FIXED-POINT PROPERTY FOR CAT(0) SPACES

TAKEFUMI KONDO

ABSTRACT. We investigate the fixed-point property for the class of CAT(0) spaces with Izeki-Nayatani invariant $\delta \leq \delta_0$ for some $\delta_0 < 1/2$. It turns out that we can generalize many theorems which are known to hold for Property (T) to this much stronger fixed-point property.

1. INTRODUCTION

A finitely generated group Γ is said to have the fixed-point property for Y or have Property FY if any isometric action of Γ on Y admits a fixed point. Similarly the fixedpoint property for a class \mathcal{Y} of metric spaces means that any isometric action on any $Y \in \mathcal{Y}$ has a fixed point, and we denote this property by $F\mathcal{Y}$.

It is well-known that Kazhdan's Property (T) for a discrete group Γ is equivalent to the fixed-point property for Hilbert spaces ([3], [7]). The distribution of Property (T) in the space \mathcal{G}_m of marked groups with m generators was studied by Champetier [2] and Shalom [13].

In this paper, we consider the fixed-point property $F\mathcal{Y}_{\leq\delta_0}$ for the class $\mathcal{Y}_{\leq\delta_0}$ of CAT(0) spaces with the invariant δ less than or equal to δ_0 , where δ is Izeki-Nayatani invariant introduced in [9]. Since the class $\mathcal{Y}_{\leq\delta_0}$ contains Hilbert spaces and all Hadamard manifolds, Property $F\mathcal{Y}_{<\delta_0}$ is much stronger than Property (T).

The following is our main result.

Theorem 1.1. (1) Let Γ be a finitely generated group and Γ' be any finite index subgroup of Γ , then Γ has $F\mathcal{Y}_{<\delta_0}$ if and only if Γ' has $F\mathcal{Y}_{<\delta_0}$.

- (2) The product $\Gamma_1 \times \Gamma_2$ has $F\mathcal{Y}_{<\delta_0}$ if and only if both Γ_1 and Γ_2 have $F\mathcal{Y}_{<\delta_0}$.
- (3) $F\mathcal{Y}_{<\delta_0}$ is an invariant of measure equivalence.
- (4) The set of marked groups with $F\mathcal{Y}_{<\delta_0}$ is open in \mathcal{G}_m .
- (5) There exists a dense G_{δ} subset X of \mathcal{H}_m such that each element in X has $F\mathcal{Y}_{<1/2}$ and all homomorphism into $GL(n, \mathbf{C})$ has finite image.

Here, $\mathcal{Y}_{<1/2}$ denotes the class of CAT(0) spaces with Izeki-Nayatani invariant less than 1/2 and \mathcal{H}_m denotes the closure in \mathcal{G}_m of the set of marked groups which are torsion-free non-elementary hyperbolic.

However, there are few examples of CAT(0) spaces whose value of δ are known. Hence it is unclear how many CAT(0) spaces are or which building is in the class $\mathcal{Y}_{<1/2}$, and it is unknown whether there is a hyperbolic group or even finitely presented group with the fixed-point property $F\mathcal{Y}_{<1/2}$.

This theorem generalizes many results known for the case of Property (T). See [4], [13], [2] for the corresponding result for Property (T).

As a corollary of (4), any finitely generated group with the fixed-point property $F\mathcal{Y}_{\leq\delta_0}$ can be expressed as a quotient of a certain finitely presented group with Property $F\mathcal{Y}_{\leq\delta_0}$ (see also [5], p.117). The argument here is referred to Silberman's note [14].

Acknowledgements. We would like to thank Kenji Fukaya, Hiroyasu Izeki, Shin Nayatani for helpful discussions, suggestion and interest in this work.

2. IZEKI-NAYATANI INVARIANT

In this section, we give the definition of the invariant δ of CAT(0) spaces introduced by Izeki-Nayatani in [9].

Definition 2.1 ([9]). Let Y be a CAT(0) space. Izeki-Nayatani invariant for Y is defined as

$$\delta(Y) = \sup_{\mu} \inf_{\phi} \frac{\|\int_{Y} \phi d\mu\|^2}{\int_{Y} \|\phi\|^2 d\mu}$$

where μ runs over all finitely supported probability measures on Y, and ϕ runs over all 1-Lipschitz maps ϕ : Supp $(\mu) \rightarrow \mathcal{H}$ with $\|\phi(y)\| = \text{dist}_Y(y, \text{bar}(\mu))$ for any $y \in \text{Supp}(\mu)$. Here \mathcal{H} denotes any Hilbert space and $\text{bar}(\mu)$ denotes the barycenter of μ . We call a map ϕ satisfying the above condition a realization of μ .

 $\delta \in [0, 1]$ follows immediately from the definition. The computation of δ is hard and except in the case where $\delta = 0$, only estimation for some specific spaces is known.

Example 2.2. (1) Assume that Y is a finite or infinite dimensional Hadamard manifold or an **R**-tree. Then we have $\delta(Y) = 0$.

(2) Assume that Y_p is the building $PSL(3, \mathbf{Q}_p)/PSL(3, \mathbf{Z}_p)$. Then

$$\delta(Y_p) \ge \frac{(\sqrt{p}-1)^2}{2(p-\sqrt{p}+1)}.$$

When p = 2, we have $\delta(Y_2) \le 0.4122...$

The following conjecture is due to Izeki and Nayatani.

Conjecture 2.3. For any prime $p \in \mathbf{N}$,

$$\delta(PSL(3, \mathbf{Q}_p)/PSL(3, \mathbf{Z}_p)) < 1/2.$$

The followings are shown in [9], [10].

(1) For any convex closed subspace Y' of a CAT(0) space Y, we have Proposition 2.4. $\delta(Y') < \delta(Y).$

- (2) For the product of two CAT(0) spaces Y, Y', we have $\delta(Y \times Y') = \max\{\delta(Y), \delta(Y')\}$.
- (3) Let (Y_n, d_n) be a sequence of CAT(0) spaces, ω a non-principal ultrafilter on N and (Y_{ω}, d_{ω}) the ultralimit $(Y_{\omega}, d_{\omega}) = \omega - \lim_{n} (Y_n, d_n)$. Then,

$$\delta(Y_{\omega}) \le \omega - \lim_{n} \delta(Y_{n})$$

holds ([10, Proposition 3.2]).

This proposition shows that the class $\mathcal{Y}_{\leq \delta_0}$ is closed under the operation taking a direct product, a convex closed subspace and a ultralimit. Furthermore this class is closed under taking a mapping space from a finite measure space.

Proposition 2.5. Let Y be a CAT(0) space, X a standard Borel space (i.e., a Polish space equipped with its associated σ -algebra of Borel subsets) with a probability measure. Then for the space $L^2(X, Y)$ of L^2 -maps from X to Y, we have $\delta(L^2(X, Y)) = \delta(Y)$.

To show this proposition, we first show the next lemma.

Lemma 2.6. Let Y be a CAT(0) space and $Y' \subset Y$ be a dense subset. Then, we have $\delta(Y') = \delta(Y)$. Here, $\delta(Y')$ is defined similar to $\delta(Y)$.

Proof. Obviously, $\delta(Y') \leq \delta(Y)$. Therefore we show the opposite inequality. Let

$$\mu = \sum_{k=1}^{n} t_k \delta_{y_k} \quad (\sum_{k=1}^{n} t_k = 1)$$

be a finitely supported probability measure on Y.

We take sequences $y_k^i \to y_k (i \to \infty)$ in Y' and consider the sequence of probability measures $\mu_i = \sum_{k=1}^n t_k \delta_{y_k^i}$.

For a fixed probability measure μ , we denote the functional

$$\phi \mapsto \frac{\|\int_Y \phi d\mu\|^2}{\int_Y \|\phi\|^2 d\mu}$$

by F_{μ} . For each μ_i , we take a realization $\phi_i \colon \text{Supp}(\mu_i) \to \mathbf{R}^N$ which attains the infimum of the functional F_{μ_i} . Then $\{\phi_i\}_{i=1}^{\infty}$ forms a precompact set and we can choose a subsequence which converge to ϕ_{∞} .

Then ϕ_{∞} : Supp $(\mu) \to \mathbf{R}^N$ is also a 1-Lipschitz map and for any $y_k \in \text{Supp}(\mu)$, $\|\phi_{\infty}(y_k)\| = \operatorname{dist}_Y(y_k, \operatorname{bar}(\mu))$ hold. Thus ϕ_{∞} gives a realization of μ . Hence,

$$\delta(Y,\mu) \le F_{\mu}(\phi_{\infty})$$

= $\lim_{i \to \infty} F_{\mu_i}$
 $\le \delta(Y')$

for any μ , which implies $\delta(Y) \leq \delta(Y')$.

Proof of Proposition 2.5. Any L^2 -map can be approximated by simple functions, and each simple function is considered to be an element of a weighted product of finite copies of Y. Hence its δ is equal to $\delta(Y)$. Therefore the dense subset of $L^2(X,Y)$ satisfies $\delta = \delta(Y)$ and by the above lemma, $\delta(L^2(X,Y)) = \delta(Y)$.

Remark 2.7. Assume that X is a standard Borel space with Borel measure with a measure preserving Γ -action, Y has an isometric Γ -action, and X admits a finite measure fundamental domain. Then similarly we can show that the space $L^2_{\Gamma}(X, Y)$ of Γ -equivariant L^2 -maps from X to Y satisfies $\delta(L^2_{\Gamma}(X, Y)) \leq \delta(Y)$.

3. Hereditary properties

Throughout this section, Γ denotes a finitely generated group and Γ' denotes any finite index subgroup of Γ .

Proposition 3.1. Let Y be any CAT(0) space. If Γ' has Property FY, then Γ also has Property FY. Thus for any CAT(0) space Y, Property FY is inherited from finite index subgroup to the ambient group.

Proof. Fix an action $\rho: \Gamma \to \text{Isom}(Y)$. If we consider the restriction of this action to Γ' , there exists a fixed point since Γ' has Property FY. Hence let $p \in Y$ be a fixed point of Γ' -action. Then, the Γ -orbit of $p \{\rho(\gamma)p | \gamma \in \Gamma\}$ is a finite set, thus its barycenter is a Γ -fixed point.

Proposition 3.2. If Γ has Property $F\mathcal{Y}_{\leq \delta_0}$, then Γ' also has Property $F\mathcal{Y}_{\leq \delta_0}$.

Proof. Assume that Y is a CAT(0) space in $\mathcal{Y}_{\leq \delta_0}$, and $\rho: \Gamma' \to \text{Isom}(Y)$ is any isometric action of Γ' on Y. Let $L^2_{\Gamma'}(\Gamma, Y)$ denote the set of Γ' -equivariant maps from Γ to Y. Then, there is a natural Γ -action on $L^2_{\Gamma'}(\Gamma, Y)$ given by $(\rho(\gamma)f)(x) := f(x\gamma)$.

Since we have $\delta(Y) \geq \delta(L^2_{\Gamma'}(\Gamma, Y))$, the action of Γ on $L^2_{\Gamma'}(\Gamma, Y)$ admits a fixed point. Let f be the fixed point. Then f is a Γ' -equivariant constant map. Thus $f(e) \in Y$ is a fixed point of Γ' .

Remark 3.3. Proposition 3.2 also follows from Theorem 4.2.

Remark 3.4. More generally, if a class \mathcal{Y} of metric spaces satisfies the condition that $L^2_{\Gamma'}(\Gamma, Y) \in \mathcal{Y}$ whenever $Y \in \mathcal{Y}$, then Property $F\mathcal{Y}$ of Γ is inherited to Γ' . The class \mathcal{Y} need not consist of CAT(0) spaces.

Proposition 3.5. Let $N \hookrightarrow \Gamma \to \Gamma/N$ be a short exact sequence. Here Γ is a finitely generated group and N is a normal subgroup of Γ . If N and Γ/N have Property $F\mathcal{Y}_{\leq \delta_0}$, then Γ has Property $F\mathcal{Y}_{\leq \delta_0}$.

Proof. Assume that Y is in $\mathcal{Y}_{\leq \delta_0}$. Give any isometric action $\rho: \Gamma \to \text{Isom}(Y)$ of Γ on Y. First consider the restriction of Γ -action to N. Then there are fixed points since N has a fixed-point property for $\mathcal{Y}_{\leq \delta_0}$. Let Y^N denote the fixed point set. Then the subspace Y^N is also a CAT(0) space and satisfies $\delta(Y^N) \leq \delta(Y)$ since Y^N is a convex closed set of Y.

Next, consider γy for $y \in Y^N$ and $\gamma \in \Gamma$. Then $N\gamma y = \gamma N y = \gamma y$ since N is a normal subgroup. Hence Y^N is closed under the action of Γ .

Therefore if we consider the action of Γ on Y^N , this action is trivial on N. Thus we can regard it as Γ/N -action. Then from the fixed-point property of Γ/N there is a fixed point $p \in Y^N$ and p is a Γ -fixed point.

Remark 3.6. In particular, Property $F\mathcal{Y}_{<\delta_0}$ is inherited to the direct product.

Remark 3.7. Let G be a group and H be a subgroup of G. Then relative Property (T) for the pair (G, H) is equivalent to the existence of an H-fixed point for any isometric action of G on a Hilbert space.

Similarly, we can define the relative fixed-point property for the pair (G, H) on \mathcal{Y} or relative Property $F\mathcal{Y}$ as the existence of an H-fixed point for any isometric action of G on \mathcal{Y} . Then from the above proof, the following conditions are equivalent.

(1) (Γ, N) has relative Property $F\mathcal{Y}_{\leq \delta_0}$ and Γ/N has Property $F\mathcal{Y}_{\leq \delta_0}$.

(2) Γ has Property $F\mathcal{Y}_{\leq \delta_0}$.

4. Invariance under measure equivalence

Furman showed in [4] that Property (T) is an invariant of measure equivalence.

In this section, we prove that the fixed-point property $F\mathcal{Y}_{\leq\delta_0}$ for the family of CAT(0) spaces Y satisfying $\delta(Y) \leq \delta_0$ is also an invariant of measure equivalence, which extends Furman's theorem.

Measure equivalence is defined as follows.

Definition 4.1 (ME). Two countable groups Γ and Λ are called measure equivalent (ME) when there exist an infinite Lebesgue measure space (Ω, m) and commutative measurepreserving free actions of Γ and Λ each of which admits a finite measure fundamental domain. The space (Ω, m) is called a ME coupling of Γ with Λ .

Then, the following holds.

Theorem 4.2. The fixed-point property $F\mathcal{Y}_{\leq \delta_0}$ is a ME invariant. Namely, if two countable groups Γ and Λ are ME and Λ has Property $F\mathcal{Y}_{\leq \delta_0}$, then Γ also has Property $F\mathcal{Y}_{\leq \delta_0}$.

To prove this theorem, we introduce the notion of an ergodic ME coupling.

Definition 4.3 (Ergodicity of ME coupling). The ME coupling (Ω, m) of Γ with Λ is called ergodic if the Γ -action on $\Lambda \backslash \Omega$ and the Λ -action on $\Gamma \backslash \Omega$ are both ergodic.

Proof. Let Y be a CAT(0) space with $\delta(Y) \leq \delta_0$, and let a Γ -action on Y be given. Let (Ω, m) be an ergodic ME coupling of Γ with Λ . The existence of an ergodic ME coupling is guaranteed by Lemma 2.3 of [4].

We first induce an isometric Λ -action on the space $L^2_{\Gamma}(\Omega, Y)$ of all Γ -equivariant L^2 maps. Let F be a Γ -fundamental domain of (Ω, m) and $\beta \colon \Lambda \times F \to \Gamma$ be an associated cocycle : i.e. $\beta(\lambda, \omega)$ is defined to be a unique element in Γ which satisfies $\beta(\lambda, \omega)\lambda\omega \in F$.

We generalize the domain of the cocycle to $\Lambda \times \Omega$ by defining $\beta(\lambda, \gamma \omega_0) = \gamma \beta(\lambda, \omega_0) \gamma^{-1}$ for any $\gamma \in \Gamma$ and $\omega_0 \in \Omega$.

Then, the induced Λ -action on $L^2_{\Gamma}(\Omega, Y)$ is defined as $(\lambda \cdot f)(\omega) = \beta(\lambda^{-1}, \omega)f(\lambda^{-1}\omega)$. The map $\lambda \cdot f$ is also Γ -equivariant because

$$\begin{aligned} (\lambda \cdot f)(\gamma \omega) &= \beta(\lambda^{-1}, \gamma \omega) f(\lambda^{-1} \gamma \omega) \\ &= \gamma \beta(\lambda, \omega_0) \gamma^{-1} \cdot \gamma f(\lambda^{-1} \omega) \\ &= \gamma \beta(\lambda, \omega_0) f(\lambda^{-1} \omega) \\ &= \gamma((\lambda \cdot f)(\omega)). \end{aligned}$$

Since

$$\int_{F} \operatorname{dist}_{Y}(y_{0}, (\lambda \cdot f)(\omega))^{2} dm(\omega)$$

$$= \int_{F} \operatorname{dist}_{Y}(y_{0}, \beta(\lambda^{-1}, \omega)f(\lambda^{-1}\omega))^{2} dm(\omega)$$

$$= \int_{F} \operatorname{dist}_{Y}(y_{0}, f(\beta(\lambda^{-1}, \omega)\lambda^{-1}\omega))^{2} dm(\omega)$$

$$= \int_{F} \operatorname{dist}_{Y}(y_{0}, f(\omega))^{2} dm(\omega)$$

$$< \infty,$$

the L^2 -condition is preserved under this action. This is in fact a left Λ -action on $L^2_{\Gamma}(\Omega, Y)$ because

$$\begin{aligned} (\lambda_2 \cdot (\lambda_1 \cdot f))(\omega) &= \beta(\lambda_2^{-1}, \omega)(\lambda_1 \cdot f)(\lambda_2^{-1}\omega) \\ &= \beta(\lambda_2^{-1}, \omega)\beta(\lambda_1^{-1}, \lambda_2^{-1}\omega)f(\lambda_1^{-1}\lambda_2^{-1}\omega) \\ &= \beta(\lambda_2^{-1}, \omega)\beta(\lambda_2^{-1}, \omega)^{-1}\beta(\lambda_1^{-1}, \beta(\lambda_2^{-1}, \omega)\lambda_2^{-1}\omega)\beta(\lambda_2^{-1}, \omega)f(\lambda_1^{-1}\lambda_2^{-1}\omega) \\ &= \beta(\lambda_1^{-1}\lambda_2^{-1}, \omega)f(\lambda_1^{-1}\lambda_2^{-1}\omega) \\ &= ((\lambda_2\lambda_1) \cdot f)(\omega). \end{aligned}$$

Here we used the cocycle condition

$$\beta(\lambda_2\lambda_1,\omega)=\beta(\lambda_2,\beta(\lambda_1,\omega)\lambda_1\omega)\beta(\lambda_1,\omega).$$

Furthermore, this action is isometric because

$$dist_{L_{\Gamma}^{2}}(\lambda \cdot f, \lambda \cdot g)^{2} = \int_{F} dist_{Y}((\lambda \cdot f)(\omega), (\lambda \cdot g)(\omega))^{2} dm(\omega)$$

$$= \int_{F} dist_{Y}(\beta(\lambda^{-1}, \omega)f(\lambda^{-1}\omega), \beta(\lambda^{-1}, \omega)g(\lambda^{-1}\omega))^{2} dm(\omega)$$

$$= \int_{F} dist_{Y}(f(\beta(\lambda^{-1}, \omega)\lambda^{-1}\omega), g(\beta(\lambda^{-1}, \omega)\lambda^{-1}\omega))^{2} dm(\omega)$$

$$= \int_{F} dist_{Y}(f(\omega), g(\omega))^{2} dm(\omega)$$

$$= dist_{L_{\Gamma}^{2}}(f, g)^{2}.$$

This induced action of Λ on $L^2_{\Gamma}(\Omega, Y)$ admits a fixed point since $\delta(L^2_{\Gamma}(\Omega, Y)) \leq \delta(Y) \leq \delta_0$. Namely, there exists a map $f \in L^2_{\Gamma}(\Omega, Y)$ such that $f(\omega) = f(\beta(\lambda^{-1}, \omega)\lambda^{-1}\omega)$ for any $\lambda \in \Lambda$. Since the Λ -action on $\Gamma \setminus \Omega$ is ergodic, f is a constant map. Thus f is a Γ -equivariant constant map and this means that there is a Γ -fixed point in Y. \Box

Remark 4.4. The proof above gives an alternative proof of Furman's theorem [4] since $L^2_{\Gamma}(\Omega, \mathcal{H})$ is a Hilbert space for any Hilbert space \mathcal{H} .

5. Distribution in \mathcal{G}_m

In this section, we introduce the space \mathcal{G}_m of marked groups and show that the set of marked groups with certain strong fixed-point property is generic in \mathcal{H}_m , which is the closure in \mathcal{G}_m of torsion-free non-elementary hyperbolic groups.

Let m be a positive integer and \mathbb{F}_m the free group on m elements. A marked group is a pair (Γ, S) , where Γ is a finitely generated group and S is a generating subset of Γ consisting of m elements. We fix an order of S. Two marked groups (Γ_1, S_1) , (Γ_2, S_2) are defined to be isomorphic if the order preserving bijection from S_1 to S_2 extends to an isomorphism from Γ_1 to Γ_2 . The space \mathcal{G}_m consists of all isomorphism class of marked groups.

Then \mathcal{G}_m can be naturally identified with the set of normal subgroups in the free group \mathbb{F}_m .

Now we endow \mathcal{G}_m with a metric. For two normal subgroups N_1, N_2 of \mathbb{F}_m , put

$$v(N_1, N_2) = \sup\{R \in \mathbf{N} | N_1 \cap B_{\mathbb{F}_m}(R) = N_2 \cap B_{\mathbb{F}_m}(R)\},\$$

and define a metric on \mathcal{G}_m as

$$dist(N_1, N_2) = exp(-v(N_1, N_2)).$$

Here $B_{\mathbb{F}_m}(R)$ denotes the ball of radius R in the Cayley graph of \mathbb{F}_m . With this metric, \mathcal{G}_m becomes a compact metric space. Furthermore \mathcal{G}_m is totally disconnected because this

metric satisfies the ultra-metric inequality

 $dist(N_1, N_3) \le max\{dist(N_1, N_2), dist(N_2, N_3)\}.$

Lemma 5.1 ([2]). Let (Γ, S) be a marked group with Γ finitely presented. Then, there exists a neighborhood U of (Γ, S) in \mathcal{G}_m consisting of quotients of Γ .

There is a natural equivalence relation \mathcal{R} on \mathcal{G}_m given by an abstract isomorphism of groups.

Any group generated by m elements can be viewed as a group generated by m + 1 elements by adding trivial element as a last generator. Hence we have a canonical embedding of \mathcal{G}_m into \mathcal{G}_{m+1} . Using this embedding, \mathcal{G}_m can be viewed as a subset of \mathcal{G}_{2m} where $Aut(\mathbb{F}_{2m})$ act as homeomorphism.

Proposition 5.2 ([2]). The equivalence class of \mathcal{R} in \mathcal{G}_m is the restriction of orbits of the action of $Aut(\mathbb{F}_{2m}) \subset Homeo(\mathcal{G}_{2m})$ on \mathcal{G}_m . Thus if U is an open subset of \mathcal{G}_m , then the set of all the orbits which intersect U is also open.

Theorem 5.3. Let $m \geq 2$ be an integer and \mathcal{H}_m denotes the closure in \mathcal{G}_m of the set of marked groups which are torsion-free non-elementary hyperbolic. Then, \mathcal{H}_m contains a dense G_{δ} (i.e. countable intersection of open) set X of marked groups (Γ, S) with the following properties.

- (1) For any element (Γ, S) of X, the equivalence class of (Γ, S) with respect to \mathcal{R} is dense in \mathcal{H}_m .
- (2) Any element (Γ, S) has Property $F\mathcal{Y}_{\delta < 1/2}$.
- (3) Any homomorphism from any element (Γ, S) into $GL(n, \mathbb{C})$ has finite image.

To prove this theorem, we prepare the following lemma.

Lemma 5.4. For any $\delta_0 < 1/2$, there exists a torsion-free non-elementary hyperbolic group Γ with the fixed-point property for $\mathcal{Y}_{<\delta_0}$.

Proof. By [10], random groups in the Zuk's model [16] with density grater than 1/3 are non-elementary hyperbolic with fixed-point property for $\mathcal{Y}_{\leq \delta_0}$. Furthermore, as Ollivier showed in [12], there is no spherical diagram for random groups. Thus random groups are torsion-free.

Proof of Theorem 5.3. We first note that it suffices to prove each class contains a dense G_{δ} set since the intersection of finitely many dense G_{δ} sets is also a dense G_{δ} set.

(1) is due to [2].

(2) Consider the group Γ_1 given by the above lemma. Since hyperbolic groups are finitely presented, there is a neighborhood U of (Γ_1, S) consisting of quotients of Γ_1 . Hence the set of marked groups with $F\mathcal{Y}_{\leq \delta_0}$ contains a certain open set. By (1), such a set contains a dense open subset of \mathcal{H}_m .

Let $\{\delta_{i_k}\}_{k=1}^{\infty}$ be an increasing sequence with $\lim_{k\to\infty} \delta_{i_k} = 1/2$. Taking an intersection of the subset with $F\mathcal{Y}_{\leq \delta_{i_k}}$ shows that the set of marked groups with $F\mathcal{Y}_{<1/2}$ contains a dense G_{δ} subset of \mathcal{H}_m .

(3) Take a torsion-free uniform lattice Γ_2 of the isometry group of the quoternionic hyperbolic space, then by the non-Archimedian superrigidity by Gromov-Schoen [6], any homomorphism from Γ_2 to $PSL(n, \mathbf{Q}_p)$ has bounded image. Since this property is inherited to its quotient, by using the former part of the argument for (2) again, we have a dense open set X_1 of marked groups with this property.

On the other hand, we have already seen that the set of marked groups with $F\mathcal{Y}_{\leq\delta_0}$ for some $\delta_0 < 1/2$ contains a dense open subset X_2 of \mathcal{H}_m . Because the class $\mathcal{Y}_{\leq\delta_0}$ contains all Hadamard manifolds, any homomorphism from an element of X_2 to $PSL(n, \mathbf{R})$ has bounded image.

Then taking intersection of these two classes X_1 and X_2 , we have a dense G_{δ} set of marked groups such that any homomorphism from the group in this set into $GL(n, \mathbb{C})$ has finite image.

Since the above set X contains uncountably many elements and each equivalence class of \mathcal{R} contains at most countably many elements, we have the following

Corollary 5.5. There exist uncountably many finitely generated groups up to isomorphism with the property (2) and (3) in Theorem 5.3.

But at this time, it is unclear if the above set X contains a finitely presented group. This suggests the following

Problem 5.6. Is there a hyperbolic group with $F\mathcal{Y}_{\delta<1/2}$?

Remark 5.7. If we start with M. Kapovich's example [11] of nonlinear hyperbolic group which is torsion-free in the proof of Theorem 5.3 (3), the statement can be strengthened to the following (3'): Any homomorphism into GL(n, F) has finite image for any field F.

6. UNIFORM ACTION

In this section, we generalize a theorem of Shalom, which says that the subset of marked groups having Property (T) is open in \mathcal{G}_m , to a general setting. As a corollary, we prove that any finitely generated group with $F\mathcal{Y}_{\leq\delta_0}$ can be expressed as a quotient of a finitely presented group with $F\mathcal{Y}_{\leq\delta_0}$. It should be mentioned that this theorem is essentially expressed in Gromov's paper ([5], p.117) and we refer to Silberman's note [14].

Definition 6.1 (uniformity constant). For an action of a marked group (Γ, S) on Y, a uniformity constant $\epsilon(y)$ at $y \in Y$ is defined as $\epsilon(y) = \max_{\gamma \in S} \operatorname{dist}(\gamma y, y)$.

Definition 6.2. An isometric action of Γ on Y is called uniform if for any $y \in Y$, we have $\epsilon(y) \geq \epsilon > 0$. Namely, $\inf_{y \in Y} \epsilon(y) > 0$ holds.

Note that an isometric Γ -action on Y admits a fixed point if and only if $\epsilon(y) = 0$ for some $y \in Y$.

Theorem 6.3. Let \mathcal{Y} be a class of complete metric spaces closed under scaling and taking a ultralimit. The subset of marked groups having $F\mathcal{Y}$ is open in \mathcal{G}_m .

To show this theorem, we first prove the next lemma.

Lemma 6.4. Assume that the action of Γ on Y does not admit any fixed point. Let a be a positive number. Then, for any $y \in Y$, there exists $y' \in B(y, a\epsilon(y))$ such that $\epsilon(y'') \geq \epsilon(y')/2$ holds for any $y'' \in B(y', \frac{a}{2}\epsilon(y'))$.

Proof. If there is no such y' for $y \in Y$, then for any $y'_i \in B(y, a\epsilon(y))$, there exist $y'_{i+1} \in B(y'_i, \frac{a}{2}\epsilon(y'_i))$ with $\epsilon(y'_{i+1}) < \frac{1}{2}\epsilon(y'_i)$.

If we put $y'_1 = y$, then $\epsilon(y'_{i+1}) < \frac{1}{2^i}\epsilon(y)$. Hence,

$$d(y'_1, y'_{i+1}) < a \sum_{j=1}^{i} \frac{\epsilon(y)}{2^j}.$$

Therefore,

$$d(y'_{1}, y'_{i+1}) \leq d(y'_{1}, y'_{2}) + \dots + d(y'_{i}, y'_{i+1})$$

$$\leq \frac{a}{2}\epsilon(y'_{1}) + \dots + \frac{a}{2}\epsilon(y'_{i})$$

$$\leq a(\frac{\epsilon(y'_{1})}{2} + \frac{\epsilon(y'_{1})}{2^{2}} + \dots + \frac{\epsilon(y'_{1})}{2^{i}})$$

$$< a\epsilon(y'_{1}).$$

Hence $y'_{i+1} \in B(y, a\epsilon(y))$. Thus we can continue the above construction. Since

$$d(y'_i, y'_{i+1}) < \frac{a}{2^i} \epsilon(y),$$

 $\{y'_i\}_{i=1}^{\infty}$ is a Cauchy sequence. Since ϵ is a continuous function, it converges to a fixed point, which is a contradiction.

Proof of Theorem 6.3. Take a sequence of groups Γ_i each of which admits an action with no global fixed point on a space in \mathcal{Y} . Assume that they converge to a group Γ in \mathcal{G}_m . Then, it suffices to prove that Γ also has an action with no global fixed point on a space in \mathcal{Y} .

Let N_i (resp. N) be the normal subgroups of \mathbb{F}_m corresponding to Γ_i (resp. Γ). Assume that each Γ_i act on $Y_i \in \mathcal{Y}$ without a global fixed point.

We take a sequence $a_i \to \infty$. From the above lemma, for each $y_i \in Y_i$, there exists $x_i \in B(y_i, a_i \epsilon(y_i))$ such that $\epsilon(z) \geq \frac{1}{2}\epsilon(x_i)$ for each $z \in B(x_i, \frac{a_i}{2}\epsilon(x_i))$. Let ω be an any non-principal ultrafilter, and put $Y_{\infty} = \lim_{\omega} (Y_i, \frac{2}{\epsilon(x_i)} \operatorname{dist}_{Y_i}, x_i)$. Then, Y_{∞} still belongs to \mathcal{Y} .

By lifting the action of Γ_i on Y_i to $\overline{\varphi}_i : \mathbb{F}_m \to \operatorname{Isom}(Y_i)$, we have the action $\prod_{i \in \mathbb{N}} \overline{\varphi}_i$ of \mathbb{F}_m on $\prod_{i \in \mathbb{N}} Y_i$. This induces the isometric action $\overline{\varphi}_{\infty} : \mathbb{F}_m \to \operatorname{Isom}(Y_{\infty})$. Then, $\overline{\varphi}_{\infty} : \mathbb{F}_m \to \operatorname{Isom}(Y_{\infty})$ sends N to the identity, since each $\overline{\varphi}_i$ sends N_i to the identity of Isom (Y_i) . Thus we have $\varphi_{\infty} : \mathbb{F}_m/N \to \text{Isom}(Y_{\infty})$. This Γ -action on Y_{∞} is uniform because the uniformity constant of this action satisfies

$$\epsilon_{\varphi_{\infty}}(y) = \max_{\gamma \in S} \operatorname{dist}_{Y_{\infty}}(\varphi_{\infty}(\gamma)y, y)$$
$$= \max_{\gamma \in S} \operatorname{dist}_{Y_{\infty}}(\overline{\varphi}_{\infty}(\gamma)y, y)$$
$$= \epsilon_{\overline{\varphi}_{\infty}}(y)$$
$$\geq 1.$$

In particular, the limit group Γ also has an action with no global fixed point on a space in \mathcal{Y} . Thus the set of marked groups with fixed-point property $F\mathcal{Y}$ is an open set. \Box

Corollary 6.5 ([5], p.117). Assume that Γ is a finitely generated group with Property $F\mathcal{Y}$. Then there exist a finitely presented group Γ_0 with Property $F\mathcal{Y}$ and a surjective homomorphism $\Gamma_0 \to \Gamma$.

Proof. Fix a presentation $\langle s_1, \ldots, s_m | R_1, R_2, \ldots \rangle$ of Γ and consider the finitely presented groups $\Gamma_i = \langle s_1, \ldots, s_m | R_1, R_2, \ldots, R_i \rangle$ for $i \geq 1$. Then the sequence $\{\Gamma_i\}_{i=1}^{\infty}$ converges to Γ in \mathcal{G}_m . Since the set of marked groups with fixed-point property $F\mathcal{Y}$ is open, there exists some i such that Γ_i also has the fixed-point property $F\mathcal{Y}$. \Box

Remark 6.6. The set of marked groups with Property $F\mathcal{Y}_{\leq \delta_0}$ is also an open set in \mathcal{G}_m because the class $\mathcal{Y}_{\leq \delta_0}$ is closed under scaling and ultralimit. Therefore any finitely generated group with $F\mathcal{Y}_{\leq \delta_0}$ can be expressed as a quotient of a finitely presented group with $F\mathcal{Y}_{\leq \delta_0}$.

References

- [1] B. Bekka, P. de la Harpe, A. Valette, Kazhdan's Property (T), book in preparation.
- [2] C. Champetier, L'espace des groupes de type fini, Topology 39 (2000), 657–680.
- [3] P. Delorme, 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de représentations, Bull. Soc. Math. France 105 (1977), 281–336.
- [4] A. Furman, Gromov's measure equivalence and rigidity of higher rank lattices, Ann. of Math. (2) 150 (1999), no. 3, 1059–1081.
- [5] M. Gromov, Random walk in random groups, Geom. Funct. Anal. 13 (2003), 73–146.
- [6] M. Gromov, R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. No. 76 (1992), 165–246.
- [7] A. Guichardet Sur la cohomologie des groupes topologiques. II., Bull. Sci. Math. (2) 96 (1972), 305– 332.
- [8] P. de la Harpe, A. Valette La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque No. 175 (1989).
- H. Izeki and S. Nayatani, Combinatorial harmonic maps and discrete-group actions on Hadamard spaces, Geometriae Dedicata 114 (2005), 147–188.
- [10] H. Izeki, T. Kondo, S. Nayatani, Fixed-Point Property of Random Groups, preprint.
- [11] M. Kapovich, Representations of polygons of finite groups, Geom. Topol. 9 (2005), 1915–1951.

- [12] Y. Ollivier, Sharp phase transition theorems for hyperbolicity of random groups, Geom. Funct. Anal. 14 (2004), 595–679.
- [13] Y. Shalom, Rigidity of commensurators and irreducible lattices, Invent. Math. 141 (2000), no. 1, 1–54.
- [14] L. Silberman, *Scaling limits*, note available at Silberman's home page.
- [15] A. Valette, Old and new about Property (T), in Representations of Lie groups and quantum groups (Trento, 1993), 271–333, Pitman Res. Notes Math. Ser. 311, 1994.
- [16] A. Żuk, Property (T) and Kazhdan constants for discrete groups, Geom. Funct. Anal. 13 (2003), 643–670.

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: takefumi@math.kyoto-u.ac.jp