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INTRODUCTION

In the paper [5], we proved Kato’s conjecture, that is, the finiteness of dominant
rational maps in the category of log schemes as a generalization of Kobayashi-Ochiai
theorem [4]. It guarantees the finiteness of K-rational points of a certain kind of
log smooth schemes for a big function field K, which gives rise to an evidence for
Lang’s conjecture. In the proof of the above theorem, the most essential part is the
rigidity theorem of log morphisms. In this paper, we would like to generalize it to
a semistable scheme over an arbitrary noetherian scheme.

Let f: X — S be a scheme of finite type over a locally noetherian scheme S.
We assume that f : X — S is a semistable scheme over S, namely, f is flat and,
for any morphism Spec(2) — S with  an algebraic closed field, the completion of
the local ring of X x g Spec(f2) at every closed point is isomorphic to a ring of the
type

Q[X1, ..., Xn]/ (X1 X))

Let g : Y — S be another semistable scheme over S, and let ¢ : X — Y be a
morphism over S. Let Mx, My and Mg be fine log structures on X, Y and S
respectively. We assume that (X, Mx) and (Y, My) are log smooth and integral
over (S, Mg) and ¢ is admissible with respect to My /Mg, i.e., for all s € S and
any irreducible components V of the geometric fiber X x g Spec(k(s)) over s,

(& x5 idgp 0 igayy) (V) € Supp(My /M)y gspec(n) -
where

Supp(My /Ms) ={y €Y | M

x . I~
s.aw) X Ov,y — My is not surjective}.

The following theorem is one of the main results of this paper.
Theorem A (Rigidity theorem). If we have log morphisms

(¢,h) + (X, Mx) — (Y,My) and (¢,1): (X, Mx)— (Y,My)
over (S, Mg) as extensions of ¢ : X — Y, then h=1h'.

For the proof of the above theorem, our starting point is the following local
structure theorem, which asserts the local description of integral and smooth log
morphisms of semistable schemes.
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Theorem B (Local structure theorem). Let (f,h) : (X, Mx) — (S,Mg) be a
smooth and integral morphism of fine log schemes. Let x be a point of X and
s = f(z). We assume that f : X — S is semistable at x, i.e., f is flat at x and,
for any morphism n : Spec(Q2) — S with Q an algebraic closed field and n(0) = s,
the completion of the local ring of X x g Spec(2) at every closed point lying over x
1s isomorphic to a ring of the type
Q[Xq, ..., X,]/ (X1 X7).
Then we have the following for each case:
L If f is smooth at z, then M x z ~ Mg s x N® for some non-negative integer
a.
II. If f is not smooth at x and hs : MS7§ — MX@ splits, then MX@ ~
Mg s x N, where N is the monoid arising from monomials of

Z[UL, Uy, ..., U,] /(U = U2)

for some a > 2.

II1. If f is not smooth at x and hy : Ms’g — MX@, does not split, then there
are integers a > 2 and b > 0, elements qo € Mg s\ {0} and B € Nb, and
homomorphisms o : N* — My z and 3 : N® — My z with the following
properties:

III.1. The diagram

N —>(qO7B) MS,E X Nb

al [t

Ne ¢ MX@
is commutative, where A and (qo, B) are homomorphisms given by
A(n) = (n,...,n) and (qo, B)(n) = (ngo,nB) respectively.
II1.2. The induced homomorphism

N*®p (Ms,g X Nb) — Mx;
is an isomorphism (For the definition of the integral tensor product
®n, see Conventions and terminology 7).

Based on the local structure theorem, the proof of the rigidity theorem is carried
out as follows: Clearly we may assume that S = Spec(A) for some noetherian local
ring (A, m). First we establish the theorem in the case where A is an algebraically
closed field. This was proved actually in the previous paper [5]. Next, by induction
on n, we see that the assertion holds for the case S = Spec(A4/m™). Finally, using
the Krull intersection theorem, we can conclude its proof.

In §1, we give the definition of semistable schemes and show their elementary
properties. In §2; we recall several facts concerning log schemes and prove the
local structure theorem. §3 contains the proof of the rigidity theorem. Several
applications of the rigidity theorem will be treated in the forthcoming paper [6].

Conventions and terminology. We will fix several conventions and terminology
of this paper.

1. Throughout this paper, a ring means a commutative ring with the unity.
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2. The set of all natural numbers starting from 0 is denoted by N, that is,
N=1{0,1,2,3,4,5,...}.

3. In this paper, the logarithmic structures of schemes means the sense of J.-M
Fontaine, L. Illusie, and K. Kato. For the details, we refer to [3]. For a log structure
Mx on a scheme X, we denote the quotient My /O% by M x.

4. Let X be a scheme and F a sheaf in the étale topology. For a point x € X, the
germ of F at x with respect to the Zariski topology (resp. the étale topology) is
denoted by F, (resp. F3).

5. Let a: Mx — Ox be a log structure on a scheme X. For x € X, an element
p € Mz is said to be regular if there is m € Mx z such that p is congruent to m
modulo O% . and a(m) is a regular element of Ox ;. Note that the regularity of p
does not depend on the choice of m.

6. Throughout this paper, a monoid is a commutative monoid with the unity. The
binary operation of a monoid is often written additively. We say a monoid P is
finitely generated if there are py,...,p, such that P = Np; + - -- + Np,.. Moreover
P is said to be integral if whenever = + z = y 4 z for some elements x,y, z € P, we
have x = y. An integral and finitely generated monoid is said to be fine. We say
P is sharp if whenever x 4+ y = 0 for some z,y € P, then z = y = 0. For a sharp
monoid P, an element x of P is said to be irreducible if whenever x = y + z for
some y, z € P, then either y = 0 or 2 = 0. A homomorphism f : ) — P of monoids
is said to be integral if it is injective and an equation

fle)+p=f(d)+p" (0, €Pq,qd €Q)

implies that p = f(q1)+p” and p’ = f(g2)+p” for some p” € P and some g, ¢2 € Q
with g + g1 = ¢’ + q2. Further we say an injective homomorphism f : Q — P splits
if there is a submonoid N of P such that the homomorphism f(Q) x N — P given
by (z,y) — x + y is an isomorphism.

7. Let f: Q@ — P and g : @ — R be homomorphisms of monoids. The integral
tensor product PQgR of P and R over @ is defined as follows: Let us consider a
relation ~ on P X R given by

(p.r) ~ @) = (f(@),9(d) + (p,7) = (f(d), 9(q)) + (p',7") for some ¢,¢" € Q.
It is easy to see that ~ is an equivalence relation on P x R. We set
PRoR =P x R/~ .

Note that P®gR is a monoid in the natural way and it is integral if so are P and
Q (for more details, see [6]).

8. Let X be a set. We denote the set of all maps X — N by NX. For T' € N¥,
Supp(T) is given by {z € X | T(z) > 0}. Moreover, for T, T" € NX,

T<T &L T(2) <T'(z) Vz € X.

In the case where X = {1,...,n}, NX is sometimes denoted by N".
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9. Let M be a monoid, X a finite subset of M and T € NX. For simplicity,
> zex T'(x)x is often denoted by T'- X. If we use the product symbol for the binary
operation of the monoid M, then [], . zT®) is written by X7. In particular,
if X = {X1,...,X,} and I € N, then I -X and X' means ), I(i)X; and
T, X ZI @ respectively according to a way of the binary operator of M. For exam-
ple, let A be a ring and R be either the ring of polynomials of n-variables over A,

or the ring of formal power series of n-variables over A, that is, R = A[X;,..., X,]
or A[X1,...,X,]. Note that R is a monoid with respect to the ring multiplication.
As before, for I € N the monomial Xll(l) e Xfl(") is denoted by X'.

10. Let f : @ — P be an integral homomorphism of fine and sharp monoids. In
the following, the binary operators of monoids are written in the additive way. For
a finite subset o of P, qp € @Q and A, B € N9, we say P has a semistable structure
(0,90, A, B) over Q (or P is of semistable type (o, qo, A, B) over Q) if the following
conditions are satisfied:

(1) go # 0, Supp(A) # 0 and A(z) is either 0 or 1 for all z € 0.

(2) P is generated by o and f(Q) and the natural homomorphism N — P
given by T +— T - ¢ is injective.

(3) Supp(A) NSupp(B) =0 and A -0 = f(qo) + B - 0.

(4) If we have a relation

T-0=f(q+T -0 (T,T' € N%)

with g # 0, then T'(z) > 0 for all x € Supp(A).

Let N — Q x No\Suwpp(8) and N — NSwP(A) he homomorphisms given by 1 +—
(f(0), Blo\supp(a)) and 1= Alg, ) respectively. It is known that the natural
homomorphism

(Q x No\Supp(A)) & NSupp(4) _, p

is bijective, where ®py is the integral tensor product (cf. [5, Proposition 2.2]).

11. Let (A, m) be a local ring. The henselization of A and the completion of A
with respect to m are denoted by A" and A respectively.

1. SEMISTABLE SCHEMES OVER A SCHEME

1.1. Algebraic preliminaries. In this subsection, we consider several lemmas
which will be used later. Let us begin with the following lemma.

Lemma 1.1.1. Let f : (A,ma) — (B, mp) be a local homomorphism of noetherian
local rings such that f induces an isomorphism A/ma4 — B/mp.
(1) Letxy,...,x, be generator of mp, i.e., mg = Bx1+- -+ Bx,. If (B,mp)
is complete, then, for any b € B, there is a sequence
{a(m,.4.,an)}(al,...,an)EN”
of elements of A indexed by N™ with
b= Z f(a(ah.--,an))f(ll1 R

(a1,...,an)EN"
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(2) Let xq,...,x, be elements of mp with mp = Bxy + -+ + Bxy, + maB. If
(A, ma) and (B,mp) are complete, then, for any b € B, there is a sequence

{a(al,‘..,an)}(al,..‘,an)GN”
of elements of A indexed by N™ with
b= Z F(@ay,.an)T]t -y

(atye.,an)ENT
Proof. (1) First we claim the following:
Claim 1.1.1.1.
d ai an d+1
mpC oY f(Aaf - +my

(a1,...,an)€EN"
a1+-+an=d

for all d > 0.

We prove this claim by induction on d. Since A/my ~ B/mpg, we have B =
f(A) +mp, which means that the assertion holds for d = 0. Thus

mp = (f(A) + mp)z1 + -+ (f(4A) + mp)z,
C f(A)zr+ -+ f(A)z, + mb,

which show that the assertion holds for d = 1, so that we assume d > 2. By the
hypothesis of induction,

m‘fg =mp ~m;l371

C (f(A)azr+ -+ f(A)zn +m3) - Yo fA)a e +my
(al,...,a;,)EN"
aj+---+al,=d—1

S Y f(Aafr el +mE

(a1,...,an)€EN"™
a1+--t+an=d

Hence we get the claim.

In order to complete the proof of (1), it is sufficient to see the following claim:

Claim 1.1.1.2. For all b € B, there is a sequence {bs}3>, of B such that
b€ Y, flA)afap

(ar,...,an)€EN"
ar+tan=d
and
b— (bo+ - +bg) € mG™

for all d > 0.

Since B = f(A) + mp, we can set b = by + ¢ with by € f(A) and ¢ € mp. We
assume that bg,...,bq_1 are given. Then, by Claim 1.1.1.1,

b—(bg+ -+ +bg_1) =bg+,

where by € Y (q,,.. an)en f(A)x]" - 2im and ¢ € m%. This yields the second

_ a1t +an=d
claim.
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(2) Let us choose y1, ...,y € A with mg =y1 A+ -+ 4+ y.A. Then
mp =18+ +z,B+ f(y1)B+ -+ f(y,)B.
Note that

" b be _ p(,b by n
oyt fpn)" e f )™ = f ) et
Therefore, since (A4, m4) is complete, using (1), for any b € B, there is a sequence
{@(arcc @ b1 k) F (@1, b by ) e v With

b= > F(@ar, o) ST 28 ()" - ()"

(a1,...,an,b1,...,b.)EN" XN

_ b1 b ay
= > f > Xay,oan brb) Y1 Y | 2T

(a1;...,an)EN™ (b1,--r,br)ENT
Thus we get (2). m|
Next let us consider the following lemma.

Lemma 1.1.2. Let (A, m) be a noetherian local ring and T € N"\ {(0,...,0)}. Let
G € m[X1,...,X,], R=A[X1,....X,]/(XT —=G) and 7 : A[X1,..., X, ] = R
the canonical homomorphism. Then we have the following:

(1) Let M be an A-submodule of A[X1,...,X,] given by

M = ZG,IXI‘QIGA
TLI

(¢f. Conventions and terminology 8 and 9). If (A,m) is complete, then
7|yt M — R is bijective.
(2) A[X1,..., X.]/(XT = G) is flat over A.

Proof. (1) We denote m(X;) by z;. First we claim the following:

Claim 1.1.2.1. For f € R, there is a sequence {F;,}22, in M such that F,41—F), €
m"[X1,...,Xy,] and f —w(F,) € m"R for allmn > 0.

We will construct a sequence {F,}2, inductively. Clearly we may set Fy = 0.
We assume that Fg, Fy, ..., F, have been constructed. Then we can set f—m(F,) =
7(H) +a2Tn(H') for some H, H' € m"[X1,...,X,] with H € M. Here 27w (H') =
7(G)n(H') € m" T R. Thus, if we set F,,41 = F, + H, then we get our desired
Fn+1.

The above claim shows that 7|,, is surjective. Next let us consider the injectivity
of m|,,. We assume

T ZaIXI =0.
TLI
Then there is H € A[Xy,...,X,] with

Y ax'=(X"-G)H.
TLI
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Here we set
G=> gX' and H=) hx"

IeNn IeNn
Then gr € m for all I and

doax'=) nx™- N < > thJ,) X1

TLI IeNn IeN™ \J+J'=I

On the left hand side of the above equation, there is no term of a form X/*7. Thus

hi= Y, gshy

J4+J'=I+T

for all I. Here we claim that h; € m™ for all n and all I. We see this fact by
induction n. First of all, since g; € m for all I, we have hy € m for all I. We
assume that h; € m™ for all I. By the above equation, we can see that h; € m"*1.
By this claim, A; must be zero for all I because ﬂn>0 m™ = 0. Therefore af = 0
for all I.

(2) If (A, m) is complete, then the assertion follows from (1) by Chase’s theorem
[2]. In general, let A be the completion of A and

~

R = A[Xy,..., X, ]/(XT - @G).
Then we have the following commutative diagram:

RL)R/

T b
A" A

Note that f/, h and b’ are faithfully flat. Thus so is f. O

Remark 1.1.3. Let A be a ring and A[Xy,...,X,] the polynomial ring of n-
variables over A. In the same way as in Lemma 1.1.2, we can see that R =
A[X1, ..., X,]/(XT —a) is flat over A for T € N*\ {(0,...,0)} and a € A. Indeed,
if we set

M= arX' € AXy,..., X ¢,
TLI

then the natural homomorphism 7 : M — R is bijective. The surjectivity of 7 is
obvious. We assume that an element Y a; X! of M is zero in R. Then

dax'=(XT-a)> b;Xx’
J

for some > by X7 € A[Xq,...,X,]. Thus b; = aby 7 for all J. Therefore b; =
a"bjmr for all m > 0. On the other hand, since >, by X7 € AlXy,..., Xy,
bjimr = 0if m > 0. Hence b; = 0 for all J.

We consider an approximation by an étale neighborhood.
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Proposition 1.1.4. Let (A,ma) be a noetherian local ring essentially of finite
type over an excellent discrete valuation ring or a field. Let f : X — Spec(A) be a
scheme of finite type over A. Let x be a point of X such that f(x) = ma and A/my
is naturally isomorphic to Ox /mx .. We assume that there are Fy,... F, €
AlX1, ..., X,] (the polynomial ring of n-variables over A) and an isomorphism

¢:A[Xy,..., X, ]/(Fy,..., F) =5 Ox.,

over A with #(X;) € Mx . for all i, where X; = X; mod (F1,...,F,). Then there
is an étale neighborhood (U,2') of X at x together with an étale morphism

p:U = Spec(ATh, .., Tl /(F(T), .., Fu(T)))
such that p(z') = (ma, Ty, ..., T,), where T; = T; mod (Fy(T),...,F.(T)).
Proof. First note that

Fi(o(X1),. ., 0(Xp)) =+ = F(¢(X1),...,0(X,)) = 0.
Thus, by Artin’s approximation theorem [1], there are t1,...,t, € (’)é‘mc such that
Fi(ty,...,tp) = =F.(t1,...,tp) =0

and t; — ¢(X;) € Mm%, for all i. Here we claim the following:
Claim 1.1.4.1.
mx,z = ¢(X1)@X,x et ¢(Xn)@x,z + mA@X,m
= tlé\X,m 4+ 4 tn@X,ac + mA@X,a:-
Clearly
mx.qz 2 ¢(X1)@X,m +oet ¢(Xn)@x,z + mA@X,x.
Conversely let us pick up f € mx . Then we can write f = ¢ (Z[ aI)_(I). If

,,,,,

contradiction. Thus a(o,... o) € ma, which means that
f S ¢(X1)OX,1 + -+ ¢(Xn)OX,x + mAOX,z~
Therefore we obtain
mX,:c = ¢(X1)OX,QC +-+ (b(Xn)OX,x + mAOX,x
Moreover, since t; — ¢(X;) € m% ,, we can see that
ﬁ/LX,z = tlé\X,m +-- tn@\X,r + mAé\X,z + ﬁ§(7’r
Hence, by Nakayama’s lemma, we have our desired result.

Let us choose an étale neighborhood (U,2’) of X at z with the same residue
fields such that tq,...,t, are defined over U. Here let us define a homomorphism

AT, T/ (Fu(T),. .., Fo(T)) — Ou e
to be (T;) = t; for all i. By the above claim, we can see
v my ) = (ma, T, ..., T,).
Thus it is sufficient to show that 1) is étale. Let
pi AT, T/ (B Fy) — ALX . XD /(B B
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be a homomorphism given by the composition of homomorphisms

—~ N . -1
ATy, .. T/(Fy, ... F) -5 Opa = Ox.p 2 A[X1, ..., X,u]/(F1,... Fy).
By the above claim and Lemma 1.1.1, p is surjective. Hence, by the following
Lemma 1.1.5, it must be an isomorphism. Therefore so is ¢). This means that 1 is
étale because x’ and (my,T1,...,T,) have the same residue field. o

Finally we consider the following lemma concerning the bijectivity of a ring
homomorphism.

Lemma 1.1.5. Let ¢ : A — A be an endomorphism of a noetherian ring. If ¢ is
surjective, then ¢ is injective.

Proof. We set I,, = Ker(¢™) for n > 1. Since ¢ is surjective, we can see that
¢(Ip+1) = I, for all n > 1. Moreover there is N > 1 such that Iy = Iy because
A is noetherian and I, C I,,41 for all n > 1. Therefore

Ker(¢) = I = ¢" (In41) = ¢~ (In) = {0}.
O

1.2. Semistable varieties and semistable schemes. Let k& be an algebraically
closed field and X an algebraic scheme over k. A closed point x of X is called a
semistable point of X if the completion of the local ring at z is isomorphic to a ring
of type
E[X1,..., Xn]/ (X1 X)).

The number [ is called the multiplicity of X at x, and is denoted by mult, (X).
Moreover we say X is a semistable variety over k if every closed point is a semistable
point. By the following Proposition 1.2.1, the set of all semistable points of X is
a Zariski open set. Thus we say a point « of X (x is not necessarily closed) is a
semistable point if there is a Zariski open set U of X such that x € U and every
closed point of U is a semistable point. Let {2 be an algebraically closed field such
that k is a subfield of Q2. Note that if X is a semistable variety over k, then so is
Xa = X Xgpec(r) Spec(£2) over Q (cf. Proposition 1.2.2).

Let S be a locally noetherian scheme and f : X — S a morphism of finite type.
First we assume that S = Spec(F') for some field F.. Let F be the algebraic closure
of I, X' = X Xgpee(r) Spec(F), and 7 : X’ — X the canonical morphism. A point
x of X is called a semistable point of X if every point 2’ of X' with 7(z') = z is
a semistable point. For a general S, we say f : X — S is semistable at z € X if
fis flat at x and x is a semistable point of the fiber f~!(f(x)) passing through x.
Moreover we say X is a semistable scheme over S if f is semistable at all points
of X. By Proposition 1.2.2, for a flat morphism f : X — S, X is a semistable
scheme over S if and only if, for any algebraically closed field €2, any morphism
Spec(2) — S and any closed point 2’ € X x g Spec(f2), the completion of the local
ring at z’ is isomorphic to a ring of type

QX1 .., Xu]/(X1 - X))

We say a semistable scheme X over S is proper if X is proper over S. Moreover a
proper semistable scheme X over S is said to be connected if f.(Ox) = Og.

In the remaining of this subsection, let us consider elementary properties of
semistable varieties.
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Proposition 1.2.1. Let X be an algebraic scheme over an algebraically closed field
k. If x is a semistable closed point of X, then there is a Zariski open set U of X
such that x € U and every closed point of U is a semistable point.

Proof. By Proposition 1.1.4, there are an étale neighborhood 7 : (U,z') —
(X, ) of  and an étale morphism

p:U — Spec(k[Th, ..., T,]/(Ty---T7))

with p(z’) = (0,...,0). Note that Spec(k[T4,...,T,]/(Th---T1)) is a semistable
variety over k. Thus so is U over k. Therefore every closed point of «(U) is a
semistable point. O

Proposition 1.2.2. Let X be an algebraic scheme over an algebraically closed
field k. Let Q be an algebraically closed field such that k is a subfield of ). Let
71 Xg = X Xspec(k) Spec(2) — X be the canonical morphism. For y € Xq, If
x = 7w(y) is a semistable point, then so is y.

Proof. Let U be an open set of X containing = such that every closed point of
U is a semistable point.

First we assume that y is a closed point. Let us choose a closed point o € mﬂ U.
By using Proposition 1.1.4 and shrinking U around o if necessarily, there are étale
morphisms

f:V—-U and g¢:V — W = Spec(k[Xy,...,X,]/(X1---X)))

of algebraic schemes over k and closed points o’ € V and o’ € W such that f(o') = o
and g(o’) = 0" =(0,...,0). Since z € U, 0 € {x} NU and f is faithfully flat at o/,
we can find 2’ € V with f(2') = 2 and o' € {2'}. Here we set

Uo=U X Spec(k) Spec(Q),
Va=V X Spec(k) SpeC(Q)v
WQ = Spec(Q[Xh ey Xn]/(Xl . Xl))

and the induced morphisms Vo — Uq and Vo — Wgq are denoted by fo and go
respectively. Then y € Ug. Let § : Spec(2) — Uq be the morphism induced by
y. Let k(y), x(z) and x(z’) be the residue fields of y, x and 2’ respectively. Then
there is an embedding ¢ : x(z') — Q over k such that the following diagram is
commutative:

k(z')

QL K(y) ()
This yields a morphism 3 : Spec(€2) — V, such that the diagram
Vo ——V

e b

Spec(Q) - Ug ——=U
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is commutative and the image of 7’ o 8 is a’. Let 3’ be the image of 8. Then
faly') = y. Note that fo and g are étale and the residue fields of y, 3y’ and
y" = ga(y’) are Q. Thus we can see that

OXQ,?J = OVsz,y/ = OWQJJ”'

We set ¢y’ = (a1,...,a,) € A"(2) and I = {i |a; =0and i =1,...,1}. Note that
I # ) because y’ € Wq. Therefore, if we set Z; = X; — a; and Z = [[,.; Z;, then
it is easy to see that

i€l

6Wsz7y” = Q[[Zlv cees Zﬂ]]/(Z)

Thus we get our lemma in the case where y is a closed point.

Next we consider a general case. We set Ug = 7~ 1(U). Then, by the previous
observation, every closed point of Ug is a semistable point. On the other hand,
y € Ug. Thus y is a semistable point. O

2. SOME FACTS OF LOG STRUCTURES

In this section, we consider several facts concerning log structures, which will be
used later.

2.1. Ring extension for a good chart. Here we consider a ring extension to get
a good chart.

Proposition 2.1.1. Let (A,m) be a noetherian local ring, S = Spec(A) and s
the closed point of S. Let Mg be a fine log structure on S. Then there is a local
homomorphism f : (A,m) — (B,n) of noetherian local rings with the following
properties:

(1) B/n is algebraic over A/m, and f is flat and quasi-finite.

(2) Let f*: S’ = Spec(B) — S = Spec(A) be the induced morphism, s’ the
closed point of S’ = Spec(B), and Mg = (f*)*(Ms). There are a fine
and sharp monoid QQ and a homomorphism g : Q — Mg/ s such that
Q — Mg 5 — Mg 3 is bijective.

Proof. Let us begin with the following lemma:
Lemma 2.1.2. Let G be a finitely generated abelian group and R a ring. Let us

fix an element 6 of Extl(G,RX). Then there are uy,...,u; € R* and integers
ai,-..,a; > 2 with the following property:

(1) The product ay - - - a; of integers ay, ..., a; is equal to the order of the torsion
part of G.

(2) For any homomorphism f : R — S of rings, if there are v1,...,v; € S with
vt = f(u;) for all i, then the image of § via the canonical homomorphism

Ext'(G, R*) — Ext'(G, S*)
1S zero.

Proof. By the fundamental theorem of abelian groups, we have the following
exact sequence:

7v G 0,
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where ¢ is given by o(z1,...,2;) = (a1x1,...,412;,0,...,0) for some integers
ai,...,a; > 2. Note that a;---a; is equal to the order of the torsion part of
G. The above exact sequence yields an exact sequence

PR

Hom(Z", R*) —%— Hom(Z',R*) —*f— Ext}(G,R*) —— Ext'(Z! R¥).
Note that Ext!(Z", R*) = {0}. Thus there is h € Hom(Z!, R*) with ag(h) = 6.
We set u; = h(e;) for i = 1,...,1, where {ey,..., ¢} is the standard basis of Z'.

Let f : R — S be any homomorphism of rings with v{* = f(w;) (i =1,...,1) for
some v1,...,u € S. Let us consider the following commutative diagram:

Hom(Z", R*) —2" Hom(Z!, R*) —% Ext'(G,R*) —— 0

911 92J gsl
b5 as

Hom(Z",8*) —=— Hom(Z!, §*) —*— Ext}(G,8%) —— 0
Note that ga(h)(e;) = f(ug) for i = 1,...,1. Thus, if we set h’ € Hom(Z",S*) by

Cifi=1....1
h/ . — Ul 1 b
(e2) {o i1

then ¢%(h') = g2(h). Therefore

93(0) = gs(ar(h)) = as(g2(h) = as(és(h')) = 0.
o

Let us start the proof of Proposition 2.1.1. Let § € Extl(ﬂ'?;;,og 5) be the
extension class of
0— (9;5 - Mg.rg - M%fg — 0.
Then, by Lemma 2.1.2, there are uq,...,u; € ng’g and integers aq,...,a; with the

properties as in Lemma 2.1.2. Let us choose an étale neighborhood (U, u) of s such
that us,...,u € OF . Let B be the localization of

OU7U[X1,...,XZ}/(X111 7U1,...,Xlal 7ul).

at a closed point over u. Then B is flat and quasi-finite over A. Let v; be the
class of X; in B. Note that v;"* = u; in B for all . Let s’ be the closed point of
S’ = Spec(B), m : S’ — S the canonical morphism, and Mg = 7*(Mg). Then we
have an exact sequence
0— 05 o — Mg, — M, — 0.

Since Mg ;, is the push-out O§,7§/®O§§M 45 (cf. Conventions and terminology 7),
we can see that M? e = M‘gg and the extension class &' of the above exact sequence

is the image of the canonical homomorphism Ext! (M‘gg, 054 — Ext! (M‘Z«C 505 5
Thus, by Lemma 2.1.2, § = 0. Therefore we have a splitting s : M?;j/ — Mg
of Mg/ o — MY, . Here we set Q = Mg . Let us see that s(q) € Mg g for
all ¢ € Q. Indeed, if we denote Mg, ., — MY, by m, then m(s(q)) = q. Thus
there are u € (’);,75, and m € Mg 5 with s(q) = m - u, which implies s(q) € Mg 5.
Moreover ) — Mg/ 7 — Mg 5 is the identity map. Further, changing S’ by an
étale neighborhood of S/, we may assume that @ — Mg 5 is defined on S’ O
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2.2. The support of log structures. In this subsection, we consider the support
of log structures. The main result of this subsection is the following proposition:

Proposition 2.2.1. Let X be a scheme and let M and N be fine log structures on
X. Let h: N — M be a homomorphism of log structures, i.e., a homomorphism of
sheaves of monoids with the following diagram commutative:

N— s

N,

Then the set {x € X | hz : Nz — My is surjective} 18 open.

Proof. 1t is sufficient to show that if h; : Nz — Mj; is surjective, then there
is an étale neighborhood U of z such that, for all y € U, hy : Ny — Mjy is
surjective. By virtue of [3, (2.8)], for a suitable étale neighborhood U of x, there are
finitely generated monoids P and @ together with homomorphisms 7 : P — M|,
p:@Q — Nl and f:Q — P such that 7 and p give rise to local charts of M and
N respectively and the diagram

Q# P

a |

N|UL M|y,

is commutative. Let {p1,...,pn} and {q1,...,q.} be generators of P and @ respec-

tively. Renumbering py,...,p, and q1,...,q,, we may assume that
T(p1),. .., 7T(pw) € O;((,i’ T(Pnr1)s -+ T(Pn) gOX z
/’L(QI)a s 7M(qr’) € O;((’ja M(qr’+1)7 ceey IU/(qT) g X’;f;'

Let Py and Qg be submonoids of P and @ generated by p1,...,pn and q1,..., ¢
respectively. Let us see the following:

Claim 2.2.1.1. w{l((?;;’j) = Py and ,u;l((’);(j) = Qo-
Clearly Py C wgl((’);i). Conversely we assume that w € wgl((’);(@). We set
w = pi*---p%. Then
m(w) =7(p1)™ - 7w(pn)* € (Q)X(:E
Therefore, if a; > 0, then 7(p;) € (9;((@. Hence a; = 0 for all 7 > n/, which means
that w € Fy. In the same way, we can see that u;l(O)X(j) = Qo-

Claim 2.2.1.2. Forz € X, h; : N; — M; is surjective if and only ifhz : Nz — M
18 surjective.

Clearly, if hy : N; — M; is surjective, then so is hz : Nz — M. Conversely we
assume that hz : N; — M is surjective. Let m be an element of M. Then there
is n € N; such that m = hz(n) mod O% ., i.e., m = uhz(n) for some u € Ox ,
Thus m = uhz(n) = hz(un).

Shrinking U if necessarily, we may assume that

m(p1),...w(pw) € O%y and  plqr),...,u(ar) € Ox 4
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for all y € U. Let us check that hy : Ny — My is surjective for all y € U, which
is equivalent to show that hy : Ng — Hg is surjective by Claim 2.2.1.2. Note that
the commutative diagram

Q —L - p
m|
— ﬁg —
Ng E—— Mg

gives rise to the commutative diagram

Q/Mg;l(ogz,g) - P/W;I(O;(,y)

l

N

such that the vertical homomorphisms are bijective (cf. [3] and [5]). Therefore it
is sufficient to see that

; N M,

Q/ﬂ;l(();(,g) - P/ﬁggl(O;(,g)
is surjective. Note that Qo C u§1(0§7g) and Py C wgl(O;g). Thus we get the
following commutative diagram:

Q/Qo — P[Py

| l
Q/uz (0% ;) —— P/m; (0% ).

Here, by Claim 2.2.1.1, Q/Qo — P/ P, is surjective because Nz — M is surjective.
Hence so is Q/ug_l((ﬂ;(@) — P/W§1(0§7g). O

Corollary 2.2.2. Let X be a scheme and M a fine log structure on X. Then the
set Supp(M) = {x € X | Mz is not trivial } is closed.

Proof. There is a natural homomorphism O% — M. Thus this is a consequence
of the above proposition. |

Corollary 2.2.3. Let X and Y be schemes and let M and N be fine log structures
on X andY respectively. Let (f,h): (X,M) — (Y,N) be a log morphism.
(1) The set

Supp(M/N)={z € X | Niiy % Ox.z — Mz is not surjective}

is closed.
2) Let p: 8" — S be a morphism of schemes and X' = X xgS'. We set the
(2) Letp P

induced morphisms as follows:

X 2 x
fl lf’
S 2 g,

Then p'~" (Supp(M/N)) = Supp(p"*(M)/p*(N)).
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Proof. (1) Note that the surjectivity of Ny ¥ O%x.: — Mz is equivalent to
the surjectivity of f*(N)z — Mjz. Thus it follows from Proposition 2.2.1.

(2) For 2’ € X', we set x = p/(2). Note that p’*(f*(N)) = f"*(p*(N)). Thus
we have a commutative diagram:

z T Pl*(M)gE/

M.
Fr(N)y —— [ (p*(N)) -
Then, by Lemma 3.2, the horizontal homomorphisms v’ and v are bijective. Hence,
by using Claim 2.2.1.2 of Proposition 2.2.1, we have (2). O

3. LOCAL STRUCTURE THEOREM

In this section, we consider the following fundamental structure theorem of this
paper.

Theorem 3.1 (Local structure theorem). Let (f,h) : (X,Mx) — (S, Mg) be a
smooth and integral morphism of fine log schemes. Let x be a point of X and
s = f(z). We assume that f : X — S is semistable at x. Then we have the
following:
(1) If f is smooth at x, then there is a submonoid N of M x z such that M x z =
hz(Msz) x N and N is isomorphic to N® for some non-negative integer
a. Moreover every element of N is reqular (For the definition of regularity,
see Conventions and terminology 5).
(2) If f is not smooth at x and hy : Ms,g — MX@ splits, there is a submonoid
N of MX@ such that MX@ = Bj(ﬂsyg) x N and N is isomorphic to the
monoid arising from monomials of

Z[UL, Uy, ..., U,] /(U — U2)

for some a > 2. In this case, the characteristic of the residue field of Ox z
is mot equal to 2, and every element of N is reqular.

(3) If f is not smooth at x and hz : Mss — Mx z does not split, then M x z
has a semistable structure (o, qo, A, B) over MS7§ for some o C MX@ with
#(0) > 2, qo € Mss and A,B € N° (For the definition of semistable
structure, see Conventions and terminology 10). More precisely, o is the
set of all irreducible elements of M x z not lying in hz(Ms5). Further every
element of o \ Supp(A) is regular.

Proof. Let us begin with the following lemma.

Lemma 3.2. Let f : X — Y be a morphism of schemes and My a fine log structure
onY. If we set Mx = f*(My), then, for any x € X andy € Y withy = f(x), the
induced homomorphism My .z — M x z is bijective.

Proof. Let P be a chart of My y. Then My’g and MX@ are given by
P/a=H(0y,) and P/x'TH(0%,)

respectively, where 7 : P — Oy is the canonical morphism and 7’ : P — Oy,5 —
Oxz (cf. [3] and [5]). Thus it is sufficient to see that 7—'(Oy ;) = 77’71((9;(@).
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Indeed, letting mz and my be the maximal ideals of Ox z and Oy g, and a : Oy,5 —
Ox z the canonical homomorphism,

pen N (03,) = n(p) € O3, = a(n(p) € 0%, <= pen ' (0%,)
because a(my) € mz and a(Oy ;) C O% ;. O

Let us go back to the proof of Theorem 3.1. Let us consider the geometric
fiber X xg Spec(k(s)) over s. Then, by using Lemma 3.2, we may assume that
S = Spec(k) for some algebraically closed field k. Thus the theorem follows from

[5, Theorem 3.1] except the following facts:

(i) In the case (2), N is isomorphic to the monoid 7" arising from monomials
of

Z[Uy,Us, ..., U/ (U — U3).
(ii) In the case (2) or (3), the regularity of elements of either N or o\ Supp(A).

(i) Let T be the the monoid arising from monomials of
kU1, Us, ..., Ud) /(U — U3).

In order to see (i), we need to show the natural homomorphism T — T}, is bi-
jective. Let U;*Us? -+ Uge and Ule/l U;é ..U be elements of T. Clearly we may
assume that ey, e} € {0,1}. We suppose that Ui U2 ---Uls = Uflllj;; TS in
k[U1,Us,...,U,)/ (U2 — U3). Then there is ¢ € k[Un, .. ..U, with

UaUe ... Uss —USUS ... U = (U2 - U2

Comparing the degrees with respect to U; of both sides, we can see that ¢ = 0.

Therefore (ey,...,eq) = (€],...,€L).

(ii) Let (Og,5,mg,s) — (A, m) be a flat local homomorphism of local rings. We
set S’ = Spec(4), X' = X xg 5" and the induced morphisms as follows:

X’LX

f/l lf
s = 8.

Let us choose 2’ € X’ with f'(2’) = m and 7'(2’) = . Then, since Ox ; — Ox/ 4
is faithfully flat, using Lemma 3.2, if regularity holds at z’, then so does at x.

Let k£ be the algebraic closure of the residue field at x. Note that by virtue of
[EGA III, Chapter 0, 10.3.1], there are a noetherian local ring (A, m) and a local
homomorphism (Og s, mg,s) — (A,m) such that mg A = m, A/m is isomorphic
to k over Og s/ms s and that A is flat over Og ;. Therefore we may assume that
Os,s/mg, s is algebraically closed and z is a closed point. Moreover, by using Propo-
sition 2.1.1, we may further assume that there are a fine and sharp monoid @ and
a homomorphism 7g : QQ — Mg s such that Q — Mg s — M&g is bijective. Hence,
by [5], there is a fine and sharp monoid P together with homomorphisms f : Q@ — P
and mp : P — Mx 5 such that the following properties are satisfied:
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(a) The diagram
f

—

P
ﬂQJ/ J/Wp
Ms,g R MX,i7
is commutative.

(b) The induced homomorphism P — My z — M x z is bijective.
(¢) The natural homomorphism

Os,5s @04 ,1q] Os,5[P] — Ox s

is smooth.
Since Os s @0y ,[q) Os,5[P] — Ox s is smooth, it is sufficient to see the regularity
of each element in Og 5 @0, ,[q] Os,s[P]-
If there is a submonoid N of P with P = f(Q) x N, then

Oss R0s :[Q] Os5[P] = Os 5[N]

Thus the assertions follow from Lemma 3.3 below.

Next we assume that f : Q — P does not splits. Let us set o = {p1,...,p,} such
that Supp(A) = {p1,...,p}. Moreover we set x; = a(mp(p;)) and t = B(mg(q0)),
where a : Mx — Ox and 3 : Mss — Og;s are the canonical homomorphisms.
Then

0575 ®Os,g[Q] OS,g[P] = Os,g[Xl, - ,XT]/(X1 - X - tleril .. .X}f’")7

where b; = B(p;) and z; is the class of X;. Thus the assertions follow from
Lemma 3.3 below. O

Lemma 3.3. Let A be a ring. Then we have the following:

(1) Let A[X] be the polynomial ring of one variable over A. For a regular
element a € A, X is reqular in A[X]/(X? — a), that is, the multiplication
of X in A[X]/(X? — a) is injective.

(2) We assume A is a local ring with the mazimal ideal m. Let A[Xq,...,X]]
be the polynomial ring of l-variables over A. For a € m, let us consider
a ring R given by R = A[X1,...,Xi]/(X1---X; —a). If o is a regular
element of A, then so is a in R.

Proof. (1) We assume that X f(X) = (X% — a)g(X) for some f(X),g(X) €
A[X]. We set g(X) = Xh(X) + c for some h(X) € A[X] and ¢ € A. Then

ca = X(h(X)(X? —a) +cX — f(X)).
Thus, ca = 0. Since a is regular, ¢ must be zero. Therefore
XF(X) = X(X2 — a)h(X),
which implies f(X) = (X2 — a)h(X) because X is regular in A[X].

(2) Let R be the completion with respect to (m, X1,...,X,). Since R — R is
faithfully flat, it is sufficient to see the homomorphism « : R—R given by the
multiplication of « is injective. Note that R is the direct products of many copies
of A by Lemma 1.1.2. Thus & is injective. O
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Remark 3.4. The semistable structure of hz : Mgz — My in the case (3) of
Theorem 3.1 is uniquely determined by virtue of a result in [6], which is not needed
in this paper.

4. RIGIDITY THEOREM

First of all, we would like to define the admissibility of morphisms. Let k£ be an
algebraically closed field, and let ¢ : X — Y be a morphism of algebraic schemes
over k. Let Z be a subscheme of Y. We say ¢ is admissible with respect to Z if, for
any irreducible component X’ of X, ¢(X') ¢ Z.

Let f: X — Sand g:Y — S be schemes of finite type over a locally noetherian
scheme S, and let My and Mg be fine log structures of Y and S such that g
extends to a log morphism (Y, My ) — (5, Mg). As in Corollary 2.2.3, the closed
set Supp(My /Mg) is given by

lyeY | M x Oy, — My, is not surjective}.

9(v)

Let ¢ : X — Y be a morphism over S. For a point s € S, wesay ¢ : X — Y is
admissible over s with respect to My /Mg, if

¢ xsidg ) P X Xs Spec(k(s)) — Y xg Spec(x(s))
is admissible with respect to Supp(My/MS)|YXSSpeC(®). If¢: X — Y is admis-
sible over any points of S with respect to My /Mg, then ¢ is said to be admissible
with respect to My /[Mg. By (2) of Corollary 2.2.3, ¢ is admissible over s with
respect to Mx /Mg if and only if

¢ xsidg ) P X Xs Spec(k(s)) — Y xg Spec(x(s))
is admissible with respect to (MY|YXSSpec(@))/(MS‘Spec(@))'
The following theorem is the main theorem of this paper.

Theorem 4.1. Let X, Y and S be locally noetherian schemes, and let Mx, My
and Mg be fine log structures of X, Y and S respectively. Let (X, Mx) — (S, Mg)
and (Y, My) — (S, Mg) be integral and log smooth morphisms, and let ¢ : X — Y
be a morphism over S. Let us fix a point s € S. We assume that X — S and
Y — S are semistable at any points lying over s and that ¢ : X — Y is admissible
over s with respect to My [Mg. If

(¢,h) : (X, Mx) — (Y, My) and (¢,h'): (X, Mx)— (Y, My)

are extensions of ¢ : X — Y as log morphisms over (S, Mg), then, for all closed
points x lying over s, hy = hy as homomorphisms MY@ — Mx z of the germs
of étale topology.

Proof. Since this is a local problem, we may assume that S = Spec(A) for a
noetherian local ring (A, m). Let p: (A,m) — (B, n) be a local homomorphism of
local rings such that B/n is algebraic over A/m. We denote the closed point of S by
s and the closed point of S” = Spec(B) by s’. Weset X' = X xg S, Y' =Y xg5,
MX/ = ﬂ}(Mx), My/ = W;‘/(My), and MS/ = ﬂg(Ms), where X X — X,
my : Y’ — Y and g : S’ — S are the canonical morphisms. Let ¢g : X’ — Y’ be
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the morphism given by ¢gr = ¢ xgidg.

X’—>X

4o l\
Then we have log morphisms

Y/
(¢s7,hs), (dsr, hg) + (X', Mxr) — (Y, My)
over (S’,Mg), where hg and hly, are the homomorphisms induced by h and b/
respectively.

Claim 4.1.1. If p is flat and hs' z = hlg, 5 for all closed points x' lying over s,
then hy = hl, for all closed points x lying over s.

Let us choose a closed point € X over s. Then there is a closed point 2’ € X’
such that mx(2') = x and 2’ is lying over s'. If we set y = ¢(z) and y' = ¢g/ ('),
then 7y (y') = y. Here we consider the natural commutative diagram:

My ; —> My

hml ih; J{ES',FE'_EIS’,M

MX,:E > MX’,EZ’

By Lemma 3.2, Myy — My/ o and MXZ — MXr 7 are bijective. Thus we can
see that hy = h’ Let us pick up w € My 5. Then, since hz = h, there is u € O%
with hz(w) = hz(w) - u. Here hgr z7 = h's, ;. Thus u must be 1 in Ox/ 5. Note
that Ox/ 7 is flat over Ox z. Therefore u is the identity in Ox z.

Let I be an ideal of A with I? = {0}, and B = A/I. Next we consider a case
where p is given by the natural homomorphism A — B.

Claim 4.1.2. We assume that (i) k = A/m is algebraically closed and (ii) there
are a fine and sharp monoid ) and a homomorphism mg : Q — Mg s such that
Q — Mg s — Mg is bijective. If hg z = h’s,’i, for all closed points =’ lying over
s', then hz = hl for all closed points x lying over s.

Let 2 be a closed point of X lying over s, and y = ¢(x). First of all, by [5], there
are finite and sharp monoids P and P’ and homomorphisms P — Mx z, Q@ — P,
P’ — My, Q — P’ with the following properties:

(1) The induced homomorphisms P — Mx z — M x z and P’ — My g — My’g
are bijective.
(2) The following diagrams are commutative:

Q = r @ Lo P

l Lo l

Mgs —— Mxz, Mgs ——— Myy.
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(3) There are étale neighborhoods (U,z’) and (V,y') of x and y such that
P — Mx z and P — My 5 are defined over U and V respectively, and that
the natural morphisms

U — Spec(A ®ajq) A[P]) and V — Spec(A ®4(q1) A[P'])

are smooth at z’ and 3’ respectively.

Clearly we may assume that P, P’ and Q) are submonoids of My z, My, and Mg s
respectively. We set U = U xg Spec(k(s)), Vs = V xg Spec(k($)), ¢ps = ¢ Xg
idSpec(fs(s))a MUS = MX|US’ _]\4'\/S = MY|VS and Mk = MS|Spec(fi(s))' By Lemma 4.3
below, the admissibility of ¢, guarantees that for any irreducible components T' of
Us, ng(T) g Supp(MVs/Mk)'

Let o (resp. o’) be the set of all irreducible elements of P not lying in f(Q) (resp.
the set of all irreducible elements of P’ not lying in f'(Q)). For j € o and i € o/, we
denote a(j) by z; and (i) by y;, where a : Mx ; — Ox 3 and o : My,53 — Oy
are the canonical homomorphisms. Moreover ;vj\Us and yl\v are denoted by x;,
and y;s respectively. Let us consider h and h’ on the fibers X; = X x g Spec(x(s))
and Y, = Y x g Spec(x(s)) over s. Using Lemma 3.2 and [5, Theorem 4.1}, hy = h’,
as P’ — P. Thus we can set as follows:

(4.1.3) he(i) = ui- (I -0+ f(g;)) and  hi(i) =ui- (- o+ f(a:)),
where ¢; € Q, I; € N and u;, uj € O% ;. Then we have
(4.1.4) ¢ (yi) = B(gs) - =" - uy = Blgs) - & - i,

where 5 : Mg s — Og s is the canonical homomorphism. We claim the following:

/!

(4.1.5) If ¢*(yis) # 0 for some i € o’, then ¢; = 0 and ¢ (y;) = 't - u; = 27 - .
Indeed, by (4.1.4), ¢*(yis) = Bs(qi) - ¥l - u;s on Us, where 35 : Q — k is a homo-

morphism given by
1 ifg=0
Bs(q) = {

0 otherwise

and u;s = ui|Us. Thus ¢; = 0, which yields ¢*(y;) = % - u; = 2% - .

Here we consider the following four cases:

(A) f:Q — P splits and f': Q — P’ splits.

(B) f:Q — P does not split and f': Q — P’ splits.

(C) f:Q — P splits and f': Q — P’ does not split.

(D) f:@Q — P does not split and f’: @ — P’ does not split.

(Case A): In this case, there are submonoids N and N’ of P and P’ respectively
such that P = f(Q) x N and P’ = f(Q) x N’'. Note that o and ¢’ are nothing
more than the set of all irreducible elements of N and N’ respectively. Then, by
the local structure theorem (cf. Theorem 3.1),

Supp(My, /M) = | J {is = 0}.
i€o’
around y’ on V;. Thus, using the admissibility of ¢, ¢*(yis) # 0. Hence, by (4.1.5),

¢; =0 and 2! - u; = 2% - for all i € o’. Therefore u; = v/ for all i € o’ because
x;’s are regular elements (cf. Theorem 3.1).



RIGIDITY OF LOG MORPHISMS 21

(Case B): In this case, there is a submonoid N’ of P’ such that P’ = f/(Q) x N'.
Moreover P is of semistable type

(Ja q0, Aa B)

over @) for some gy € @ and A, B € N?. By the local structure theorem (cf.
Theorem 3.1),
Supp(My, /My) = | {yis = 0}
i€o’

around y’ on Vi. Thus, by the admissibility of ¢, ¢%(yis) ;é 0. Therefore, by
(4.1.5), ¢ = 0 and ¢*(y;) = afi - u; = 2l -} for all i € ¢/. Since U; is given
by H]ESupp(A) zjs = 0, if j € Supp(L;) N Supp( ), then ¢%(y;s) = 0 on the irre-
ducible component {z;; = 0} of U,. This contradicts to the admissibility of ¢s.
Hence Supp(Z;) N Supp(A) = 0 for all i € o/. Thus x!i’s are regular elements (cf.
Theorem 3.1). Therefore u; = u} for all ¢ € o’.

(Case C): In this case, there is a submonoid N of P with P = f(Q) x N. P’ is
of semistable type

(0,90, A", B)
over @ for some ¢ € Q and A/, B’ € N°'. Note that

Supp(My, /M) = Sing(V.)U | ) {yis =0}
1€c’\Supp(A’)

around y" on V; (cf. Theorem 3.1).

Let us see that if ¢ (y;s) # 0 for some i € o/, then ¢; = 0 and u; = u}. Indeed,

by (4.1.5), we have ¢; = 0 and ! - u; = i - /. Thus u; = u} because x!i’s are

regular elements (cf. Theorem 3.1).

Therefore we may assume that there is i € o' with ¢%(y;,s) = 0. By using
the admissibility of ¢s, ¢*(yis) # 0 for i € o’ \ Supp(A’). Thus iy € Supp(A’).
Moreover, if ¢*(yi,s) = 0 for i1 € Supp(A’) \ {io}, then

¢s(Us) € {Yios = yirs = 0} C Sing(Vs),
which contradicts to the admissibility of ¢s. Thus ¢¥(y;s) # 0 for all i € o’ \ {io}.
Hence u; = u} for all i € ¢’ \ {ip}. Let us consider a relation
Ao =f(g)+B o
Then we have
ZiESupp(A’) h‘i(l) = f( ) + ZzESupp (B") B (7’) ( )
ZieSupp(A’) h% (Z) = f( ) + ZzESupp(B’ (Z) ( )

Here hz(i) = h%(7) for all i # ip. Thus we can see that hz(ig) = h%(ig).

R\\ ii\

(Case D): In the final case, P and P’ are of semistable type
(0,90,A,B) and (o’,qp,A',B')

over ) for some qo,q), € Q, A,B € N” and A’ B’ € N°'. For j € Supp(A) and
i € Supp(A’), let Ujs and Vs be the irreducible components of Uy and V; given by
zjs = 0 and y;s = 0 respectively. By the admissibility of ¢, for each j € Supp(A),
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there is a unique 7 € Supp(A’) with ¢5(U;s) C Vis. This 7 is denoted by u(j). Note
that
Supp(My, /My) = Sing(V;) U U  {w=0}
i€o’\Supp(A’)
around ' on V. Here we claim the following:
(i) If i # p(j) for i € 0" and j € Supp(A), then ¢*(y;)ly,, # 0.
(ii) If there is j € Supp(A) with i # u(j), then ¢; = 0 and ¢*(y;) = 2l - u; =
xli -l

(iii) If i ¢ L(Supp(A)), then ¢; = 0 and u; = u}.

(iv) If 4,4 € Supp(A’) and i # ', then Supp(I;) N Supp(ly) = 0.
(i) is obvious by the admissibility of ¢s. (ii) is a consequence of (i) and (4.1.5). Let
us see (iii). By (ii), ¢ = 0 and ¢*(y;) = x!i - w; = 2! - ). Using (i), ¢*(yi)|UJS #0
for all j € Supp(A). Thus Supp(Z;) N Supp(A) = @. Hence x!i is a regular element
(cf. Theorem 3.1). Therefore u; = u. Finally we consider (iv). We assume that
4 € Supp(I;) N Supp(Zyr). Then, since ¢*(y;) = B(q) - " - u; for all [ € o,

¢(Ujs) € {yis = yirs = 0} C Sing(Vy),
which contradicts to the admissibility of ¢s.

First we consider the case where #u(Supp(A)) = 1, i.e., u(Supp(A)) = {ig} for
some g € Supp(A’). Then, by (iii), for i # ig, ¢; = 0 and u; = u}. Considering a
relation:

A/'O—/ — f/(q6)+B/_o_/’
we have
Yiesupp(ar) ha (@) = f(a0) + Xiesupp(p) B (D) hz
> iesupp(any P (1) = F(a0) + Xicsupp(n B (D)% (1)
Since hz (i) = h () for all i # ig, we can see that hz(ig) = h%(ig).

Next let us consider the case where #u(Supp(A)) > 2. In this case, by (ii),
¢; = 0 and ¢*(y;) = aft - u; = 2% -} for all i € o/. Moreover, by (iii), u; = u}
for all i € ¢’ \ Supp(A’). By our assumption, u; = u; mod IOx ;. Note that z;
(J & Supp(A)) is regular. Thus, if we set I} = Ii|g,,,a) € NSupP(2) " then

aliou; =2l
for all ¢ € Supp(A’). By (iv), Supp(I}) N Supp(I},) = 0 for all i # ¢’ € Supp(A”).
Further let us consider a relation
Ao = f(q))+ B -o'.
Since hz (i) = h% (i) for all o’ \ Supp(A’), we have
Yo k()= Y ),
i€Supp(A’) i€Supp(A’)

which implies [[;cquppan i = [Licsupp(ar wi- Here we set v; = w;/uj for i €
Supp(A). Then, gathering the above observations, we have seen that

zli = 2Ti ., for all i € Supp(A),

v; =1 mod IOx ; for all i € Supp(A’),

HiESupp(A’) vi =1,

Supp(I}) N Supp(I},) = 0 for all i # ¢’ € Supp(A).
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Since A® 4(q) A[P] — Ouy,u is smooth, A® 4] A[P x N°] — Oy, is étale for some
e > 0. Let o be the origin of Spec(A ®4;q) A[P x N°]). Then the residue field of
A ®@41q) A[P x N° at 0 is k. Moreover the residue fields of Oy, and Ox z are k
because k is algebraically closed. Therefore the completion of A ® 4o A[P x N¢|
at o is isomorphic to the completion of Ox z. Thus, by Lemma 4.4 below, v; = 1,
that is, u; = u} for all i € Supp(A’).

Let k = A/m and k the algebraic closure of k. By virtue of [EGA III, Chapter 0,
10.3.1], there are a noetherian local ring (B, n) and a local homomorphism A — B
such that mB = n, B/n is isomorphic to k over k = A/m and that B is flat
over A. Thus, by Claim 4.1.1, we may assume that the residue field k = A/m is
algebraically closed. Moreover, by Proposition 2.1.1, we may further assume that
there are a find and sharp monoid @ and a homomorphism 7¢g : @ — Mg s such
that Q@ — Mg ; — Ms’g is bijective.

Let A; = A/m**t, p; : A; — A;_; the canonical homomorphism and I; =
Ker(p;). Then Ag = k and I2 = {0} for i > 1. We set X; = X xgSpec(4;), Mx, =
Mxl|x,, Yi =Y xg Spec(4;), My, = Myly.. Moreover the induced morphisms
My, — My, and My, — Mx, via h and ' are denoted by h; and h/ respectively.
Note that hg = hj, at any closed points of X by [5]. By Claim 4.1.2, h,, = h,, at
any closed points lying over s implies that hy,11 = h;,,; at any closed points lying
over s. Therefore we have h, = h], at any closed points of X, for all n > 0. Let
x be a closed point of X over s and y = ¢(x). Since hz = h, as a homomorphism
Myy — Mx gz, for w € Myy, there is u € Ok ; with hz(w) = h/;(w) - u. Since
hyn = hl,, we can see that u — 1 € m"“@x,f. Note that Ox z is noetherian, which
implies that (0, _, m""'Ox z = {0}. Therefore u = 1. O

As corollary of Theorem 4.1, we have the following:

Corollary 4.2 (Rigidity theorem). Let f : X — S and g : Y — S be semistable
schemes over a locally noetherian scheme S, and let ¢ : X — Y be a morphism
over S. Let Mx, My and Mg be fine log structures on X, Y and S respectively.
We assume that (X, Mx) and (Y, My) are log smooth and integral over (S, Mg)
and ¢ is admissible with respect to My /[Mg. If we have log morphisms

(6.h) : (X, Mx) = (Y, My) and (') : (X, Mx) — (Y, My)
over (S, Mg) as extensions of ¢ : X =Y, then h=1'.
The following two lemmas was needed for the proof of Theorem 4.1.

Lemma 4.3. Let

X/L)y/

‘| [

X —— Y
be a commutative diagram of reduced algebraic schemes over an algebraically closed
field such that X and X' is equi-dimensional and p is flat. Let Z be a closed subset
of Y. If n(T) € Z for any irreducible components T of X, then ©'(T") € v=1(2)
for any irreducible components T' of X'.
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Proof. We assume that «/(T") C v=(Z) for an irreducible component 7" of
X'. Then

(")) = (= (T')) € w(v™1(2)) € Z.
Let T be the Zariski closure of (7). If dim T < dim X, then
dimp~t(z) > dim 7’ — dim T > dim X’ — dim X

for € p(T’), which is a contradiction because y is flat. Thus we have dimT =
dim X, which means that 7T is an irreducible component of X. On the other hand,
we know 7(T) C Z. This is a contradiction to our assumption. Therefore we get
our lemma. a

Lemma 4.4. Let (A, m) be a noetherian complete local ring and A[Xq, ..., X,]
the ring of formal power series of n-variables over A. For a fixred a € m, let

R:A[[Xl,,Xn]]/(Xan—a)

and J an ideal of R with J> = 0. Let uy,...u; be elements of R and I, ..., I
elements of N™ with Supp(l;) N Supp(l;) = 0 for i # j. We assume that (1)
wp -y =1, (2) Xtiw, = X in R for all i, and that (3) u; =1 mod J. Then we
have uy = ---=u; = 1.

Proof. Weset ¥ ={I ¢ N*| A £ I} and

A[[Xl,...,Xnﬂg = {Za[XI | ar GA},

Ies
where A = (1,...,1). Then, by Lemma 1.1.2, the natural map A[Xq,...,X,]s —
R is bijective. Here we claim the following:

Claim 4.4.1. Let T be an element of N*. We set Xpr = {I € X | I+ T > A}.
Then, for f € A[X1,..., X,]s, if XTf =0 in R, then f can be written by a form

f= bix"
IeXr

If either T = (0,...,0) or T' > A, then our assertion is trivial. Thus we may
assume that 7' # (0,...,0) and T 2 A. For I € N, we can find a non-negative
integer @ and J € ¥ with I = aA + J. We denote a and J by a(I) and J(I)
respectively. Here let us see that J(I+T) € {S+T | S € £\ Xp} for I € Ep.
Indeed, since I € ¥p, we can find ¢ with I(¢) = 0 and T'(¢) > 0. Thus

JUA+T)(@) =T() —all +T) <T().

Hence J(I+T) ¢ {S+T|SeX\Xr}.
We set f =3 ;.xarX’. Then

XTf: Z a]xI+T+ Z aIXI+T

IeXr Iex\Zr
— Z a]aa(I+T)XJ(I+T)+ Z CLIXI+T.
IeXr IeX\Zp

Thus ay =0 for [ € ¥\ 2.
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Since u; = 1 mod J, there is a; € J with u; = 1+ a;. Then X'ia;, = 0.
Moreover, since J2? = 0,

Uy =1l4+a1+---+a =1
Hence aq + -+ - +a; = 0. Since X'iq; =0, by the above claim, a; = ZIGEI, ci,IXI,
where Xy, = {I € ¥ | I + I; > A}. Therefore

l
Z Z CiJXI =0.

i=11Ie%y,

Note that if I € X;, and I’ € ¥j, for i # j, then I # I' because Supp(l;) N
Supp(Ij) = (). Thus we can see that ¢i,; = 0, which shows us a; = 0 for all <. O
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