2LΩ
)1/2

and ∥s∥L
sup = sup{|s|L(x) | x ∈ X}

for s ∈ H0(X,L). For simplicity, ∥·∥L
L2,Ω (resp. ∥·∥L

sup) is often denoted by ∥·∥L
L2 or ∥·∥L2

(resp ∥ · ∥sup). For a real number λ, a C∞-hermitian invertible sheaf (L, exp(−λ)| · |L) is

denoted by L
λ

. Let A be a positive C∞-hermitian invertible sheaf on X . The normalized
volume form Ω(A) associated with A is given by

Ω(A) =
c1(A)∧d∫
X

c1(A)∧d
,

where c1(A) is the first Chern form of A and d = dim X . Note that
∫

X
Ω(A) = 1.
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6. A quasi-projective scheme over Z is called an arithmetic variety if X is an integral
scheme and flat over Z. We say X is generically smooth if X is smooth over Q. By
Hironaka’s resolution of singularities [9], there is a projective birational morphism µ :
X ′ → X of arithmetic varieties such that X ′ is generically smooth. This µ : X ′ → X is
called a generic resolution of singularities of X .

7. Let X be a projective arithmetic variety and L a C∞-hermitian invertible sheaf on X .
According to [14], we define three kinds of the positivity of L as follows:

• ample : L is ample if L is ample on X , the first Chern form c1(L) is positive on X(C)
and nA is generated by sections s ∈ H0(X,nA) with ∥s∥sup < 1 for a sufficiently large
n.

• nef : L is nef if the first Chern form c1(L) is semipositive and d̂eg(H
∣∣
Γ
) ≥ 0 for any

1-dimensional closed subscheme Γ in X .
• big : L is big if LQ is big on XQ and there are a positive integer n and a non-zero

section s of H0(X,nL) with ∥s∥sup < 1.

By [17, Corollary (5.7)], if L is ample, then, for a sufficiently large integer n, H0(X,nL)
has a basis s1, . . . , sN as a Z-module with ∥si∥sup < 1 for all i = 1, . . . , N .

8. Let X be a projective arithmetic variety, and let L and M be C∞-hermitian invertible
sheaves on X . We say L is less than or equal to M , denoted by L ≤ M , if there is an
injective homomorphism φ : L → M such that |φC(·)|M ≤ | · |L on X(C), where | · |L and
| · |M are hermitian norms of L and M respectively. The following properties are easily
checked (for the proof, see Remark 5.3):

(1) L ≤ M if and only if −M ≤ −L.
(2) If L ≤ M and L

′ ≤ M
′
, then L + L

′ ≤ M + M
′
.

1. SEVERAL ESTIMATES OF NORMS ON COMPLEX MANIFOLDS

1.1. Gromov’s inequality. In this subsection, we consider Gromov’s inequality and its
variants. Let us begin with the local version of Gromov’s inequality.

Lemma 1.1.1 (Local Gromov’s inequality). Let a, b, c be real numbers with a > b >
c > 0. We set U = {z ∈ Cn | |z| < a}, V = {z ∈ Cn | |z| < b} and W = {z ∈
Cn | |z| < c}. Let Ω be a volume form on U , and let H1, . . . , H l be C∞-hermitian
invertible sheaves on U . Let ω1, . . . , ωl be free bases of H1, . . . ,Hl over U respectively.
Then there is a constant C depending only on H1, . . . , H l, ω1, . . . , ωl, Ω, a, b, c and n
such that, for any positive real number p, all non-negative integers m1, . . . ,ml and all
s ∈ H0(U,m1H1 + · · · + mlHl),

max
x∈W

{|s|p(m1,...,ml)
(x)} ≤ C(⌈p⌉)2n(m1 + · · · + ml + 1)2n

(∫
V

|s|p(m1,...,ml)
Ω

)
,

where | · |(m1,...,ml) is the hermitian norm of m1H1 + · · ·+ mlH l and ⌈p⌉ is the round-up
of p (cf. Conventions and terminology 1).

Proof. Let | · |i be the hermitian norm of Hi and ui = |ωi|i on U . Considering an
upper bound of the partial derivatives of ui over V , we can find a positive constant Ki such
that

|ui(x) − ui(y)| ≤ Ki|x − y|′
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for all x, y ∈ V (for the definition of | · |′, see Conventions and terminology 2). We set

D = max
{

max
x∈V

{
K1

u1(x)

}
, . . . , max

x∈V

{
Kl

ul(x)

}
,

1
b − c

}
and R = 1/D.

Then, for x0, x ∈ V ,

ui(x) ≥ ui(x0) − Ki|x − x0|′ = ui(x0)
(

1 − Ki

ui(x0)
|x − x0|′

)
≥ ui(x0)(1 − D|x − x0|′).

We set B(x0, R) = {x ∈ Cn | |x − x0|′ ≤ R}. Then 1 − D|x − x0|′ ≥ 0 for all
x ∈ B(x0, R). Moreover, if x0 ∈ W , then B(x0, R) ⊆ V because

|x − x0| ≤ |x − x0|′ ≤ R ≤ b − c.

Here we claim the following:

Claim 1.1.1.1. For a non-negative real number m,∫ 1

0

· · ·
∫ 1

0

x1 · · ·xn

(
1 − 1

n
(x1 + · · · + xn)

)m

dx1 · · · dxn ≥ 1
(⌈m⌉ + 1)n(⌈m⌉ + 2)n

.

First let us consider the case where m is an integer. If m = 0, then the assertion is
obvious, so that we assume m ≥ 1. Since(

1 − 1
n

(x1 + · · · + xn)
)m

=
1

nm

(
n∑

i=1

(1 − xi)

)m

=
1

nm

∑
m1+···+mn=m
m1≥0,...,mn≥0

m!
m1! · · ·mn!

(1 − x1)m1 · · · (1 − xn)mn

and ∫ 1

0

x(1 − x)ddx =
1

(d + 1)(d + 2)
for a non-negative integer d, the integral I in the claim is equal to

1
nm

∑
m1+···+mn=m
m1≥0,...,mn≥0

m!
m1! · · ·mn!

1
(m1 + 1)(m1 + 2) · · · (mn + 1)(mn + 2)

.

Thus

I ≥ 1
(m + 1)n(m + 2)nnm

∑
m1+···+mn=m
m1≥0,...,mn≥0

m!
m1! · · ·mn!

=
1

(m + 1)n(m + 2)n
.

If m is not integer, then(
1 − 1

n
(x1 + · · · + xn)

)m

≥
(

1 − 1
n

(x1 + · · · + xn)
)⌈m⌉

because 0 ≤ 1 − 1
n (x1 + · · · + xn) ≤ 1. Thus the claim follows.

We choose a positive constant e with Ω ≥ eΩcan on V , where

Ωcan =
(√

−1
2

)n

dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.
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Let s be an element of H0(U,m1H1 + · · · + mlHl). Then we can find a holomorphic
function f over U with s = fω⊗m1

1 ⊗ · · · ⊗ ω⊗ml

l . We also choose x0 ∈ W such that the
continuous function |s|(m1,...,ml) on W takes the maximum value at x0. Then∫

V

|s|p(m1,...,ml)
Ω ≥ e

∫
B(x0,R)

|s|p(m1,...,ml)
Ωcan

= e

∫
B(x0,R)

|f |pupm1
1 · · ·upml

l Ωcan

≥ eu1(x0)pm1 · · ·ul(x0)pml

∫
B(x0,R)

|f |p(1 − D|x − x0|′)mΩcan,

where m = p(m1 + · · · + ml). Moreover, if we set

x − x0 = (r1 exp(
√
−1θ1), . . . , rn exp(

√
−1θn)),

then∫
B(x0,R)

|f |p(1 − D|x − x0|′)mΩcan

=
∫

r1+···+rn≤R
r1≥0,...,rn≥0

(∫ 2π

0

· · ·
∫ 2π

0

|f |pdθ1 · · · dθn

)
r1 · · · rn(1−D(r1+· · ·+rn))mdr1 · · · drn.

Since |f |p is subharmonic, we have∫ 2π

0

· · ·
∫ 2π

0

|f |pdθ1 · · · dθn ≥ (2π)n|f(x0)|p.

Therefore, using Claim 1.1.1.1,∫
B(x0,R)

|f |p(1 − D|x − x0|′)mΩcan

≥ (2π)n|f(x0)|p
∫

r1+···+rn≤R
r1≥0,...,rn≥0

r1 · · · rn(1 − D(r1 + · · · + rn))mdr1 · · · drn

≥ (2π)n|f(x0)|p
∫

[0,R/n]n
r1 · · · rn(1 − D(r1 + · · · + rn))mdr1 · · · drn

≥ (2π)n|f(x0)|p

(nD)2n

1
(⌈m⌉ + 1)n(⌈m⌉ + 2)n

.

Gathering all calculations, if we set C ′ = e(2π)n/(nD)2n, then∫
V

|s|p(m1,...,ml)
Ω ≥

C ′|s(x0)|p(m1,...,ml)

(⌈m⌉ + 1)n(⌈m⌉ + 2)n
.

Further, since ⌈m⌉ ≤ ⌈p⌉(m1 + · · · + ml),

(⌈m⌉ + 1)n(⌈m⌉ + 2)n ≤ (⌈p⌉(m1 + · · · + ml) + 1)n(⌈p⌉(m1 + · · · + ml) + 2)n

≤ (⌈p⌉(m1 + · · · + ml + 1))n(2⌈p⌉(m1 + · · · + ml + 1))n

= 2n(⌈p⌉)2n(m1 + · · · + ml + 1)2n.

Thus we get the lemma. 2

The partial results of the following corollary are found in [12] and [11].
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Corollary 1.1.2 (Gromov’s inequality). Let M be an n-dimensional compact complex
manifold, Ω a volume form on M , and let H1, . . . , H l be C∞-hermitian invertible sheaves
on M . Then there is a constant C depending only on H1, . . . , H l, Ω and M such that, for
any positive real number p, all integers m1, . . . ,ml with m1 ≥ 0, . . . ,ml ≥ 0, and all
s ∈ H0(M,m1H1 + · · · + mlHl),

max
x∈M

{|s|p(m1,...,ml)
(x)} ≤ C(⌈p⌉)2n(m1 + · · · + ml + 1)2n

(∫
M

|s|p(m1,...,ml)
Ω

)
.

Proof. We take a finite covering {Ui}i=1,...,m of M with the following properties:

(1) Ui is isomorphic to {z ∈ Cn | |z| < 1} by using a local coordinate zi(x) =
(zi1(x), . . . , zin(x)). We set Vi = {x ∈ Ui | |zi(x)| < 1/2} and Wi = {x ∈ Ui |
|zi(x)| < 1/4}.

(2) There are local bases ωi1, . . . , ωil of H1, . . .Hl over Ui respectively.
(3)

⋃m
i=1 Wi = M .

Then our corollary follows from the local Gromov’s inequality. 2

Corollary 1.1.3. Let M be an n-dimensional compact complex manifold, and let H1, . . . , H l

be C∞-hermitian invertible sheaves on M . Let V be a closed complex submanifold of M .
Let ΩM and ΩV be volume forms on M and V respectively. Then there is a constant C
such that

C(m1 + · · · + ml + 1)2n

∫
M

|s|2ΩM ≥
∫

V

| s|V |2ΩV

for all non-negative integers m1, . . . ,ml and all s ∈ H0(X,m1H1 + · · · + mlHl).

Proof. Note that

∥s∥2
sup ≥ ∥ s|V ∥2

sup ≥
∫

V
| s|V |2ΩV∫

V
ΩV

.

Thus the corollary follows from Gromov’s inequality. 2

The following lemma is due to Takuro Mochizuki, who kindly tell us its proof. This is
a variant of Gromov’s inequality.

Lemma 1.1.4. Let X be an n-dimensional compact complex manifold and ω a positive
(1, 1)-form on X . Let H1, . . . , H l be C∞-hermitian invertible sheaves on X . Then, for
an open set U of X , there are positive constants C, C ′ and D′ such that

sup
x∈X

{|s|(m1,...,ml)(x)} ≤ Cm1+···+ml sup
x∈U

{|s|(m1,...,ml)(x)}.

and ∫
X

|s|2(m1,...,ml)
ω∧n ≤ D′ · C ′m1+···+ml

∫
U

|s|2(m1,...,ml)
ω∧n

for all non-negative integers m1, . . . ,ml and all s ∈ H0(X,m1H1 + · · ·+ mlHl), where
| · |(m1,...,ml) is the hermitian norm of m1H1 + · · · + mlH l.

Proof. Shrinking U if necessarily, we may identify U with {x ∈ Cn | |x| < 1}. We
set W = {x ∈ Cn | |x| < 1/2}. In this proof, we define a Laplacian ¤ω by the formula:

−
√
−1
2π

∂∂̄(g) ∧ ω∧(n−1) = ¤ω(g)ω∧n.
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Let ai be a C∞-function given by c1(Hi) ∧ ω∧(n−1) = aiω
∧n, where c1(Hi) is the first

Chern form of Hi. We choose a C∞-function φi on X such that∫
X

aiω
∧n =

∫
X

φiω
∧n

and that φi is identically zero on X \ W . Thus we can find a C∞-function Fi with
¤ω(Fi) = ai − φi. Note that ¤ω(Fi) = ai on X \ W .

Let s ∈ H0(X,m1H1 + · · · + mlHl) and we set

f = |s|2(m1,...,ml)
exp(−(m1F1 + · · · + mlFl)).

Claim 1.1.4.1. maxx∈X\W {f(x)} = maxx∈∂(W ){f(x)}.

If f is a constant over X \W , then our assertion is obvious, so that we assume that f is
not a constant over X \ W . In particular, s ̸= 0. Since

−
√
−1
2π

∂∂̄(log(|s|2(m1,...,ml)
)) = c1(m1H1+· · ·+mlH l) = m1c1(H1)+· · ·+mlc1(H l),

we have ¤ω(log(f)) = 0 on X \ (W ∪ Supp(div(s))). Let us choose x0 ∈ X \ W such
that the C∞-function f over X \ W takes the maximum value at x0. Note that

x0 ∈ X \ (W ∪ Supp(div(s))).

For, if Supp(div(s)) = ∅, then our assertion is obvious. Otherwise, f is zero at any point
of Supp(div(s)).

Since log(f) is harmonic over X \ (W ∪ Supp(div(s))), log(f) takes the maximum
value at x0 and log(f) is not a constant, we have x0 ∈ ∂(W ) by virtue of the maximum
principle of harmonic functions. Thus the claim follows.

We set

di = min
x∈X\W

{exp(−Fi)}, Di = max
x∈∂(W )

{exp(−Fi)} and C = max
i=1,...,l

{Di/di}.

Then
dm1
1 · · · dml

l |s|2(m1,...,ml)
≤ f

over X \ W and
f ≤ Dm1

1 · · ·Dml

l |s|2(m1,...,ml)

over ∂(W ). Hence

max
x∈X\W

{|s|2(m1,...,ml)
} ≤ Cm1+···+ml max

x∈∂(W )
{|s|2(m1,...,ml)

}

≤ Cm1+···+ml max
x∈W

{|s|2(m1,...,ml)
}.

which implies that

max
x∈X

{|s|2(m1,...,ml)
} ≤ Cm1+···+ml max

x∈W
{|s|2(m1,...,ml)

}.

This is the first part of the lemma. Note that ex ≥ x + 1 for x ≥ 0. Thus, by the local
Gromov’s inequality (cf. Lemma 1.1.1), there are constants C1 and D1 such that

max
x∈W

{|s|2(m1,...,ml)
} ≤ D1 · Cm1+···+ml

1

∫
U

|s|2(m1,...,ml)
Ω

for all non-negative integers m1, . . . ,ml and all s ∈ H0(X,m1H1 + · · ·+ mlHl). There-
fore the second assertion follows. 2
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1.2. Distorsion functions. Let X be an n-dimensional projective complex manifold and
Ω a volume form of X with

∫
X

Ω = 1. Let H = (H,h) be a C∞-hermitian invertible
sheaf on X . For s, s′ ∈ H0(X,H), we set

〈s, s′〉H,Ω =
∫

X

h(s, s′)Ω.

Let s1, . . . , sN be an orthonormal basis of H0(X,H) with respect to 〈 , 〉H,Ω. We define

dist(H, Ω)(x) =
N∑

i=1

h(si, si)(x).

Note that dist(H, Ω) does not depend on the choice of an orthonormal basis. In the case
of H0(X,H) = {0}, dist(H, Ω) is defined to be the constant function 0. The function
dist(H, Ω) is called the distorsion function of H with respect to Ω.

Let A be a positive C∞-hermitian invertible sheaf on X . Due to Bouche [3] and Tian
[15], we know that

sup
x∈X

∣∣∣∣dist(aA,Ω(A))(x)
dimH0(aA)

− 1
∣∣∣∣ = O(1/a)

for a ≫ 1, where Ω(A) is the normalized volume form associated with A (cf. Conventions
and terminology 5). Using this result, Yuan [16, Theorem 3.3] proved the following:

Theorem 1.2.1. Let A = (A, hA) and B = (B, hB) be positive C∞-hermitian invertible
sheaves on X . Then there are positive constants C1 and C2 such that

dist(aA − bB, Ω(A))(x) ≤ dimH0(aA)
(

1 +
2C1

a
+

3C2

b

)
for all x ∈ X , a ≥ 1 and b ≥ 3C2.

Proof. For reader’s convenience, we reprove it here. By Bouche-Tian’s theorem, there
are constants C1 and C2 such that

dimH0(aA)
(

1 − C1

a

)
≤ dist(aA,Ω(A))(z) ≤ dim H0(aA)

(
1 +

C1

a

)
and

dimH0(bB)
(

1 − C2

b

)
≤ dist(bB,Ω(B))(z) ≤ dim H0(bB)

(
1 +

C2

b

)
for all z ∈ X , a ≫ 1 and b ≫ 1. By taking larger C1 and C2 if necessarily, we may
assume that the above inequalities hold for all z ∈ X and all a, b ≥ 1.

Let us fix an arbitrary x ∈ X . Let us choose an orthonormal basis of H0(bB) with
respect to 〈 , 〉bB,Ω(B) such that only one section is non-zero at x. We denote this section
by s(b). Then

hbB(s(b), s(b))(x) = dist(bB, Ω(B))(x) ≥ dim H0(bB)(1 − C2/b).

On the other hand,

∥s(b)∥2
sup ≤ sup

z∈X
dist(bB,Ω(B))(z) ≤ dim H0(bB)(1 + C2/b).

Therefore
hbB(s(b), s(b))(x)

∥s(b)∥2
sup

≥ 1 − C2/b

1 + C2/b
.
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We choose an orthonormal basis t1, . . . , tr of H0(aA−bB) with respect to 〈 , 〉aA−bB,Ω(A)

such that s(b)t1, . . . s(b)tr is orthogonal with respect to 〈 , 〉aA,Ω(A) in H0(aA). This is
possible because a hermitian matrix is diagonalizable by an unitary matrix. Then

{s(b)ti/∥s(b)ti∥aA,Ω(A)}i=1,...,r

is a part of an orthonormal basis of H0(aA). Thus
r∑

i=1

haA(s(b)ti, s(b)ti)(x)
∥s(b)ti∥2

aA,Ω(A)

≤ dist(aA,Ω(A))(x) ≤ dimH0(aA)(1 + C1/a).

On the other hand,
∥s(b)ti∥2

aA,Ω(A)
≤ ∥s(b)∥2

sup.

Therefore

1 − C2/b

1 + C2/b
dist(aA − bB,Ω(A))(x) ≤

hbB(s(b), s(b))(x)
∥s(b)∥2

sup

r∑
i=1

haA−bB(ti, ti)(x)

≤
r∑

i=1

hbB(s(b), s(b))(x)
∥s(b)ti∥2

aA,Ω(A)

haA−bB(ti, ti)(x)

=
r∑

i=1

haA(s(b)ti, s(b)ti)(x)
∥s(b)ti∥2

aA,Ω(A)

≤ dim H0(aA)(1 + C1/a).

Thus, if b ≥ 3C2, then

dist(aA − bB, Ω(A))(x) ≤ dim H0(aA)
(1 + C1/a)(1 + C2/b)

1 − C2/b
.

It is easy to see that

(1 + C1/a)(1 + C2/b)
1 − C2/b

= 1 +
2C1

a
+

3C2

b
− b − 3C2

b − C2

(
C1

a
+

C2

b

)
.

Therefore, if b ≥ 3C2, then
(1 + C1/a)(1 + C2/b)

1 − C2/b
≤ 1 +

2C1

a
+

3C2

b
.

2

Let L and A be C∞-hermitian invertible sheaves on a projective complex manifold X .
Assume that A and L + A are positive. We set Ω = Ω(L + A). Let a, b, c be non-negative
integers. Let s be a non-zero element of H0(bA) with ∥s∥sup ≤ 1. Let 〈 , 〉aL−cA and
〈 , 〉aL+(b−c)A be the natural hermitian metric of H0(aL − cA) and H0(aL + (b − c)A)
with respect to Ω. We set{

BL2 = {t ∈ H0(aL − cA) | 〈t, t〉aL−cA ≤ 1}
Bsub = {t ∈ H0(aL − cA) | 〈st, st〉aL+(b−c)A ≤ 1}.

Then we have the following corollary, which is a variant of [16, Proposition 3.1]

Corollary 1.2.2. There are positive constants C1 and C2 such that

log
(

vol(BL2)
vol(Bsub)

)
≥ dim H0(a(L + A))

(∫
X

log(|s|)Ω
)(

1 +
2C1

a
+

3C2

a + c

)
for all a > 3C2 and c ≥ 0.
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Proof. Since aL − cA = a(L + A) − (a + c)A, by Theorem 1.2.1, there are positive
constants C1 and C2 such that

dist(aL − cA,Ω)(x) ≤ dim H0(a(L + A))
(

1 +
2C1

a
+

2C2

a + c

)
for all x ∈ X , a ≥ 1 and a + c ≥ 3C2. Note that if a > 3C2 and c ≥ 0, then a + c ≥ 3C2

and a ≥ 1.
We choose an orthonormal basis t1, . . . , tr of H0(aL− cA) with respect to 〈 , 〉aL−cA

such that st1, . . . , str are orthogonal with respect to 〈 , 〉aL+(b−c)A. Then, using Jensen’s
inequality, for a > 3C2 and c ≥ 0,

log
(

vol(BL2)
vol(Bsub)

)
=

r∑
i=1

log ∥sti∥aL+(b−c)A,Ω =
1
2

r∑
i=1

log
∫

X

|s|2|ti|2Ω

≥ 1
2

r∑
i=1

∫
X

log(|s|2)|ti|2Ω

=
1
2

∫
X

log(|s|2) dist(aL − cA,Ω)Ω

≥ dimH0(a(L + A))
(∫

X

log(|s|)Ω
) (

1 +
2C1

a
+

3C2

a + c

)
.

2

2. NORMED Z-MODULE AND ITS INVARIANTS ĥ0 , ĥ1 AND χ̂

Let (M, ∥ · ∥) be a normed finitely generated Z-module, namely, M is a finitely gen-
erated Z-module and ∥ · ∥ is a norm on MR = M ⊗Z R. We define Ĥ0(M, ∥ · ∥) and
ĥ0(M, ∥ · ∥) to be

Ĥ0(M, ∥ · ∥) = {x ∈ M | ∥x∥ ≤ 1} and ĥ0(M, ∥ · ∥) = log #Ĥ0(M, ∥ · ∥).

It is easy to see that

ĥ0(M, ∥ · ∥) = ĥ0(M/Mtor, ∥ · ∥) + log #(Mtor),

where Mtor is the torsion part of M . We set

B(M, ∥ · ∥) = {x ∈ MR | ∥x∥ ≤ 1}.

Then χ̂(M, ∥ · ∥) is defined by

χ̂(M, ∥ · ∥) = log
(

vol(B(M, ∥ · ∥))
vol(MR/(M/Mtor))

)
+ log #(Mtor).

Note that χ̂(M, ∥ · ∥) does not depend on the choice of a Lebesgue measure of MR arising
from a basis of MR. Let M∨ be the dual of M , that is, M∨ = HomZ(M, Z). Note that
M∨ is torsion free. Since (M∨)R is naturally isomorphic to (MR)∨, we denote (M∨)R by
M∨

R . The norm ∥ · ∥ of MR yields the dual norm ∥ · ∥∨ of M∨
R as follows: for φ ∈ M∨

R ,

∥φ∥∨ = sup{|φ(x)| | x ∈ B(M, ∥ · ∥)}.

Then Ĥ1(M, ∥ · ∥) and ĥ1(M, ∥ · ∥) are defined by

Ĥ1(M, ∥ · ∥) = Ĥ0(M∨, ∥ · ∥∨) and ĥ1(M, ∥ · ∥) = ĥ0(M∨, ∥ · ∥∨).
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Let Σ = {e1, . . . .er} be a free basis of of M/Mtor and let 〈 , 〉Σ be the standard inner
product of M/Mtor in terms of the basis Σ, that is,

〈x, y〉Σ = a1b1 + · · · + arbr

for x = a1e1, + · · · + arer, y = b1e1 + · · · + brer ∈ M/Mtor. Then we can see

ĥ1(M, ∥ · ∥) = log #{x ∈ M/Mtor | |〈x, y〉Σ| ≤ 1 for all y ∈ B(M, ∥ · ∥)}.

In the case where M = {0}, ĥ0(M, ∥ · ∥), ĥ1(M, ∥ · ∥) and χ̂(M, ∥ · ∥) are defined to be
0. The following proposition is very useful to estimate ĥ0 of normed Z-module. This is
essentially the results in Gillet-Soulé [6]. The following formulae are also pointed out in
Yuan’s paper [16].

Proposition 2.1. (1) For a normed finitely generated Z-module (M, ∥ · ∥),

− log(6) rk M ≤ ĥ0(M, ∥ · ∥) − ĥ1(M, ∥ · ∥) − χ̂(M, ∥ · ∥)
≤ log(3/2) rkM + 2 log((rk M)!).

(2) Let ∥ · ∥1 and ∥ · ∥2 be two norms of a finitely generated Z-module M with ∥ · ∥1 ≤
∥ · ∥2. Then

ĥ0(M, ∥ · ∥1) ≥ ĥ0(M, ∥ · ∥2) and ĥ1(M, ∥ · ∥1) ≤ ĥ1(M, ∥ · ∥2).

Moreover,

χ̂(M, ∥ · ∥2) − χ̂(M, ∥ · ∥1) ≤ ĥ0(M, ∥ · ∥2) − ĥ0(M, ∥ · ∥1)

+ log(9) rk M + 2 log((rk M)!).

(3) For a non-negative real number λ,

0 ≤ ĥ0(M, exp(−λ)∥ · ∥) − ĥ0(M, ∥ · ∥)
≤ λ rkM + log(9) rk M + 2 log((rk M)!).

(4) Let

0 → (M ′, ∥ · ∥′) f−→ (M, ∥ · ∥) g−→ (M ′′, ∥ · ∥′′) → 0

be an exact sequence of normed finitely generated Z-modules, that is,

0 → M ′ f−→ M
g−→ M ′′ → 0

is an exact sequence of finitely generated Z-modules and

0 → (M ′
R, ∥ · ∥′) fR−→ (MR, ∥ · ∥) gR−→ (M ′′

R , ∥ · ∥′′) → 0

is an exact sequence of normed vector spaces over R. Then

ĥ0(M, ∥ · ∥) ≤ ĥ0(M ′, ∥ · ∥′) + ĥ0(M ′′, ∥ · ∥′′) + log(18) rk M ′

+ 2 log((rk M ′)!).

(5) If there is a basis {e1, . . . , erk M} of M/Mtor with ∥ei∥ ≤ 1 for all i, then

ĥ1(M, ∥ · ∥) ≤ log(3) rk M.
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Proof. First we would like to give remarks on the paper [6] due to Gillet-Soulé. We
use the same notation as in [6]. Let K be a convex centrally symmetric bounded and
absorbing set in Rn. Let K∗ be the polar body of K, i.e.,

K∗ = {x ∈ Rn | |〈x, y〉| ≤ 1 for all y ∈ K}.
We denote the volume of K by V (K) and #(K∩Zn) by M(K). We assume an inequality

(2.1.1) V (K)V (K∗) ≥ f(n),

where f(n) is a constant depending only on n. If we read the paper [6] carefully (especially
Theorem 1 and Proposition 4), we can easily realize that the above inequality implies the
following inequalities:

(2.1.2) 6−n ≤ M(K)
M(K∗)V (K)

≤ 6n

f(n)
and

(2.1.3) M(K) ≤ M(aK) ≤ anM(K)36n

f(n)
(for a ∈ R with a > 1).

Mahler showed (2.1.1) holds for f(n) = 4n(n!)−2 (cf. [8, §14, Theorem 4]). Bourgain
and Milman [4] also proved (2.1.1) for f(n) = cnVn, where c is an absolute constant and
Vn is the volume of the unit sphere in Rn. Here we uses Mahler’s result for its simplicity.

(1) Since

ĥ0(M, ∥ · ∥) − ĥ1(M, ∥ · ∥) − χ̂(M, ∥ · ∥)

= ĥ0(M/Mtor, ∥ · ∥) − ĥ1(M/Mtor, ∥ · ∥) − χ̂(M/Mtor, ∥ · ∥),
we may assume that M is torsion free. Thus (1) is a consequence of (2.1.2).

(2) The inequalities ĥ0(M, ∥ · ∥1) ≥ ĥ0(M, ∥ · ∥2) and ĥ1(M, ∥ · ∥1) ≤ ĥ1(M, ∥ · ∥2)
are obvious by their definitions. The third inequality is a consequence of (1).

(3) Since

ĥ0(M, exp(−λ)∥ · ∥) − ĥ0(M, ∥ · ∥)

= ĥ0(M/Mtor, exp(−λ)∥ · ∥) − ĥ0(M/Mtor, ∥ · ∥),
we may assume that M is torsion free. Thus it follows from (2.1.3).

(4) We may assume M ′ is a sub-module of M . Let us choose x1, . . . , xl ∈ M with the
following properties:

(i) ∥xi∥ ≤ 1 for all i.
(ii) g(xi) ̸= g(xj) for all i ̸= j.

(iii) For any x ∈ M with ∥x∥ ≤ 1, there is xi such that g(x) = g(xi).
By using (i) and (ii), for any x ∈ M with ∥x∥ ≤ 1, there is a unique xi with g(x) = g(xi).
Moreover x − xi ∈ M ′ and ∥x − xi∥ ≤ 2. On the other hand, log(l) ≤ ĥ0(M ′′, ∥ · ∥′′)
because ∥g(xi)∥′′ ≤ 1 for all i. Therefore,

ĥ0(M, ∥ · ∥) ≤ ĥ0(M ′′, ∥ · ∥′′) + log #{x′ ∈ M ′ | ∥x′∥ ≤ 2}
Hence (4) follows from (3).

(5) Let 〈 , 〉 be an inner product of M/Mtor with respect to the basis {e1, . . . , erk M}.
Then, for x = a1e1 + · · · + ark Merk M , if |〈x, ei〉| ≤ 1 for all i, then |ai| ≤ 1 for all i.
Thus (5) follows. 2
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Remark 2.2. Note that{
(x + 1) log(x + 1) ≥ x for all x ≥ 0,

log(n!) ≤ (n + 1) log(n + 1) for all non-negative integer n.

Therefore, we have simpler inequalities for each case of Proposition 2.1 as follows. The
inequalities (2.2.1), (2.2.2), (2.2.3) and (2.2.4) are simpler versions of the corresponding
inequalities in (1), (2), (3) and (4) of Proposition 2.1 respectively.

(2.2.1)
∣∣∣ĥ0(M, ∥ · ∥) − ĥ1(M, ∥ · ∥) − χ̂(M, ∥ · ∥)

∣∣∣
≤ (log(3/2) + 2) (rk M + 1) log (rkM + 1) .

(2.2.2) χ̂(M, ∥ · ∥2) − χ̂(M, ∥ · ∥1) ≤ ĥ0(M, ∥ · ∥2) − ĥ0(M, ∥ · ∥1)

+ (log(9) + 2) (rk M + 1) log (rkM + 1) .

(2.2.3) 0 ≤ ĥ0(M, exp(−λ)∥ · ∥) − ĥ0(M, ∥ · ∥)
≤ λ rkM + (log(9) + 2) (rk M + 1) log (rkM + 1) .

(2.2.4) ĥ0(M, ∥ · ∥) ≤ ĥ0(M ′, ∥ · ∥′) + ĥ0(M ′′, ∥ · ∥′′)
+ (log(18) + 2) (rk M ′ + 1) log (rk M ′ + 1) .

3. APPROXIMATION OF THE NUMBER OF SMALL SECTIONS

In this section, we prove the main technical tool of this paper. First we consider the
following three lemmas. The first one is an upper estimate of the number of small sections.

Lemma 3.1. Let X be a projective arithmetic variety of dimension d, and let L and N be
C∞-hermitian invertible sheaves on X . Then we have the following:

(1) If L is ample, then

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
=

d̂eg(ĉ1(L)·d)
d!

md + o(md)

for m ≫ 1.
(2) In general, there is a constant C with

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
≤ Cmd

for all m ≥ 1.
(3) Let µ : Y → X be a generic resolution of singularities of X . Let Ω be a volume

form on Y (C). An L2-norm of H0(X,mL+N) is given in the following way: for
t ∈ H0(X,mL + N),

∥t∥mL+N
L2,Ω :=

(∫
Y (C)

µ∗(|t|2
mL+N

)Ω

)1/2

,
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where | · |mL+N is the hermitian norm of mL + N . Then there is a constant C
with

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

L2,Ω

)
≤ Cmd

for all m ≥ 1.

Proof. (1) It is well-known that

χ̂
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
=

d̂eg(ĉ1(L)·d)
d!

md + o(md)

for m ≫ 1 (cf. [6], [1] and [17, Theorem (1.4)]). Thus, by (2) of Proposition 2.1,

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
− ĥ1

(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
=

d̂eg(ĉ1(L)·d)
d!

md + o(md).

Since L is ample, by [17, Theorem (4.2)], H0(X,mL+N) is generated by sections t with
∥t∥sup < 1. Thus, by (5) of Proposition 2.1,

ĥ1
(
H0(X,mL), ∥ · ∥mL

sup

)
= o(md).

Hence we get (1).

(2) Let A be an ample C∞-hermitian invertible sheaf on X . Then there are a positive
integer n and a non-zero section t of H0(nA−L) with ∥s∥sup ≤ 1. Let φ : L → nA be an
injective homomorphism given by φ(t) = s ⊗ t. Then since |s ⊗ t| = |s||t| ≤ |t|, φ yields
L ≤ nA (cf. Conventions and terminology 8). Therefore mL ≤ mnA for all m ≥ 1. Thus
(2) follows from (1).

(3) By using Gromov’s inequality on Y (C), there is a constant C1 such that

∥ · ∥mL+N
sup ≤ C1m

d−1∥ · ∥mL+N
L2,Ω

for m ≫ 1. Thus

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
≥ ĥ0

(
H0(X,mL + N), C1m

d−1∥ · ∥mL+N
L2,Ω

)
.

Moreover, by (3) of Proposition 2.1,

ĥ0
(
H0(X,mL + N), C1m

d−1∥ · ∥mL+N
L2,Ω

)
= ĥ0

(
H0(X,mL + N), ∥ · ∥mL+N

L2,Ω

)
+ o(md).

Therefore we get (3). 2

Next we consider formulae concerning subnorms and quotient norms (cf. Conventions
and terminology 3).

Lemma 3.2. (1) Let f : V → W and g : W → U be surjective homomorphisms of
finite dimensional vector spaces over R. For a norm σ of V , (σV ³W )W³U =
σV ³U as norms of U .

(2) Let
W

f−−−−→ V

g′
y yg

P
f ′

−−−−→ Q
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be a commutative diagram of finite dimensional vector spaces over R such that f
and f ′ are injective and that g and g′ are surjective. Let σ be a norm of V . Then

(σW↪→V )W³P ≥ (σV ³Q)P↪→Q

as norms of P . Moreover, if ker(g) ⊆ f(W ), then

(σW↪→V )W³P = (σV ³Q)P↪→Q.

Proof. (1) Let us fix u ∈ U . For v ∈ (g ◦ f)−1(u),

σ(v) ≥ σV ³W (f(v)) ≥ (σV ³W )W³U (u)

Therefore σV ³U (u) ≥ (σV ³W )W³U (u).
Pick up v0 ∈ (g ◦ f)−1(u) with σV ³U (u) = σ(v0). Then, for any w ∈ g−1(u),

σ(v0) ≤ σV ³W (w) because f−1(w) ⊆ (g ◦ f)−1(u). Hence

σV ³U (u) = σ(v0) ≤ (σV ³W )W³U (u).

(2) Since f(ker(g′)) = f(W ) ∩ ker(g), for w ∈ W ,{
(σW↪→V )W³P (g′(w)) = inf{σ(x) | x ∈ f(w) + f(W ) ∩ ker(g)}
(σV ³Q)g(W )↪→Q(g′(w)) = inf{σ(x) | x ∈ f(w) + ker(g)}.

Thus (σW↪→V )W³P (g(w)) ≥ (σV ³Q)P↪→Q(g(w)). Moreover, if ker(g) ⊆ f(W ) (or,
equivalently f(W ) ∩ ker(g) = ker(g)), then (σW↪→V )W³P = (σV ³Q)P↪→Q. 2

The following lemma is needed to find a good A in the proof of Theorem 3.4.

Lemma 3.3. Let X be a projective and generically smooth arithmetic variety of dimension
d, and let Ω be a volume form on X(C). Let L and A be C∞-hermitian invertible sheaves
on X . Let us consider the following assertion Σ(X, L,A):

There are positive constants a0, C and D depending only on X , L and A
such that

ĥ0
(
H0(aL + (b − c)A), ∥ · ∥aL+(b−c)A

L2,Ω

)
≤ ĥ0

(
H0(aL − cA), ∥ · ∥aL−cA

L2,Ω

)
+ Cbad−1 + Dad−1 log(a)

for all integers a, b, c with a ≥ b ≥ c ≥ 0 and a ≥ a0.
Then we have the following:

(1) Let A
′

be another C∞-hermitian invertible sheaf on X with A
′ ≤ A (cf. Conven-

tions and terminology 8). If Σ(X, L,A) holds, then so does Σ(X, L,A
′
).

(2) We assume that rkH0(X,A) ̸= 0. Let | · |A be the hermitian norm of A. If
Σ(X, L,A) holds, then so does Σ(X, L, (A, exp(−λ)| · |A)) for all λ ≥ 0.

(3) We assume that rkH0(X,A) ̸= 0. Let A
′

be another C∞-hermitian invertible
sheaf on X such that A′ is isomorphic to A over Q. Then Σ(X, L,A) holds if and
only if so does Σ(X, L,A

′
).

Proof. (1) Since

L + (b − c)A
′ ≤ L + (b − c)A and aL − cA ≤ aL − cA

′
,

(1) follows.

(2) We set A
′
= (A, exp(−λ)| · |A). Let us fix constants C1 and C2 such that

rkH0(a(L + A)) ≤ C1a
d−1
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for all a ≥ 1 and that

(log(18) + 2)
(
rkH0(a(L + A)) + 1

)
log

(
rkH0(a(L + A)) + 1

)
≤ C2a

d−1 log(a)

for all a ≥ 2. It is easy to see that{
∥ · ∥aL+(b−c)A

′

L2,Ω = exp(−(b − c)λ)∥ · ∥aL+(b−c)A
L2,Ω ,

∥ · ∥aL−cA
′

L2,Ω = exp(cλ)∥ · ∥aL−cA
L2,Ω .

Since
rkH0(aL − cA) ≤ rkH0(aL + (b − c)A) ≤ rkH0(a(L + A)),

using (2.2.3), we have

0 ≤ ĥ0
(
H0(aL + (b − c)A), ∥ · ∥aL+(b−c)A

′

L2,Ω

)
− ĥ0

(
H0(aL + (b − c)A), ∥ · ∥aL+(b−c)A

L2,Ω

)
≤ C1λ(b − c)ad−1 + C2a

d−1 log(a) ≤ C1λbad−1 + C2a
d−1 log(a)

and

0 ≤ ĥ0
(
H0(aL − cA), ∥ · ∥aL−cA

L2,Ω

)
− ĥ0

(
H0(aL − cA), ∥ · ∥aL−cA′

L2,Ω

)
≤ C1λcad−1 + C2a

d−1 log(a) ≤ C1λbad−1 + C2a
d−1 log(a).

Thus we have

ĥ0
(
H0(aL + (b − c)A), ∥ · ∥aL+(b−c)A

′

L2,Ω

)
≤ ĥ0

(
H0(aL − cA), ∥ · ∥aL−cA

′

L2,Ω

)
+ (C + 2λC1)bad−1 + (D + 2C2)ad−1 log(a).

for all integers a, b, c with a ≥ b ≥ c ≥ 0 and a ≥ a0.

(3) It is sufficient to show that if Σ(X, L,A) holds, then so does Σ(X, L,A
′
). Since

A′ is isomorphic to A over Q, there is a Cartier divisor F such that A′ ⊗ OX(F ) ≅ A
and Supp(F ) is vertical. Thus there is a positive integer N such that OX · N ⊆ OX(F ).
Hence we have a natural injective homomorphism α : A′ · N → A. Let | · | and | · |′

be C∞-hermitian norms of A and A
′
. Then (A′ · N, | · |′) is a C∞-hermitian invertible

sheaf on X . Since α : A′ · N → A is isomorphism over Q, there is a positive number λ
such that |αC(·)| ≤ exp(λ)| · |′. Then (A′ · N, exp(λ)| · |′) ≤ (A, | · |). Hence, by (1),
Σ(X, L, (A′ ·N, exp(λ)| · |′)) holds. Note that the homomorphism A′ → A′ ·N given by
a 7→ a · N yields to an isometry (A′, N exp(λ)| · |′) → (A′ · N, exp(λ)| · |′). Therefore
Σ(X, L, (A′, N exp(λ)| · |′)) holds, so that so does Σ(X, L, (A′, | · |′)) by (2). 2

Let X be a compact complex manifold, and let L = (L, | · |L) and M = (M, | · |M ) be
C∞-hermitian invertible sheaves on X . Let t be a non-zero global section of H0(X,M).
We denote by ∥ · ∥L,L−M

L2,t,sub the subnorm of H0(X,L−M) induced by the natural injective

homomorphism H0(X,L − M) ⊗t−→ H0(X,L) and the L2-norm of ∥ · ∥L
L2 of H0(X,L)

for a fixed volume form on X . For simplicity, ∥ · ∥L,L−M
L2,t,sub is often denoted by ∥ · ∥L

L2,t,sub.

The following theorem is the technical core of this paper. The similar result for an
arithmetic curve will be treated in Proposition 3.5.
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Theorem 3.4. Let X be a projective and generically smooth arithmetic variety of dimen-
sion d ≥ 2. Let L and A be C∞-hermitian invertible sheaves on X . We assume the
following:

(i) A and L + A are very ample over Q.
(ii) The first Chern forms c1(A) and c1(L + A) on X(C) are positive.

(iii) There is a non-zero section s ∈ H0(X,A) such that the vertical component of
div(s) is contained in the regular locus of X and that the horizontal component
of div(s) is smooth over Q.

Then there are positive constants a0, C and D depending only on X , L and A such that

ĥ0
(
H0(aL + (b − c)A), ∥ · ∥aL+(b−c)A

L2

)
≤ ĥ0

(
H0(aL − cA), ∥ · ∥aL−cA

L2

)
+ Cbad−1 + Dad−1 log(a)

for all integers a, b, c with a ≥ b ≥ c ≥ 0 and a ≥ a0, where the volume form Ω to define
L2-norms is Ω(L + A) (cf. Conventions and terminology 5). Moreover the sup-version of
the above estimate holds as follows: there are positive constants a′

0, C ′ and D′ depending
only on X , L and A such that

ĥ0
(
H0(aL + (b − c)A), ∥ · ∥aL+(b−c)A

sup

)
≤ ĥ0

(
H0(aL − cA), ∥ · ∥aL−cA

sup

)
+ C ′bad−1 + D′ad−1 log(a)

for all integers a, b, c with a ≥ b ≥ c ≥ 0 and a ≥ a′
0

Proof. First let us fix constants C1 and C2 such that

rkH0(a(L + A)) ≤ C1a
d−1

for all a ≥ 1 and that

(log(18) + 2)
(
rkH0(a(L + A)) + 1

)
log

(
rkH0(a(L + A)) + 1

)
≤ C2a

d−1 log(a)

for all a ≥ 2.
Let | · |A be the C∞-hermitian norm of A. As in Conventions and terminology 5, for

λ ∈ R, we set
A

λ
= (A, exp(−λ)| · |A).

First we claim the following:

Claim 3.4.1. We may assume that there is a non-zero section s ∈ H0(X,A) such that
∥s∥sup ≤ 1, div(s) is smooth over Q and that div(s) has no vertical components. We may
further assume that there are a positive integer n and a non-zero section t of H0(X,nA−
L) such that ∥t∥sup ≤ 1 and t is not zero on div(s).

By our assumption (iii), there is a non-zero section s ∈ H0(X,A) such that the vertical
component of div(s) is contained in the regular locus of X and that the horizontal com-
ponent of div(s) is smooth over Q. Let Y and F be the horizontal component of div(s)
and the vertical component of div(s) respectively. Note that Y and F are effective Cartier
divisors because F is contained in the regular locus of X . We define a C∞-hermitian
invertible sheaf A1 by the equation

A = A1 ⊗ (OX(F ), | · |can).

Then there is a non-zero section s1 ∈ H0(X,A1) such that s = s1⊗1F and div(s1) = Y ,
where 1F is the canonical section of OX(F ). Let λ be a non-negative real number with
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exp(−λ)∥s1∥sup ≤ 1. Then, by (3) of Lemma 3.3, if the assertion holds for L and A
λ

1 ,
then so does for L and A.

Moreover, since A is very ample over Q and div(s) has no vertical components, there
are a positive integer n and a non-zero section t of H0(nA − L) such that t is not zero on
div(s). Let λ′ be a non-negative real number with exp(−λ′/n)∥t∥sup ≤ 1. Then t is a

small section of a C∞-hermitian invertible sheaf nA
λ′

− L. Thus, by (1) of Lemma 3.3,
the claim follows.

For a coherent sheaf F on X and a subscheme Z of X , the image Hi(X,F) →
Hi(Z, F|Z) is denoted by Ii(Z, F|Z).

If b = 0, then c = 0. Thus, in this case, the assertion is obvious, so that we may assume
b ≥ 1. As in Claim 3.4.1, let s be a non-zero section H0(X,A) such that ∥s∥sup ≤ 1,
Y := div(s) is smooth over Q and that Y has no vertical components. Let us choose
positive numbers C3 and C4 such that

rkH0(Y, a(L + A)|Y ) ≤ C3a
d−2

for all a ≥ 1 and that

(log(18) + 2)
(
rkH0(Y, a(L + A)|Y ) + 1

)
log

(
rkH0(Y, a(L + A)|Y ) + 1

)
≤ C4a

d−2 log(a)

for all a ≥ 2
Let ∥ · ∥aL+(b−c)A

L2,quot be the quotient norm of I0(aL + (b − c)A|bY ) induced by the sur-
jective homomorphism H0(aL + (b − c)A) → I0(aL + (b − c)A|bY ) and the L2-norm

∥ · ∥aL+(b−c)A
L2 of H0(aL + (b − c)A). Note that I0(aL + (b − c)A|bY ) is torsion free

because bY is flat over Z.

Claim 3.4.2. For all integers a, b, c with a ≥ b ≥ c ≥ 0 and a ≥ 2,

ĥ0
(
H0(aL + (b − c)A), ∥ · ∥aL+(b−c)A

L2

)
≤ ĥ0

(
H0(aL − cA), ∥ · ∥aL+(b−c)A

L2,sb,sub

)
+ ĥ0

(
I0(aL + (b − c)A|bY ), ∥ · ∥aL+(b−c)A

L2,quot

)
+ C2a

d−1 log(a).

Using an exact sequence

0 → H0(aL − cA) sb

−→ H0(aL + (b − c)A) → I0(aL + (b − c)A|bY ) → 0,

we have a normed exact sequence

0 →
(
H0(aL − cA), ∥ · ∥aL+(b−c)A

L2,sb,sub

)
→

(
H0(aL + (b − c)A), ∥ · ∥aL+(b−c)A

L2

)
→

(
I0(aL + (b − c)A|mY ), ∥ · ∥aL+(b−c)A

L2,quot

)
→ 0,

where ∥ · ∥aL+(b−c)A

L2,sb,sub
is the subnorm of H0(aL − cA) induced by the injective homo-

morphism H0(aL − cA) sb

−→ H0(aL + (b − c)A) and the L2-norm ∥ · ∥aL+(b−c)A
L2 of

H0(aL + (b − c)A). Thus, by (2.2.4), it yields the claim because

rkH0(aL − cA) ≤ rkH0(a(L + A)).

Next we claim the following:
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Claim 3.4.3. There are constants a0 and C5 depending only on L and A such that

ĥ0
(
H0(aL − cA), ∥ · ∥aL+(b−c)A

L2,sb,sub

)
≤ ĥ0

(
H0(aL − cA), ∥ · ∥aL−cA

L2

)
+ C5ba

d−1 + C2a
d−1 log(a).

for all integers a, b, c with a ≥ b ≥ c ≥ 0 and a ≥ a0.

Note that ∥ · ∥aL+(b−c)A

L2,sb,sub
≤ ∥ · ∥aL−cA

L2 . Thus, by (2.2.2),

ĥ0
(
H0(aL − cA), ∥ · ∥aL−cA

L2

)
−ĥ0

(
H0(aL − cA), ∥ · ∥aL+(b−c)A

L2,sb,sub

)
+C2a

d−1 log(a)

≥ χ̂
(
H0(aL − cA), ∥ · ∥aL−cA

L2

)
− χ̂

(
H0(aL − cA), ∥ · ∥aL+(b−c)A

L2,sb,sub

)
.

Therefore it is sufficient to find positive constants a0 and C5 such that

χ̂
(
H0(aL − cA), ∥ · ∥aL−cA

L2

)
− χ̂

(
H0(aL − cA), ∥ · ∥aL+(b−c)A

L2,sb,sub

)
≥ −C5ba

d−1

for all a, b, c with a ≥ b ≥ c ≥ 0 and a ≥ a0. This is nothing more than a consequence of
Corollary 1.2.2.

Let k be an integer with 0 ≤ k < b. Let ∥ · ∥aL+(b−c)A

L2,sk,sub,quot
be the quotient norm of

I0(Y, aL + (b − c − k)A|Y ) induced by a surjective homomorphism

H0(aL + (b − c − k)A) → I0(Y, aL + (b − c − k)A|Y )

and ∥ · ∥aL+(b−c)A

L2,sk,sub
of H0(aL + (b − c − k)A).

Claim 3.4.4. There is a constant C6 and C7 depending only on L and A such that

ĥ0
(
I0(Y, aL + (b − c − k)A|Y ), ∥ · ∥aL+(b−c)A

L2,sk,sub,quot

)
≤ C6a

d−1 + C7a
d−2 log(a)

for all integers a, b, c, k with a ≥ b ≥ c ≥ 0, a ≥ 2 and 0 ≤ k < b.

Let us choose a small open set U of X(C) such that the closure of U does not meet
with Y (C) and U is not empty on each connected component of X(C). Then, applying
Lemma 1.1.4 to the cases LC, AC and LC,−AC, there are constant D1 ≥ 1 and D′

1 ≥ 1
such that

D′
1D

l+|m|
1

∫
U

|u|2Ω ≥
∫

X(C)

|u|2Ω

for all integers l,m with l ≥ 0 and all u ∈ H0(X(C), lL+mA). Since 0 < infx∈U{|s|(x)} <
1, if we set

D2 = 1/ inf
x∈U

{|s|(x)},

then D2 > 1. Thus, if we set D3 = max{D2, D1}, then, for u ∈ H0(X, aL+(b−c−k)A),∫
X(C)

|sk ⊗ u|2Ω ≥
∫

U

|sk ⊗ u|2Ω ≥ D−2k
2

∫
U

|u|2Ω

≥ D−2k
2 D′

1
−1

D
−(a+|b−c−k|)
1

∫
X(C)

|u|2Ω ≥ D′
1
−1

D−4a
3

∫
X(C)

|u|2Ω,

which means that

∥ · ∥aL+(b−c)A

L2,sk,sub
≥ D′

1
−1/2

D−2a
3 ∥ · ∥aL+(b−c−k)A

L2 .

Hence
∥ · ∥aL+(b−c)A

L2,sk,sub,quot
≥ D′

1
−1/2

D−2a
3 ∥ · ∥aL+(b−c−k)A

L2,quot ,



22 ATSUSHI MORIWAKI

where ∥ · ∥aL+(b−c−k)A
L2,quot is the quotient norm of I0(Y, aL + (b − c − k)A|Y ) induced by

a surjective homomorphism

H0(X, aL + (b − c − k)A) → I0(Y, aL + (b − c − k)A|Y ).

Note that ex ≥ x + 1 for x ≥ 0. Thus, applying Corollary 1.1.3 to the cases LC, AC and
LC,−AC, there are constants D4, D

′
4 ≥ 1 such that

∥ · ∥aL+(b−c−k)A
L2,quot ≥ D′

4
−1/2

D
−(a+|b−c−k|)/2
4 ∥ · ∥

aL+(b−c−k)A|
Y

L2

≥ D′
4
−1/2

D−a
4 ∥ · ∥

aL+(b−c−k)A|
Y

L2

on I0(Y, aL + (b − c − k)A|Y ), where the volume form on Y is given by the C∞-hermitian
invertible sheaf L + A

∣∣
Y

. Therefore, if we set D5 = max{D3, D4} and D′
5 = max{D′

1, D
′
4},

then

∥ · ∥aL+(b−c)A

L2,sk,sub,quot
≥ D′

5
−1

D−3a
5 ∥ · ∥

aL+(b−c−k)A|
Y

L2

on I0(Y, aL + (b − c − k)A|Y ). Thus, by (2.2.3),

ĥ0
(
I0(Y, aL + (b − c − k)A|Y ), ∥ · ∥aL+(b−c)A

L2,sk,sub,quot

)
≤ ĥ0

(
I0(Y, aL + (b − c − k)A|Y ), ∥ · ∥

aL+(b−c−k)A|
Y

L2

)
+ log(D′

5D
3a
5 )C3a

d−2 + C4a
d−2 log(a)

≤ ĥ0

(
H0(Y, aL + (b − c − k)A|Y ), ∥ · ∥

aL+(b−c−k)A|
Y

L2

)
+ log(D′

5D
3a
5 )C3a

d−2 + C4a
d−2 log(a).

Let Ỹ be the normalization of Y . Let t be a non-zero section as in Claim 3.4.1. Then t
gives rise to a relation L

∣∣
eY
≤ nA

∣∣
eY

(cf. Conventions and terminology 8). Thus

aL + (b − c − k)A
∣∣

eY
≤ (an + b − c − k)A

∣∣
eY

.

Therefore,

ĥ0

(
H0(Y, aL + (b − c − k)A|Y ), ∥ · ∥

aL+(b−c−k)A|
Y

L2

)
≤ ĥ0

(
H0(Ỹ , aL + (b − c − k)A|

eY ), ∥ · ∥
aL+(b−c−k)A|

eY

L2

)
≤ ĥ0

(
H0(Ỹ , (an + b − c − k)A|

eY ), ∥ · ∥
(an+b−c−k)A|

eY

L2

)
.

Further, by Lemma 3.1, there is a positive constant D6 with

ĥ0

(
H0(Ỹ , nA|

eY ), ∥ · ∥
n A|

eY

L2

)
≤ D6n

d−1

for all n ≥ 1. Thus the claim follows.

Finally we claim the following:

Claim 3.4.5. There is a constant C7 depending only on L and A such that

ĥ0
(
I0( (aL + (b − c)A)|bY ), ∥ · ∥aL+(b−c)A

L2,quot

)
≤ C6ba

d−1 + (C4 + C7)ad−1 log(a)
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for all integers a, b, c with a ≥ b ≥ c ≥ 0, a ≥ 2.

A commutative diagram

0 −−−−→ −(k + 1)A sk+1

−−−−→ OX −−−−→ O(k+1)Y −−−−→ 0ys

∥∥∥ y
0 −−−−→ −kA

sk

−−−−→ OX −−−−→ OkY −−−−→ 0y
−kA|Y

yields an injective homomorphism αk : −kA|Y → O(k+1)Y together with a commutative
diagram

0 −−−−→ −kA
sk

−−−−→ OX −−−−→ OkY −−−−→ 0y y ∥∥∥
0 −−−−→ −kA|Y

αk−−−−→ O(k+1)Y −−−−→ OkY −−−−→ 0,

where two horizontal sequences are exact. Thus, tensoring the above diagram with aL +
(b − c)A, we have the following commutative diagram:

0 // aL + (b − c − k)A sk
//

²²

aL + (b − c)A //

²²

aL + (b − c)A|kY
// 0

0 // aL + (b − c − k)A|Y
αk // aL + (b − c)A|(k+1)Y

// aL + (b − c)A|kY
// 0

Therefore we have an exact sequence

0 → I0( (aL + (b − c − k)A)|Y ) → I0( (aL + (b − c)A)|(k+1)Y )

→ I0( (aL + (b − c)A)|kY ) → 0

Note that in the commutative diagram

H0(aL + (b − c − k)A) sk

−−−−→ H0(aL + (b − c)A)y y
I0( (aL + (b − c − k)A)|Y ) αk−−−−→ I0( (aL + (b − c)A)|(k+1)Y ),

the two vertical arrows have the same kernel. Thus, by Lemma 3.2,

0 →
(
I0( (aL + (b − c − k)A)|Y ), ∥ · ∥aL+(b−c)A

L2,sk,sub,quot

)
→

(
I0( (aL + (b − c)A)|(k+1)Y ), ∥ · ∥aL+(b−c)A

L2,quot

)
→

(
I0( (aL + (b − c)A)|kY ), ∥ · ∥aL+(b−c)A

L2,quot

)
→ 0

is a normed exact sequence, where for each 1 ≤ i ≤ b, the norm ∥ · ∥aL+(b−c)A
L2,quot of

I0( (aL + (b − c)A)|iY ) is the quotient norm induced by the surjective homomorphism
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H0(aL + (b − c)A) → I0( (aL + (b − c)A)|iY ) and the L2-norm ∥ · ∥aL+(b−c)A
L2 of

H0(aL + (b − c)A). Therefore, by (2.2.4),

ĥ0
(
I0( (aL + (b − c)A)|(k+1)Y ), ∥ · ∥aL+(b−c)A

L2,quot

)
− ĥ0

(
I0( (aL + (b − c)A)|kY ), ∥ · ∥aL+(b−c)A

L2,quot

)
≤ ĥ0

(
I0( (aL + (b − c − k)A)|Y ), ∥ · ∥aL+(b−c)A

L2,sk,sub,quot

)
+ C4a

d−2 log(a).

Thus, taking
∑b−1

k=1, the above yields

ĥ0
(
I0( (aL + (b − c)A)|bY ), ∥ · ∥aL+(b−c)A

L2,quot

)
≤

b−1∑
k=0

ĥ0
(
I0( (aL + (b − c − k)A)|Y ), ∥ · ∥aL+(b−c)A

L2,sk,sub,quot

)
+ (b − 1)C4a

d−2 log(a).

Therefore, using Claim 3.4.4, we have the claim.

Gathering Claim 3.4.2, Claim 3.4.3 and Claim 3.4.5, if we set C = C5 + C6 and
D = 2C2 + C4 + C7, then

ĥ0
(
H0(aL + (b − c)A), ∥ · ∥aL+(b−c)A

L2

)
≤ ĥ0

(
H0(aL − cA), ∥ · ∥aL−cA

L2

)
+ Cbad−1 + Dad−1 log(a)

for all a ≥ b ≥ c ≥ 0 and a ≥ a0.

Finally let us consider the sup-version of our estimate. First of all, since

∥ · ∥aL+(b−c)A
sup ≥ ∥ · ∥aL+(b−c)A

L2 ,

we have

ĥ0
(
H0(aL + (b − c)A), ∥ · ∥aL+(b−c)A

sup

)
≤ ĥ0

(
H0(aL + (b − c)A), ∥ · ∥aL+(b−c)A

L2

)
.

Moreover, by virtue of Gromov’s inequality, there is a constant C8 ≥ 1

∥ · ∥aL−cA
L2 ≥ C−1

8 (a + c + 1)−(d−1)∥ · ∥aL−cA
sup

for all a, c ≥ 0. Thus, since a ≥ c,

ĥ0
(
H0(aL − cA), ∥ · ∥aL−cA

L2

)
≤ ĥ0

(
H0(aL − cA), C−1

8 (a + c + 1)−(d−1)∥ · ∥aL−cA
sup

)
≤ ĥ0

(
H0(aL − cA), ∥ · ∥aL−cA

sup

)
+ log(C8(2a + 1)d−1)C1a

d−1 + C2a
d−1 log(a)

for all a ≥ c ≥ 0. Therefore we obtain the sup-version. 2

Let R be an integral domain such that R is flat and finite over Z. Let K be a quotient
field of R. Note that K is a number field. Let K(C) be the set of all embeddings K ↪→ C
of fields. Let L be a finitely generated and free R-module of rank 1. For each σ ∈ K(C),
the tensor product L ⊗R C in terms of the embedding σ : K ↪→ C is denoted by Lσ .
For each σ ∈ K(C), let | · |σ be a norm of Lσ . The collection

(
L, {| · |σ}σ∈K(C)

)
is
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called a normed invertible R-module. For simplicity,
(
L, {| · |σ}σ∈K(C)

)
is often denoted

by (L, | · |) or L. We define ∥ · ∥L
sup by

∥s∥L
sup = max{|s|σ | σ ∈ K(C)}.

Then (L, ∥ · ∥L
sup) is a normed finitely generated free Z-module.

Proposition 3.5. Let L and A be normed invertible R-modules of rank 1. We assume that
there is s ∈ A with s ̸= 0 and ∥s∥A

sup ≤ 1. Then there are positive constants C and D

depending only on L and A such that

ĥ0
(
aL + (b − c)A, ∥ · ∥aL+(b−c)A

sup

)
≤ ĥ0

(
aL − cA, ∥ · ∥aL−cA

sup

)
+ Cb + D

for all non-negative integers a, b, c.

Proof. Let ∥ · ∥aL+(b−c)A

sup,sb,sub
be the subnorm of aL− cA induced by the injective homo-

morphism aL − cA
sb

−→ aL + (b − c)A and the norm ∥ · ∥aL+(b−c)A
sup of aL + (b − c)A.

Then, by (4) of Proposition 2.1, we have

ĥ0
(
aL + (b − c)A, ∥ · ∥aL+(b−c)A

sup

)
≤ ĥ0

(
aL − cA, ∥ · ∥aL+(b−c)A

sup,sb,sub

)
+ log #(Coker(aL − cA → aL + (b − c)A)) + D,

where d = [K : Q] and D = (log(18) + 2)(d + 1) log(d + 1). Note that

log #(Coker(aL − cA
sb

−→ aL + (b − c)A))

= log #(Coker(R sb

−→ bA) ⊗ (aL − cA))

= log #(Coker(R sb

−→ bA)).

Let us consider a sequence of injective homomorphisms:

R
s−→ A

s−→ · · · s−→ bA.

Then

log #(Coker(R sb

−→ bA)) =
b∑

i=1

log #(Coker((i − 1)A s−→ iA))

= b · log #(Coker(R s−→ A)).

On the other hand, for all t ∈ aL − cA,

∥sb ⊗ t∥aL+(b−c)A
sup ≥ (min{|s|σ | σ ∈ K(C)})b ∥t∥aL−cA

sup .

Thus, by (3) of Proposition 2.1,

ĥ0
(
aL − cA, ∥ · ∥aL+(b−c)A

sup,sb,sub

)
≤ ĥ0

(
aL − cA, ∥ · ∥aL−cA

sup

)
+ b log(C ′(s))d + D,

where C ′(s) = min{|s|σ | σ ∈ K(C)}. Therefore,

ĥ0
(
aL + (b − c)A, ∥ · ∥aL+(b−c)A

sup

)
≤ ĥ0

(
aL − cA, ∥ · ∥aL−cA

sup

)
+ b(log #(Coker(R s−→ A)) + log(C ′(s)))d + 2D.

2
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Finally we consider the following lemma which guarantees the existence of a good C∞-
hermitian invertible sheaf A satisfying the assumptions (i), (ii) and (iii) of Theorem 3.4.

Lemma 3.6. Let X be a projective and generically smooth arithmetic variety of dimension
d ≥ 2, and let A be an ample C∞-hermitian invertible sheaf on X . Then, for any C∞-
hermitian invertible sheaf L on X , there is a positive integer n0 such that, for all n ≥ n0,
nA satisfies the assumptions (i), (ii) and (iii) of Theorem 3.4.

Proof. This is a consequence of arithmetic Bertini’s theorem (cf. [13]). We can give
however an easy and direct proof of the lemma as follows: It is easy to find n0 for the
assumptions (i) and (ii). In addition to (i) and (ii), we choose n0 such that nA is very
ample for all n ≥ n0. Let π : X → Spec(Z) be the structure morphism and S the minimal
finite set of Spec(Z) \ {0} such that π−1(Spec(Z) \ S) is regular. Let Z1, . . . , Zr be all
irreducible components of π−1(S), and let x1, . . . , xr be closed points of X with xi ∈ Zi

for all i. Let m1, . . . ,mr be the maximal ideals corresponding to x1, . . . , xr. Then there is
a positive integer n1 such that, for all n ≥ n1, H1(X,nA⊗m1 · · ·mr) = 0, which means
that the natural homomorphism

H0(X,nA) →
n⊕

i=1

nA ⊗ (OX/mi)

is surjective. Thus if n ≥ max{n0, n1}, then nA is very ample and there is a non-zero
section tn of H0(X,nA) with tn(xi) ̸= 0 for all xi. We set γ(s) = tn + ls for s ∈
H0(X,nA), where l =

∏
s∈S char(κ(s)) and κ(s) is the residue field of Z at s. Note that

γ(s)(xi) ̸= 0 for all i. In particular, every vertical component of div(γ(s)) is contained
π−1(Spec(Z)\S). On the other hand, it is easy to see that the set {γ(s) | s ∈ H0(X,nA)}
is Zariski dense in a vector space H0(XQ, nAQ) = H0(X,nA) ⊗ Q. Thus, by Bertini’s
theorem, there is s ∈ H0(X,nA) such that div(γ(s)) is smooth over Q. 2

4. VOLUME FUNCTION FOR C∞-HERMITIAN INVERTIBLE SHEAVES
AND ITS BASIC PROPERTIES

Let X be a projective arithmetic variety of dimension d. For a C∞-hermitian invertible
sheaf L on X , the arithmetic volume of L is defined by

v̂ol(L) = lim sup
m→∞

ĥ0(H0(X,mL), ∥ · ∥mL
sup)

md/d!
.

This number is a finite real number by Lemma 3.1. Moreover, if L is ample, then

v̂ol(L) = d̂eg(ĉ1(L)·d).

First let us consider elementary properties of volume function:

Proposition 4.1. Let L and M be C∞-hermitian invertible sheaves on X . Then we have
the following:

(1) If L ≤ M (Conventions and terminology 8), then v̂ol(L) ≤ v̂ol(M).
(2) Let | · |L be the hermitian norm of L. For a real number λ, we set

L
λ

= (L, exp(−λ)| · |L).

If λ ≥ 0, then we have{
v̂ol(L) ≤ v̂ol(L

λ
) ≤ v̂ol(L) + dλ vol(LQ),

v̂ol(L) − dλ vol(LQ) ≤ v̂ol(L
−λ

) ≤ v̂ol(L),
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where vol(LQ) is the geometric volume of LQ on XQ.

(3) v̂ol(L) = lim sup
m→∞

log #{s ∈ H0(X,mL) | ∥s∥mL
sup < 1}

md/d!
.

Proof. (1) Since L ≤ M , we have mL ≤ mM for all m ≥ 1. Thus

ĥ0
(
H0(X,mL), ∥ · ∥mL

sup

)
≤ ĥ0

(
H0(X,mM), ∥ · ∥mM

sup

)
for all m ≥ 1. Hence v̂ol(L) ≤ v̂ol(M).

(2) Since ∥ · ∥mL
λ

sup = exp(−mλ)∥ · ∥mL
sup , by using (2.2.3), there is a positive constant

C such that

0 ≤ ĥ0(H0(X,mL), ∥ · ∥L
λ

sup) − ĥ0(H0(X,mL), ∥ · ∥L
sup)

≤ λm dim H0(XQ,mLQ) + Cmd−1 log(m)

for m ≫ 1. Thus we obtain the first inequalities. These implies that

v̂ol(L
−λ

) ≤ v̂ol
((

L
−λ

)λ
)

≤ v̂ol(L
−λ

) + dλ vol(LQ),

which is nothing more than the second inequalities because
(
L
−λ

)λ

= L.

(3) For a positive real number λ,

Ĥ0
(
H0(X,mL), ∥ · ∥mL

−λ

sup

)
⊆

{
s ∈ H0(X,mL) | ∥s∥mL

sup < 1
}

⊆ Ĥ0
(
H0(X,mL), ∥ · ∥mL

sup

)
because ∥ · ∥mL

−λ

sup = exp(mλ)∥ · ∥mL
sup . Thus, using (2), we have

v̂ol(L) − dλ vol(LQ) ≤ lim sup
m→∞

log #{s ∈ H0(X,mL) | ∥s∥mL
sup < 1}

md/d!
≤ v̂ol(L),

which shows the assertion because λ is an arbitrary positive number. 2

The following theorem shows that the volume function is a birational invariant.

Theorem 4.2. Let π : X ′ → X be a birational morphism of projective arithmetic vari-
eties, and let L and N be C∞-hermitian invertible sheaves on X . Then

lim sup
m→∞

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
md

= lim sup
m→∞

ĥ0
(
H0(X ′, π∗(mL + N)), ∥ · ∥π∗(mL+N)

sup

)
md

.

In particular, v̂ol(L) = v̂ol(π∗(L)).
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Proof. The proof of this theorem is similar to [16, Theorem 2.2]. First of all, note that

lim sup
m→∞

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
md

≤ lim sup
m→∞

ĥ0
(
H0(X ′, π∗(mL + N)), ∥ · ∥π∗(mL+N)

sup

)
md

.

Thus, considering a generic resolution of singularities of X ′, we may assume that X ′ is
generically smooth.

Let us consider an exact sequence:

0 → mL + N → π∗(π∗(mL + N)) → (mL + N) ⊗ (π∗(OX′)/OX) → 0.

The image of the natural homomorphism

H0(X ′, π∗(mL + N)) → H0(X, (mL + N) ⊗ (π∗(OX′)/OX))

is denoted by Γ(X ′/X,mL+N). Let ∥·∥π∗(mL+N)
sup,quot be the quotient norm of Γ(X ′/X,mL+

N) induced by the surjective homomorphism

H0(X ′, π∗(mL + N)) → Γ(X ′/X,mL + N)

and the sup-norm ∥ · ∥π∗(mL+N)
sup of H0(X ′, π∗(mL + N)).

Claim 4.2.1. If π is finite and L is ample, then

ĥ0
(
Γ(X ′/X,mL + N), ∥ · ∥π∗(mL+N)

sup,quot

)
≤ o(md).

We fix a normalized volume form Ω on X ′(C). Using Ω on X ′(C), as in Lemma 3.1,
we can define L2-norms of H0(X,mL + N) and H0(X ′, π∗(mL + N)) as follows: for
t ∈ H0(X,mL + N) and t′ ∈ H0(X ′, π∗(mL + N)),

∥t∥mL+N
L2,Ω =

(∫
X′(C)

π∗(|t|2
mL+N

)Ω

)1/2

and

∥t′∥π∗(mL+N)
L2,Ω =

(∫
X′(C)

|t′|2
π∗(mL+N)

Ω

)1/2

,

where | · |mL+N and | · |π∗(mL+N) are the hermitian norms of mL + N and π∗(mL + N)

respectively. Note that π∗(| · |mL+N ) = | · |π∗(mL+N). Let ∥ · ∥π∗(mL+N)
L2,quot be the quotient

norm of Γ(X ′/X,mL + N) induced by H0(X ′, π∗(mL + N)) → Γ(X ′/X,mL + N)
and the L2-norm ∥ · ∥π∗(mL+N)

L2,Ω of H0(X ′, π∗(mL + N)). Then we have a normed exact
sequence

(4.2.2)

0 →
(
H0(X,mL + N), ∥ · ∥mL+N

L2

)
→

(
H0(X ′, π∗(mL + N)), ∥ · ∥π∗(mL+N)

L2

)
→

(
Γ(X ′/X,mL + N), ∥ · ∥π∗(mL+N)

L2,quot

)
→ 0.

Since ∥ · ∥π∗(mL+N)
L2,quot ≤ ∥ · ∥π∗(mL+N)

sup,quot , it is sufficient to show that

ĥ0
(
Γ(X ′/X,mL + N), ∥ · ∥π∗(mL+N)

L2,quot

)
≤ o(md).
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By virtue of [17, Corollary (4.8)], H0(X ′, π∗(mL + N)) is generated by sections t with

∥t∥π∗(mL+N)
L2 ≤ ∥t∥π∗(mL+N)

sup < 1

for m ≫ 1 because π∗(L) is ample. Thus so does Γ(X ′/X,mL + N) with respect to

∥ · ∥π∗(mL+N)
L2,quot . Hence, by using (1) and (5) of Proposition 2.1, it suffices to show that

χ̂
(
Γ(X ′/X,mL + N), ∥ · ∥π∗(mL+N)

L2,quot

)
≤ o(md)

because rk Γ(X ′/X,mL + N) = o(md−1). By using the normed exact sequence (4.2.2)
and [16, Theorem 2.1, (1)], we have

χ̂
(
Γ(X ′/X,mL + N), ∥ · ∥π∗(mL+N)

L2,quot

)
= χ̂

(
H0(X ′, π∗(mL + N)), ∥ · ∥π∗(mL+N)

L2

)
− χ̂

(
H0(X,mL + N), ∥ · ∥mL+N

L2

)
+ o(md).

On the other hand, using [17, Theorem (1.4)] and Gromov’s inequality on X ′(C), we can
see that

χ̂
(
H0(X ′, π∗(mL + N)), ∥ · ∥π∗(mL+N)

L2

)
=

d̂eg(ĉ1(π∗(L))·d)
d!

md + o(md),

χ̂
(
H0(X,mL + N), ∥ · ∥mL+N

L2

)
=

d̂eg(ĉ1(L)·d)
d!

md + o(md)

as in the proof of Lemma 3.1. Moreover, by the projection formula,

d̂eg(ĉ1(π∗(L))·d) = d̂eg(ĉ1(L)·d).

Thus the claim follows.

Claim 4.2.3. If π is finite, then

ĥ0
(
Γ(X ′/X,mL + N), ∥ · ∥π∗(mL+N)

sup,quot

)
≤ o(md).

Let A be an ample C∞-hermitian invertible sheaf on X . Replacing A by a higher
multiple of A if necessarily, we may assume that there is a non-zero section s of H0(X,A−
L) such that ∥s∥sup ≤ 1 and s dose not vanish at any associated point of π∗(OX′)/OX .
Then we have the following commutative diagram:

H0(X ′, π∗(mL + N))
π∗(s)−−−−→ H0(X ′, π∗(mA + N))y y

Γ(X ′/X,mL + N) s−−−−→ Γ(X ′/X,mA + N).

By our choice of s, the horizontal arrows are injective. Let ∥·∥π∗(mA+N)
sup,π∗(s),sub be the subnorm

of H0(X ′, π∗(mL + N)) induced by

H0(X ′, π∗(mL + N))
π∗(s)−→ H0(X ′, π∗(mA + N))

and ∥ · ∥π∗(mA+N)
sup . Moreover, let ∥ · ∥π∗(mA+N)

sup,π∗(s),sub,quot be the quotient norm of
Γ(X ′/X,mL + N) induced by

H0(X ′, π∗(mL + N)) → Γ(X ′/X,mL + N),
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and let ∥ · ∥π∗(mA+N)
sup,quot be the quotient norm of Γ(X ′/X,mA + N) induced by

H0(X ′, π∗(mA + N)) → Γ(X ′/X,mA + N).

Then, by (2) of Lemma 3.2,

∥ · ∥π∗(mA+N)
sup,π∗(s),sub,quot ≥ ∥ · ∥π∗(mA+N)

sup,quot

on Γ(X ′/X,mL + N). Therefore, by the previous claim,

ĥ0
(
Γ(X ′/X,mL + N), ∥ · ∥π∗(mA+N)

sup,π∗(s),sub,quot

)
≤ ĥ0

(
Γ(X ′/X,mA + N), ∥ · ∥π∗(mA+N)

sup,quot

)
≤ o(md).

On the other hand, since

∥ · ∥π∗(mL+N)
sup,quot ≥ ∥ · ∥π∗(mA+N)

sup,π∗(s),sub,quot,

we have

ĥ0
(
Γ(X ′/X,mL + N), ∥ · ∥π∗(mL+N)

sup,quot

)
≤ ĥ0

(
Γ(X ′/X,mL + N), ∥ · ∥π∗(mA+N)

sup,π∗(s),sub,quot

)
.

Thus the claim follows.

Claim 4.2.4. If π is finite, then

lim sup
m→∞

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
md

= lim sup
m→∞

ĥ0
(
H0(X ′, π∗(mL + N)), ∥ · ∥π∗(mL+N)

sup

)
md

.

By using (4) of Proposition 2.1 and Claim 4.2.3, the normed exact sequence

0 →
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
→

(
H0(X ′, π∗(mL + N)), ∥ · ∥π∗(mL+N)

sup

)
→

(
Γ(X ′/X,mL + N), ∥ · ∥π∗(mL+N)

sup,quot

)
→ 0

gives rise to

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
≤ ĥ0

(
H0(X ′, π∗(mL + N)), ∥ · ∥π∗(mL+N)

sup

)
≤ ĥ0

(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
+ o(md).

This shows the claim.

Let us consider a general case. We set X ′′ = Spec(π∗(OX′)). Then π : X ′ → X can
be factorized π1 : X ′ → X ′′ and π2 : X ′′ → X such that π = π2◦π1, (π1)∗(OX′) = OX′′



CONTINUITY OF VOLUMES ON ARITHMETIC VARIETIES 31

and π2 is finite. Thus, by Claim 4.2.4,

lim sup
m→∞

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
md

= lim sup
m→∞

ĥ0
(
H0(X ′′, π∗

2(mL + N)), ∥ · ∥π∗
2 (mL+N)

sup

)
md

.

On the other hand, since (π1)∗(OX′) = OX′′ ,

H0(X ′, π∗(mL + N)) = H0(X ′′, π∗
2(mL + N))

for all m ≥ 1. Thus

lim sup
m→∞

ĥ0
(
H0(X ′′, π∗

2(mL + N)), ∥ · ∥π∗
2 (mL+N)

sup

)
md

= lim sup
m→∞

ĥ0
(
H0(X ′, π∗(mL + N)), ∥ · ∥π∗(mL+N)

sup

)
md

.

Hence the theorem follows. 2

Next let us consider the following theorem.

Theorem 4.3. Let L and N be C∞-hermitian invertible sheaves on X . Then

lim sup
m→∞

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
md

=
v̂ol(L)

d!
.

Proof. By Theorem 4.2, we may assume that X is generically smooth. By using
Lemma 3.6, there are ample C∞-hermitian invertible sheaves A and B such that −B ≤
N ≤ A and that A and B satisfy the assumptions (i), (ii) and (iii) of Theorem 3.4. The
inequalities −B ≤ N ≤ A gives rise to

lim sup
m→∞

ĥ0
(
H0(X,mL − B), ∥ · ∥mL−B

sup

)
md

≤ lim sup
m→∞

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
md

≤ lim sup
m→∞

ĥ0
(
H0(X,mL + A), ∥ · ∥mL+A

sup

)
md

.

Applying Theorem 3.4 to the case where b = 1 and c = 0, we have

ĥ0
(
H0(X,mL + A), ∥ · ∥mL+A

sup

)
≤ ĥ0

(
H0(X,mL), ∥ · ∥mL

sup

)
+ o(md)

for m ≫ 1, which yields

lim sup
m→∞

ĥ0
(
H0(X,mL + A), ∥ · ∥mL+A

sup

)
md

≤ v̂ol(L)
d!

.

Further, applying Theorem 3.4 to the case where b = c = 1,

ĥ0
(
H0(X,mL), ∥ · ∥mL

sup

)
≤ ĥ0

(
H0(X,mL − B), ∥ · ∥mL−B

sup

)
+ o(md)
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for m ≫ 1, which implies

v̂ol(L)
d!

≤ lim sup
m→∞

ĥ0
(
H0(X,mL − B), ∥ · ∥mL−B

sup

)
md

.

Thus we get the theorem. 2

The following lemma is need to see the characterization of bigness and the homogeneity
of the arithmetic volume function.

Lemma 4.4. Let L and N be C∞-hermitian invertible sheaves on X . We assume that L
is big. Then, for a fixed positive integer p,

lim sup
n→∞

ĥ0(H0(X, pnL + N), ∥ · ∥pnL+N
sup )

(pn)d
= lim sup

m→∞

ĥ0(H0(X,mL + N), ∥ · ∥mL+N
sup )

md

and

lim inf
n→∞

ĥ0(H0(X, pnL + N), ∥ · ∥pnL+N
sup )

(pn)d
= lim inf

m→∞

ĥ0(H0(X,mL + N), ∥ · ∥mL+N
sup )

md

Proof. First we claim the following:

Claim 4.4.1. There is a positive integer m0 such that ĥ0(H0(X,mL), ∥ · ∥mL
sup) ̸= 0 for

all m ≥ m0.

Let A be an ample C∞-hermitian invertible sheaf on X such that

ĥ0(H0(X,A), ∥ · ∥A
sup) ̸= 0 and ĥ0(H0(X,L + A), ∥ · ∥L+A

sup ) ̸= 0.

Since L is big, we can find a positive integer a with ĥ0(H0(X, aL − A), ∥ · ∥aL−A
sup ) ̸= 0

(cf. [14, Proposition 2.2]). Note that

aL = (aL − A) + A and (a + 1)L = (aL − A) + (L + A).

Thus

ĥ0(H0(X, aL), ∥ · ∥aL
sup) ̸= 0 and ĥ0(H0(X, (a + 1)L), ∥ · ∥(a+1)L

sup ) ̸= 0.

Let m be an integer with m ≥ a2 + a. We set m = aq + r, where 0 ≤ r < a. Then q ≥ a.
Thus we can find b > 0 with q = b + r. Therefore mL = b(aL) + r((a + 1)L), which
means that

ĥ0(H0(X,mL), ∥ · ∥mL
sup) ̸= 0.

Next we claim the following:

Claim 4.4.2. There is a positive integer n0 such that

ĥ0(H0(X, pnL + N), ∥ · ∥pnL+N
sup )

≤ ĥ0(H0(X, (p(n + n0) + i)L + N), ∥ · ∥(p(n+n0)+i)L+N
sup )

≤ ĥ0(H0(X, p(n + 2n0 + 1)L + N), ∥ · ∥p(n+2n0+1)L+N
sup )

for all n ≥ 1 and all i = 0, . . . , p.
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We choose n0 with pn0 ≥ m0. For each i = 0, . . . , p, there is a non-zero section si of
H0(X, (pn0 + i)L) with ∥si∥sup ≤ 1. Therefore we have injective homomorphisms

H0(X, pnL + N) si−→ H0(X, (p(n + n0) + i)L + N)
sp−i−→ H0(p(n + 2n0 + 1)L + N).

Thus our the claim follows.

Let us go back to the proof of the lemma. By the above claim,

lim sup
n→∞

ĥ0(H0(X, pnL + N), ∥ · ∥pnL+N
sup )

(pn)d

≤ lim sup
n→∞

ĥ0(H0(X, (p(n + n0) + i)L), ∥ · ∥(p(n+n0)+i)L+N
sup )

(pn)d

≤ lim sup
n→∞

ĥ0(H0(X, p(n + 2n0 + 1)L), ∥ · ∥p(n+2n0+1)L+N
sup )

(pn)d
.

Note that

lim
n→∞

(pn)d

(p(n + n0) + i)d
= lim

n→∞

(pn)d

(p(n + 2n0 + 1))d
= 1.

This shows that

lim sup
n→∞

ĥ0(H0(X, pnL + N), ∥ · ∥pnL+N
sup )

(pn)d

= lim sup
n→∞

ĥ0(H0(X, (pn + i)L + N), ∥ · ∥(pn+i)L+N
sup )

(pn + i)d

for all i = 0, . . . , p − 1. Hence

lim sup
n→∞

ĥ0(H0(X, pnL + N), ∥ · ∥pnL+N
sup )

(pn)d
= lim sup

m→∞

ĥ0(H0(X,mL + N), ∥ · ∥mL+N
sup )

md
.

In the same way, we can see

lim inf
n→∞

ĥ0(H0(X, pnL + N), ∥ · ∥pnL+N
sup )

(pn)d
= lim inf

m→∞

ĥ0(H0(X,mL), ∥ · ∥mL+N
sup )

md
.

2

The following theorem is a characterization of a big C∞-hermitian invertible sheaf. The
similar property is observed in [16].

Theorem 4.5. For a C∞-hermitian invertible sheaf L on X , the following are equivalent:

(1) v̂ol(L) > 0.
(2) L is big.

(3) lim inf
m→∞

ĥ0(H0(X,mL), ∥ · ∥sup)
md

> 0.

(4) lim inf
m→∞

log #{s ∈ H0(X,mL) | ∥s∥sup < 1}
md

> 0.

Proof. Obviously (3) =⇒ (1) and (4) =⇒ (1), so that it is sufficient to show that (1)
=⇒ (2), (2) =⇒ (3) and (2) =⇒ (4).
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(1) =⇒ (2): We assume that v̂ol(L) > 0. By (3) of Proposition 4.1, there is a positive
integer m and a non-zero section s of H0(X,mL) with ∥s∥mL

sup < 1. Let A be an ample
C∞-hermitian invertible sheaf on X . By Theorem 4.3,

lim sup
m→∞

ĥ0
(
H0(X,mL − A), ∥ · ∥mL−A

sup

)
md

=
v̂ol(L)

d!
> 0,

which implies that there is a positive integer n with ĥ0
(
H0(X,nL − A), ∥ · ∥nL−A

sup

)
̸= 0.

Hence nL ≥ A. In particular, LQ is big on XQ.

(2) =⇒ (3): Let A be an ample C∞-hermitian invertible sheaf on X . Since L is big,
there is a positive integer p with pL ≥ A. Therefore,

lim inf
n→∞

ĥ0(H0(pnL), ∥ · ∥pnL
sup )

(pn)d
≥ 1

pd
lim inf
n→∞

ĥ0(H0(nA), ∥ · ∥nA
sup)

nd
> 0.

Hence, by Lemma 4.4,

lim inf
m→∞

ĥ0(H0(mL), ∥ · ∥mL
sup)

md
> 0.

(2) =⇒ (4): We choose a sufficiently small positive number λ such that L
−λ

is big.
Since (2) =⇒ (3), we have

lim inf
m→∞

log #{s ∈ H0(X,mL) | exp(mλ)∥s∥sup ≤ 1}
md

> 0,

which yields (4). 2

Remark 4.6. In the paper [16], Yuan uses the condition (4) of the above theorem as a
definition of a big C∞-hermitian invertible sheaf. By the above theorem, Yuan’s definition
is equivalent to our bigness.

Proposition 4.7. v̂ol is homogeneous of degree d, that is, v̂ol(pL) = pdv̂ol(L) for every
non-negative integer p.

Proof. Since

lim sup
n→∞

ĥ0(H0(X,npL), ∥ · ∥npL
sup )

(np)d
≤ lim sup

m→∞

ĥ0(H0(X,mL), ∥ · ∥mL
sup)

md
,

we have v̂ol(pL) ≤ pdv̂ol(L). Thus, if v̂ol(L) = 0, then the assertion is obvious. There-
fore we may assume that v̂ol(L) > 0, namely, by Theorem 4.5, L is big. Hence, by
Lemma 4.4,

lim sup
n→∞

ĥ0(H0(X,npL), ∥ · ∥pnL
sup )

(np)d
= lim sup

m→∞

ĥ0(H0(X,mL), ∥ · ∥mL
sup)

md
,

which means that v̂ol(pL) = pdv̂ol(L). 2
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5. CONTINUITY OF THE VOLUME FUNCTION

Let X be a d-dimensional projective arithmetic variety and P̂ic(X) the group of iso-
morphism classes of C∞-hermitian invertible sheaves on X . An element of P̂ic(X) ⊗ Q
is called a C∞-hermitian Q-invertible sheaf on X . For L ∈ P̂ic(X), the image of L

via the canonical homomorphism P̂ic(X) → P̂ic(X) ⊗ Q is denoted by [L]. Note that
[L] = [(OX , | · |can)] if and only if L is a torsion in P̂ic(X), that is, there is a positive
integer n with nL = (OX , | · |can). We say a C∞-hermitian Q-invertible sheaf L is rep-
resented by M ∈ P̂ic(X) if [M ] = L. Moreover a C∞-hermitian Q-invertible sheaf L
on X is said to be ample if there is a positive integer n such that nL is represented by an
ample C∞-hermitian invertible sheaf on X . Similarly we say L is nef (resp. big) if nL is
represented by a nef (resp. big) C∞-hermitian invertible sheaf for some positive integer n.
Let us begin with the following lemma.

Lemma 5.1. v̂ol : P̂ic(X) → R extends to a homogeneous map

v̂ol : P̂ic(X) ⊗ Q → R

of degree d, that is, v̂ol(aL) = adv̂ol(L) for every non-negative rational number a.

Proof. Let L be a C∞-hermitian Q-invertible sheaf on X . Let n be a positive integer
such that nL is represented by a C∞-hermitian invertible sheaf M . Then we would like
to define v̂ol(L) to be v̂ol(M)/nd. Indeed this is well-defined. Let n′ be another positive
integer such that n′L is represented by a C∞-hermitian invertible sheaf M

′
. Then, since

[n′M ] = [nM
′
], there is a positive integer m with mn′M = mnM

′
. On the other hand,

v̂ol(mn′M) = (mn′)dv̂ol(M) and v̂ol(mnM
′
) = (mn)dv̂ol(M

′
)

Thus v̂ol(M)/nd = v̂ol(M
′
)/n′d.

Next let us see that v̂ol(aL) = adv̂ol(L) for every non-negative rational number a. Let
n and m be positive integers such that ma ∈ Z and nL is represented by M ∈ P̂ic(X).
Then, since (mn)aL is represented by (ma)M ,

v̂ol(aL) = v̂ol((ma)M)/(mn)d = adv̂ol(M)/nd = adv̂ol(L).

2

In Conventions and terminology 8, we define the order ≤ on the group P̂ic(X). We
would like to extend it to P̂ic(X) ⊗ Q. For L,M ∈ P̂ic(X) ⊗ Q, if there is a positive
integer n such that nL and nM are represented by a C∞-hermitian invertible sheaf L

′
and

M
′

respectively with L
′ ≤ M

′
, then we denote this by L ≤Q M .

Lemma 5.2. For L,L
′
, M, M

′ ∈ P̂ic(X) ⊗ Q, we have the following:
(1) L ≤Q M if and only if −M ≤Q −L.
(2) If L ≤Q M and L

′ ≤Q M
′
, then L + L

′ ≤Q M + M
′
.

(3) If L ≤Q M and a is a non-negative rational number, then aL ≤Q aM .
(4) If L ≤Q M , then v̂ol(L) ≤ v̂ol(M).

Proof. (1), (2) and (3) are consequence of the properties in Conventions and terminol-
ogy 8. Let us consider (4). Let n be a positive integer such that nL and nM are represented
by C∞-hermitian invertible sheaves L

′
and M

′
with L

′ ≤ M
′
. Then v̂ol(L

′
) ≤ v̂ol(M

′
)

by (1) of Proposition 4.1. Hence we have (4). 2
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Remark 5.3. For reader’s convenience, let us give a sketch of the proof of the properties
(1) and (2) in Conventions and terminology 8. Let (V, σ) and (W, τ) be normed C-vector
spaces of dimension one. We denote (V, σ) ≤ (W, τ) if there is an isomorphism φ : V →
W over C such that τ(φ(x)) ≤ σ(x) for all x ∈ V . Then, in order to see the properties (1)
and (2), it is sufficient to show the following:

(a) (V, σ) ≤ (W, τ) if and only if (W∨, τ∨) ≤ (V ∨, σ∨).
(b) If (V, σ) ≤ (W, τ) and (V ′, σ′) ≤ (W ′, τ ′), then

(V ⊗ V ′, σ ⊗ σ′) ≤ (W ⊗ W ′, τ ⊗ τ ′).

(a) Let φ : V → W be an isomorphism over C, v a basis of V and w = φ(v). Let v∨

and w∨ be the dual bases of v and w respectively. Since σ(v/σ(v)) = 1,

σ∨(v∨) = max{|v∨(x)| | σ(x) = 1} = 1/σ(v).

In the same way, τ∨(w∨) = 1/τ(w). Note that φ∨(w∨) = v∨. Thus (a) follows.

(b) Let φ : V → W and φ′ : V ′ → W ′ be isomorphisms over C such that τ(φ(x)) ≤
σ(x) and τ ′(φ′(x′)) ≤ σ′(x′) for all x ∈ V and x′ ∈ V ′. Then

(τ ⊗ τ ′)((φ ⊗ φ′)(x ⊗ x′)) = τ(φ(x))τ ′(φ′(x′)) ≤ σ(x)σ′(x′) = (σ ⊗ σ′)(x ⊗ x′).

Therefore (V ⊗ V ′, σ ⊗ σ′) ≤ (W ⊗ W ′, τ ⊗ τ ′).

The following theorem is the main result of this paper.

Theorem 5.4 (Continuity of volume). Let L and A be C∞-hermitian Q-invertible sheaves
on X . Then

lim
ϵ∈Q
ϵ→0

v̂ol(L + ϵA) = v̂ol(L).

More generally, for C∞-hermitian Q-invertible sheaves A1, . . . , An on X ,

lim
ϵ1,...,ϵn∈Q

ϵ1→0,...,ϵn→0

v̂ol(L + ϵ1A1 + · · · + ϵnAn) = v̂ol(L).

Proof. First let us consider the case n = 1. Let µ : X ′ → X be a generic resolution
of singularities of X . Then, by Theorem 4.2, v̂ol(L + ϵA) = v̂ol(µ∗(L) + ϵµ∗(A)) and
v̂ol(L) = v̂ol(µ∗(L)). Thus we may assume that X is generically smooth.

Claim 5.4.1. We may further assume that A is ample.

Let B be an ample C∞-hermitian Q-invertible sheaf on X such that A + B is ample.
Then, for ϵ ≥ 0,

L − ϵ(A + B) ≤Q L − ϵA ≤Q L + ϵB and L − ϵB ≤Q L + ϵA ≤Q L + ϵ(A + B).

Thus, by (4) of Lemma 5.2,{
v̂ol(L − ϵ(A + B)) ≤ v̂ol(L − ϵA) ≤ v̂ol(L + ϵB),
v̂ol(L − ϵB) ≤ v̂ol(L + ϵA) ≤ v̂ol(L + ϵ(A + B)).

Hence the claim follows.

From now on, we assume that A is ample. It is obvious that

lim
ϵ∈Q
ϵ→0

v̂ol(L + ϵA) = v̂ol(L) ⇐⇒ lim
ϵ∈Q
ϵ→0

v̂ol(L + ϵaA) = v̂ol(L)
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for any positive rational number a. Moreover,

v̂ol(nL + ϵA) = nd vol(L + (ϵ/n)A) and v̂ol(nL) = nd vol(L).

Therefore, we may assume that L is C∞-hermitian invertible sheaf. Further, by Lemma 3.6,
we may assume that A is a C∞-hermitian invertible sheaf and that A satisfies the assump-
tions (i), (ii) and (iii) of Theorem 3.4.

Since

v̂ol(L − ϵ′A) ≤ v̂ol(L − ϵA) ≤ v̂ol(L) ≤ v̂ol(L + ϵA) ≤ v̂ol(L − ϵ′A)

for 0 ≤ ϵ ≤ ϵ′, it is sufficient to show that

v̂ol(L) = lim
p→∞

v̂ol(L + (1/p)A) = lim
p→∞

v̂ol(L − (1/p)A).

By Theorem 3.4 (or Proposition 3.5 for d = 1), there are positive constants a′
0, C ′ and D′

depending only on X , L and A such that

ĥ0
(
H0(aL + (b − c)A), ∥ · ∥aL+(b−c)A

sup

)
≤ ĥ0

(
H0(aL − cA), ∥ · ∥aL−cA

sup

)
+ C ′bad−1 + D′ad−1 log(a)

for all integers a, b, c with a ≥ b ≥ c ≥ 0 and a ≥ a′
0.

First we set a = pm, b = m and c = 0 for a fixed positive integer p. Then

ĥ0
(
H0(pmL + mA), ∥ · ∥pmL+mA

sup

)
≤ ĥ0

(
H0(pmL), ∥ · ∥pmL

sup

)
+ C ′pd−1md + D′pd−1md−1 log(pm)

for m ≫ 1. This implies that

v̂ol(pL + A) ≤ v̂ol(pL) + C ′pd−1

for all p ≥ 1, which means that

v̂ol(L) ≤ v̂ol(L + (1/p)A) ≤ v̂ol(L) + C ′(1/p).

Hence
lim

p→∞
v̂ol(L + (1/p)A) = v̂ol(L).

Next we set a = pm and b = c = m. Then

ĥ0
(
H0(pmL), ∥ · ∥pmL

sup

)
≤ ĥ0

(
H0(pmL − mA), ∥ · ∥pmL−mA

sup

)
+ C ′pd−1md + D′pd−1md−1 log(pm)

for m ≫ 1. This implies that

v̂ol(L − (1/p)A) ≤ v̂ol(L) ≤ v̂ol(L − (1/p)A) + C ′(1/p).

Thus
lim

p→∞
v̂ol(L − (1/p)A) = v̂ol(L).

Let us consider a general case. We can find C∞-hermitian Q-invertible sheaves A
′
i and

A
′′
i such that 0 ≤Q A

′
i, 0 ≤Q A

′′
i and Ai = A

′
i − A

′′
i for each i. Then

L + ϵ1A1 + · · · + ϵnAn = L + ϵ1A
′
1 + · · · + ϵnA

′
n + (−ϵ1)A

′′
1 + · · · + (−ϵn)A

′′
n.
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Thus we may assume that 0 ≤Q A1, . . . , 0 ≤Q An. Find an ample C∞-hermitian Q-
invertible sheaf B such that Ai ≤Q B for all i = 1, . . . , n. Then

−|ϵi|B ≤Q −|ϵi|Ai ≤Q ϵiAi ≤Q |ϵi|Ai ≤Q |ϵi|B

for each i, which implies

L − (|ϵ1| + · · · + |ϵn|)B ≤Q L + ϵ1A1 + · · · + ϵnAn ≤Q L + (|ϵ1| + · · · + |ϵn|)B.

Therefore

v̂ol(L − (|ϵ1| + · · · + |ϵn|)B)

≤ v̂ol(L + ϵ1A1 + · · · + ϵnAn)

≤ v̂ol(L + (|ϵ1| + · · · + |ϵn|)B).

Thus the general assertion follows from the case n = 1. 2

As a corollary, we can show the following arithmetic Hilbert-Samuel theorem for a nef
C∞-hermitian invertible sheaf.

Corollary 5.5 (Arithmetic Hilbert-Samuel formula). Let L and N be C∞-hermitian in-
vertible sheaves on X . If L is nef, then

ĥ0
(
H0(X,mL + N), ∥ · ∥mL+N

sup

)
=

d̂eg(ĉ1(L)·d)
d!

md + o(md) (m ≫ 1).

In particular, v̂ol(L) = d̂eg(ĉ1(L)·d), and L is big if and only if d̂eg(ĉ1(L)·d) > 0.

Proof. First let us see the following claim:

Claim 5.5.1. v̂ol(L) = d̂eg(ĉ1(L)·d).

Let A be an ample C∞-hermitian invertible sheaf on X . Then L + ϵA is ample for all
ϵ > 0. Thus

v̂ol(L + ϵA) = d̂eg
((

ĉ1(L) + ϵĉ1(A)
)·d)

.

Therefore our claim follows from the continuity of volumes.

Let us go back to the proof of the corollary. It is sufficient to show

d̂eg(ĉ1(L)·d)
d!

= lim
m→∞

ĥ0(H0(X,mL + N), ∥ · ∥mL+N
sup )

md
.

If L is not big, then, by Claim 5.5.1,

v̂ol(L) = d̂eg(ĉ1(L)·d) = 0.

Thus our assertion is obvious by Theorem 4.3, so that we may assume that L is big. Then
there is a positive integer k with kL ≥ A. We set E = kL − A. Since

pL − E = (p − k)L + A,

pL − E is ample if p ≥ k. On the other hand, since pL ≥ pL − E, we have

ĥ0(H0(X,npL + N), ∥ · ∥npL+N
sup ) ≥ ĥ0(H0(X,n(pL − E) + N), ∥ · ∥n(pL−E)+N

sup )
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for n ≥ 1, which implies that

lim inf
n→∞

ĥ0(H0(X,npL + N), ∥ · ∥npL+N
sup )

(np)d

≥ lim inf
n→∞

ĥ0(H0(X,n(pL − E) + N), ∥ · ∥n(pL−E)+N
sup )

(np)d
.

Therefore, for a fixed p with p ≥ k, by using Lemma 3.1 and Lemma 4.4,

lim inf
m→∞

ĥ0(H0(X,mL + N), ∥ · ∥mL+N
sup )

md
≥ d̂eg(ĉ1(pL − E)·d)

pdd!
.

Thus, taking p → ∞,

lim inf
m→∞

ĥ0(H0(X,mL + N), ∥ · ∥mL+N
sup )

md
≥ d̂eg(ĉ1(L)·d)

d!
.

On the other hand, by Theorem 4.3 and Claim 5.5.1,

lim sup
m→∞

ĥ0(H0(X,mL + N), ∥ · ∥mL+N
sup )

md
=

d̂eg(ĉ1(L)·d)
d!

,

which proves the corollary. 2

Finally let us consider the volume of the difference of nef C∞-hermitian Q-invertible
sheaves, which is essentially the main result of Yuan’s paper [16].

Theorem 5.6. Let L and M be nef C∞-hermitian Q-invertible sheaves on X . Then

v̂ol(L − M) ≥ d̂eg(ĉ1(L)·d) − d · d̂eg(ĉ1(L)·(d−1) · ĉ1(M)).

Proof. First we assume that L and M are ample C∞-hermitian invertible sheaves on
X . Then, by [16],

v̂ol(L − M) ≥ lim sup
m→∞

χ
(
H0(m(L − M)), ∥ · ∥m(L−M)

sup

)
md/d!

≥ d̂eg(ĉ1(L)·d) − d · d̂eg(ĉ1(L)·(d−1) · ĉ1(M)).

Thus, using the homogeneity of v̂ol, the inequality holds for ample C∞-hermitian Q-
invertible sheaves on X . Let A be an ample C∞-hermitian invertible sheaf on X . Then,
for a small positive number ϵ, L + ϵA and M + ϵA are ample. Thus,

v̂ol(L − M) = v̂ol((L + ϵA) − (M + ϵA))

≥ d̂eg((ĉ1(L) + ϵĉ1(A))·d)

− d · d̂eg((ĉ1(L) + ϵĉ1(A))·(d−1) · (ĉ1(M) + ϵĉ1(A))).

Therefore the theorem follows. 2

Remark 5.7 (Arithmetic analogue of Fujita’s approximation theorem). It is very natural
to ask the following arithmetic analogue of Fujita’s approximation theorem: Let L be a
big C∞-hermitian Q-invertible sheaf on X . For any positive number ϵ, do there exist a
birational morphism µ : X ′ → X and an ample C∞-hermitian Q-invertible sheaf A on
X ′ such that A ≤Q µ∗(L) and v̂ol(L) ≤ v̂ol(A) + ϵ ?
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6. GENERALIZED HODGE INDEX THEOREM

In this section, we consider a generalized Hodge index theorem as an application of the
continuity of the volume function. First let us introduce a technical definition.

Let X be a projective arithmetic variety of dimension d. Let L be an invertible sheaf on
X such that L is nef on the generic fiber XQ of X → Spec(Z). We say L has moderate
growth of positive even cohomologies if there are a generic resolution of singularities µ :
Y → X and an ample invertible sheaf A on Y such that, for any positive integer n, there
is a positive integer m0 such that

log #(H2i(Y,m(nµ∗(L) + A))) = o(md)

for all m ≥ m0 and for all i > 0. Here we consider examples of invertible sheaves with
moderate growth of positive even cohomologies.

Example 6.1. (1) We assume that d = 2. Then L has obviously moderate growth of
positive even cohomologies.

(2) If L is nef on each geometric fiber of X → Spec(Z), then L has moderate growth of
positive even cohomologies. Indeed, let µ : Y → X be a generic resolution of singularities
and A an ample invertible sheaf on Y . Then, for all n ≥ 1, nµ∗(L) + A is ample. Thus
Hi(Y,m(nµ∗(L) + A)) = 0 for m ≫ 1 and i > 0.

(3) We assume that d = 2 and X is generically smooth. Let E be a rank r locally free
sheaf on X . Let π : P = Proj(

⊕
m≥0 Symm(E)) → X be the projective bundle of E

and OP (1) the tautological invertible sheaf of P . We set L = r · OP (1) − π∗(detE). If
E is semistable on the generic fiber XQ, then it is well-known that L is nef on the generic
fiber PQ. Moreover L has moderate growth of positive even cohomologies. This fact can be
checked as follows: Let B be an ample invertible sheaf on X such that A = OP (1)+π∗(B)
is ample. Then

Hi(P,m(nL + A))

= Hi(P,OP (mnr + m) + π∗(mB − mn det(E)))

= Hi(X, Symmnr+m(E) ⊗ (mB − mn det(E)))

because Rjπ∗OP (l) = 0 for l ≥ 0 and j > 0. In particular,

Hi(P,m(nL + A)) = 0

for i ≥ 2.

The main result of this section is the following generalized Hodge index theorem.

Theorem 6.2 (Generalized Hodge index theorem). Let X be a d-dimensional projective
arithmetic variety and L a C∞-hermitian invertible sheaf on X . We assume the following:

(1) LQ is nef on XQ.
(2) c1(L) is semipositive on X(C).
(3) L has moderate growth of positive even cohomologies.

Then we have an inequality v̂ol(L) ≥ d̂eg(ĉ1(L)·d).

Proof. First we assume that X is generically smooth. Moreover, instead of the prop-
erties (1), (2) and (3) as above, we assume the following (a), (b) and (c):

(a) LQ is ample on XQ.
(b) c1(L) is positive on X(C).
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(c) There is a positive number m0 such that

log #(H2i(X,mL)) = o(md)

for m ≥ m0.
Then let us see the following:

Claim 6.2.1. v̂ol(L) ≥ d̂eg(ĉ1(L)·d).

By virtue of the arithmetic Riemann-Roch theorem [7] and the asymptotic estimate of
analytic torsions [2], we obtain

χ̂(H0(X,mL), ∥ · ∥L
L2)

+
∑
i≥1

log #(H2i(X,mL)) −
∑
i≥1

log #(H2i−1(X,mL))

=
d̂eg(ĉ1(L)·d)

d!
md + o(md)

for m ≫ 1. Thus, using the assumption (c) and (1) of Proposition 2.1,

ĥ0(H0(X,mL), ∥ · ∥L
L2) ≥

d̂eg(ĉ1(L)·d)
d!

md + o(md)

for m ≫ 1. By Gromov’s inequality and (3) of Proposition 2.1, the above inequality
implies

ĥ0(H0(X,mL), ∥ · ∥L
sup) ≥ d̂eg(ĉ1(L)·d)

d!
md + o(md)

for m ≫ 1. Hence the claim follows.

Let us go back to a general case. Since L has moderate growth of positive even coho-
mologies, there is a generic resolution of singularities µ : Y → X and an ample invertible
sheaf A on Y such that, for any positive integer n, there is a positive integer m0 such that
log #(H2i(Y,m(nµ∗(L) + A))) = o(md) for all m ≥ m0 and for all i > 0. Let us give
a C∞-hermitian metric | · |A to A such that A = (A, | · |A) is ample as a C∞-hermitian
invertible sheaf. Then, by Claim 6.2.1,

v̂ol(nµ∗(L) + A) ≥ d̂eg(ĉ1(nµ∗(L) + A)·d),

which implies

v̂ol(µ∗(L) + (1/n)A) ≥ d̂eg((ĉ1(µ∗(L)) + (1/n)ĉ1(A))·d)

by Proposition 4.7. Hence, using the continuity of the volume function,

v̂ol(µ∗(L)) ≥ d̂eg(ĉ1(µ∗(L))·d).

This gives rise to our assertion by Theorem 4.2 and the projection formula. 2

According to (1), (2) and (3) of Example 6.1, we have the following corollaries.

Corollary 6.3. Let X be a projective arithmetic surface and L a C∞-hermitian invert-
ible sheaf on X such that L is nef on the generic fiber of X → Spec(Z) and c1(L) is
semipositive on X(C). Then

v̂ol(L) ≥ d̂eg(ĉ1(L)·2).



42 ATSUSHI MORIWAKI

Corollary 6.4. Let X be a projective arithmetic variety of dimension d and L a C∞-
hermitian invertible sheaf on X such that L is nef on every geometric fiber of X →
Spec(Z) and c1(L) is semipositive on X(C). Then

v̂ol(L) ≥ d̂eg(ĉ1(L)·d).

In particular, if d̂eg(ĉ1(L)·d) > 0, then L is big.

Corollary 6.5. Let X be a projective and generically smooth arithmetic surface and E a
C∞-hermitian locally free sheaf on X . If the metric of E is Einstein-Hermitian, then

d̂eg
(

ĉ2(E) − r − 1
2r

ĉ1(E)2
)

≥ 0,

where r = rk E.

Proof. Let π : P = Proj(
⊕

m≥0 Symm(E)) → X be the projective bundle of E

and OP (1) the tautological invertible sheaf of P . Using the surjective homomorphism
π∗(E) → OP (1) and the hermitian metric of E, we give the quotient metric | · |P to
OP (1). We set OP (1) = (OP (1), | · |P ) and L = r · OP (1) − π∗(detE). Note that LQ
is nef and not big and that c1(L) is semipositive (cf. [12, Lemma 8.7.1]). Moreover L has
moderate growth of positive even cohomologies. Thus, by Theorem 6.2,

d̂eg(ĉ1(L)·r+1) ≤ 0

because L is not big. Note that

d̂eg(ĉ1(L)·r+1) = rr+1 · d̂eg
(

r − 1
2r

ĉ1(E)2 − ĉ2(E)
)

(cf. [12, Section 8]). Thus

d̂eg
(

ĉ2(E) − r − 1
2r

ĉ1(E)2
)

≥ 0.

2

Remark 6.6. (1) In Corollary 6.3, if deg(LQ) = 0, then d̂eg(ĉ1(L)·2) ≤ 0. This is nothing
more than the Hodge index theorem due to Faltings and Hriljac (cf. [5] and [10]). In this
sense, we call Theorem 6.2 the generalized Hodge index theorem.

(2) The second assertion of Corollary 6.4 is a generalization of [17, Corollary (1.9)].

(3) Corollary 6.5 is valid even if EQ is semistable on XQ. The case where the metric
is Einstein-Hermitian is however essential and crucial for a general case. For details, see
[12].
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