SAMELSON PRODUCTS OF SO(3) AND APPLICATIONS

YASUHIKO KAMIYAMA, DAISUKE KISHIMOTO, AKIRA KONO, AND SHUICHI TSUKUDA

ABSTRACT. Certain generalized Samelson products of SO(3) are calculated and appli-
cations to the homotopy of gauge groups are given.

1. INTRODUCTION AND STATEMENT OF RESULTS

We work in the category of CW-complexes and continuous maps, and often do not
distinguish maps from their homotopy classes.

Let G be a topological group and let v : G A G — G denote the commutator of G. A
generalized Samelson product of maps a: A — G and 3 : B — G is defined as a homotopy
class of the composition

ANBanG G
and denoted by (a, ). We denote the adjoint map XA — BG of a map a : A — G by
ad(«). Regarding the generalized Samelson product («, 3), Arkowitz [1] showed that

ad({e, 7)) = [ad(a),ad(3)],

where [, | is the generalized Whitehead product.

The purpose of this paper is to calculate certain generalized Samelson products of SO(3)
and to give applications to the homotopy of gauge groups. Let ¢; and €3 be generators of
m1(SO(3)) = Z/2 and w3(SO(3)) = Z respectively, and let € and ¢ be the natural inclusion
RP? — SO(3) (= RP?) and the identity of SO(3) respectively. Then we will show :

Theorem 1.1. The order of the generalized Samelson product (€3, €) is 4.
Corollary 1.1. The order of the generalized Samelson product (e3,t) is 12.

Let G be a compact, connected Lie group and let P be a principal G-bundle over S4.
The gauge group ¥p of P is a group of all G-equivariant automorphisms of P covering the
identity of S*. Atiyah and Bott [3] showed that

BYp ~ Mapp(S*, BG),

where Mapp(S?*, BG) denotes the component of Map(S*, BG) corresponding to the clas-
sifying map of P. Then we will often identify B%p with Mapp(S*, BG). For simplicity,
when G = SO(3) and P is classified by k € Z = m4(BSO(3)), we write ¥p by ¥. Let
(n,m) be the GCD of n and m. As applications of the above results, we will show :

Proposition 1.1. ¥, ~ ¥ if and only if (12,k) = (12,1).

2000 Mathematics Subject Classification. Primary 55Q15, Secondary 55P15, 54C35.
Key words and phrases. Samelson product, Whitehead product, gauge group.
Supported by Grant-in-Aid for Scientific Research (B) 18340016.

1



2 KAMIYAMA, KISHIMOTO, KONO, AND TSUKUDA

Proposition 1.2.
Z/2 E=1(2
kE=0(2) - / )
E=1 (%) =2 Z/4 k=2(4)
Z/20Z/2 k=0(4)
Remark 1.1. Readers may refer to [7] for the relevant results of the homotopy of ¥p when

P is a principal SU(2)-bundle over S*. Readers may also refer to [6] for an alternative
calculation of mp(%) and m1 (%) in a different context.

Remark 1.2. Regarding the homotopy of the classifying space BY},, we have the following.
Let P be a principal SU(2)-bundle over S* corresponding to k € Z = 74(BSU(2)). Since
the natural projection ¥p — ¥ is a double covering, the universal covering group of the
identity components of ¥p and ¥ are isomorphic. Then it follows from Theorem 1.5 of

[9] that BY), ~ B% if and only if k = +.
Remark 1.3. Let P be as in Remark 1.2. Then it is straightforward to check that mo (%) =
m2(¥p). Hence, by a result of [7], one finds 7 (%) = Z/(12, k).

2. PROOFS OF THEOREM 1.1 AND COROLLARY 1.1

Before starting the proofs, let us recall a result of Bott [4]. Denote a generator of
mi(U(2)) by € for i = 1,3. Then Bott [4] showed that the order of the Samelson product
(€3,€1) is 2 and hence (€3, €1) is a generator of m4(U(2)) = Z/2.

Proof of Theorem 1.1. Let 7 : U(2) — SO(3) be the natural projection. It is obvious that
(&) = € for i = 1,3. Then one has

7T*(<€3,€1>) = <63,61> € 71'4(50(3))

Since my : m4(U(2)) — m4(SO(3)) is an isomorphism, the order of (e3,€1) is 2 and hence
(e3,€1) is a generator of m4(SO(3)) = Z/2. Let i : S' — RP? be the inclusion of the
1-skeleton. Then i*(é€) = €; and, by the above observation, one can see that

(2.1) (e3,€) € 2([S® ARP?,S0(3)]).

Since S2 A RP? is 3-connected we have a group isomorphism

[S3 ARP?,50(3)] = [S® ARP?, Sp(1)].
By applying [S? A RP?, ] to the fiber sequence
Q(Sp(00)/Sp(1)) — Sp(1) — Sp(oc) — Sp(c0)/Sp(1),

we can derive an exact sequence

[S? ARP?,Q(Sp(00)/Sp(1))] — [S* A RP?, Sp(c0)]

— [S* ARP?,Sp(1)] — [S* ARP?, Sp(c0)/Sp(1)]

Since S% A RP? is 5-dimensional and Sp(co)/Sp(1) is 6-connected, we obtain a group
isomorphism

[S3 ARP?, Sp(1)] = [S® ARP?, Sp(00)].
On the other hand, one has a sequence of group isomorphisms

(S ARP?, Sp(c0)] = [$* A RP?, BSp(c0)] = KO’ (RP?) = Z /4,
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where the second and the last isomorphisms are due to Bott periodicity and a result of
Adams [2] respectively. Therefore we obtain

[S* ARP% SO(3)| = Z/4
and, by (2.1), the proof is completed. O

Proof of Corollary 1.1. Note that the cofibration S* A RP? 106 83 A SO(3) — SO splits
as S A SO(3) ~ (S? ARP?) v S8, Then the Samelson product (eg, ) is factored as

S3 A 50(3) = (53 ARP?) v 59 L2V 50(3)
by a map a : S5 — SO(3). One can see that o = 7. ((€3,€3)), when localized at any primes
but 2. It is well-known that the Samelson product (€3, €3) is a generator of mg(U(2)) =
Z/12. Then we obtain that the order of « is a divisor of 12 and it is divisible by 3, since
e : T(U(2)) — m6(SO(3)) is an isomorphism. Hence, by Theorem 1.1, the order of
(€3,1) = (€3,€) V a is found to be 12. O

3. PROOFS OF PROPOSITION 1.1 AND PROPOSITION 1.2

Proof of Proposition 1.1. The idea of the proof is due to [7]. Let e : BY, ~ Map,(S*, BSO(3)) —
BSO(3) denote the evaluation at the basepoint of BSO(3). By the fibration

4, ~ OBY, 25 S0(3) 5 03S0(3),
%, can be considered as a homotopy fiber of the above map I';,. Then we shall analyze
the map I'i.

By Lang [8], it is shown that a homotopy class of Ty is ad3((kes, ). Since Samelson
products are bilinear, we have I'y ~ kI'1. By Corollary 1.1, the order of I'; is 12. Since
m.(Q350(3)) is finite for all x, it follows from Lemma 3.2 of [5] that %, ~ ¢ if and only
if (12,k) = (12,1). Thus Proposition 1.1 is accomplished. O

Proof of Proposition 1.2. Consider the following homotopy sequence of the evaluation fi-
bration Q3S0(3) — B%, % BSO(3). Then we have an exact sequence

(3.1) 0=m3(BSO(3)) — m(QSO(3)) = Z/2 — my(BZ,)
s 9(BSO(3)) 2 Z/2 — 1 (S0(3)) =2 Z/2 — m(B%,) — m(BSO(3)) = 0.

Since the order of the Samelson product (es, €1) is 2, the order of its adjoint ad((es, €1)) =
[ad(e3), ad(e1)] is 2 as well. Then the generalized Whitehead product [kad(e3),ad(e1)] = 0
if and only if k = 0 (2). Hence, by the exponential law, there exists a map « : S? — B%,
satisfying the homotopy commutative diagram

SQ

/ Jad(el)

B%, — BSO(3)

if and only if ¥ = 0 (2). Since ad(e;) is the inclusion of the 2-skeleton of BSO(3),
m0(%) = m1(B%Y;) is obtained as in the statement by the exact sequence (3.1).

By the above argument, we have obtained m1(%;) = m2(B%Y,) = Z/2 if k =1 (2). Then
we shall consider the case that K = 0 (2) and have an exact sequence

(3.2) 0 — Z/2 — my(B%,) <5 m(BSO(3)) = Z/2 — 0.
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By Theorem 1.1, we see that the order of ad({es,€)) = [ad(e3),ad(€)] is 4. Then the
generalized Whitehead product [kad(e3),ad(e1)] = 0 if and only if £ = 0 (4). Hence there
exists a map & : YRP? — B%Y, satisfying the homotopy commutative diagram

YR P2

/ lad(é)

B%, —= BSO(3)

if and only if £ = 0 (4). Since ad(é) is the inclusion of the 3-skeleton of BSO(3), we
obtain, by (3.2), that m (%) = m(B%,) = Z/2 ® Z/2 when k = 0 (4). On the other
hand, YRP? is the Moore space S Uy e3. Then one can see that if the order of each
element of my(B%Y) is 2, then there exists the above map &. Hence, by (3.2), we obtain
71(%) = ma(BY)) = Z /4 when k = 2 (4) and this completes the proof. O
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