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Introduction

In the paper [5], we proved Kato’s conjecture, that is, the finiteness of dominant
rational maps in the category of log schemes as a generalization of Kobayashi-Ochiai
theorem [4]. It guarantees the finiteness of K-rational points of a certain kind of
log smooth schemes for a big function field K, which gives rise to an evidence for
Lang’s conjecture. In the proof of the above theorem, the most essential part is the
rigidity theorem of log morphisms. In this paper, we would like to generalize it to
a semistable scheme over an arbitrary noetherian scheme.

Let f : X → S be a scheme of finite type over a locally noetherian scheme S.
We assume that f : X → S is a semistable scheme over S, namely, f is flat and,
for any morphism Spec(Ω) → S with Ω an algebraic closed field, the completion of
the local ring of X ×S Spec(Ω) at every closed point is isomorphic to a ring of the
type

Ω[[X1, . . . , Xn]]/(X1 · · ·Xl).

Let g : Y → S be another semistable scheme over S, and let φ : X → Y be a
morphism over S. Let MX , MY and MS be fine log structures on X, Y and S
respectively. We assume that (X,MX) and (Y,MY ) are log smooth and integral
over (S,MS) and φ is admissible with respect to MY /MS , i.e., for all s ∈ S and
any irreducible components V of the geometric fiber X ×S Spec(κ(s)) over s,

(φ ×S id
Spec(κ(s))

)(V ) 6⊆ Supp(MY /MS)|
Y ×SSpec(κ(s))

,

where

Supp(MY /MS) = {y ∈ Y | M
S,g(y)

×O×
Y,ȳ → MY,ȳ is not surjective}.

The following theorem is one of the main results of this paper.

Theorem A (Rigidity theorem). If we have log morphisms

(φ, h) : (X,MX) → (Y,MY ) and (φ, h′) : (X,MX) → (Y,MY )

over (S,MS) as extensions of φ : X → Y , then h = h′.

For the proof of the above theorem, our starting point is the following local
structure theorem, which asserts the local description of integral and smooth log
morphisms of semistable schemes.
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Theorem B (Local structure theorem). Let (f, h) : (X,MX) → (S,MS) be a
smooth and integral morphism of fine log schemes. Let x be a point of X and
s = f(x). We assume that f : X → S is semistable at x, i.e., f is flat at x and,
for any morphism η : Spec(Ω) → S with Ω an algebraic closed field and η(0) = s,
the completion of the local ring of X ×S Spec(Ω) at every closed point lying over x
is isomorphic to a ring of the type

Ω[[X1, . . . , Xn]]/(X1 · · ·Xl).

Then we have the following for each case:
I. If f is smooth at x, then MX,x̄ ' MS,s̄ ×Na for some non-negative integer

a.
II. If f is not smooth at x and h̄x̄ : MS,s̄ → MX,x̄ splits, then MX,x̄ '

MS,s̄ × N , where N is the monoid arising from monomials of

Z[U1, U2, . . . , Ua]/(U2
1 − U2

2 )

for some a ≥ 2.
III. If f is not smooth at x and h̄x̄ : MS,s̄ → MX,x̄ does not split, then there

are integers a ≥ 2 and b ≥ 0, elements q0 ∈ MS,s̄ \ {0} and B ∈ Nb, and
homomorphisms α : Na → MX,x̄ and β : Nb → MX,x̄ with the following
properties:

III.1. The diagram

N (q0,B)−−−−→ MS,s̄ × Nb

∆

y yh̄x̄+β

Na α−−−−→ MX,x̄

is commutative, where ∆ and (q0, B) are homomorphisms given by
∆(n) = (n, . . . , n) and (q0, B)(n) = (nq0, nB) respectively.

III.2. The induced homomorphism

Na⊗̄N
(
MS,s̄ × Nb

)
→ MX,x̄

is an isomorphism (For the definition of the integral tensor product
⊗̄N, see Conventions and terminology 7).

Based on the local structure theorem, the proof of the rigidity theorem is carried
out as follows: Clearly we may assume that S = Spec(A) for some noetherian local
ring (A,m). First we establish the theorem in the case where A is an algebraically
closed field. This was proved actually in the previous paper [5]. Next, by induction
on n, we see that the assertion holds for the case S = Spec(A/mn). Finally, using
the Krull intersection theorem, we can conclude its proof.

In §1, we give the definition of semistable schemes and show their elementary
properties. In §2, we recall several facts concerning log schemes and prove the
local structure theorem. §3 contains the proof of the rigidity theorem. Several
applications of the rigidity theorem will be treated in the forthcoming paper [6].

Conventions and terminology. We will fix several conventions and terminology
of this paper.

1. Throughout this paper, a ring means a commutative ring with the unity.
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2. The set of all natural numbers starting from 0 is denoted by N, that is,

N = {0, 1, 2, 3, 4, 5, . . .}.

3. In this paper, the logarithmic structures of schemes means the sense of J.-M
Fontaine, L. Illusie, and K. Kato. For the details, we refer to [3]. For a log structure
MX on a scheme X, we denote the quotient MX/O×

X by MX .

4. Let X be a scheme and F a sheaf in the étale topology. For a point x ∈ X, the
germ of F at x with respect to the Zariski topology (resp. the étale topology) is
denoted by Fx (resp. Fx̄).

5. Let α : MX → OX be a log structure on a scheme X. For x ∈ X, an element
p ∈ MX,x̄ is said to be regular if there is m ∈ MX,x̄ such that p is congruent to m
modulo O×

X,x̄ and α(m) is a regular element of OX,x̄. Note that the regularity of p
does not depend on the choice of m.

6. Throughout this paper, a monoid is a commutative monoid with the unity. The
binary operation of a monoid is often written additively. We say a monoid P is
finitely generated if there are p1, . . . , pn such that P = Np1 + · · · + Npr. Moreover
P is said to be integral if whenever x + z = y + z for some elements x, y, z ∈ P , we
have x = y. An integral and finitely generated monoid is said to be fine. We say
P is sharp if whenever x + y = 0 for some x, y ∈ P , then x = y = 0. For a sharp
monoid P , an element x of P is said to be irreducible if whenever x = y + z for
some y, z ∈ P , then either y = 0 or z = 0. A homomorphism f : Q → P of monoids
is said to be integral if it is injective and an equation

f(q) + p = f(q′) + p′ (p, p′ ∈ P, q, q′ ∈ Q)

implies that p = f(q1)+p′′ and p′ = f(q2)+p′′ for some p′′ ∈ P and some q1, q2 ∈ Q
with q + q1 = q′ + q2. Further we say an injective homomorphism f : Q → P splits
if there is a submonoid N of P such that the homomorphism f(Q)×N → P given
by (x, y) 7→ x + y is an isomorphism.

7. Let f : Q → P and g : Q → R be homomorphisms of monoids. The integral
tensor product P ⊗̄QR of P and R over Q is defined as follows: Let us consider a
relation ∼ on P × R given by

(p, r) ∼ (p′, r′) ⇐⇒ (f(q), g(q′)) + (p, r) = (f(q′), g(q)) + (p′, r′) for some q, q′ ∈ Q.

It is easy to see that ∼ is an equivalence relation on P × R. We set

P ⊗̄QR = P × R/∼ .

Note that P ⊗̄QR is a monoid in the natural way and it is integral if so are P and
Q (for more details, see [6]).

8. Let X be a set. We denote the set of all maps X → N by NX . For T ∈ NX ,
Supp(T ) is given by {x ∈ X | T (x) > 0}. Moreover, for T, T ′ ∈ NX ,

T ≤ T ′ def⇐⇒ T (x) ≤ T ′(x) ∀x ∈ X.

In the case where X = {1, . . . , n}, NX is sometimes denoted by Nn.
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9. Let M be a monoid, X a finite subset of M and T ∈ NX . For simplicity,∑
x∈X T (x)x is often denoted by T ·X. If we use the product symbol for the binary

operation of the monoid M , then
∏

x∈X xT (x) is written by XT . In particular,
if X = {X1, . . . , Xn} and I ∈ Nn, then I · X and XI means

∑n
i=1 I(i)Xi and∏n

i=1 X
I(i)
i respectively according to a way of the binary operator of M . For exam-

ple, let A be a ring and R be either the ring of polynomials of n-variables over A,
or the ring of formal power series of n-variables over A, that is, R = A[X1, . . . , Xn]
or A[[X1, . . . , Xn]]. Note that R is a monoid with respect to the ring multiplication.
As before, for I ∈ Nn, the monomial X

I(1)
1 · · ·XI(n)

n is denoted by XI .

10. Let f : Q → P be an integral homomorphism of fine and sharp monoids. In
the following, the binary operators of monoids are written in the additive way. For
a finite subset σ of P , q0 ∈ Q and ∆, B ∈ Nσ, we say P has a semistable structure
(σ, q0,∆, B) over Q (or P is of semistable type (σ, q0,∆, B) over Q) if the following
conditions are satisfied:

(1) q0 6= 0, Supp(∆) 6= ∅ and ∆(x) is either 0 or 1 for all x ∈ σ.
(2) P is generated by σ and f(Q) and the natural homomorphism Nσ → P

given by T 7→ T · σ is injective.
(3) Supp(∆) ∩ Supp(B) = ∅ and ∆ · σ = f(q0) + B · σ.
(4) If we have a relation

T · σ = f(q) + T ′ · σ (T, T ′ ∈ Nσ)

with q 6= 0, then T (x) > 0 for all x ∈ Supp(∆).

Let N → Q × Nσ\Supp(∆) and N → NSupp(∆) be homomorphisms given by 1 7→
(f(q0), B|σ\Supp(∆)) and 1 7→ ∆|Supp(∆) respectively. It is known that the natural
homomorphism

(Q × Nσ\Supp(∆))⊗̄NNSupp(∆) → P

is bijective, where ⊗̄N is the integral tensor product (cf. [5, Proposition 2.2]).

11. Let (A,m) be a local ring. The henselization of A and the completion of A

with respect to m are denoted by Ah and Â respectively.

1. Semistable schemes over a scheme

1.1. Algebraic preliminaries. In this subsection, we consider several lemmas
which will be used later. Let us begin with the following lemma.

Lemma 1.1.1. Let f : (A,mA) → (B,mB) be a local homomorphism of noetherian
local rings such that f induces an isomorphism A/mA

∼−→ B/mB.

(1) Let x1, . . . , xn be generator of mB, i.e., mB = Bx1 + · · ·+Bxn. If (B,mB)
is complete, then, for any b ∈ B, there is a sequence

{α(a1,...,an)}(a1,...,an)∈Nn

of elements of A indexed by Nn with

b =
∑

(a1,...,an)∈Nn

f(α(a1,...,an))x
a1
1 · · ·xan

n .
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(2) Let x1, . . . , xn be elements of mB with mB = Bx1 + · · · + Bxn + mAB. If
(A, mA) and (B,mB) are complete, then, for any b ∈ B, there is a sequence

{α(a1,...,an)}(a1,...,an)∈Nn

of elements of A indexed by Nn with

b =
∑

(a1,...,an)∈Nn

f(α(a1,...,an))x
a1
1 · · ·xan

n .

Proof. (1) First we claim the following:

Claim 1.1.1.1.

md
B ⊆

∑
(a1,...,an)∈Nn

a1+···+an=d

f(A)xa1
1 · · ·xan

n + md+1
B

for all d ≥ 0.

We prove this claim by induction on d. Since A/mA ' B/mB , we have B =
f(A) + mB , which means that the assertion holds for d = 0. Thus

mB = (f(A) + mB)x1 + · · · + (f(A) + mB)xn

⊆ f(A)x1 + · · · + f(A)xn + m2
B ,

which show that the assertion holds for d = 1, so that we assume d ≥ 2. By the
hypothesis of induction,

md
B = mB · md−1

B

⊆
(
f(A)x1 + · · · + f(A)xn + m2

B

)
·

 ∑
(a′

1,...,a′
n)∈Nn

a′
1+···+a′

n=d−1

f(A)xa′
1

1 · · ·xa′
n

n + md
B


⊆

∑
(a1,...,an)∈Nn

a1+···+an=d

f(A)xa1
1 · · ·xan

n + md+1
B

Hence we get the claim.

In order to complete the proof of (1), it is sufficient to see the following claim:

Claim 1.1.1.2. For all b ∈ B, there is a sequence {bd}∞d=0 of B such that

bd ∈
∑

(a1,...,an)∈Nn

a1+···+an=d

f(A)xa1
1 · · ·xan

n

and
b − (b0 + · · · + bd) ∈ md+1

B

for all d ≥ 0.

Since B = f(A) + mB , we can set b = b0 + c with b0 ∈ f(A) and c ∈ mB . We
assume that b0, . . . , bd−1 are given. Then, by Claim 1.1.1.1,

b − (b0 + · · · + bd−1) = bd + c′,

where bd ∈
∑

(a1,...,an)∈Nn

a1+···+an=d

f(A)xa1
1 · · ·xan

n and c′ ∈ md+1
B . This yields the second

claim.
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(2) Let us choose y1, . . . , yr ∈ A with mA = y1A + · · · + yrA. Then

mB = x1B + · · · + xnB + f(y1)B + · · · + f(yr)B.

Note that

xa1
1 · · ·xan

n f(y1)b1 · · · f(yr)br = f(yb1
1 · · · ybr

r )xa1
1 · · ·xan

n .

Therefore, since (A,mA) is complete, using (1), for any b ∈ B, there is a sequence
{α(a1,...,an,b1,...,br)}(a1,...,an,b1,...,br)∈Nn×Nr with

b =
∑

(a1,...,an,b1,...,br)∈Nn×Nr

f(α(a1,...,an,b1,...,br))x
a1
1 · · ·xan

n f(y1)b1 · · · f(yr)br

=
∑

(a1,...,an)∈Nn

f

 ∑
(b1,...,br)∈Nr

α(a1,...,an,b1,...,br)y
b1
1 · · · ybr

r

xa1
1 · · ·xan

n .

Thus we get (2). 2

Next let us consider the following lemma.

Lemma 1.1.2. Let (A,m) be a noetherian local ring and T ∈ Nn \{(0, . . . , 0)}. Let
G ∈ m[[X1, . . . , Xn]], R = A[[X1, . . . , Xn]]/(XT − G) and π : A[[X1, . . . , Xn]] → R
the canonical homomorphism. Then we have the following:

(1) Let M be an A-submodule of A[[X1, . . . , Xn]] given by

M =

∑
T 6≤I

aIX
I | aI ∈ A


(cf. Conventions and terminology 8 and 9). If (A,m) is complete, then
π|M : M → R is bijective.

(2) A[[X1, . . . , Xn]]/(XT − G) is flat over A.

Proof. (1) We denote π(Xi) by xi. First we claim the following:

Claim 1.1.2.1. For f ∈ R, there is a sequence {Fn}∞n=0 in M such that Fn+1−Fn ∈
mn[[X1, . . . , Xn]] and f − π(Fn) ∈ mnR for all n ≥ 0.

We will construct a sequence {Fn}∞n=0 inductively. Clearly we may set F0 = 0.
We assume that F0, F1, . . . , Fn have been constructed. Then we can set f−π(Fn) =
π(H) + xT π(H ′) for some H,H ′ ∈ mn[[X1, . . . , Xn]] with H ∈ M . Here xT π(H ′) =
π(G)π(H ′) ∈ mn+1R. Thus, if we set Fn+1 = Fn + H, then we get our desired
Fn+1.

The above claim shows that π|M is surjective. Next let us consider the injectivity
of π|M . We assume

π

∑
T 6≤I

aIX
I

 = 0.

Then there is H ∈ A[[X1, . . . , Xn]] with∑
T 6≤I

aIX
I = (XT − G)H.
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Here we set
G =

∑
I∈Nn

gIX
I and H =

∑
I∈Nn

hIX
I .

Then gI ∈ m for all I and∑
T 6≤I

aIX
I =

∑
I∈Nn

hIX
T+I −

∑
I∈Nn

( ∑
J+J ′=I

gJhJ′

)
XI .

On the left hand side of the above equation, there is no term of a form XI+T . Thus

hI =
∑

J+J′=I+T

gJhJ′

for all I. Here we claim that hI ∈ mn for all n and all I. We see this fact by
induction n. First of all, since gI ∈ m for all I, we have hI ∈ m for all I. We
assume that hI ∈ mn for all I. By the above equation, we can see that hI ∈ mn+1.
By this claim, hI must be zero for all I because

⋂
n≥0 mn = 0. Therefore aI = 0

for all I.

(2) If (A, m) is complete, then the assertion follows from (1) by Chase’s theorem
[2]. In general, let Â be the completion of A and

R′ = Â[[X1, . . . , Xn]]/(XT − G).

Then we have the following commutative diagram:

R
h′

−−−−→ R′

f

x xf ′

A
h−−−−→ Â.

Note that f ′, h and h′ are faithfully flat. Thus so is f . 2

Remark 1.1.3. Let A be a ring and A[X1, . . . , Xn] the polynomial ring of n-
variables over A. In the same way as in Lemma 1.1.2, we can see that R =
A[X1, . . . , Xn]/(XT − a) is flat over A for T ∈ Nn \ {(0, . . . , 0)} and a ∈ A. Indeed,
if we set

M =

∑
T 6≤I

aIX
I ∈ A[X1, . . . , Xn]

 ,

then the natural homomorphism π : M → R is bijective. The surjectivity of π is
obvious. We assume that an element

∑
aIX

I of M is zero in R. Then∑
aIX

I = (XT − a)
∑

J

bJXJ

for some
∑

J bJXJ ∈ A[X1, . . . , Xn]. Thus bJ = abJ+T for all J . Therefore bJ =
ambJ+mT for all m > 0. On the other hand, since

∑
J bJXJ ∈ A[X1, . . . , Xn],

bJ+mT = 0 if m À 0. Hence bJ = 0 for all J .

We consider an approximation by an étale neighborhood.
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Proposition 1.1.4. Let (A,mA) be a noetherian local ring essentially of finite
type over an excellent discrete valuation ring or a field. Let f : X → Spec(A) be a
scheme of finite type over A. Let x be a point of X such that f(x) = mA and A/mA

is naturally isomorphic to OX,x/mX,x. We assume that there are F1, . . . , Fr ∈
A[X1, . . . , Xn] (the polynomial ring of n-variables over A) and an isomorphism

φ : Â[[X1, . . . , Xn]]/(F1, . . . , Fr)
∼−→ ÔX,x

over Â with φ(X̄i) ∈ m̂X,x for all i, where X̄i = Xi mod (F1, . . . , Fr). Then there
is an étale neighborhood (U, x′) of X at x together with an étale morphism

ρ : U → Spec(A[T1, . . . , Tn]/(F1(T ), . . . , Fr(T )))

such that ρ(x′) = (mA, T̄1, . . . , T̄n), where T̄i = Ti mod (F1(T ), . . . , Fr(T )).

Proof. First note that

F1(φ(X̄1), . . . , φ(X̄n)) = · · · = Fr(φ(X̄1), . . . , φ(X̄n)) = 0.

Thus, by Artin’s approximation theorem [1], there are t1, . . . , tn ∈ Oh
X,x such that

F1(t1, . . . , tn) = · · · = Fr(t1, . . . , tn) = 0

and ti − φ(X̄i) ∈ m̂2
X,x for all i. Here we claim the following:

Claim 1.1.4.1.

m̂X,x = φ(X̄1)ÔX,x + · · · + φ(X̄n)ÔX,x + mAÔX,x

= t1ÔX,x + · · · + tnÔX,x + mAÔX,x.

Clearly
m̂X,x ⊇ φ(X̄1)ÔX,x + · · · + φ(X̄n)ÔX,x + mAÔX,x.

Conversely let us pick up f ∈ m̂X,x. Then we can write f = φ
(∑

I aIX̄
I
)
. If

a(0,...,0) ∈ Â×, then f must be a unit because f ∈ a(0,...,0) + m̂X,x. This is a
contradiction. Thus a(0,...,0) ∈ mA, which means that

f ∈ φ(X̄1)ÔX,x + · · · + φ(X̄n)ÔX,x + mAÔX,x.

Therefore we obtain

m̂X,x = φ(X̄1)ÔX,x + · · · + φ(X̄n)ÔX,x + mAÔX,x

Moreover, since ti − φ(X̄i) ∈ m̂2
X,x, we can see that

m̂X,x = t1ÔX,x + · · · + tnÔX,x + mAÔX,x + m̂2
X,x.

Hence, by Nakayama’s lemma, we have our desired result.

Let us choose an étale neighborhood (U, x′) of X at x with the same residue
fields such that t1, . . . , tn are defined over U . Here let us define a homomorphism

ψ : A[T1, . . . , Tn]/(F1(T ), . . . , Fr(T )) → OU,x′

to be ψ(T̄i) = ti for all i. By the above claim, we can see

ψ−1(mU,x′) = (mA, T̄1, . . . , T̄n).

Thus it is sufficient to show that ψ is étale. Let

µ : Â[[T1, . . . , Tn]]/(F1, . . . , Fr) → Â[[X1, . . . , Xn]]/(F1, . . . , Fr)
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be a homomorphism given by the composition of homomorphisms

Â[[T1, . . . , Tn]]/(F1, . . . , Fr)
bψ−→ ÔU,x′ = ÔX,x

φ−1

−→ Â[[X1, . . . , Xn]]/(F1, . . . , Fr).

By the above claim and Lemma 1.1.1, µ is surjective. Hence, by the following
Lemma 1.1.5, it must be an isomorphism. Therefore so is ψ̂. This means that ψ is
étale because x′ and (mA, T̄1, . . . , T̄n) have the same residue field. 2

Finally we consider the following lemma concerning the bijectivity of a ring
homomorphism.

Lemma 1.1.5. Let φ : A → A be an endomorphism of a noetherian ring. If φ is
surjective, then φ is injective.

Proof. We set In = Ker(φn) for n ≥ 1. Since φ is surjective, we can see that
φ(In+1) = In for all n ≥ 1. Moreover there is N ≥ 1 such that IN+1 = IN because
A is noetherian and In ⊆ In+1 for all n ≥ 1. Therefore

Ker(φ) = I1 = φN (IN+1) = φN (IN ) = {0}.
2

1.2. Semistable varieties and semistable schemes. Let k be an algebraically
closed field and X an algebraic scheme over k. A closed point x of X is called a
semistable point of X if the completion of the local ring at x is isomorphic to a ring
of type

k[[X1, . . . , Xn]]/(X1 · · ·Xl).
The number l is called the multiplicity of X at x, and is denoted by multx(X).
Moreover we say X is a semistable variety over k if every closed point is a semistable
point. By the following Proposition 1.2.1, the set of all semistable points of X is
a Zariski open set. Thus we say a point x of X (x is not necessarily closed) is a
semistable point if there is a Zariski open set U of X such that x ∈ U and every
closed point of U is a semistable point. Let Ω be an algebraically closed field such
that k is a subfield of Ω. Note that if X is a semistable variety over k, then so is
XΩ = X ×Spec(k) Spec(Ω) over Ω (cf. Proposition 1.2.2).

Let S be a locally noetherian scheme and f : X → S a morphism of finite type.
First we assume that S = Spec(F ) for some field F . Let F̄ be the algebraic closure
of F , X ′ = X ×Spec(F ) Spec(F̄ ), and π : X ′ → X the canonical morphism. A point
x of X is called a semistable point of X if every point x′ of X ′ with π(x′) = x is
a semistable point. For a general S, we say f : X → S is semistable at x ∈ X if
f is flat at x and x is a semistable point of the fiber f−1(f(x)) passing through x.
Moreover we say X is a semistable scheme over S if f is semistable at all points
of X. By Proposition 1.2.2, for a flat morphism f : X → S, X is a semistable
scheme over S if and only if, for any algebraically closed field Ω, any morphism
Spec(Ω) → S and any closed point x′ ∈ X ×S Spec(Ω), the completion of the local
ring at x′ is isomorphic to a ring of type

Ω[[X1, . . . , Xn]]/(X1 · · ·Xl).

We say a semistable scheme X over S is proper if X is proper over S. Moreover a
proper semistable scheme X over S is said to be connected if f∗(OX) = OS .

In the remaining of this subsection, let us consider elementary properties of
semistable varieties.
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Proposition 1.2.1. Let X be an algebraic scheme over an algebraically closed field
k. If x is a semistable closed point of X, then there is a Zariski open set U of X
such that x ∈ U and every closed point of U is a semistable point.

Proof. By Proposition 1.1.4, there are an étale neighborhood π : (U, x′) →
(X,x) of x and an étale morphism

ρ : U → Spec(k[T1, . . . , Tn]/(T1 · · ·Tl))

with ρ(x′) = (0, . . . , 0). Note that Spec(k[T1, . . . , Tn]/(T1 · · ·Tl)) is a semistable
variety over k. Thus so is U over k. Therefore every closed point of π(U) is a
semistable point. 2

Proposition 1.2.2. Let X be an algebraic scheme over an algebraically closed
field k. Let Ω be an algebraically closed field such that k is a subfield of Ω. Let
π : XΩ = X ×Spec(k) Spec(Ω) → X be the canonical morphism. For y ∈ XΩ, If
x = π(y) is a semistable point, then so is y.

Proof. Let U be an open set of X containing x such that every closed point of
U is a semistable point.

First we assume that y is a closed point. Let us choose a closed point o ∈ {x}∩U .
By using Proposition 1.1.4 and shrinking U around o if necessarily, there are étale
morphisms

f : V → U and g : V → W = Spec(k[X1, . . . , Xn]/(X1 · · ·Xl))

of algebraic schemes over k and closed points o′ ∈ V and o′′ ∈ W such that f(o′) = o

and g(o′) = o′′ = (0, . . . , 0). Since x ∈ U , o ∈ {x} ∩ U and f is faithfully flat at o′,
we can find x′ ∈ V with f(x′) = x and o′ ∈ {x′}. Here we set

UΩ = U ×Spec(k) Spec(Ω),
VΩ = V ×Spec(k) Spec(Ω),
WΩ = Spec(Ω[X1, . . . , Xn]/(X1 · · ·Xl))

and the induced morphisms VΩ → UΩ and VΩ → WΩ are denoted by fΩ and gΩ

respectively. Then y ∈ UΩ. Let ỹ : Spec(Ω) → UΩ be the morphism induced by
y. Let κ(y), κ(x) and κ(x′) be the residue fields of y, x and x′ respectively. Then
there is an embedding ι : κ(x′) ↪→ Ω over k such that the following diagram is
commutative:

κ(x′)I i

ι

vvmmmmmmmmmmmmmmmm

Ω κ(y)
ỹ∗
∼oo κ(x)? _oo

Â ?

OO

This yields a morphism β : Spec(Ω) → VΩ such that the diagram

VΩ
π′

//

fΩ

²²

V

f

²²
Spec(Ω)

β
;;vvvvvvvvv

ỹ
// UΩ

π // U
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is commutative and the image of π′ ◦ β is x′. Let y′ be the image of β. Then
fΩ(y′) = y. Note that fΩ and gΩ are étale and the residue fields of y, y′ and
y′′ = gΩ(y′) are Ω. Thus we can see that

ÔXΩ,y ' ÔVΩ,y′ ' ÔWΩ,y′′ .

We set y′′ = (a1, . . . , an) ∈ An(Ω) and I = {i | ai = 0 and i = 1, . . . , l}. Note that
I 6= ∅ because y′′ ∈ WΩ. Therefore, if we set Zi = Xi − ai and Z =

∏
i∈I Zi, then

it is easy to see that
ÔWΩ,y′′ = Ω[[Z1, . . . , Zn]]/(Z).

Thus we get our lemma in the case where y is a closed point.
Next we consider a general case. We set UΩ = π−1(U). Then, by the previous

observation, every closed point of UΩ is a semistable point. On the other hand,
y ∈ UΩ. Thus y is a semistable point. 2

2. Some facts of log structures

In this section, we consider several facts concerning log structures, which will be
used later.

2.1. Ring extension for a good chart. Here we consider a ring extension to get
a good chart.

Proposition 2.1.1. Let (A, m) be a noetherian local ring, S = Spec(A) and s
the closed point of S. Let MS be a fine log structure on S. Then there is a local
homomorphism f : (A,m) → (B,n) of noetherian local rings with the following
properties:

(1) B/n is algebraic over A/m, and f is flat and quasi-finite.
(2) Let fa : S′ = Spec(B) → S = Spec(A) be the induced morphism, s′ the

closed point of S′ = Spec(B), and MS′ = (fa)∗(MS). There are a fine
and sharp monoid Q and a homomorphism πQ : Q → MS′,s′ such that
Q → MS′,s̄′ → MS′,s̄′ is bijective.

Proof. Let us begin with the following lemma:

Lemma 2.1.2. Let G be a finitely generated abelian group and R a ring. Let us
fix an element δ of Ext1(G,R×). Then there are u1, . . . , ul ∈ R× and integers
a1, . . . , al ≥ 2 with the following property:

(1) The product a1 · · · al of integers a1, . . . , al is equal to the order of the torsion
part of G.

(2) For any homomorphism f : R → S of rings, if there are v1, . . . , vl ∈ S with
vai

i = f(ui) for all i, then the image of δ via the canonical homomorphism

Ext1(G,R×) → Ext1(G, S×)

is zero.

Proof. By the fundamental theorem of abelian groups, we have the following
exact sequence:

0 −−−−→ Zl φ−−−−→ Zl′ −−−−→ G −−−−→ 0,
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where φ is given by φ(x1, . . . , xl) = (a1x1, . . . , alxl, 0, . . . , 0) for some integers
a1, . . . , al ≥ 2. Note that a1 · · · al is equal to the order of the torsion part of
G. The above exact sequence yields an exact sequence

Hom(Zl′ , R×)
φ∗

R−−−−→ Hom(Zl, R×) αR−−−−→ Ext1(G, R×) −−−−→ Ext1(Zl′ , R×).

Note that Ext1(Zl′ , R×) = {0}. Thus there is h ∈ Hom(Zl, R×) with αR(h) = δ.
We set ui = h(ei) for i = 1, . . . , l, where {e1, . . . , el} is the standard basis of Zl.

Let f : R → S be any homomorphism of rings with vai
i = f(ui) (i = 1, . . . , l) for

some v1, . . . , vl ∈ S. Let us consider the following commutative diagram:

Hom(Zl′ , R×)
φ∗

R−−−−→ Hom(Zl, R×) αR−−−−→ Ext1(G,R×) −−−−→ 0

g1

y g2

y g3

y
Hom(Zl′ , S×)

φ∗
S−−−−→ Hom(Zl, S×) αS−−−−→ Ext1(G,S×) −−−−→ 0

Note that g2(h)(ei) = f(ui) for i = 1, . . . , l. Thus, if we set h′ ∈ Hom(Zl′ , S×) by

h′(ei) =

{
vi if i = 1, . . . .l

0 if i > l

then φ∗
S(h′) = g2(h). Therefore

g3(δ) = g3(αR(h)) = αS(g2(h)) = αS(φ∗
S(h′)) = 0.

2

Let us start the proof of Proposition 2.1.1. Let δ ∈ Ext1(M
gr

S,s̄,O×
S,s̄) be the

extension class of
0 → O×

S,s̄ → Mgr
S,s̄ → M

gr

S,s̄ → 0.

Then, by Lemma 2.1.2, there are u1, . . . , ul ∈ O×
S,s̄ and integers a1, . . . , al with the

properties as in Lemma 2.1.2. Let us choose an étale neighborhood (U, u) of s such
that u1, . . . , ul ∈ O×

U,u. Let B be the localization of

OU,u[X1, . . . , Xl]/(Xa1
1 − u1, . . . , X

al

l − ul).

at a closed point over u. Then B is flat and quasi-finite over A. Let vi be the
class of Xi in B. Note that vai

i = ui in B for all i. Let s′ be the closed point of
S′ = Spec(B), π : S′ → S the canonical morphism, and MS′ = π∗(MS). Then we
have an exact sequence

0 → O×
S′,s̄′ → Mgr

S′,s̄′ → M
gr

S′,s̄′ → 0.

Since Mgr
S′,s̄′ is the push-out O×

S′,s̄′⊗̄O×
S,s̄

Mgr
S,s̄ (cf. Conventions and terminology 7),

we can see that M
gr

S′,s̄′ = M
gr

S,s̄ and the extension class δ′ of the above exact sequence
is the image of the canonical homomorphism Ext1(M

gr

S,s̄,O×
S,s̄) → Ext1(M

gr

S′,s̄′ ,O×
S′,s̄′).

Thus, by Lemma 2.1.2, δ′ = 0. Therefore we have a splitting s : M
gr

S′,s̄′ → Mgr
S′,s̄′

of Mgr
S′,s̄′ → M

gr

S′,s̄′ . Here we set Q = MS′,s̄′ . Let us see that s(q) ∈ MS′,s̄′ for
all q ∈ Q. Indeed, if we denote Mgr

S′,s̄′ → M
gr

S′,s̄′ by π, then π(s(q)) = q. Thus
there are u ∈ O×

S′,s̄′ and m ∈ MS′,s̄′ with s(q) = m · u, which implies s(q) ∈ MS′,s̄′ .
Moreover Q → MS′,s̄′ → MS′,s̄′ is the identity map. Further, changing S′ by an
étale neighborhood of S′, we may assume that Q → MS′,s̄ is defined on S′. 2
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2.2. The support of log structures. In this subsection, we consider the support
of log structures. The main result of this subsection is the following proposition:

Proposition 2.2.1. Let X be a scheme and let M and N be fine log structures on
X. Let h : N → M be a homomorphism of log structures, i.e., a homomorphism of
sheaves of monoids with the following diagram commutative:

N
h //

!!CC
CC

CC
CC

M

}}{{
{{

{{
{{

OX

Then the set {x ∈ X | hx̄ : Nx̄ → Mx̄ is surjective} is open.

Proof. It is sufficient to show that if hx̄ : Nx̄ → Mx̄ is surjective, then there
is an étale neighborhood U of x such that, for all y ∈ U , hȳ : Nȳ → Mȳ is
surjective. By virtue of [3, (2.8)], for a suitable étale neighborhood U of x, there are
finitely generated monoids P and Q together with homomorphisms π : P → M |U ,
µ : Q → N |U and f : Q → P such that π and µ give rise to local charts of M and
N respectively and the diagram

Q
f−−−−→ P

µ

y yπ

N |U
hU−−−−→ M |U

is commutative. Let {p1, . . . , pn} and {q1, . . . , qr} be generators of P and Q respec-
tively. Renumbering p1, . . . , pn and q1, . . . , qr, we may assume that{

π(p1), . . . , π(pn′) ∈ O×
X,x̄, π(pn′+1), . . . , π(pn) 6∈ O×

X,x̄,

µ(q1), . . . , µ(qr′) ∈ O×
X,x̄, µ(qr′+1), . . . , µ(qr) 6∈ O×

X,x̄.

Let P0 and Q0 be submonoids of P and Q generated by p1, . . . , pn′ and q1, . . . , qr′

respectively. Let us see the following:

Claim 2.2.1.1. π−1
x̄ (O×

X,x̄) = P0 and µ−1
x̄ (O×

X,x̄) = Q0.

Clearly P0 ⊆ π−1
x̄ (O×

X,x̄). Conversely we assume that w ∈ π−1
x̄ (O×

X,x̄). We set
w = pa1

1 · · · pan
n . Then

π(w) = π(p1)a1 · · ·π(pn)an ∈ O×
X,x̄.

Therefore, if ai > 0, then π(pi) ∈ O×
X,x̄. Hence ai = 0 for all i > n′, which means

that w ∈ P0. In the same way, we can see that µ−1
x̄ (O×

X,x̄) = Q0.

Claim 2.2.1.2. For z ∈ X, hz̄ : Nz̄ → Mz̄ is surjective if and only if h̄z̄ : N z̄ → M z̄

is surjective.

Clearly, if hz̄ : Nz̄ → Mz̄ is surjective, then so is h̄z̄ : N z̄ → M z̄. Conversely we
assume that h̄z̄ : N z̄ → M z̄ is surjective. Let m be an element of Mz̄. Then there
is n ∈ Nz̄ such that m ≡ hz̄(n) mod O×

X,z̄, i.e., m = uhz̄(n) for some u ∈ O×
X,z̄.

Thus m = uhz̄(n) = hz̄(un).

Shrinking U if necessarily, we may assume that

π(p1), . . . , π(pn′) ∈ O×
X,ȳ and µ(q1), . . . , µ(qr′) ∈ O×

X,ȳ
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for all y ∈ U . Let us check that hȳ : Nȳ → Mȳ is surjective for all y ∈ U , which
is equivalent to show that h̄ȳ : N ȳ → M ȳ is surjective by Claim 2.2.1.2. Note that
the commutative diagram

Q
f−−−−→ P

µȳ

y yπȳ

N ȳ
h̄ȳ−−−−→ M ȳ

gives rise to the commutative diagram

Q/µ−1
ȳ (O×

X,ȳ) −−−−→ P/π−1
ȳ (O×

X,ȳ)y y
N ȳ

h̄ȳ−−−−→ M ȳ

such that the vertical homomorphisms are bijective (cf. [3] and [5]). Therefore it
is sufficient to see that

Q/µ−1
ȳ (O×

X,ȳ) → P/π−1
ȳ (O×

X,ȳ)

is surjective. Note that Q0 ⊆ µ−1
ȳ (O×

X,ȳ) and P0 ⊆ π−1
ȳ (O×

X,ȳ). Thus we get the
following commutative diagram:

Q/Q0 −−−−→ P/P0y y
Q/µ−1

ȳ (O×
X,ȳ) −−−−→ P/π−1

ȳ (O×
X,ȳ).

Here, by Claim 2.2.1.1, Q/Q0 → P/P0 is surjective because N x̄ → M x̄ is surjective.
Hence so is Q/µ−1

ȳ (O×
X,ȳ) → P/π−1

ȳ (O×
X,ȳ). 2

Corollary 2.2.2. Let X be a scheme and M a fine log structure on X. Then the
set Supp(M) = {x ∈ X | Mx̄ is not trivial } is closed.

Proof. There is a natural homomorphism O×
X → M . Thus this is a consequence

of the above proposition. 2

Corollary 2.2.3. Let X and Y be schemes and let M and N be fine log structures
on X and Y respectively. Let (f, h) : (X,M) → (Y,N) be a log morphism.

(1) The set

Supp(M/N) = {x ∈ X | N
f(x)

×O×
X,x̄ → Mx is not surjective}

is closed.
(2) Let ρ : S′ → S be a morphism of schemes and X ′ = X ×S S′. We set the

induced morphisms as follows:

X
ρ′

←−−−− X ′

f

y yf ′

S
ρ←−−−− S′.

Then ρ′
−1(Supp(M/N)) = Supp(ρ′∗(M)/ρ∗(N)).
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Proof. (1) Note that the surjectivity of N
f(x)

× O×
X,x̄ → Mx is equivalent to

the surjectivity of f∗(N)x̄ → Mx̄. Thus it follows from Proposition 2.2.1.

(2) For x′ ∈ X ′, we set x = ρ′(x′). Note that ρ′
∗(f∗(N)) = f ′∗(ρ∗(N)). Thus

we have a commutative diagram:

M x̄
ν′

−−−−→ ρ′∗(M)x̄′x x
f∗(N)x̄

ν−−−−→ f ′∗(ρ∗(N))x̄′ .

Then, by Lemma 3.2, the horizontal homomorphisms ν′ and ν are bijective. Hence,
by using Claim 2.2.1.2 of Proposition 2.2.1, we have (2). 2

3. Local structure theorem

In this section, we consider the following fundamental structure theorem of this
paper.

Theorem 3.1 (Local structure theorem). Let (f, h) : (X,MX) → (S,MS) be a
smooth and integral morphism of fine log schemes. Let x be a point of X and
s = f(x). We assume that f : X → S is semistable at x. Then we have the
following:

(1) If f is smooth at x, then there is a submonoid N of MX,x̄ such that MX,x̄ =
h̄x̄(MS,s̄) × N and N is isomorphic to Na for some non-negative integer
a. Moreover every element of N is regular (For the definition of regularity,
see Conventions and terminology 5).

(2) If f is not smooth at x and h̄x̄ : MS,s̄ → MX,x̄ splits, there is a submonoid
N of MX,x̄ such that MX,x̄ = h̄x̄(MS,s̄) × N and N is isomorphic to the
monoid arising from monomials of

Z[U1, U2, . . . , Ua]/(U2
1 − U2

2 )

for some a ≥ 2. In this case, the characteristic of the residue field of OX,x̄

is not equal to 2, and every element of N is regular.
(3) If f is not smooth at x and h̄x̄ : MS,s̄ → MX,x̄ does not split, then MX,x̄

has a semistable structure (σ, q0,∆, B) over MS,s̄ for some σ ⊆ MX,x̄ with
#(σ) ≥ 2, q0 ∈ MS,s̄ and ∆, B ∈ Nσ (For the definition of semistable
structure, see Conventions and terminology 10). More precisely, σ is the
set of all irreducible elements of MX,x̄ not lying in h̄x̄(MS,s̄). Further every
element of σ \ Supp(∆) is regular.

Proof. Let us begin with the following lemma.

Lemma 3.2. Let f : X → Y be a morphism of schemes and MY a fine log structure
on Y . If we set MX = f∗(MY ), then, for any x ∈ X and y ∈ Y with y = f(x), the
induced homomorphism MY,ȳ → MX,x̄ is bijective.

Proof. Let P be a chart of MY,ȳ. Then MY,ȳ and MX,x̄ are given by

P/π−1(O×
Y,ȳ) and P/π′−1(O×

X,x̄)

respectively, where π : P → OY,ȳ is the canonical morphism and π′ : P → OY,ȳ →
OX,x̄ (cf. [3] and [5]). Thus it is sufficient to see that π−1(O×

Y,ȳ) = π′−1(O×
X,x̄).
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Indeed, letting mx̄ and mȳ be the maximal ideals of OX,x̄ and OY,ȳ, and α : OY,ȳ →
OX,x̄ the canonical homomorphism,

p ∈ π−1(O×
Y,ȳ) ⇐⇒ π(p) ∈ O×

Y,ȳ ⇐⇒ α(π(p)) ∈ O×
X,x̄ ⇐⇒ p ∈ π′−1(O×

X,x̄)

because α(mȳ) ⊆ mx̄ and α(O×
Y,ȳ) ⊆ O×

X,x̄. 2

Let us go back to the proof of Theorem 3.1. Let us consider the geometric
fiber X ×S Spec(κ(s)) over s. Then, by using Lemma 3.2, we may assume that
S = Spec(k) for some algebraically closed field k. Thus the theorem follows from
[5, Theorem 3.1] except the following facts:

(i) In the case (2), N is isomorphic to the monoid T arising from monomials
of

Z[U1, U2, . . . , Ua]/(U2
1 − U2

2 ).

(ii) In the case (2) or (3), the regularity of elements of either N or σ \Supp(∆).

(i) Let Tk be the the monoid arising from monomials of

k[U1, U2, . . . , Ua]/(U2
1 − U2

2 ).

In order to see (i), we need to show the natural homomorphism T → Tk is bi-
jective. Let Ūe1

1 Ūe2
2 · · · Ūea

a and Ū
e′
1

1 Ū
e′
2

2 · · · Ūe′
a

a be elements of T . Clearly we may
assume that e1, e

′
1 ∈ {0, 1}. We suppose that Ūe1

1 Ūe2
2 · · · Ūea

a = Ū
e′
1

1 Ū
e′
2

2 · · · Ūe′
a

a in
k[U1, U2, . . . , Ua]/(U2

1 − U2
2 ). Then there is φ ∈ k[U1, . . . .Ua] with

Ue1
1 Ue2

2 · · ·Uea
a − U

e′
1

1 U
e′
2

2 · · ·Ue′
a

a = (U2
1 − U2

2 )φ.

Comparing the degrees with respect to U1 of both sides, we can see that φ = 0.
Therefore (e1, . . . , ea) = (e′1, . . . , e

′
a).

(ii) Let (OS,s,mS,s) → (A, m) be a flat local homomorphism of local rings. We
set S′ = Spec(A), X ′ = X ×S S′ and the induced morphisms as follows:

X ′ π′

−−−−→ X

f ′
y yf

S′ π−−−−→ S.

Let us choose x′ ∈ X ′ with f ′(x′) = m and π′(x′) = x. Then, since OX,x → OX′,x′

is faithfully flat, using Lemma 3.2, if regularity holds at x′, then so does at x.
Let k be the algebraic closure of the residue field at x. Note that by virtue of

[EGA III, Chapter 0, 10.3.1], there are a noetherian local ring (A, m) and a local
homomorphism (OS,s,mS,s) → (A,m) such that mS,sA = m, A/m is isomorphic
to k over OS,s/mS,s and that A is flat over OS,s. Therefore we may assume that
OS,s/mS,s is algebraically closed and x is a closed point. Moreover, by using Propo-
sition 2.1.1, we may further assume that there are a fine and sharp monoid Q and
a homomorphism πQ : Q → MS,s such that Q → MS,s̄ → MS,s̄ is bijective. Hence,
by [5], there is a fine and sharp monoid P together with homomorphisms f : Q → P
and πP : P → MX,s̄ such that the following properties are satisfied:
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(a) The diagram

Q
f−−−−→ P

πQ

y yπP

MS,s̄ −−−−→ MX,x̄,

is commutative.
(b) The induced homomorphism P → MX,x̄ → MX,x̄ is bijective.
(c) The natural homomorphism

OS,s̄ ⊗OS,s̄[Q] OS,s̄[P ] → OX,s̄

is smooth.
Since OS,s̄ ⊗OS,s̄[Q] OS,s̄[P ] → OX,s̄ is smooth, it is sufficient to see the regularity
of each element in OS,s̄ ⊗OS,s̄[Q] OS,s̄[P ].

If there is a submonoid N of P with P = f(Q) × N , then

OS,s̄ ⊗OS,s̄[Q] OS,s̄[P ] = OS,s̄[N ].

Thus the assertions follow from Lemma 3.3 below.
Next we assume that f : Q → P does not splits. Let us set σ = {p1, . . . , pr} such

that Supp(∆) = {p1, . . . , pl}. Moreover we set xi = α(πP (pi)) and t = β(πQ(q0)),
where α : MX → OX and β : MS,s̄ → OS,s̄ are the canonical homomorphisms.
Then

OS,s̄ ⊗OS,s̄[Q] OS,s̄[P ] = OS,s̄[X1, . . . , Xr]/(X1 · · ·Xl − tX
bl+1
l+1 · · ·Xbr

r ),

where bi = B(pi) and xi is the class of Xi. Thus the assertions follow from
Lemma 3.3 below. 2

Lemma 3.3. Let A be a ring. Then we have the following:
(1) Let A[X] be the polynomial ring of one variable over A. For a regular

element a ∈ A, X is regular in A[X]/(X2 − a), that is, the multiplication
of X in A[X]/(X2 − a) is injective.

(2) We assume A is a local ring with the maximal ideal m. Let A[X1, . . . , Xl]
be the polynomial ring of l-variables over A. For a ∈ m, let us consider
a ring R given by R = A[X1, . . . , Xl]/(X1 · · ·Xl − a). If α is a regular
element of A, then so is α in R.

Proof. (1) We assume that Xf(X) = (X2 − a)g(X) for some f(X), g(X) ∈
A[X]. We set g(X) = Xh(X) + c for some h(X) ∈ A[X] and c ∈ A. Then

ca = X(h(X)(X2 − a) + cX − f(X)).

Thus, ca = 0. Since a is regular, c must be zero. Therefore

Xf(X) = X(X2 − a)h(X),

which implies f(X) = (X2 − a)h(X) because X is regular in A[X].

(2) Let R̂ be the completion with respect to (m,X1, . . . , Xn). Since R → R̂ is
faithfully flat, it is sufficient to see the homomorphism α̃ : R̂ → R̂ given by the
multiplication of α is injective. Note that R̂ is the direct products of many copies
of Â by Lemma 1.1.2. Thus α̃ is injective. 2
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Remark 3.4. The semistable structure of h̄x̄ : MS,s̄ → MX,x̄ in the case (3) of
Theorem 3.1 is uniquely determined by virtue of a result in [6], which is not needed
in this paper.

4. Rigidity theorem

First of all, we would like to define the admissibility of morphisms. Let k be an
algebraically closed field, and let φ : X → Y be a morphism of algebraic schemes
over k. Let Z be a subscheme of Y . We say φ is admissible with respect to Z if, for
any irreducible component X ′ of X, φ(X ′) 6⊂ Z.

Let f : X → S and g : Y → S be schemes of finite type over a locally noetherian
scheme S, and let MY and MS be fine log structures of Y and S such that g
extends to a log morphism (Y,MY ) → (S,MS). As in Corollary 2.2.3, the closed
set Supp(MY /MS) is given by

{y ∈ Y | M
S,g(y)

×O×
Y,ȳ → MY,ȳ is not surjective}.

Let φ : X → Y be a morphism over S. For a point s ∈ S, we say φ : X → Y is
admissible over s with respect to MY /MS , if

φ ×S id
Spec(κ(s))

: X ×S Spec(κ(s)) → Y ×S Spec(κ(s))

is admissible with respect to Supp(MY /MS)|
Y ×SSpec(κ(s))

. If φ : X → Y is admis-
sible over any points of S with respect to MY /MS , then φ is said to be admissible
with respect to MY /MS . By (2) of Corollary 2.2.3, φ is admissible over s with
respect to MX/MS if and only if

φ ×S id
Spec(κ(s))

: X ×S Spec(κ(s)) → Y ×S Spec(κ(s))

is admissible with respect to (MY |
Y ×SSpec(κ(s))

)/(MS |Spec(κ(s))
).

The following theorem is the main theorem of this paper.

Theorem 4.1. Let X, Y and S be locally noetherian schemes, and let MX , MY

and MS be fine log structures of X, Y and S respectively. Let (X,MX) → (S,MS)
and (Y,MY ) → (S,MS) be integral and log smooth morphisms, and let φ : X → Y
be a morphism over S. Let us fix a point s ∈ S. We assume that X → S and
Y → S are semistable at any points lying over s and that φ : X → Y is admissible
over s with respect to MY /MS. If

(φ, h) : (X,MX) → (Y,MY ) and (φ, h′) : (X,MX) → (Y,MY )

are extensions of φ : X → Y as log morphisms over (S,MS), then, for all closed
points x lying over s, hx̄ = h′

x̄ as homomorphisms M
Y,φ(x)

→ MX,x̄ of the germs
of étale topology.

Proof. Since this is a local problem, we may assume that S = Spec(A) for a
noetherian local ring (A, m). Let ρ : (A,m) → (B,n) be a local homomorphism of
local rings such that B/n is algebraic over A/m. We denote the closed point of S by
s and the closed point of S′ = Spec(B) by s′. We set X ′ = X ×S S′, Y ′ = Y ×S S′,
MX′ = π∗

X(MX), MY ′ = π∗
Y (MY ), and MS′ = π∗

S(MS), where πX : X ′ → X,
πY : Y ′ → Y and πS : S′ → S are the canonical morphisms. Let φS′ : X ′ → Y ′ be
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the morphism given by φS′ = φ ×S idS′ .

X ′ πX //

φS′

²² 00
00

00
0

»»0
00

00
00

X

ºº/
//

//
//

//
//

//
/

φ

²²
Y ′ πY //

ÃÃB
BB

BB
BB

B Y

ÂÂ?
??

??
??

?

S′ πS // S

Then we have log morphisms

(φS′ , hS′), (φS′ , h′
S′) : (X ′,MX′) → (Y ′,MY ′)

over (S′, MS′), where hS′ and h′
S′ are the homomorphisms induced by h and h′

respectively.

Claim 4.1.1. If ρ is flat and hS′,x̄′ = h′
S′,x̄′ for all closed points x′ lying over s′,

then hx̄ = h′
x̄ for all closed points x lying over s.

Let us choose a closed point x ∈ X over s. Then there is a closed point x′ ∈ X ′

such that πX(x′) = x and x′ is lying over s′. If we set y = φ(x) and y′ = φS′(x′),
then πY (y′) = y. Here we consider the natural commutative diagram:

MY,ȳ
//

hx̄

²²
h
′
x̄

²²

MY ′,ȳ′

h̄S′,x̄′=h̄′
S′,x̄′

²²
MX,x̄

// MX′,x̄′

By Lemma 3.2, MY,ȳ → MY ′,ȳ′ and MX,x̄ → MX′,x̄′ are bijective. Thus we can
see that h̄x̄ = h̄′

x̄. Let us pick up w ∈ MY,ȳ. Then, since h̄x̄ = h̄′
x̄, there is u ∈ O×

X,x̄

with hx̄(w) = hx̄(w) · u. Here hS′,x̄′ = h′
S′,x̄′ . Thus u must be 1 in OX′,x̄′ . Note

that OX′,x̄′ is flat over OX,x̄. Therefore u is the identity in OX,x̄.

Let I be an ideal of A with I2 = {0}, and B = A/I. Next we consider a case
where ρ is given by the natural homomorphism A → B.

Claim 4.1.2. We assume that (i) k = A/m is algebraically closed and (ii) there
are a fine and sharp monoid Q and a homomorphism πQ : Q → MS,s such that
Q → MS,s̄ → MS,s̄ is bijective. If hS′,x̄′ = h′

S′,x̄′ for all closed points x′ lying over
s′, then hx̄ = h′

x̄ for all closed points x lying over s.

Let x be a closed point of X lying over s, and y = φ(x). First of all, by [5], there
are finite and sharp monoids P and P ′ and homomorphisms P → MX,x̄, Q → P ,
P ′ → MY,ȳ, Q → P ′ with the following properties:

(1) The induced homomorphisms P → MX,x̄ → MX,x̄ and P ′ → MY,ȳ → MY,ȳ

are bijective.
(2) The following diagrams are commutative:

Q
f−−−−→ Py y

MS,s̄ −−−−→ MX,x̄,

Q
f ′

−−−−→ P ′y y
MS,s̄ −−−−→ MY,ȳ.
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(3) There are étale neighborhoods (U, x′) and (V, y′) of x and y such that
P → MX,x̄ and P ′ → MY,ȳ are defined over U and V respectively, and that
the natural morphisms

U → Spec(A ⊗A[Q] A[P ]) and V → Spec(A ⊗A[Q′] A[P ′])

are smooth at x′ and y′ respectively.
Clearly we may assume that P , P ′ and Q are submonoids of MX,x̄, MY,ȳ and MS,s̄

respectively. We set Us = U ×S Spec(κ(s)), Vs = V ×S Spec(κ(s)), φs = φ ×S

idSpec(κ(s)), MUs
= MX |Us

, MVs
= MY |Vs

and Mk = MS |Spec(κ(s)). By Lemma 4.3
below, the admissibility of φs guarantees that for any irreducible components T of
Us, φs(T ) 6⊆ Supp(MVs

/Mk).
Let σ (resp. σ′) be the set of all irreducible elements of P not lying in f(Q) (resp.

the set of all irreducible elements of P ′ not lying in f ′(Q)). For j ∈ σ and i ∈ σ′, we
denote α(j) by xj and α′(i) by yi, where α : MX,x̄ → OX,x̄ and α′ : MY,ȳ → OY,ȳ

are the canonical homomorphisms. Moreover xj |Us
and yi|Vs

are denoted by xjs

and yis respectively. Let us consider h and h′ on the fibers Xs = X ×S Spec(κ(s))
and Ys = Y ×S Spec(κ(s)) over s. Using Lemma 3.2 and [5, Theorem 4.1], h̄x̄ = h̄′

x̄

as P ′ → P . Thus we can set as follows:

(4.1.3) hx̄(i) = ui · (Ii · σ + f(qi)) and h′
x̄(i) = u′

i · (Ii · σ + f(qi)),

where qi ∈ Q, Ii ∈ Nσ and ui, u
′
i ∈ O×

X,x̄. Then we have

(4.1.4) φ∗(yi) = β(qi) · xIi · ui = β(qi) · xIi · u′
i,

where β : MS,s̄ → OS,s̄ is the canonical homomorphism. We claim the following:

(4.1.5) If φ∗
s(yis) 6= 0 for some i ∈ σ′, then qi = 0 and φ∗(yi) = xIi · ui = xIi · u′

i.

Indeed, by (4.1.4), φ∗
s(yis) = βs(qi) · xIi

s · uis on Us, where βs : Q → k is a homo-
morphism given by

βs(q) =

{
1 if q = 0
0 otherwise

and uis = ui|Us
. Thus qi = 0, which yields φ∗(yi) = xIi · ui = xIi · u′

i.
Here we consider the following four cases:
(A) f : Q → P splits and f ′ : Q → P ′ splits.
(B) f : Q → P does not split and f ′ : Q → P ′ splits.
(C) f : Q → P splits and f ′ : Q → P ′ does not split.
(D) f : Q → P does not split and f ′ : Q → P ′ does not split.

(Case A): In this case, there are submonoids N and N ′ of P and P ′ respectively
such that P = f(Q) × N and P ′ = f ′(Q) × N ′. Note that σ and σ′ are nothing
more than the set of all irreducible elements of N and N ′ respectively. Then, by
the local structure theorem (cf. Theorem 3.1),

Supp(MVs/Mk) =
⋃

i∈σ′

{yis = 0}.

around y′ on Vs. Thus, using the admissibility of φs, φ∗
s(yis) 6= 0. Hence, by (4.1.5),

qi = 0 and xIi · ui = xIi · u′
i for all i ∈ σ′. Therefore ui = u′

i for all i ∈ σ′ because
xj ’s are regular elements (cf. Theorem 3.1).
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(Case B): In this case, there is a submonoid N ′ of P ′ such that P ′ = f ′(Q)×N ′.
Moreover P is of semistable type

(σ, q0,∆, B)

over Q for some q0 ∈ Q and ∆, B ∈ Nσ. By the local structure theorem (cf.
Theorem 3.1),

Supp(MVs
/Mk) =

⋃
i∈σ′

{yis = 0}

around y′ on Vs. Thus, by the admissibility of φs, φ∗
s(yis) 6= 0. Therefore, by

(4.1.5), qi = 0 and φ∗(yi) = xIi · ui = xIi · u′
i for all i ∈ σ′. Since Us is given

by
∏

j∈Supp(∆) xjs = 0, if j ∈ Supp(Ii) ∩ Supp(∆), then φ∗
s(yis) = 0 on the irre-

ducible component {xjs = 0} of Us. This contradicts to the admissibility of φs.
Hence Supp(Ii) ∩ Supp(∆) = ∅ for all i ∈ σ′. Thus xIi ’s are regular elements (cf.
Theorem 3.1). Therefore ui = u′

i for all i ∈ σ′.

(Case C): In this case, there is a submonoid N of P with P = f(Q) × N . P ′ is
of semistable type

(σ′, q′0,∆
′, B′)

over Q for some q′0 ∈ Q and ∆′, B′ ∈ Nσ′
. Note that

Supp(MVs/Mk) = Sing(Vs) ∪
⋃

i∈σ′\Supp(∆′)

{yis = 0}.

around y′ on Vs (cf. Theorem 3.1).
Let us see that if φ∗

s(yis) 6= 0 for some i ∈ σ′, then qi = 0 and ui = u′
i. Indeed,

by (4.1.5), we have qi = 0 and xIi · ui = xIi · u′
i. Thus ui = u′

i because xIi ’s are
regular elements (cf. Theorem 3.1).

Therefore we may assume that there is i0 ∈ σ′ with φ∗
s(yi0s) = 0. By using

the admissibility of φs, φ∗
s(yis) 6= 0 for i ∈ σ′ \ Supp(∆′). Thus i0 ∈ Supp(∆′).

Moreover, if φ∗
s(yi1s) = 0 for i1 ∈ Supp(∆′) \ {i0}, then

φs(Us) ⊆ {yi0s = yi1s = 0} ⊆ Sing(Vs),

which contradicts to the admissibility of φs. Thus φ∗
s(yis) 6= 0 for all i ∈ σ′ \ {i0}.

Hence ui = u′
i for all i ∈ σ′ \ {i0}. Let us consider a relation

∆′ · σ′ = f ′(q′0) + B′ · σ′.

Then we have{∑
i∈Supp(∆′) hx̄(i) = f(q′0) +

∑
i∈Supp(B′) B′(i)hx̄(i)∑

i∈Supp(∆′) h′
x̄(i) = f(q′0) +

∑
i∈Supp(B′) B′(i)h′

x̄(i)

Here hx̄(i) = h′
x̄(i) for all i 6= i0. Thus we can see that hx̄(i0) = h′

x̄(i0).

(Case D): In the final case, P and P ′ are of semistable type

(σ, q0,∆, B) and (σ′, q′0,∆
′, B′)

over Q for some q0, q
′
0 ∈ Q, ∆, B ∈ Nσ and ∆′, B′ ∈ Nσ′

. For j ∈ Supp(∆) and
i ∈ Supp(∆′), let Ujs and Vis be the irreducible components of Us and Vs given by
xjs = 0 and yis = 0 respectively. By the admissibility of φs, for each j ∈ Supp(∆),
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there is a unique i ∈ Supp(∆′) with φs(Ujs) ⊆ Vis. This i is denoted by µ(j). Note
that

Supp(MVs/Mk) = Sing(Vs) ∪
⋃

i∈σ′\Supp(∆′)

{yis = 0}

around y′ on Vs. Here we claim the following:
(i) If i 6= µ(j) for i ∈ σ′ and j ∈ Supp(∆), then φ∗(yi)|Ujs

6= 0.
(ii) If there is j ∈ Supp(∆) with i 6= µ(j), then qi = 0 and φ∗(yi) = xIi · ui =

xIi · u′
i.

(iii) If i 6∈ µ(Supp(∆)), then qi = 0 and ui = u′
i.

(iv) If i, i′ ∈ Supp(∆′) and i 6= i′, then Supp(Ii) ∩ Supp(Ii′) = ∅.
(i) is obvious by the admissibility of φs. (ii) is a consequence of (i) and (4.1.5). Let
us see (iii). By (ii), qi = 0 and φ∗(yi) = xIi · ui = xIi · u′

i. Using (i), φ∗(yi)|Ujs
6= 0

for all j ∈ Supp(∆). Thus Supp(Ii)∩ Supp(∆) = ∅. Hence xIi is a regular element
(cf. Theorem 3.1). Therefore ui = u′

i. Finally we consider (iv). We assume that
j ∈ Supp(Ii) ∩ Supp(Ii′). Then, since φ∗(yl) = β(ql) · xIl · ul for all l ∈ σ′,

φ(Ujs) ⊆ {yis = yi′s = 0} ⊆ Sing(Vs),

which contradicts to the admissibility of φs.
First we consider the case where #µ(Supp(∆)) = 1, i.e., µ(Supp(∆)) = {i0} for

some i0 ∈ Supp(∆′). Then, by (iii), for i 6= i0, qi = 0 and ui = u′
i. Considering a

relation:
∆′ · σ′ = f ′(q′0) + B′ · σ′,

we have {∑
i∈Supp(∆′) hx̄(i) = f(q′0) +

∑
i∈Supp(B′) B′(i)hx̄(i)∑

i∈Supp(∆′) h′
x̄(i) = f(q′0) +

∑
i∈Supp(B′) B′(i)h′

x̄(i)

Since hx̄(i) = h′
x̄(i) for all i 6= i0, we can see that hx̄(i0) = h′

x̄(i0).
Next let us consider the case where #µ(Supp(∆)) ≥ 2. In this case, by (ii),

qi = 0 and φ∗(yi) = xIi · ui = xIi · u′
i for all i ∈ σ′. Moreover, by (iii), ui = u′

i

for all i ∈ σ′ \ Supp(∆′). By our assumption, ui ≡ u′
i mod IOX,x̄. Note that xj

(j 6∈ Supp(∆)) is regular. Thus, if we set I ′i = Ii|Supp(∆) ∈ NSupp(∆), then

xI′
i · ui = xI′

i · u′
i

for all i ∈ Supp(∆′). By (iv), Supp(I ′i) ∩ Supp(I ′i′) = ∅ for all i 6= i′ ∈ Supp(∆′).
Further let us consider a relation

∆′ · σ′ = f ′(q′0) + B′ · σ′.

Since hx̄(i) = h′
x̄(i) for all σ′ \ Supp(∆′), we have∑

i∈Supp(∆′)

hx̄(i) =
∑

i∈Supp(∆′)

h′
x̄(i),

which implies
∏

i∈Supp(∆′) ui =
∏

i∈Supp(∆′) u′
i. Here we set vi = ui/u′

i for i ∈
Supp(∆). Then, gathering the above observations, we have seen that

xI′
i = xI′

i · vi for all i ∈ Supp(∆′),
vi ≡ 1 mod IOX,x̄ for all i ∈ Supp(∆′),∏

i∈Supp(∆′) vi = 1,
Supp(I ′i) ∩ Supp(I ′i′) = ∅ for all i 6= i′ ∈ Supp(∆′).
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Since A⊗A[Q] A[P ] → OU,u is smooth, A⊗A[Q] A[P ×Ne] → OU,x′ is étale for some
e ≥ 0. Let o be the origin of Spec(A ⊗A[Q] A[P × Ne]). Then the residue field of
A ⊗A[Q] A[P × Ne] at o is k. Moreover the residue fields of OU,x′ and OX,x̄ are k
because k is algebraically closed. Therefore the completion of A ⊗A[Q] A[P × Ne]
at o is isomorphic to the completion of OX,x̄. Thus, by Lemma 4.4 below, vi = 1,
that is, ui = u′

i for all i ∈ Supp(∆′).

Let k = A/m and k̄ the algebraic closure of k. By virtue of [EGA III, Chapter 0,
10.3.1], there are a noetherian local ring (B,n) and a local homomorphism A → B
such that mB = n, B/n is isomorphic to k̄ over k = A/m and that B is flat
over A. Thus, by Claim 4.1.1, we may assume that the residue field k = A/m is
algebraically closed. Moreover, by Proposition 2.1.1, we may further assume that
there are a find and sharp monoid Q and a homomorphism πQ : Q → MS,s such
that Q → MS,s̄ → MS,s̄ is bijective.

Let Ai = A/mi+1, ρi : Ai → Ai−1 the canonical homomorphism and Ii =
Ker(ρi). Then A0 = k and I2

i = {0} for i ≥ 1. We set Xi = X ×S Spec(Ai), MXi =
MX |Xi

, Yi = Y ×S Spec(Ai), MYi = MY |Yi
. Moreover the induced morphisms

MYi → MXi and MYi → MXi via h and h′ are denoted by hi and h′
i respectively.

Note that h0 = h′
0 at any closed points of Xs by [5]. By Claim 4.1.2, hn = hn at

any closed points lying over s implies that hn+1 = h′
n+1 at any closed points lying

over s. Therefore we have hn = h′
n at any closed points of Xs for all n ≥ 0. Let

x be a closed point of X over s and y = φ(x). Since h̄x̄ = h̄′
x̄ as a homomorphism

MY,ȳ → MX,x̄, for w ∈ MY,ȳ, there is u ∈ O×
X,x̄ with hx̄(w) = h′

x̄(w) · u. Since
hn = h′

n, we can see that u − 1 ∈ mn+1OX,x̄. Note that OX,x̄ is noetherian, which
implies that

⋂
n=0 mn+1OX,x̄ = {0}. Therefore u = 1. 2

As corollary of Theorem 4.1, we have the following:

Corollary 4.2 (Rigidity theorem). Let f : X → S and g : Y → S be semistable
schemes over a locally noetherian scheme S, and let φ : X → Y be a morphism
over S. Let MX , MY and MS be fine log structures on X, Y and S respectively.
We assume that (X,MX) and (Y,MY ) are log smooth and integral over (S,MS)
and φ is admissible with respect to MY /MS. If we have log morphisms

(φ, h) : (X,MX) → (Y,MY ) and (φ, h′) : (X,MX) → (Y,MY )

over (S,MS) as extensions of φ : X → Y , then h = h′.

The following two lemmas was needed for the proof of Theorem 4.1.

Lemma 4.3. Let

X ′ π′

−−−−→ Y ′

µ

y yν

X
π−−−−→ Y

be a commutative diagram of reduced algebraic schemes over an algebraically closed
field such that X and X ′ is equi-dimensional and µ is flat. Let Z be a closed subset
of Y . If π(T ) 6⊆ Z for any irreducible components T of X, then π′(T ′) 6⊆ ν−1(Z)
for any irreducible components T ′ of X ′.
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Proof. We assume that π′(T ′) ⊆ ν−1(Z) for an irreducible component T ′ of
X ′. Then

π(µ(T ′)) = ν(π′(T ′)) ⊆ ν(ν−1(Z)) ⊆ Z.

Let T be the Zariski closure of µ(T ′). If dim T < dimX, then

dimµ−1(x) ≥ dimT ′ − dimT > dimX ′ − dimX

for x ∈ µ(T ′), which is a contradiction because µ is flat. Thus we have dimT =
dimX, which means that T is an irreducible component of X. On the other hand,
we know π(T ) ⊆ Z. This is a contradiction to our assumption. Therefore we get
our lemma. 2

Lemma 4.4. Let (A,m) be a noetherian complete local ring and A[[X1, . . . , Xn]]
the ring of formal power series of n-variables over A. For a fixed a ∈ m, let

R = A[[X1, . . . , Xn]]/(X1 · · ·Xn − a)

and J an ideal of R with J2 = 0. Let u1, . . . ul be elements of R and I1, . . . , Il

elements of Nn with Supp(Ii) ∩ Supp(Ij) = ∅ for i 6= j. We assume that (1)
u1 · · ·ul = 1, (2) XIiui = XIi in R for all i, and that (3) ui ≡ 1 mod J . Then we
have u1 = · · · = ul = 1.

Proof. We set Σ = {I ∈ Nn | ∆ 6≤ I} and

A[[X1, . . . , Xn]]Σ =

{∑
I∈Σ

aIX
I | aI ∈ A

}
,

where ∆ = (1, . . . , 1). Then, by Lemma 1.1.2, the natural map A[[X1, . . . , Xn]]Σ →
R is bijective. Here we claim the following:

Claim 4.4.1. Let T be an element of Nn. We set ΣT = {I ∈ Σ | I + T ≥ ∆}.
Then, for f ∈ A[[X1, . . . , Xn]]Σ, if XT f = 0 in R, then f can be written by a form

f =
∑

I∈ΣT

bIX
I .

If either T = (0, . . . , 0) or T ≥ ∆, then our assertion is trivial. Thus we may
assume that T 6= (0, . . . , 0) and T 6≥ ∆. For I ∈ Nn, we can find a non-negative
integer a and J ∈ Σ with I = a∆ + J . We denote a and J by a(I) and J(I)
respectively. Here let us see that J(I + T ) 6∈ {S + T | S ∈ Σ \ ΣT } for I ∈ ΣT .
Indeed, since I ∈ ΣT , we can find i with I(i) = 0 and T (i) > 0. Thus

J(I + T )(i) = T (i) − a(I + T ) < T (i).

Hence J(I + T ) 6∈ {S + T | S ∈ Σ \ ΣT }.
We set f =

∑
I∈Σ aIX

I . Then

XT f =
∑

I∈ΣT

aIX
I+T +

∑
I∈Σ\ΣT

aIX
I+T

=
∑

I∈ΣT

aIa
a(I+T )XJ(I+T ) +

∑
I∈Σ\ΣT

aIX
I+T .

Thus aI = 0 for I ∈ Σ \ ΣT .
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Since ui ≡ 1 mod J , there is ai ∈ J with ui = 1 + ai. Then XIiai = 0.
Moreover, since J2 = 0,

u1 · · ·ul = 1 + a1 + · · · + al = 1.

Hence a1 + · · ·+ al = 0. Since XIiai = 0, by the above claim, ai =
∑

I∈ΣIi
ci,IX

I ,
where ΣIi = {I ∈ Σ | I + Ii ≥ ∆}. Therefore

l∑
i=1

∑
I∈ΣIi

ci,IX
I = 0.

Note that if I ∈ ΣIi and I ′ ∈ ΣIj for i 6= j, then I 6= I ′ because Supp(Ii) ∩
Supp(Ij) = ∅. Thus we can see that ci,I = 0, which shows us ai = 0 for all i. 2
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