
ON HOLOMORPHIC CURVES IN ALGEBRAIC TORUS

MASAKI TSUKAMOTO

Abstract. We study entire holomorphic curves in the algebraic torus, and show that
they can be characterized by the “growth rate” of their derivatives.

1. Introduction

Let z = x+y
√
−1 be the natural coordinate in the complex plane C, and let f(z) be an

entire holomorphic function in the complex plane. Suppose that there are a non-negative

integer m and a positive constant C such that

|f(z)| ≤ C|z|m, (|z| ≥ 1).

Then f(z) becomes a polynomial with deg f(z) ≤ m. This is a well-known fact in the

complex analysis in one variable. In this paper, we prove an analogous result for entire

holomorphic curves in the algebraic torus (C∗)n := (C \ {0})n.

Let [z0 : z1 : · · · : zn] be the homogeneous coordinate in the complex projective space

CP n. We define the complex manifold X ⊂ CP n by

X := {[1 : z1 : · · · : zn] ∈ CP n| zi 6= 0, (1 ≤ i ≤ n)} ∼= (C∗)n.

X is a natural projective embedding of (C∗)n. We use the restriction of the Fubini-Study

metric as the metric on X. (Note that this metric is different from the natural flat metric

on (C∗)n.)

For a holomorphic map f : C → X, we define its norm |df |(z) by setting

(1) |df |(z) :=
√

2 |df(∂/∂z)| for all z ∈ C.

Here ∂/∂z = 1
2
(∂/∂x−

√
−1∂/∂y), and the normalization factor

√
2 comes from |∂/∂z| =

1/
√

2.

The main result of this paper is the following.

Theorem 1.1. Let f : C → X be a holomorphic map. Suppose there are a non-negative

integer m and a positive constant C such that

(2) |df |(z) ≤ C|z|m, (|z| ≥ 1).
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Then there are polynomials g1(z), g2(z), · · · , gn(z) with deg gi(z) ≤ m + 1, (1 ≤ i ≤ n),

such that

(3) f(z) = [1 : eg1(z) : eg2(z) : · · · : egn(z)].

Conversely, if a holomorphic map f(z) is expressed by (3) with polynomials gi(z) of

degree at most m + 1, f(z) satisfies the “polynomial growth condition” (2).

The direction (3) ⇒ (2) is easier, and the substantial part of the argument is the

direction (2) ⇒ (3).

If we set m = 0 in the above, we get the following corollary.

Corollary 1.2. Let f : C → X be a holomorphic map with bounded derivative, i.e.,

|df |(z) ≤ C for some positive constant C. Then there are complex numbers ai and bi,

(1 ≤ i ≤ n), such that

f(z) = [ 1 : ea1z+b1 : ea2z+b2 : · · · : eanz+bn ].

This is the theorem of [BD, Appendice]. The author also proves this in [T, Section 6].

Remark 1.3. The essential point of Theorem 1.1 is the statement that the degrees of

the polynomials gi(z) are at most m+1. Actually, it is easy to prove that if f(z) satisfies

the condition (2) then f(z) can be expressed by (3) with polynomials gi(z) of degree at

most 2m + 2. (See Section 4.)

Theorem 1.1 states that holomorphic curves in X can be characterized by the growth

rate of their derivatives. We can formulate this fact more clearly as follows;

Let g1(z), g2(z), · · · , gn(z) be polynomials, and define f : C → X by (3). We define

the integer m ≥ −1 by setting

(4) m + 1 := max(deg g1(z), deg g2(z), · · · , deg gn(z)).

We have m = −1 if and only if f is a constant map. m can be obtained as the growth

rate of |df |:

Theorem 1.4. If m ≥ 0, we have

lim sup
r→∞

max|z|=r log |df |(z)

log r
= m.

Corollary 1.5. Let λ be a non-negative real number, and let [λ] be the maximum

integer not greater than λ. Let f : C → X be a holomorphic map, and suppose that there

is a positive constant C such that

(5) |df |(z) ≤ C|z|λ, (|z| ≥ 1).

Then we have a positive constant C ′ such that

|df |(z) ≤ C ′|z|[λ], (|z| ≥ 1).
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Proof. If f is a constant map, the statement is trivial. Hence we can suppose f is not

constant. From Theorem 1.1, f can be expressed by (3) with polynomials gi(z) of degree

at most [λ] + 2. Since f satisfies (5), we have

lim sup
r→∞

max|z|=r log |df |(z)

log r
≤ λ.

From Theorem 1.4, this shows deg gi(z) ≤ [λ] + 1 for all gi(z). Then, Theorem 1.1 gives

the conclusion. �

2. Proof of (3) ⇒ (2)

Let f : C → X be a holomorphic map. From the definition of X, we have holomorphic

maps fi : C → C∗, (1 ≤ i ≤ n), such that f(z) = [1 : f1(z) : · · · : fn(z)]. The norm |df |(z)

in (1) is given by

(6) |df |2(z) =
1

4π
∆ log

(
1 +

n∑
i=1

|fi(z)|2
)

, (∆ :=
∂2

∂x2
+

∂2

∂y2
= 4

∂2

∂z∂z̄
).

Suppose that f is expressed by (3), i.e., fi(z) = exp(gi(z)) with a polynomial gi(z) of

degree ≤ m + 1. We will repeatedly use the following calculation in this paper.

|df |2 =
1

π

[ ∑
i |f ′i |2

(1 +
∑

i |fi|2)2
+

∑
i<j |g′i − g′j|2|fi|2|fj|2

(1 +
∑

i |fi|2)2

]
,

≤ 1

π

[∑
i

|f ′i |2

(1 + |fi|2)2
+
∑
i<j

|g′i − g′j|2|fi|2|fj|2

(|fi|2 + |fj|2)2

]
,

=
1

π

[∑
i

|f ′i |2

(1 + |fi|2)2
+
∑
i<j

|(fi/fj)
′|2

(1 + |fi/fj|2)2

]
,

=
∑

i

|dfi|2 +
∑
i<j

|d(fi/fj)|2.

(7)

Here we set

|dfi| :=
1√
π

|f ′i |
1 + |fi|2

and |d(fi/fj)| :=
1√
π

|(fi/fj)
′|

1 + |fi/fj|2
.

These are the norms of the differentials of the maps fi, fi/fj : C → CP 1.

We have fi(z) = exp(gi(z)) and fi(z)/fj(z) = exp(gi(z)− gj(z)), and the degrees of the

polynomials gi(z) and gi(z)− gj(z) are at most m + 1. Then, the next Lemma gives the

desired conclusion:

|df |(z) ≤ C|z|m, (|z| ≥ 1),

for some positive constant C.



4 MASAKI TSUKAMOTO

Lemma 2.1. Let g(z) be a polynomial of degree ≤ m + 1, and set h(z) := eg(z). Then

we have a positive constant C such that

|dh|(z) =
1√
π

|h′(z)|
1 + |h(z)|2

≤ C|z|m, (|z| ≥ 1).

Proof. We have

√
π |dh| = |g′|

|h|+ |h|−1
≤ |g′|min(|h|, |h|−1) ≤ |g′|.

Since the degree of g′(z) is at most m, we easily get the conclusion. �

3. Preliminary estimates

In this section, k is a fixed positive integer.

The following is a standard fact in the Nevanlinna theory.

Lemma 3.1. Let g(z) be a polynomial of degree k, and set h(z) = eg(z). Then we have

a positive constant C such that∫ r

1

dt

t

∫
|z|≤t

|dh|2(z) dxdy ≤ Crk, (r ≥ 1).

Proof. Since |dh|2 = 1
4π

∆ log(1 + |h|2), Jensen’s formula gives∫ r

1

dt

t

∫
|z|≤t

|dh|2 dxdy =
1

4π

∫
|z|=r

log(1 + |h|2) dθ − 1

4π

∫
|z|=1

log(1 + |h|2) dθ.

Here (r, θ) is the polar coordinate in the complex plane. We have

log(1 + |h|2) ≤ 2 |Re g(z)|+ log 2 ≤ Crk, (r := |z| ≥ 1).

Thus we get the conclusion. �

Let I be a closed interval in R and let u(x) be a real valued function defined on I. We

define its C1-norm ||u||C1(I) by setting

||u||C1(I) := sup
x∈I

|u(x)|+ sup
x∈I

|u′(x)|.

For a Lebesgue measurable set E in R, we denote its Lebesgue measure by |E|.

Lemma 3.2. There is a positive number ε satisfying the following: If a real valued

function u(x) ∈ C1[0, π] satisfies

||u(x)− cos x||C1[0, π] ≤ ε,

then we have

|u−1([−t, t])| ≤ 4t for any t ∈ [0, ε].
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Proof. The proof is just an elementary calculus. For any small number δ > 0, if we

choose ε sufficiently small, we have

u−1([−t, t]) ⊂ [π/2− δ, π/2 + δ].

Let x1 and x2 be any two elements in u−1([−t, t]). From the mean value theorem, we have

y ∈ [π/2− δ, π/2 + δ] such that

u(x1)− u(x2) = u′(y) (x1 − x2).

From sin(π/2) = 1, we can suppose that

|u′(y)| ≥ 1/2.

Hence

|x1 − x2| ≤ 2 |u(x1)− u(x2)| ≤ 4t.

Thus we get

|u−1([−t, t])| ≤ 4t.

�

Using a scale change of the coordinate, we get the following.

Lemma 3.3. There is a positive number ε satisfying the following: If a real valued

function u(x) ∈ C1[0, 2π] satisfies

||u(x)− cos kx||C1[0, 2π] ≤ ε,

then we have

|u−1([−t, t])| ≤ 8t for any t ∈ [0, ε].

Proof.

u−1([−t, t]) =
2k−1⋃
j=0

u−1([−t, t]) ∩ [jπ/k, (j + 1)π/k].

Applying Lemma 3.2 to u(x/k), we have

|u−1([−t, t]) ∩ [0, π/k] | ≤ 4t/k.

In a similar way,

|u−1([−t, t]) ∩ [jπ/k, (j + 1)π/k] | ≤ 4t/k, (j = 0, 1, · · · , 2k − 1).

Thus we get the conclusion. �

Let E be a subset of C. For a positive number r, we set

E(r) := {θ ∈ R/2πZ| reiθ ∈ E}.

In the rest of the section, we always assume k ≥ 2.
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Lemma 3.4. Let C be a positive constant, and let g(z) = zk + a1z
k−1 + · · · + ak be a

monic polynomial of degree k. Set

E := {z ∈ C| |Re g(z)| ≤ C|z|}.

Then we have a positive number r0 such that

|E(r)| ≤ 8C/rk−1, (r ≥ r0).

Proof. Set v(z) := Re (a1z
k−1 + a2z

k−2 + · · ·+ ak). Then we have

|Re g(reiθ)| ≤ Cr ⇐⇒ | cos kθ + v(reiθ)/rk| ≤ C/rk−1.

Set u(θ) := cos kθ + v(reiθ)/rk. It is easy to see that

||u(θ)− cos kθ||C1[0,2π] ≤ const/r, (r ≥ 1).

Then we can apply Lemma 3.3 to this u(θ), and we get

|E(r)| = |u−1([−C/rk−1, C/rk−1])| ≤ 8C/rk−1, (r � 1).

�

The following is the key lemma.

Lemma 3.5. Let g(z) = a0z
k + a1z

k−1 + · · ·+ ak be a polynomial of degree k, (a0 6= 0).

Set

E := {z ∈ C| |Re g(z)| ≤ |z|}.

Then we have a positive number r0 such that

|E(r)| ≤ 8

|a0|rk−1
, (r ≥ r0).

Proof. Let arg a0 be the argument of a0, and set α := arg a0/k. We define the monic

polynomial g1(z) by

g1(z) :=
1

|a0|
g(e−iαz) = zk + · · · .

Then we have

|Re g(reiθ)| ≤ r ⇐⇒ |Re g1(re
i(θ+α))| ≤ r/|a0|.

Hence the conclusion follows from Lemma 3.4. �

Lemma 3.6. Let g(z) be a polynomial of degree k, and we define E as in Lemma 3.5.

Set h(z) := eg(z). Then we have ∫
C\E

|dh|2(z) dxdy < ∞.
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Proof. Since |h| = eRe g, the argument in the proof of Lemma 2.1 gives

√
π |dh| ≤ |g′|min(|h|, |h|−1) ≤ |g′| e−|Re g|.

g′(z) is a polynomial of degree k − 1, and we have |Re g| > |z| for z ∈ C \ E. Hence we

have a positive constant C such that

|dh|(z) ≤ C|z|k−1e−|z|, if z ∈ C \ E and |z| ≥ 1.

The conclusion follows from this estimate. �

4. Proof of (2) ⇒ (3)

Let f = [1 : f1 : f2 : · · · : fn] : C → X be a holomorphic map with |df |(z) ≤ C|z|m,

(|z| ≥ 1). Since exp : C → C∗ is the universal covering, we have entire holomorphic

functions gi(z) such that fi(z) = egi(z). We will prove that all gi(z) are polynomials of

degree ≤ m + 1. The proof falls into two steps. In the first step, we prove all gi(z) are

polynomials. In the second step, we show deg gi(z) ≤ m + 1. The second step is the

harder part of the proof.

Schwarz’s formula gives1

πrkg
(k)
i (0) = k!

∫
|z|=r

Re (gi(z)) e−k
√
−1θdθ = k!

∫
|z|=r

log |fi(z)| e−k
√
−1θdθ, (k ≥ 1).

We have

|log |fi|| ≤ log(|fi|+ |fi|−1) = log(1 + |fi|2)− log |fi| ≤ log(1 +
∑

|fj|2)− log |fi|.

Hence

πrk|g(k)
i (0)| ≤ k!

∫
|z|=r

log(1 +
∑

|fj|2) dθ − k!

∫
|z|=r

log |fi| dθ.

Since log |fi| = Re gi(z) is a harmonic function, the second term in the above is equal to

the constant −2πk! Re gi(0). Since |df |2 = 1
4π

∆ log(1 +
∑
|fj|2), Jensen’s formula gives

1

4π

∫
|z|=r

log(1 +
∑

|fj|2) dθ − 1

4π

∫
|z|=1

log(1 +
∑

|fj|2) dθ =

∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy.

Thus we get

(8)
rk

4k!
|g(k)

i (0)| ≤
∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy + const.

Since |df |(z) ≤ C|z|m, (|z| ≥ 1), this shows g
(k)
i (0) = 0 for k ≥ 2m + 3. Hence gi(z) are

polynomials.

1The idea of using Schwarz’s formula is due to [BD, Appendice]. The author gives a different approach
in [T, Section 6].
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Next we will prove deg gi(z) ≤ m+1. We define Ei, Eij ⊂ C, (1 ≤ i ≤ n, 1 ≤ i < j ≤ n),

by setting

deg gi(z) ≤ m + 1 =⇒ Ei := ∅,

deg gi(z) ≥ m + 2 =⇒ Ei := {z ∈ C| |Re gi(z)| ≤ |z|},

deg(gi(z)− gj(z)) ≤ m + 1 =⇒ Eij := ∅,

deg(gi(z)− gj(z)) ≥ m + 2 =⇒ Eij := {z ∈ C| |Re (gi(z)− gj(z))| ≤ |z|}.

We set E :=
⋃

i Ei ∪
⋃

i<j Eij. Then we have E(r) =
⋃

i Ei(r) ∪
⋃

i<j Eij(r) for r > 0.

From Lemma 3.5, we have positive constants r0 and C ′ such that

(9) |E(r)| ≤ C ′/rm+1, (r ≥ r0).

We have∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy

=

∫ r

1

dt

t

∫
E∩{|z|≤t}

|df |2(z) dxdy +

∫ r

1

dt

t

∫
Ec∩{|z|≤t}

|df |2(z) dxdy.

(10)

Using (9) and |df |(z) ≤ C|z|m, (|z| ≥ 1), we can estimate the first term in (10) as follows:∫
E∩{1≤|z|≤t}

|df |2(z) dxdy ≤ C2

∫
E∩{1≤|z|≤t}

r2m+1 drdθ = C2

∫ t

1

r2m+1|E(r)|dr.

If t ≥ r0, we have∫ t

r0

r2m+1|E(r)|dr ≤ C ′
∫ t

r0

rmdr =
C ′

m + 1
tm+1 − C ′

m + 1
r0

m+1.

Thus

(11)

∫ r

1

dt

t

∫
E∩{|z|≤t}

|df |2(z) dxdy ≤ const · rm+1, (r ≥ 1).

Next we will estimate the second term in (10) by using the inequality (7) given in

Section 2:

|df |2 ≤
∑

i

|dfi|2 +
∑
i<j

|d(fi/fj)|2.

If deg gi(z) ≤ m + 1, Lemma 3.1 gives∫ r

1

dt

t

∫
Ec∩{|z|≤t}

|dfi|2(z) dxdy ≤
∫ r

1

dt

t

∫
|z|≤t

|dfi|2(z) dxdy ≤ const · rm+1.

If deg gi(z) ≥ m + 2, Lemma 3.6 gives∫
Ec∩{|z|≤t}

|dfi|2(z) dxdy ≤
∫

Ec
i∩{|z|≤t}

|dfi|2(z) dxdy ≤ const.
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The terms for |d(fi/fj)| can be also estimated in the same way, and we get

(12)

∫ r

1

dt

t

∫
Ec∩{|z|≤t}

|df |2(z) dxdy ≤ const · rm+1, (r ≥ 1).

From (10), (11), (12), we get∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy ≤ const · rm+1, (r ≥ 1).

From (8), this shows g
(k)
i (0) = 0 for k ≥ m + 2. Thus gi(z) are polynomials with

deg gi(z) ≤ m + 1. This concludes the proof of Theorem 1.1.

5. Proof of Theorem 1.4 and a corollary

5.1. Proof of Theorem 1.4. The proof of Theorem 1.4 needs the following lemma.

Lemma 5.1. Let k ≥ 1 be an integer, and let δ be a real number satisfying 0 < δ < 1.

Let g(z) = a0z
k + a1z

k−1 + · · · + ak be a polynomial of degree k, (a0 6= 0). We set

h(z) := eg(z) and define E ⊂ C by

E := {z ∈ C| |Re g(z)| ≤ |z|δ}.

Then we have ∫
C\E

|dh|2 < ∞,

and there is a positive number r0 such that

|E(r)| ≤ 8

|a0|rk−δ
, (r ≥ r0).

Proof. This can be proven by the methods in Section 3. We omit the detail. �

Let g1(z), g2(z), · · · , gn(z) be polynomials, and define the holomorphic map f : C → X

and the integer m ≥ −1 by (3) and (4). Here we suppose m ≥ 0, i.e., f is not a constant

map. We will prove Theorem 1.4.

From Theorem 1.1, we have

|df |(z) ≤ const · |z|m, (|z| ≥ 1).

It follows

lim sup
r→∞

max|z|=r log |df |(z)

log r
≤ m.

We want to prove that this is actually an equality. Suppose

lim sup
r→∞

max|z|=r log |df |(z)

log r
� m.

Then, if we take ε > 0 sufficiently small, we have a positive number r0 such that

(13) |df |(z) ≤ |z|m−ε, (|z| ≥ r0).



10 MASAKI TSUKAMOTO

Schwarz’s formula gives the inequality (8):

(14)
rk

4k!
|g(k)

i (0)| ≤
∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy + const, (k ≥ 0).

Let δ be a positive number such that 0 < δ < 2ε. We define Ei and Eij, (1 ≤ i ≤ n, 1 ≤
i < j ≤ n), by setting

deg gi(z) ≤ m =⇒ Ei := ∅,

deg gi(z) = m + 1 =⇒ Ei := {z ∈ C| |Re gi(z)| ≤ |z|δ},

deg(gi(z)− gj(z)) ≤ m =⇒ Eij := ∅,

deg(gi(z)− gj(z)) = m + 1 =⇒ Eij := {z ∈ C| |Re (gi(z)− gj(z))| ≤ |z|δ}.

We set E :=
⋃

i Ei ∪
⋃

i<j Eij. Then, if we take r0 sufficiently large, we have

(15) |E(r)| ≤ const/rm+1−δ, (r ≥ r0).

We have∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy

=

∫ r

1

dt

t

∫
E∩{|z|≤t}

|df |2(z) dxdy +

∫ r

1

dt

t

∫
Ec∩{|z|≤t}

|df |2(z) dxdy.

From (13) and (15), the first term can be estimated as in Section 4:∫ r

1

dt

t

∫
E∩{|z|≤t}

|df |2(z) dxdy ≤ const · rm+1−(2ε−δ), (r ≥ 1).

Using Lemma 5.1 and the inequality |df |2 ≤
∑

i |dfi|2 +
∑

i<j |d(fi/fj)|2, we can estimate

the second term:∫ r

1

dt

t

∫
Ec∩{|z|≤t}

|df |2(z) dxdy ≤ const · log r + const · rm, (r ≥ 1).

Thus we get ∫ r

1

dt

t

∫
E∩{|z|≤t}

|df |2(z) dxdy ≤ const · rm+1−(2ε−δ), (r ≥ 1).

Note that 2ε− δ is a positive number. Using this estimate in (14), we get

g
(k)
i (0) = 0, (k ≥ m + 1).

This shows deg gi(z) ≤ m. This contradicts the definition of m.

Remark 5.2. The following is also true:

lim sup
r→∞

max|z|≤r log |df |(z)

log r
= m.
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Proof. We have

m = lim sup
r→∞

max|z|=r log |df |(z)

log r
≤ lim sup

r→∞

max|z|≤r log |df |(z)

log r
.

And we have |df |(z) ≤ const · |z|m, (|z| ≥ 1). Thus

lim sup
r→∞

max|z|≤r log |df |(z)

log r
≤ m.

�

5.2. Order of the Shimizu-Ahlfors characteristic function. For a holomorphic map

f : C → X, we define the Shimizu-Ahlfors characteristic function T (r, f) by

T (r, f) :=

∫ r

1

dt

t

∫
|z|≤t

|df |2(z) dxdy, (r ≥ 1).

The order ρf of T (r, f) is defined by

ρf := lim sup
r→∞

log T (r, f)

log r
.

ρf can be obtained as the growth rate of |df |:

Corollary 5.3. For a holomorphic map f : C → X, we have

ρf < ∞⇐⇒ lim sup
r→∞

max|z|=r log |df |(z)

log r
< ∞.

If these values are finite and f is not a constant map, then we have

ρf = lim sup
r→∞

max|z|=r log |df |(z)

log r
+ 1.

Proof. If ρf < ∞, the estimate (14) shows that f can be expressed by (3) with

polynomials g1(z), · · · , gn(z). Then we have

lim sup
r→∞

max|z|=r log |df |(z)

log r
< ∞.

The proof of the converse is trivial.

Suppose ρf < ∞. Then we can express f by f(z) = [1 : eg1(z) : · · · : egn(z)] with

polynomials g1(z), · · · , gn(z). We set fi(z) := egi(z), and define the integer m by (4).

Theorem 1.4 gives

lim sup
r→∞

max|z|=r log |df |(z)

log r
+ 1 = m + 1.

The estimate (14) gives

m + 1 ≤ ρf .

Since |df | = 1
4π

∆ log(1 +
∑
|fi|2), Jensen’s formula gives

T (r, f) =
1

4π

∫
|z|=r

log(1 +
∑

i

|fi|2) dθ − 1

4π

∫
|z|=1

log(1 +
∑

i

|fi|2) dθ.
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Since deg gi(z) ≤ m + 1, we have

log(1 +
∑

i

|fi|2) ≤ const · rm+1, (r ≥ 1).

Hence

ρf ≤ m + 1.

Thus we get

ρf = m + 1 = lim sup
r→∞

max|z|=r log |df |(z)

log r
+ 1.

�

Remark 5.4. Of course, the statement of Corollary 5.3 is not true for general entire

holomorphic curves in the complex projective space CP n. For example, let f : C → CP 1

be a non-constant elliptic function. Since |df | is bounded all over the complex plane, we

have

lim sup
r→∞

max|z|=r log |df |(z)

log r
= 0.

And it is easy to see

ρf = 2 6= lim sup
r→∞

max|z|=r log |df |(z)

log r
+ 1.
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