
SAMELSON PRODUCTS OF SO(3) AND APPLICATIONS

YASUHIKO KAMIYAMA, DAISUKE KISHIMOTO, AKIRA KONO, AND SHUICHI TSUKUDA

Abstract. Certain generalized Samelson products of SO(3) are calculated and appli-
cations to the homotopy of gauge groups are given.

1. Introduction and statement of results

We work in the category of CW-complexes and continuous maps, and often do not
distinguish maps from their homotopy classes.

Let G be a topological group and let γ : G ∧ G → G denote the commutator of G. A
generalized Samelson product of maps α : A → G and β : B → G is defined as a homotopy
class of the composition

A ∧ B
α∧β−→ G ∧ G

γ→ G

and denoted by 〈α, β〉. We denote the adjoint map ΣA → BG of a map α : A → G by
ad(α). Regarding the generalized Samelson product 〈α, β〉, Arkowitz [1] showed that

ad(〈α, β〉) = [ad(α), ad(β)],

where [ , ] is the generalized Whitehead product.
The purpose of this paper is to calculate certain generalized Samelson products of SO(3)

and to give applications to the homotopy of gauge groups. Let ε1 and ε3 be generators of
π1(SO(3)) ∼= Z/2 and π3(SO(3)) ∼= Z respectively, and let ε̂ and ι be the natural inclusion
RP 2 ↪→ SO(3) (= RP 3) and the identity of SO(3) respectively. Then we will show :

Theorem 1.1. The order of the generalized Samelson product 〈ε3, ε̂〉 is 4.

Corollary 1.1. The order of the generalized Samelson product 〈ε3, ι〉 is 12.

Let G be a compact, connected Lie group and let P be a principal G-bundle over S4.
The gauge group GP of P is a group of all G-equivariant automorphisms of P covering the
identity of S4. Atiyah and Bott [3] showed that

BGP ' MapP (S4, BG),

where MapP (S4, BG) denotes the component of Map(S4, BG) corresponding to the clas-
sifying map of P . Then we will often identify BGP with MapP (S4, BG). For simplicity,
when G = SO(3) and P is classified by k ∈ Z ∼= π4(BSO(3)), we write GP by Gk. Let
(n,m) be the GCD of n and m. As applications of the above results, we will show :

Proposition 1.1. Gk ' Gl if and only if (12, k) = (12, l).
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Proposition 1.2.

π0(Gk) ∼=

{
Z/2 k ≡ 0 (2)
0 k ≡ 1 (2)

π1(Gk) ∼=


Z/2 k ≡ 1 (2)
Z/4 k ≡ 2 (4)
Z/2 ⊕ Z/2 k ≡ 0 (4)

Remark 1.1. Readers may refer to [7] for the relevant results of the homotopy of GP when
P is a principal SU(2)-bundle over S4. Readers may also refer to [6] for an alternative
calculation of π0(Gk) and π1(Gk) in a different context.

Remark 1.2. Regarding the homotopy of the classifying space BGk, we have the following.
Let P be a principal SU(2)-bundle over S4 corresponding to k ∈ Z ∼= π4(BSU(2)). Since
the natural projection GP → Gk is a double covering, the universal covering group of the
identity components of GP and Gk are isomorphic. Then it follows from Theorem 1.5 of
[9] that BGk ' BGl if and only if k = ±l.

Remark 1.3. Let P be as in Remark 1.2. Then it is straightforward to check that π2(Gk) ∼=
π2(GP ). Hence, by a result of [7], one finds π2(Gk) ∼= Z/(12, k).

2. Proofs of Theorem 1.1 and Corollary 1.1

Before starting the proofs, let us recall a result of Bott [4]. Denote a generator of
πi(U(2)) by ε̃i for i = 1, 3. Then Bott [4] showed that the order of the Samelson product
〈ε̃3, ε̃1〉 is 2 and hence 〈ε̃3, ε̃1〉 is a generator of π4(U(2)) ∼= Z/2.

Proof of Theorem 1.1. Let π : U(2) → SO(3) be the natural projection. It is obvious that
π∗(ε̃i) = εi for i = 1, 3. Then one has

π∗(〈ε̃3, ε̃1〉) = 〈ε3, ε1〉 ∈ π4(SO(3)).

Since π∗ : π4(U(2)) → π4(SO(3)) is an isomorphism, the order of 〈ε3, ε1〉 is 2 and hence
〈ε3, ε1〉 is a generator of π4(SO(3)) ∼= Z/2. Let i : S1 ↪→ RP 2 be the inclusion of the
1-skeleton. Then i∗(ε̂) = ε1 and, by the above observation, one can see that

(2.1) 〈ε3, ε̂〉 6∈ 2([S3 ∧ RP 2, SO(3)]).

Since S3 ∧ RP 2 is 3-connected we have a group isomorphism

[S3 ∧ RP 2, SO(3)] ∼= [S3 ∧RP 2, Sp(1)].

By applying [S3 ∧ RP 2, ] to the fiber sequence

Ω(Sp(∞)/Sp(1)) → Sp(1) → Sp(∞) → Sp(∞)/Sp(1),

we can derive an exact sequence

[S3 ∧RP 2, Ω(Sp(∞)/Sp(1))] → [S3 ∧ RP 2, Sp(∞)]

→ [S3 ∧ RP 2, Sp(1)] → [S3 ∧RP 2, Sp(∞)/Sp(1)]

Since S3 ∧ RP 2 is 5-dimensional and Sp(∞)/Sp(1) is 6-connected, we obtain a group
isomorphism

[S3 ∧ RP 2, Sp(1)] ∼= [S3 ∧ RP 2, Sp(∞)].

On the other hand, one has a sequence of group isomorphisms

[S3 ∧ RP 2, Sp(∞)] ∼= [S4 ∧ RP 2, BSp(∞)] ∼= K̃O0(RP 2) ∼= Z/4,
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where the second and the last isomorphisms are due to Bott periodicity and a result of
Adams [2] respectively. Therefore we obtain

[S3 ∧ RP 2, SO(3)] ∼= Z/4

and, by (2.1), the proof is completed. ¤

Proof of Corollary 1.1. Note that the cofibration S3 ∧ RP 2 1∧ε̂−→ S3 ∧ SO(3) → S6 splits
as S3 ∧ SO(3) ' (S3 ∧ RP 2) ∨ S6. Then the Samelson product 〈ε3, ι〉 is factored as

S3 ∧ SO(3) ' (S3 ∧ RP 2) ∨ S6 〈ε3,ε̂〉∨α−−−−−→ SO(3)

by a map α : S6 → SO(3). One can see that α = π∗(〈ε̃3, ε̃3〉), when localized at any primes
but 2. It is well-known that the Samelson product 〈ε̃3, ε̃3〉 is a generator of π6(U(2)) ∼=
Z/12. Then we obtain that the order of α is a divisor of 12 and it is divisible by 3, since
π∗ : π6(U(2)) → π6(SO(3)) is an isomorphism. Hence, by Theorem 1.1, the order of
〈ε3, ι〉 = 〈ε3, ε̂〉 ∨ α is found to be 12. ¤

3. Proofs of Proposition 1.1 and Proposition 1.2

Proof of Proposition 1.1. The idea of the proof is due to [7]. Let e : BGk ' Mapk(S4, BSO(3)) →
BSO(3) denote the evaluation at the basepoint of BSO(3). By the fibration

Gk ' ΩBGk
Ωe−→ SO(3) Γk→ Ω3

0SO(3),

Gk can be considered as a homotopy fiber of the above map Γk. Then we shall analyze
the map Γk.

By Lang [8], it is shown that a homotopy class of Γk is ad3(〈kε3, ι〉). Since Samelson
products are bilinear, we have Γk ' kΓ1. By Corollary 1.1, the order of Γ1 is 12. Since
π∗(Ω3

0SO(3)) is finite for all ∗, it follows from Lemma 3.2 of [5] that Gk ' Gl if and only
if (12, k) = (12, l). Thus Proposition 1.1 is accomplished. ¤

Proof of Proposition 1.2. Consider the following homotopy sequence of the evaluation fi-
bration Ω3

0SO(3) → BGk
e→ BSO(3). Then we have an exact sequence

(3.1) 0 = π3(BSO(3)) → π2(Ω3
0SO(3)) ∼= Z/2 → π2(BGk)

e∗→ π2(BSO(3)) ∼= Z/2 → π1(Ω3
0SO(3)) ∼= Z/2 → π1(BGk) → π1(BSO(3)) = 0.

Since the order of the Samelson product 〈ε3, ε1〉 is 2, the order of its adjoint ad(〈ε3, ε1〉) =
[ad(ε3), ad(ε1)] is 2 as well. Then the generalized Whitehead product [kad(ε3), ad(ε1)] = 0
if and only if k ≡ 0 (2). Hence, by the exponential law, there exists a map α : S2 → BGk

satisfying the homotopy commutative diagram

S2

α

zzuuuuuuuuuu

ad(ε1)
²²

BGk
e // BSO(3)

if and only if k ≡ 0 (2). Since ad(ε1) is the inclusion of the 2-skeleton of BSO(3),
π0(Gk) ∼= π1(BGk) is obtained as in the statement by the exact sequence (3.1).

By the above argument, we have obtained π1(Gk) ∼= π2(BGk) ∼= Z/2 if k ≡ 1 (2). Then
we shall consider the case that k ≡ 0 (2) and have an exact sequence

(3.2) 0 → Z/2 → π2(BGk)
e∗→ π2(BSO(3)) = Z/2 → 0.
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By Theorem 1.1, we see that the order of ad(〈ε3, ε̂〉) = [ad(ε3), ad(ε̂)] is 4. Then the
generalized Whitehead product [kad(ε3), ad(ε1)] = 0 if and only if k ≡ 0 (4). Hence there
exists a map α̂ : ΣRP 2 → BGk satisfying the homotopy commutative diagram

ΣRP 2

ad(ε̂)
²²

α̂

zzuuuuuuuuu

BGk
e // BSO(3)

if and only if k ≡ 0 (4). Since ad(ε̂) is the inclusion of the 3-skeleton of BSO(3), we
obtain, by (3.2), that π1(Gk) ∼= π2(BGk) ∼= Z/2 ⊕ Z/2 when k ≡ 0 (4). On the other
hand, ΣRP 2 is the Moore space S2 ∪2 e3. Then one can see that if the order of each
element of π2(BGk) is 2, then there exists the above map α̂. Hence, by (3.2), we obtain
π1(Gk) ∼= π2(BGk) ∼= Z/4 when k ≡ 2 (4) and this completes the proof. ¤
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