
FIXED-POINT PROPERTY FOR CAT(0) SPACES

TAKEFUMI KONDO

Abstract. We investigate the fixed-point property for the class of CAT(0) spaces with
Izeki-Nayatani invariant δ ≤ δ0 for some δ0 < 1/2. It turns out that we can generalize
many theorems which are known to hold for Property (T) to this much stronger fixed-
point property.

1. Introduction

A finitely generated group Γ is said to have the fixed-point property for Y or have
Property FY if any isometric action of Γ on Y admits a fixed point. Similarly the fixed-
point property for a class Y of metric spaces means that any isometric action on any
Y ∈ Y has a fixed point, and we denote this property by FY .

It is well-known that Kazhdan’s Property (T) for a discrete group Γ is equivalent to
the fixed-point property for Hilbert spaces ([3], [7]). The distribution of Property (T) in
the space Gm of marked groups with m generators was studied by Champetier [2] and
Shalom [13].

In this paper, we consider the fixed-point property FY≤δ0 for the class Y≤δ0 of CAT(0)
spaces with the invariant δ less than or equal to δ0, where δ is Izeki-Nayatani invariant
introduced in [9]. Since the class Y≤δ0 contains Hilbert spaces and all Hadamard manifolds,
Property FY≤δ0 is much stronger than Property (T).

The following is our main result.

Theorem 1.1. (1) Let Γ be a finitely generated group and Γ′ be any finite index subgroup
of Γ, then Γ has FY≤δ0 if and only if Γ′ has FY≤δ0.

(2) The product Γ1 × Γ2 has FY≤δ0 if and only if both Γ1 and Γ2 have FY≤δ0.
(3) FY≤δ0 is an invariant of measure equivalence.
(4) The set of marked groups with FY≤δ0 is open in Gm.
(5) There exists a dense Gδ subset X of Hm such that each element in X has FY<1/2

and all homomorphism into GL(n,C) has finite image.

Here, Y<1/2 denotes the class of CAT(0) spaces with Izeki-Nayatani invariant less than
1/2 and Hm denotes the closure in Gm of the set of marked groups which are torsion-free
non-elementary hyperbolic.
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However, there are few examples of CAT(0) spaces whose value of δ are known. Hence
it is unclear how many CAT(0) spaces are or which building is in the class Y<1/2, and it
is unknown whether there is a hyperbolic group or even finitely presented group with the
fixed-point property FY<1/2.

This theorem generalizes many results known for the case of Property (T). See [4], [13],
[2] for the corresponding result for Property (T).

As a corollary of (4), any finitely generated group with the fixed-point property FY≤δ0

can be expressed as a quotient of a certain finitely presented group with Property FY≤δ0

(see also [5], p.117). The argument here is referred to Silberman’s note [14].

Acknowledgements. We would like to thank Kenji Fukaya, Hiroyasu Izeki, Shin Nay-
atani for helpful discussions, suggestion and interest in this work.

2. Izeki-Nayatani invariant

In this section, we give the definition of the invariant δ of CAT(0) spaces introduced
by Izeki-Nayatani in [9].

Definition 2.1 ([9]). Let Y be a CAT(0) space. Izeki-Nayatani invariant for Y is defined
as

δ(Y ) = sup
µ

inf
φ

‖ ∫
Y

φdµ‖2

∫
Y
‖φ‖2dµ

where µ runs over all finitely supported probability measures on Y , and φ runs over all
1-Lipschitz maps φ : Supp(µ) → H with ‖φ(y)‖ = distY (y, bar(µ)) for any y ∈ Supp(µ).
Here H denotes any Hilbert space and bar(µ) denotes the barycenter of µ. We call a map
φ satisfying the above condition a realization of µ.

δ ∈ [0, 1] follows immediately from the definition. The computation of δ is hard and
except in the case where δ = 0, only estimation for some specific spaces is known.

Example 2.2. (1) Assume that Y is a finite or infinite dimensional Hadamard manifold
or an R-tree. Then we have δ(Y ) = 0.

(2) Assume that Yp is the building PSL(3,Qp)/PSL(3,Zp). Then

δ(Yp) ≥
(
√

p− 1)2

2(p−√p + 1)
.

When p = 2, we have δ(Y2) ≤ 0.4122 . . . .

The following conjecture is due to Izeki and Nayatani.

Conjecture 2.3. For any prime p ∈ N,

δ(PSL(3,Qp)/PSL(3,Zp)) < 1/2.

The followings are shown in [9], [10].
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Proposition 2.4. (1) For any convex closed subspace Y ′ of a CAT(0) space Y , we have
δ(Y ′) ≤ δ(Y ).

(2) For the product of two CAT(0) spaces Y, Y ′, we have δ(Y ×Y ′) = max{δ(Y ), δ(Y ′)}.
(3) Let (Yn, dn) be a sequence of CAT(0) spaces, ω a non-principal ultrafilter on N and

(Yω, dω) the ultralimit (Yω, dω) = ω-lim
n

(Yn, dn). Then,

δ(Yω) ≤ ω-lim
n

δ(Yn)

holds ([10, Proposition 3.2]).

This proposition shows that the class Y≤δ0 is closed under the operation taking a direct
product, a convex closed subspace and a ultralimit. Furthermore this class is closed under
taking a mapping space from a finite measure space.

Proposition 2.5. Let Y be a CAT(0) space, X a standard Borel space (i.e., a Polish
space equipped with its associated σ-algebra of Borel subsets) with a probability measure.
Then for the space L2(X,Y ) of L2-maps from X to Y , we have δ(L2(X,Y )) = δ(Y ).

To show this proposition, we first show the next lemma.

Lemma 2.6. Let Y be a CAT(0) space and Y ′ ⊂ Y be a dense subset. Then, we have
δ(Y ′) = δ(Y ). Here, δ(Y ′) is defined similar to δ(Y ).

Proof. Obviously, δ(Y ′) ≤ δ(Y ). Therefore we show the opposite inequality. Let

µ =
n∑

k=1

tkδyk
(

n∑

k=1

tk = 1)

be a finitely supported probability measure on Y .
We take sequences yi

k → yk(i → ∞) in Y ′ and consider the sequence of probability
measures µi =

∑n
k=1 tkδyi

k
.

For a fixed probability measure µ, we denote the functional

φ 7→ ‖ ∫
Y

φdµ‖2

∫
Y
‖φ‖2dµ

by Fµ. For each µi, we take a realization φi : Supp(µi) → RN which attains the infimum of
the functional Fµi

. Then {φi}∞i=1 forms a precompact set and we can choose a subsequence
which converge to φ∞.

Then φ∞ : Supp(µ) → RN is also a 1-Lipschitz map and for any yk ∈ Supp(µ),
‖φ∞(yk)‖ = distY (yk, bar(µ)) hold. Thus φ∞ gives a realization of µ.

Hence,

δ(Y, µ) ≤ Fµ(φ∞)

= lim
i→∞

Fµi

≤ δ(Y ′)
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for any µ, which implies δ(Y ) ≤ δ(Y ′).

Proof of Proposition 2.5. Any L2-map can be approximated by simple functions, and
each simple function is considered to be an element of a weighted product of finite copies
of Y . Hence its δ is equal to δ(Y ). Therefore the dense subset of L2(X,Y ) satisfies
δ = δ(Y ) and by the above lemma, δ(L2(X,Y )) = δ(Y ). ¤

Remark 2.7. Assume that X is a standard Borel space with Borel measure with a mea-
sure preserving Γ-action, Y has an isometric Γ-action, and X admits a finite measure
fundamental domain. Then similarly we can show that the space L2

Γ(X,Y ) of Γ-equivariant
L2-maps from X to Y satisfies δ(L2

Γ(X,Y )) ≤ δ(Y ).

3. Hereditary properties

Throughout this section, Γ denotes a finitely generated group and Γ′ denotes any finite
index subgroup of Γ.

Proposition 3.1. Let Y be any CAT(0) space. If Γ′ has Property FY , then Γ also has
Property FY . Thus for any CAT(0) space Y , Property FY is inherited from finite index
subgroup to the ambient group.

Proof. Fix an action ρ : Γ → Isom(Y ). If we consider the restriction of this action to Γ′,
there exists a fixed point since Γ′ has Property FY . Hence let p ∈ Y be a fixed point
of Γ′-action. Then, the Γ-orbit of p {ρ(γ)p|γ ∈ Γ} is a finite set, thus its barycenter is a
Γ-fixed point.

Proposition 3.2. If Γ has Property FY≤δ0, then Γ′ also has Property FY≤δ0.

Proof. Assume that Y is a CAT(0) space in Y≤δ0 , and ρ : Γ′ → Isom(Y ) is any isometric
action of Γ′ on Y . Let L2

Γ′(Γ, Y ) denote the set of Γ′-equivariant maps from Γ to Y . Then,
there is a natural Γ-action on L2

Γ′(Γ, Y ) given by (ρ(γ)f)(x) := f(xγ).
Since we have δ(Y ) ≥ δ(L2

Γ′(Γ, Y )), the action of Γ on L2
Γ′(Γ, Y ) admits a fixed point.

Let f be the fixed point. Then f is a Γ′-equivariant constant map. Thus f(e) ∈ Y is a
fixed point of Γ′.

Remark 3.3. Proposition 3.2 also follows from Theorem 4.2.

Remark 3.4. More generally, if a class Y of metric spaces satisfies the condition that
L2

Γ′(Γ, Y ) ∈ Y whenever Y ∈ Y, then Property FY of Γ is inherited to Γ′. The class Y
need not consist of CAT(0) spaces.

Proposition 3.5. Let N ↪→ Γ → Γ/N be a short exact sequence. Here Γ is a finitely
generated group and N is a normal subgroup of Γ. If N and Γ/N have Property FY≤δ0,
then Γ has Property FY≤δ0.
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Proof. Assume that Y is in Y≤δ0 . Give any isometric action ρ : Γ → Isom(Y ) of Γ on Y .
First consider the restriction of Γ-action to N . Then there are fixed points since N has a
fixed-point property for Y≤δ0 . Let Y N denote the fixed point set. Then the subspace Y N

is also a CAT(0) space and satisfies δ(Y N) ≤ δ(Y ) since Y N is a convex closed set of Y .
Next, consider γy for y ∈ Y N and γ ∈ Γ. Then Nγy = γNy = γy since N is a normal

subgroup. Hence Y N is closed under the action of Γ.
Therefore if we consider the action of Γ on Y N , this action is trivial on N . Thus we

can regard it as Γ/N -action. Then from the fixed-point property of Γ/N there is a fixed
point p ∈ Y N and p is a Γ-fixed point.

Remark 3.6. In particular, Property FY≤δ0 is inherited to the direct product.

Remark 3.7. Let G be a group and H be a subgroup of G. Then relative Property (T)
for the pair (G,H) is equivalent to the existence of an H-fixed point for any isometric
action of G on a Hilbert space.

Similarly, we can define the relative fixed-point property for the pair (G,H) on Y or
relative Property FY as the existence of an H-fixed point for any isometric action of G
on Y. Then from the above proof, the following conditions are equivalent.

(1) (Γ, N) has relative Property FY≤δ0 and Γ/N has Property FY≤δ0.
(2) Γ has Property FY≤δ0.

4. Invariance under measure equivalence

Furman showed in [4] that Property (T) is an invariant of measure equivalence.
In this section, we prove that the fixed-point property FY≤δ0 for the family of CAT(0)

spaces Y satisfying δ(Y ) ≤ δ0 is also an invariant of measure equivalence, which extends
Furman’s theorem.

Measure equivalence is defined as follows.

Definition 4.1 (ME). Two countable groups Γ and Λ are called measure equivalent (ME)
when there exist an infinite Lebesgue measure space (Ω,m) and commutative measure-
preserving free actions of Γ and Λ each of which admits a finite measure fundamental
domain. The space (Ω,m) is called a ME coupling of Γ with Λ.

Then, the following holds.

Theorem 4.2. The fixed-point property FY≤δ0 is a ME invariant. Namely, if two count-
able groups Γ and Λ are ME and Λ has Property FY≤δ0, then Γ also has Property FY≤δ0.

To prove this theorem, we introduce the notion of an ergodic ME coupling.

Definition 4.3 (Ergodicity of ME coupling). The ME coupling (Ω,m) of Γ with Λ is
called ergodic if the Γ-action on Λ\Ω and the Λ-action on Γ\Ω are both ergodic.
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Proof. Let Y be a CAT(0) space with δ(Y ) ≤ δ0, and let a Γ-action on Y be given. Let
(Ω,m) be an ergodic ME coupling of Γ with Λ. The existence of an ergodic ME coupling
is guaranteed by Lemma 2.3 of [4].

We first induce an isometric Λ-action on the space L2
Γ(Ω, Y ) of all Γ-equivariant L2-

maps. Let F be a Γ-fundamental domain of (Ω,m) and β : Λ× F → Γ be an associated
cocycle : i.e. β(λ, ω) is defined to be a unique element in Γ which satisfies β(λ, ω)λω ∈ F .

We generalize the domain of the cocycle to Λ×Ω by defining β(λ, γω0) = γβ(λ, ω0)γ
−1

for any γ ∈ Γ and ω0 ∈ Ω.
Then, the induced Λ-action on L2

Γ(Ω, Y ) is defined as (λ · f)(ω) = β(λ−1, ω)f(λ−1ω).
The map λ · f is also Γ-equivariant because

(λ · f)(γω) =β(λ−1, γω)f(λ−1γω)

=γβ(λ, ω0)γ
−1 · γf(λ−1ω)

=γβ(λ, ω0)f(λ−1ω)

=γ((λ · f)(ω)).

Since ∫

F

distY (y0, (λ · f)(ω))2dm(ω)

=

∫

F

distY (y0, β(λ−1, ω)f(λ−1ω))2dm(ω)

=

∫

F

distY (y0, f(β(λ−1, ω)λ−1ω))2dm(ω)

=

∫

F

distY (y0, f(ω))2dm(ω)

<∞,

the L2-condition is preserved under this action. This is in fact a left Λ-action on L2
Γ(Ω, Y )

because

(λ2 · (λ1 · f))(ω) = β(λ−1
2 , ω)(λ1 · f)(λ−1

2 ω)

= β(λ−1
2 , ω)β(λ−1

1 , λ−1
2 ω)f(λ−1

1 λ−1
2 ω)

= β(λ−1
2 , ω)β(λ−1

2 , ω)−1β(λ−1
1 , β(λ−1

2 , ω)λ−1
2 ω)β(λ−1

2 , ω)f(λ−1
1 λ−1

2 ω)

= β(λ−1
1 λ−1

2 , ω)f(λ−1
1 λ−1

2 ω)

= ((λ2λ1) · f)(ω).

Here we used the cocycle condition

β(λ2λ1, ω) = β(λ2, β(λ1, ω)λ1ω)β(λ1, ω).
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Furthermore, this action is isometric because

distL2
Γ
(λ · f, λ · g)2 =

∫

F

distY ((λ · f)(ω), (λ · g)(ω))2dm(ω)

=

∫

F

distY (β(λ−1, ω)f(λ−1ω), β(λ−1, ω)g(λ−1ω))2dm(ω)

=

∫

F

distY (f(β(λ−1, ω)λ−1ω), g(β(λ−1, ω)λ−1ω))2dm(ω)

=

∫

F

distY (f(ω), g(ω))2dm(ω)

= distL2
Γ
(f, g)2.

This induced action of Λ on L2
Γ(Ω, Y ) admits a fixed point since δ(L2

Γ(Ω, Y )) ≤ δ(Y ) ≤
δ0. Namely, there exists a map f ∈ L2

Γ(Ω, Y ) such that f(ω) = f(β(λ−1, ω)λ−1ω) for
any λ ∈ Λ. Since the Λ-action on Γ\Ω is ergodic, f is a constant map. Thus f is a
Γ-equivariant constant map and this means that there is a Γ-fixed point in Y .

Remark 4.4. The proof above gives an alternative proof of Furman’s theorem [4] since
L2

Γ(Ω,H) is a Hilbert space for any Hilbert space H.

5. Distribution in Gm

In this section, we introduce the space Gm of marked groups and show that the set of
marked groups with certain strong fixed-point property is generic in Hm, which is the
closure in Gm of torsion-free non-elementary hyperbolic groups.

Let m be a positive integer and Fm the free group on m elements. A marked group
is a pair (Γ, S), where Γ is a finitely generated group and S is a generating subset of Γ
consisting of m elements. We fix an order of S. Two marked groups (Γ1, S1), (Γ2, S2)
are defined to be isomorphic if the order preserving bijection from S1 to S2 extends to an
isomorphism from Γ1 to Γ2. The space Gm consists of all isomorphism class of marked
groups.

Then Gm can be naturally identified with the set of normal subgroups in the free group
Fm.

Now we endow Gm with a metric. For two normal subgroups N1, N2 of Fm, put

v(N1, N2) = sup{R ∈ N|N1 ∩BFm(R) = N2 ∩BFm(R)},
and define a metric on Gm as

dist(N1, N2) = exp(−v(N1, N2)).

Here BFm(R) denotes the ball of radius R in the Cayley graph of Fm. With this metric,
Gm becomes a compact metric space. Furthermore Gm is totally disconnected because this
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metric satisfies the ultra-metric inequality

dist(N1, N3) ≤ max{dist(N1, N2), dist(N2, N3)}.
Lemma 5.1 ([2]). Let (Γ, S) be a marked group with Γ finitely presented. Then, there
exists a neighborhood U of (Γ, S) in Gm consisting of quotients of Γ.

There is a natural equivalence relation R on Gm given by an abstract isomorphism of
groups.

Any group generated by m elements can be viewed as a group generated by m +
1 elements by adding trivial element as a last generator. Hence we have a canonical
embedding of Gm into Gm+1. Using this embedding, Gm can be viewed as a subset of G2m

where Aut(F2m) act as homeomorphism.

Proposition 5.2 ([2]). The equivalence class of R in Gm is the restriction of orbits of
the action of Aut(F2m) ⊂ Homeo(G2m) on Gm. Thus if U is an open subset of Gm, then
the set of all the orbits which intersect U is also open.

Theorem 5.3. Let m ≥ 2 be an integer and Hm denotes the closure in Gm of the set
of marked groups which are torsion-free non-elementary hyperbolic. Then, Hm contains
a dense Gδ (i.e. countable intersection of open) set X of marked groups (Γ, S) with the
following properties.

(1) For any element (Γ, S) of X, the equivalence class of (Γ, S) with respect to R is dense
in Hm.

(2) Any element (Γ, S) has Property FYδ<1/2.
(3) Any homomorphism from any element (Γ, S) into GL(n,C) has finite image.

To prove this theorem, we prepare the following lemma.

Lemma 5.4. For any δ0 < 1/2, there exists a torsion-free non-elementary hyperbolic
group Γ with the fixed-point property for Y≤δ0.

Proof. By [10], random groups in the Żuk’s model [16] with density grater than 1/3 are
non-elementary hyperbolic with fixed-point property for Y≤δ0 . Furthermore, as Ollivier
showed in [12], there is no spherical diagram for random groups. Thus random groups
are torsion-free.

Proof of Theorem 5.3. We first note that it suffices to prove each class contains a dense
Gδ set since the intersection of finitely many dense Gδ sets is also a dense Gδ set.

(1) is due to [2].
(2) Consider the group Γ1 given by the above lemma. Since hyperbolic groups are

finitely presented, there is a neighborhood U of (Γ1, S) consisting of quotients of Γ1.
Hence the set of marked groups with FY≤δ0 contains a certain open set. By (1), such a
set contains a dense open subset of Hm.
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Let {δik}∞k=1 be an increasing sequence with limk→∞ δik = 1/2. Taking an intersection
of the subset with FY≤δik

shows that the set of marked groups with FY<1/2 contains a
dense Gδ subset of Hm.

(3) Take a torsion-free uniform lattice Γ2 of the isometry group of the quoternionic
hyperbolic space, then by the non-Archimedian superrigidity by Gromov-Schoen [6], any
homomorphism from Γ2 to PSL(n,Qp) has bounded image. Since this property is inher-
ited to its quotient, by using the former part of the argument for (2) again, we have a
dense open set X1 of marked groups with this property.

On the other hand, we have already seen that the set of marked groups with FY≤δ0 for
some δ0 < 1/2 contains a dense open subset X2 of Hm. Because the class Y≤δ0 contains
all Hadamard manifolds, any homomorphism from an element of X2 to PSL(n,R) has
bounded image.

Then taking intersection of these two classes X1 and X2, we have a dense Gδ set of
marked groups such that any homomorphism from the group in this set into GL(n,C)
has finite image. ¤

Since the above set X contains uncountably many elements and each equivalence class
of R contains at most countably many elements, we have the following

Corollary 5.5. There exist uncountably many finitely generated groups up to isomor-
phism with the property (2) and (3) in Theorem 5.3.

But at this time, it is unclear if the above set X contains a finitely presented group.
This suggests the following

Problem 5.6. Is there a hyperbolic group with FYδ<1/2 ?

Remark 5.7. If we start with M. Kapovich’s example [11] of nonlinear hyperbolic group
which is torsion-free in the proof of Theorem 5.3 (3), the statement can be strengthened
to the following (3’): Any homomorphism into GL(n, F ) has finite image for any field F .

6. uniform action

In this section, we generalize a theorem of Shalom, which says that the subset of marked
groups having Property (T) is open in Gm, to a general setting. As a corollary, we prove
that any finitely generated group with FY≤δ0 can be expressed as a quotient of a finitely
presented group with FY≤δ0 . It should be mentioned that this theorem is essentially
expressed in Gromov’s paper ([5], p.117) and we refer to Silberman’s note [14].

Definition 6.1 (uniformity constant). For an action of a marked group (Γ, S) on Y , a
uniformity constant ε(y) at y ∈ Y is defined as ε(y) = maxγ∈S dist(γy, y).

Definition 6.2. An isometric action of Γ on Y is called uniform if for any y ∈ Y , we
have ε(y) ≥ ε > 0. Namely, infy∈Y ε(y) > 0 holds.

Note that an isometric Γ-action on Y admits a fixed point if and only if ε(y) = 0 for
some y ∈ Y .
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Theorem 6.3. Let Y be a class of complete metric spaces closed under scaling and taking
a ultralimit. The subset of marked groups having FY is open in Gm.

To show this theorem, we first prove the next lemma.

Lemma 6.4. Assume that the action of Γ on Y does not admit any fixed point. Let
a be a positive number. Then, for any y ∈ Y , there exists y′ ∈ B(y, aε(y)) such that
ε(y′′) ≥ ε(y′)/2 holds for any y′′ ∈ B(y′, a

2
ε(y′)).

Proof. If there is no such y′ for y ∈ Y , then for any y′i ∈ B(y, aε(y)), there exist y′i+1 ∈
B(y′i,

a
2
ε(y′i)) with ε(y′i+1) < 1

2
ε(y′i).

If we put y′1 = y, then ε(y′i+1) < 1
2i ε(y). Hence,

d(y′1, y
′
i+1) < aΣi

j=1

ε(y)

2j
.

Therefore,

d(y′1, y
′
i+1) ≤ d(y′1, y

′
2) + · · ·+ d(y′i, y

′
i+1)

≤ a

2
ε(y′1) + · · ·+ a

2
ε(y′i)

≤ a(
ε(y′1)

2
+

ε(y′1)
22

+ · · ·+ ε(y′1)
2i

)

< aε(y′1).

Hence y′i+1 ∈ B(y, aε(y)). Thus we can continue the above construction. Since

d(y′i, y
′
i+1) <

a

2i
ε(y),

{y′i}∞i=1 is a Cauchy sequence. Since ε is a continuous function, it converges to a fixed
point, which is a contradiction.

Proof of Theorem 6.3. Take a sequence of groups Γi each of which admits an action with
no global fixed point on a space in Y . Assume that they converge to a group Γ in Gm.
Then, it suffices to prove that Γ also has an action with no global fixed point on a space
in Y .

Let Ni (resp. N) be the normal subgroups of Fm corresponding to Γi (resp. Γ). Assume
that each Γi act on Yi ∈ Y without a global fixed point.

We take a sequence ai → ∞. From the above lemma, for each yi ∈ Yi, there exists
xi ∈ B(yi, aiε(yi)) such that ε(z) ≥ 1

2
ε(xi) for each z ∈ B(xi,

ai

2
ε(xi)). Let ω be an any

non-principal ultrafilter, and put Y∞ = limω(Yi,
2

ε(xi)
distYi

, xi). Then, Y∞ still belongs to

Y .
By lifting the action of Γi on Yi to ϕi : Fm → Isom(Yi), we have the action

∏
i∈N ϕi

of Fm on
∏

i∈N Yi. This induces the isometric action ϕ∞ : Fm → Isom(Y∞). Then,
ϕ∞ : Fm → Isom(Y∞) sends N to the identity, since each ϕi sends Ni to the identity
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of Isom(Yi). Thus we have ϕ∞ : Fm/N → Isom(Y∞). This Γ-action on Y∞ is uniform
because the uniformity constant of this action satisfies

εϕ∞(y) = max
γ∈S

distY∞(ϕ∞(γ)y, y)

= max
γ∈S

distY∞(ϕ∞(γ)y, y)

= εϕ∞(y)

≥ 1.

In particular, the limit group Γ also has an action with no global fixed point on a space
in Y . Thus the set of marked groups with fixed-point property FY is an open set. ¤

Corollary 6.5 ([5], p.117). Assume that Γ is a finitely generated group with Property
FY. Then there exist a finitely presented group Γ0 with Property FY and a surjective
homomorphism Γ0 → Γ.

Proof. Fix a presentation 〈s1, . . . , sm|R1, R2, . . . 〉 of Γ and consider the finitely presented
groups Γi = 〈s1, . . . , sm|R1, R2, . . . , Ri〉 for i ≥ 1. Then the sequence {Γi}∞i=1 converges
to Γ in Gm. Since the set of marked groups with fixed-point property FY is open, there
exists some i such that Γi also has the fixed-point property FY .

Remark 6.6. The set of marked groups with Property FY≤δ0 is also an open set in Gm

because the class Y≤δ0 is closed under scaling and ultralimit. Therefore any finitely gen-
erated group with FY≤δ0 can be expressed as a quotient of a finitely presented group with
FY≤δ0.
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[16] A. Żuk, Property (T) and Kazhdan constants for discrete groups, Geom. Funct. Anal. 13 (2003),

643–670.

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502,
Japan

E-mail address: takefumi@math.kyoto-u.ac.jp


