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Abstract

We prove that Alexandrov spaces X of nonnegative curvature have Markov type
2 in the sense of Ball. As a corollary, any Lipschitz continuous mapping from a
subset of X into a 2-uniformly convex Banach space is extended as a Lipschitz
continuous mapping on the entire space X.

1 Introduction

The aim of the present article is to contribute to the nonlinearization of the geometry of
Banach spaces from the viewpoint of metric geometry. Among them, our main object is
Markov type of metric spaces due to Ball.

Markov type is a generalization of Rademacher type of Banach spaces. Rademacher
type and cotype describe the behaviour of sums of independent random variables in Ba-
nach spaces, and these properties have fruitful analytic and geometric applications (cf.
[LT] and [MS]). Enflo [E] first gave a generalized notion of type of metric spaces, which is
called Enflo type now, and a variant of Enflo type was studied by Bourgain, Milman and
Wolfson [BMW]. After them, Ball [B] introduced the notion of Markov type of metric
spaces, and showed its importance in connection with the extension problem of Lipschitz
mappings. Namely, he showed that any Lipschitz continuous mapping from a subset of
metric space X having Markov type 2 into a reflexive Banach space having Markov cotype
2 can be extended to a Lipschitz mapping on the entire space X. Here Markov cotype of
Banach spaces is a notion also introduced by Ball. It is worthful to mention that how to
formulate a notion of cotype for general metric spaces has been an important question.
See [MN1] for a recent breakthrough on this topic.

Until recently, only known examples of spaces possessing Markov type 2 had been
Hilbert spaces and their bi-Lipschitz equivalents. Naor, Peres, Schramm and Sheffield
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[NPSS] broke the situation and showed that 2-uniformly smooth Banach spaces and some
negatively curved metric spaces have Markov type 2 (Example 2.7). They also asked
whether CAT(0)-spaces have Markov type 2 or not. We will answer this question affir-
matively, but under the reverse curvature bound.

Our main theorem asserts that Alexandrov spaces of nonnegative curvature have
Markov type 2 (Theorem 4.3). As an immediate corollary by virtue of Ball’s exten-
sion theorem, any Lipschitz continuous mapping from a subset of an Alexandrov space
of nonnegative curvature into a reflexive Banach space having Markov cotype 2 can be
extended to a Lipschitz mapping on the entire space (Corollary 4.5). Compare this with
[LS], [LPS] and [LN]. Our discussion is based on a different technique from that used in
[NPSS]. The key tool is the inequality (3.1) in Theorem 3.2 due to Sturm.

The article is organized as follows. We review the theories of linear and nonlinear
types and Alexandrov spaces of nonnegative curvature in Sections 2 and 3, respectively.
Section 4 is devoted to the proof of the main theorem. Finally, in Section 5, we give a
short remark on nonlinearizations of the 2-uniform smoothness and convexity of Banach
spaces in connection with the curvature bounds in metric geometry.

Acknowledgements. This work was completed while I was visiting Institut für Ange-
wandte Mathematik, Universität Bonn. I am grateful to the institute for its hospitality.

2 Nonlinear types

In this section, we recall Rademacher type and cotype of Banach spaces and some exten-
sions of Rademacher type to nonlinear spaces. We refer to [LT] and [MS] for basic facts
on Rademacher type and cotype. Throughout the article, we restrict ourselves to the case
of p = 2, i.e., we will treat only type 2 and cotype 2.

A Banach space (V, ‖·‖) is said to have Rademacher type 2 if there is a constant K ≥ 1
such that, for any N ∈ N and {vi}N

i=1 ⊂ V , we have

1

2N

∑

ε∈{−1,1}N

∥∥∥∥
N∑

i=1

εivi

∥∥∥∥
2

≤ K2

N∑
i=1

‖vi‖2, (2.1)

where ε = (εi)
N
i=1. A fundamental example of a space possessing Rademacher type 2 is

a 2-uniformly smooth Banach space. A Banach space (V, ‖ · ‖) is said to be 2-uniformly
smooth (or have modulus of smoothness of power type 2) if there is a constant S ≥ 1 such
that

∥∥∥∥
v + w

2

∥∥∥∥
2

≥ 1

2
‖v‖2 +

1

2
‖w‖2 − S2

4
‖v − w‖2 (2.2)

holds for all v, w ∈ V . The infimum of such a constant S is denoted by S2(V ). A 2-
uniformly smooth Banach space has Rademacher type 2. For instance, for 2 ≤ p < ∞,
an Lp-space Lp(Z) over an arbitrary measure space Z is 2-uniformly smooth, and hence
it has Rademacher type 2. Note that, if V is a Hilbert space, then the parallelogram
identity yields the equality in (2.2) with S = 1.
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Rademacher cotype 2 and the 2-uniform convexity of a Banach space are defined
similarly by replacing (2.1) and (2.2) with

1

2N

∑

ε∈{−1,1}N

∥∥∥∥
N∑

i=1

εivi

∥∥∥∥
2

≥ 1

K2

N∑
i=1

‖vi‖2, (2.3)

∥∥∥∥
v + w

2

∥∥∥∥
2

≤ 1

2
‖v‖2 +

1

2
‖w‖2 − 1

4C2
‖v − w‖2, (2.4)

respectively. Denote by C2(V ) the least constant C ≥ 1 satisfying (2.4). A 2-uniformly
convex Banach space has Rademacher cotype 2. In particular, for 1 < p ≤ 2, Lp(Z) is
2-uniformly convex, and hence it has Rademacher cotype 2.

The first nonlinear extension of Rademacher type was given by Enflo.

Definition 2.1 (Enflo type, [E]) A metric space (X, d) is said to have Enflo type 2 if
there is a constant K ≥ 1 such that, for any N ∈ N and {xε}ε∈{−1,1}N ⊂ X, it holds that

∑

ε∈{−1,1}N

d(xε, x−ε)
2 ≤ K2

∑

ε∼ε′
d(xε, xε′)

2, (2.5)

where ε = (εi)
N
i=1 and ε ∼ ε′ holds if

∑N
i=1 |εi − ε′i| = 2 (i.e., ε and ε′ are adjacent). The

least such a constant K ≥ 1 is denoted by E2(X).

By taking xε =
∑N

i=1 εivi, we easily see that Enflo type 2 implies Rademacher type 2
for Banach spaces. However, the converse is not known in general. See [NS] for a partial
positive result and [MN2] for a related work.

We next recall Markov type introduced by Ball. As is indicated in its name, we use
a Markov chain to define Markov type. For N ∈ N, consider a stationary, reversible
Markov chain {Ml}l∈N∪{0} on the state space {1, 2, . . . , N} with transition probabilities
aij := Pr(Ml+1 = j |Ml = i). Namely, if we set πi := Pr(M0 = i), then {πi}N

i=1 and
A = (aij)

N
i,j=1 satisfy

0 ≤ πi, aij ≤ 1,
N∑

i=1

πi = 1,
N∑

j=1

aij = 1, πiaij = πjaji (2.6)

for all i, j = 1, 2, . . . , N . The third and fourth inequalities guarantee the stationariness
(
∑N

i=1 πiaij = πj) and the reversibility of the Markov chain {Ml}l∈N∪{0}.

Definition 2.2 (Markov type, [B, Definition 1.3]) A metric space (X, d) is said to have
Markov type 2 if there is a constant K ≥ 1 such that, for any α ∈ (0, 1), N ∈ N,
{xi}N

i=1 ⊂ X, {πi}N
i=1 and A = (aij)

N
i,j=1 satisfying (2.6), we have

(1− α)
N∑

i,j=1

πicijd(xi, xj)
2 ≤ K2α

N∑
i,j=1

πiaijd(xi, xj)
2, (2.7)

where we set C = (cij)
N
i,j=1 = (1 − α)(I − αA)−1 and I stands for the identity matrix.

The infimum of K ≥ 1 satisfying (2.7) is denoted by M2(X).
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We remark that Ball’s original definition concerns only the case of πi ≡ N−1. The
above slightly extended formulation can be found in [NPSS]. Note that

C = (1− α)(I − αA)−1 = (1− α)
∞∑

l=0

αlAl.

Hence C = (cij)
N
i,j=1 also satisfies

0 ≤ cij ≤ 1,
N∑

j=1

cij = 1, πicij = πjcji

for all i, j = 1, 2, . . . , N .
We recall some important properties of Markov type. Markov type has an equivalent

form which is more convenient in some circumstances. For l ∈ N and A = (aij)
N
i,j=1, we

set Al = (a
(l)
ij )N

i,j=1. In particular, a
(1)
ij = aij.

Theorem 2.3 ([B, Theorem 1.6]) Let (X, d) be a metric space and assume that there is
a constant K ≥ 1 such that the inequality

N∑
i,j=1

πia
(l)
ij d(xi, xj)

2 ≤ K2l

N∑
i,j=1

πiaijd(xi, xj)
2 (2.8)

holds for all l ∈ N, N ∈ N, {xi}N
i=1 ⊂ X, {πi}N

i=1 and A = (aij)
N
i,j=1 satisfying (2.6). Then

(X, d) has Markov type 2 with M2(X) ≤ K. Conversely, if (X, d) has Markov type 2,
then (X, d) satisfies (2.8) with K = 2

√
eM2(X).

Markov type is known to be strong enough to imply Enflo type.

Proposition 2.4 ([NS, Proposition 1]) If a metric space (X, d) has Markov type 2, then
it has Enflo type 2.

To state Ball’s theorem which guarantees the usefulness of Markov type, we need to
define Markov cotype of Banach spaces also introduced by Ball.

Definition 2.5 (Markov cotype, [B, Definition 1.5]) A Banach space (V, ‖ · ‖) is said to
have Markov cotype 2 if there is a constant K ≥ 1 such that, for any α ∈ (0, 1), N ∈ N,
{vi}N

i=1 ⊂ V and A = (aij)
N
i,j=1 satisfying (2.6) with πi ≡ N−1, we have

α

N∑
i,j=1

aij

∥∥∥∥
N∑

k=1

(cik − cjk)vk

∥∥∥∥
2

≤ K2(1− α)
N∑

i,j=1

cij‖vi − vj‖2,

where we set C = (cij)
N
i,j=1 = (1 − α)(I − αA)−1. We denote by N2(V ) the infimum of

such a constant K ≥ 1.
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We remark that Markov cotype is strictly stronger than Rademacher cotype, for L1(Z)
has Rademacher cotype 2 and does not have Markov cotype 2 (see [B]). It is known that
a 2-uniformly convex Banach space (V, ‖ · ‖) has Markov cotype 2 with N2(V ) ≤ 2C2(V )
([B, Theorem 4.1]). For a Lipschitz continuous map f : X −→ Y between metric spaces,
we denote by Lip(f) its Lipschitz constant, that is,

Lip(f) := sup
x,y∈X, x6=y

dY (f(x), f(y))

dX(x, y)
.

Theorem 2.6 ([B, Theorem 1.7]) Let (X, d) be a metric space having Markov type 2 and
(V, ‖ · ‖) be a reflexive Banach space having Markov cotype 2. Then, for any Lipschitz
continuous map f : Z −→ V from a subset Z ⊂ X, there exists a Lipschitz continuous
extension f̃ : X −→ V of f with

Lip(f̃) ≤ 3M2(X)N2(V )Lip(f).

In particular, if (V, ‖ · ‖) is a 2-uniformly convex Banach space, then we have

Lip(f̃) ≤ 6M2(X)C2(V )Lip(f).

We end this section with several examples of spaces having Markov type.

Example 2.7 (i) (Hilbert spaces, [B, Proposition 1.4]) A Hilbert space (H, 〈·, ·〉) has
Markov type 2 with M2(H) = 1.

(ii) (Products) For two metric spaces (X1, d1) and (X2, d2) having Markov type 2, let
(X, d) be the l2-product of them, that is, X := X1 ×X2 and

d
(
(x1, x2), (y1, y2)

)
:= {d1(x1, y1)

2 + d2(x2, y2)
2}1/2

for (x1, x2), (y1, y2) ∈ X. Then (X, d) has Markov type 2 with

M2(X) ≤ max{M2(X1),M2(X2)}.

(iii) (The bi-Lipschitz equivalence) Given two metric spaces (X1, d1) and (X2, d2), if
(X1, d1) has Markov type 2 and if there is a bi-Lipschitz homeomorphism f : X1 −→ X2,
then (X2, d2) has Markov type 2 with

M2(X2) ≤ Lip(f)Lip(f−1)M2(X1).

(iv) (Gromov-Hausdorff limits) If a sequence of (pointed) metric spaces {(Xi, di)}∞i=1

converges to a (pointed) metric space (X, d) in the sense of the (pointed) Gromov-
Hausdorff convergence and if every (Xi, di) has Markov type 2 with lim infi→∞ M2(Xi) <
∞, then (X, d) has Markov type 2 with

M2(X) ≤ lim inf
i→∞

M2(Xi).

(v) (2-uniformly smooth Banach spaces, [NPSS]) A 2-uniformly smooth Banach space
(V, ‖ · ‖) has Markov type 2 with M2(V ) ≤ 4S2(V ).
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(vi) (Trees and hyperbolic groups, [NPSS]) There exists a universal constant Ct for
which every tree T with arbitrary positive edge lengths has Markov type 2 with M2(T ) ≤
Ct. There also exists a universal constant Ch such that every δ-hyperbolic group has
Markov type 2 with M2 ≤ Ch(1 + δ). More precisely, we fix a presentation of the group
and consider its Cayley graph G equipped with the word metric. If G is δ-hyperbolic as
a metric space, then it has Markov type 2 with M2(G) ≤ Ch(1 + δ). Naor et al. have
obtained an estimate for general δ-hyperbolic metric spaces, and it implies the above
results.

3 Alexandrov spaces of nonnegative curvature

In this section, we recall the definition of Alexandrov spaces of nonnegative curvature.
We refer to [BGP] as a standard reference.

A metric space (X, d) is said to be geodesic if every two points x, y ∈ X can be
connected by a curve γ : [0, 1] −→ X from x to y with length(γ) = d(x, y). A rectifiable
curve γ : [0, 1] −→ X is called a geodesic if it is locally minimizing and has a constant
speed. A geodesic γ : [0, 1] −→ X is said to be minimal if it satisfies length(γ) =
d(γ(0), γ(1)).

Definition 3.1 ([BGP]) A geodesic metric space (X, d) is called an Alexandrov space
of nonnegative curvature if, for all three points x, y, z ∈ X and any minimal geodesic
γ : [0, 1] −→ X between y and z, we have

d

(
x, γ

(
1

2

))2

≥ 1

2
d(x, y)2 +

1

2
d(x, z)2 − 1

4
d(y, z)2.

In particular, a complete Riemannian manifold is an Alexandrov space of nonnegative
curvature if and only if its sectional curvature is nonnegative everywhere. There is a rich
and deep theory on the geometry and the analysis on Alexandrov spaces, but we need
only the following theorem due to Sturm which plays a key role in the next section.

Theorem 3.2 ([S, Theorem 1.4]) A geodesic metric space (X, d) is an Alexandrov space
of nonnegative curvature if and only if, for any N ∈ N, {xi}N

i=1 ⊂ X, y ∈ X and
{ai}N

i=1 ⊂ [0, 1] with
∑N

i=1 ai = 1, we have

N∑
i,j=1

aiaj{d(xi, xj)
2 − d(xi, y)2 − d(xj, y)2} ≤ 0. (3.1)

The inequality (3.1) corresponds to the following fact in a Hilbert space (H, 〈·, ·〉). For
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any N ∈ N, {vi}N
i=1 ⊂ H and {ai}N

i=1 ⊂ [0, 1] with
∑N

i=1 ai = 1,

N∑
i,j=1

aiaj{‖vi − vj‖2 − ‖vi − w‖2 − ‖vj − w‖2}

= 2
N∑

i,j=1

aiaj〈vi − w, w − vj〉 = 2

〈( N∑
i=1

aivi

)
− w, w −

( N∑
j=1

ajvj

)〉

= −2

∥∥∥∥
( N∑

i=1

aivi

)
− w

∥∥∥∥
2

≤ 0

holds for all w ∈ H.

4 Markov type of Alexandrov spaces

In this section, we prove our main theorem. Throughout the section, let (X, d) be an
Alexandrov space of nonnegative curvature, and fix N ∈ N, {xi}N

i=1 ⊂ X, {πi}N
i=1 and

A = (aij)
N
i,j=1 satisfying (2.6). For 1 ≤ i, j ≤ N and l ∈ N, set dij := d(xi, xj) and

E(l) :=
N∑

i,j=1

πia
(l)
ij d2

ij.

Recall the notation Al = (a
(l)
ij )N

i,j=1 and that (2.6) implies

0 ≤ a
(l)
ij ≤ 1,

N∑
j=1

a
(l)
ij = 1, πia

(l)
ij = πja

(l)
ji

for all i, j = 1, 2, . . . , N .

Lemma 4.1 For any l ∈ N, we have E(2l) ≤ 2E(l).

Proof. We calculate

E(2l) =
N∑

i,j,k=1

πia
(l)
ij a

(l)
jkd2

ik

=
N∑

i,j,k=1

πja
(l)
ji a

(l)
jk (d2

ji + d2
jk + d2

ik − d2
ji − d2

jk)

=
N∑

i,j,k=1

πja
(l)
ji a

(l)
jk (d2

ji + d2
jk) +

N∑
j=1

πj

{ N∑

i,k=1

a
(l)
ji a

(l)
jk (d2

ik − d2
ji − d2

jk)

}
.

Since
∑N

i=1 a
(l)
ji = 1, we have

N∑

i,j,k=1

πja
(l)
ji a

(l)
jk (d2

ji + d2
jk) =

N∑
i,j=1

πja
(l)
ji d2

ji +
N∑

j,k=1

πja
(l)
jkd2

jk = 2E(l).

7



Moreover, applying Theorem 3.2 with ai = a
(l)
ji and y = xj, we obtain

N∑

i,k=1

a
(l)
ji a

(l)
jk (d2

ik − d2
ji − d2

jk) ≤ 0

for every j. This completes the proof. 2

Lemma 4.2 For any l ∈ N and α ∈ (0, 1), we have

α2lE(2l) + 2α2l+1E(2l + 1) + α2l+2E(2l + 2) ≤ 2(1 + α)αl{αlE(l) + αl+1E(l + 1)}.
Proof. The proof is essentially similar to that of Lemma 4.1. We first observe

α2lE(2l) + 2α2l+1E(2l + 1) + α2l+2E(2l + 2)

= α2l{E(2l) + 2αE(2l + 1) + α2E(2l + 2)}

= α2l

N∑

i,j,k=1

πi(a
(l)
ij + αa

(l+1)
ij )(a

(l)
jk + αa

(l+1)
jk )d2

ik

= α2l

N∑

i,j,k=1

πj(a
(l)
ji + αa

(l+1)
ji )(a

(l)
jk + αa

(l+1)
jk )(d2

ji + d2
jk)

+ α2l

N∑
j=1

πj

{ N∑

i,k=1

(a
(l)
ji + αa

(l+1)
ji )(a

(l)
jk + αa

(l+1)
jk )(d2

ik − d2
ji − d2

jk)

}
,

and

N∑

i,j,k=1

πj(a
(l)
ji + αa

(l+1)
ji )(a

(l)
jk + αa

(l+1)
jk )(d2

ji + d2
jk)

= (1 + α)
N∑

i,j=1

πj(a
(l)
ji + αa

(l+1)
ji )d2

ji + (1 + α)
N∑

j,k=1

πj(a
(l)
jk + αa

(l+1)
jk )d2

jk

= 2(1 + α){E(l) + αE(l + 1)}.

Fix j and apply Theorem 3.2 to ai = (1 + α)−1(a
(l)
ji + αa

(l+1)
ji ) and y = xj. Then we

find

N∑

i,k=1

(a
(l)
ji + αa

(l+1)
ji )(a

(l)
jk + αa

(l+1)
jk )(d2

ik − d2
ji − d2

jk) ≤ 0.

Therefore we obtain

α2lE(2l) + 2α2l+1E(2l + 1) + α2l+2E(2l + 2)

≤ 2(1 + α)α2l{E(l) + αE(l + 1)}
= 2(1 + α)αl{αlE(l) + αl+1E(l + 1)}.

2
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Theorem 4.3 Let (X, d) be an Alexandrov space of nonnegative curvature. Then (X, d)
has Markov type 2 with M2(X) ≤ √

6.

Proof. It suffices to show

(1− α)
N∑

i,j=1

πicijd
2
ij ≤ 6α

N∑
i,j=1

πiaijd
2
ij

(
= 6αE(1)

)
.

As C = (1− α)(I − αA)−1 = (1− α)
∑∞

l=0 αlAl, we observe

(1− α)
N∑

i,j=1

πicijd
2
ij = (1− α)2

N∑
i,j=1

∞∑

l=1

αlπia
(l)
ij d2

ij

=
(1− α)2

2

[
αE(1) +

∞∑
n=1

{
α2n−1E(2n−1) + 2α2n−1+1E(2n−1 + 1)

+ · · ·+ 2α2n−1E(2n − 1) + α2nE(2n)

}]

=
(1− α)2

2

∞∑
n=0

Eα
n ,

where we set

Eα
0 := αE(1),

Eα
1 := αE(1) + α2E(2),

...

Eα
n := α2n−1E(2n−1) + 2α2n−1+1E(2n−1 + 1)

+ · · ·+ 2α2n−1E(2n − 1) + α2nE(2n).

It follows from Lemma 4.2 that, for all n ≥ 2,

Eα
n = α2n−1E(2n−1) + 2α2n−1+1E(2n−1 + 1)

+ · · ·+ 2α2n−1E(2n − 1) + α2nE(2n)

= {α2n−1E(2n−1) + 2α2n−1+1E(2n−1 + 1) + α2n−1+2E(2n−1 + 2)}
+ {α2n−1+2E(2n−1 + 2) + 2α2n−1+3E(2n−1 + 3) + α2n−1+4E(2n−1 + 4)}
+ · · ·+ {α2n−2E(2n − 2) + 2α2n−1E(2n − 1) + α2nE(2n)}

≤ 2(1 + α)α2n−2{α2n−2E(2n−2) + α2n−2+1E(2n−2 + 1)}
+ 2(1 + α)α2n−2+1{α2n−2+1E(2n−2 + 1) + α2n−2+2E(2n−2 + 2)}
+ · · ·+ 2(1 + α)α2n−1−1{α2n−1−1E(2n−1 − 1) + α2n−1E(2n−1)}

≤ 4α2n−2{α2n−2E(2n−2) + 2α2n−2+1E(2n−2 + 1)

+ · · ·+ 2α2n−1−1E(2n−1 − 1) + α2n−1E(2n−1)}
= 4α2n−2Eα

n−1.
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Moreover, Lemma 4.1 implies

Eα
1 = αE(1) + α2E(2) ≤ (1 + 2α)αE(1).

Thus we see, for all n ≥ 2,

Eα
n ≤ 4n−1α2n−2

α2n−3 · · ·αEα
1 ≤ 4n−1α2n−1−1(1 + 2α)αE(1).

We estimate

1 +
∞∑

n=2

4n−1α2n−1−1 =
∞∑

n=0

2n2nα2n−1

= 1 + (2α + 2α) + (4α3 + 4α3 + 4α3 + 4α3) + · · ·

≤
∞∑

l=1

lα(l−1)/2 =
∞∑

l=0

(l + 1)αl/2

=
1

(1− α1/2)2
=

(1 + α1/2)2

(1− α)2
.

Therefore we obtain

(1− α)
N∑

i,j=1

πicijd
2
ij =

(1− α)2

2

∞∑
n=0

Eα
n

≤ (1− α)2

2

{
1 + (1 + 2α)

∞∑
n=1

4n−1α2n−1−1

}
αE(1)

≤ (1− α)2

2

{
1 +

(1 + 2α)(1 + α1/2)2

(1− α)2

}
αE(1)

=
1

2
{(1− α)2 + (1 + 2α)(1 + α1/2)2}αE(1)

≤ 6αE(1).

This completes the proof. 2

We have two corollaries by Proposition 2.4 and Theorem 2.6.

Corollary 4.4 Let (X, d) be an Alexandrov space of nonnegative curvature. Then (X, d)
has Enflo type 2.

Corollary 4.5 Let (X, d) be an Alexandrov space of nonnegative curvature and (V, ‖ · ‖)
be a reflexive Banach space having Markov cotype 2. Then, for any Lipschitz continuous
map f : Z −→ V from a subset Z ⊂ X, there exists a Lipschitz continuous extension
f̃ : X −→ V of f with

Lip(f̃) ≤ 3
√

6N2(V )Lip(f).

In particular, if (V, ‖ · ‖) is 2-uniformly convex, then we have

Lip(f̃) ≤ 6
√

6C2(V )Lip(f).

We mention that our bound of the ratio of Lipschitz constants is independent of the
dimension of X. Compare this with [LN, Theorem 1.6].
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5 Additional remarks

This section is devoted to a short remark toward a nonlinearization of the 2-uniform
smoothness (and convexity). As we have already seen in (2.2), the 2-uniform smoothness
of a Banach space is defined by using the inequality

∥∥∥∥
v + w

2

∥∥∥∥
2

≥ 1

2
‖v‖2 +

1

2
‖w‖2 − S2

4
‖v − w‖2. (5.1)

By replacing v and w with w + v and w − v, this inequality is rewritten as
∥∥∥∥
v + w

2

∥∥∥∥
2

≤ S2

2
‖v‖2 +

1

2
‖w‖2 − 1

4
‖v − w‖2. (5.2)

Now natural generalizations of (5.1) and (5.2) are the following. Let (X, d) be a
geodesic metric space. For any three points x, y, z ∈ X and minimal geodesic γ : [0, 1] −→
X from y to z, we have

d

(
x, γ

(
1

2

))2

≥ 1

2
d(x, y)2 +

1

2
d(x, z)2 − S2

4
d(y, z)2 (5.3)

or

d

(
x, γ

(
1

2

))2

≤ S2

2
d(x, y)2 +

1

2
d(x, z)2 − 1

4
d(y, z)2. (5.4)

We will say that a geodesic metric space (X, d) satisfies (5.3) (or (5.4)) if (5.3) (or (5.4))
holds for all x, y, z ∈ X and all minimal geodesic γ : [0, 1] −→ X from y to z. On one
hand, the inequality (5.3) generalizes the nonnegatively curved property in the sense of
Alexandrov which corresponds to the case of S = 1 (see Section 3). On the other hand,
the inequality (5.4) extends the CAT(0)-inequality which amounts to the case of S = 1
(cf. [BH]). This is a reason why both negatively and positively curved spaces have Markov
type 2. Compare Example 2.7 and Theorem 4.3.

We mention that we can also regard (5.1) as an upper curvature bound of the unit
sphere (see [O1]), and that the reverse inequality of (5.3) (a generalized 2-uniform con-
vexity) has been studied in [O2].

As an application of the inequality (5.4), we give an example of a nonlinear and non-
Riemannian (in other words, Finslerian) space possessing Enflo type 2. We first prove a
lemma.

Lemma 5.1 Let a geodesic metric space (X, d) satisfy (5.4). Then, for any four points
w, x, y, z ∈ X, we have

d(w, y)2 + d(x, z)2 ≤ S2{d(w, x)2 + d(y, z)2}+ d(w, z)2 + d(y, x)2.

Proof. Take a minimal geodesic γ : [0, 1] −→ X between x and z. Then (5.4) yields that

d

(
w, γ

(
1

2

))2

≤ S2

2
d(w, x)2 +

1

2
d(w, z)2 − 1

4
d(x, z)2,

d

(
y, γ

(
1

2

))2

≤ S2

2
d(y, z)2 +

1

2
d(y, x)2 − 1

4
d(x, z)2.
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Thus we see

d(w, y)2 ≤
{

d

(
w, γ

(
1

2

))
+ d

(
γ

(
1

2

)
, y

)}2

≤ 2

{
d

(
w, γ

(
1

2

))2

+ d

(
γ

(
1

2

)
, y

)2}

≤ S2{d(w, x)2 + d(y, z)2}+ d(w, z)2 + d(y, x)2 − d(x, z)2.

This is the required inequality. 2

Proposition 5.2 If a geodesic metric space (X, d) satisfies (5.4), then it has Enflo type 2
with E2(X) ≤ S. In particular, a CAT(0)-space (X, d) has Enflo type 2 with E2(X) = 1,
and a 2-uniformly smooth Banach space (V, ‖ · ‖) has Enflo type 2 with E2(V ) ≤ S2(V ).

Proof. We shall prove by induction in N ∈ N. In the case of N = 1, for any {x1, x−1} ⊂
X, we immediately see

d(x1, x−1)
2 + d(x−1, x1)

2 ≤ S2{d(x1, x−1)
2 + d(x−1, x1)

2}.
Fix N ≥ 2 and suppose that, for any {xδ}δ∈{−1,1}N−1 ⊂ X, it holds that

∑

δ∈{−1,1}N−1

d(xδ, x−δ)
2 ≤ S2

∑

δ∼δ′
d(xδ, xδ′)

2,

where δ = (δi)
N−1
i=1 and δ ∼ δ′ holds if

∑N−1
i=1 |δi − δ′i| = 2. Now we choose an arbitrary

{xε}ε∈{−1,1}N ⊂ X. For each δ ∈ {−1, 1}N−1, Lemma 5.1 implies

d(x(δ,1), x(−δ,−1))
2 + d(x(δ,−1), x(−δ,1))

2

≤ S2{d(x(δ,1), x(δ,−1))
2 + d(x(−δ,−1), x(−δ,1))

2}+ d(x(δ,1), x(−δ,1))
2 + d(x(−δ,−1), x(δ,−1))

2.

Summing up this inequality in δ ∈ {−1, 1}N−1, we have
∑

ε∈{−1,1}N

d(xε, x−ε)
2 ≤ S2

∑

δ∈{−1,1}N−1

{d(x(δ,1), x(δ,−1))
2 + d(x(δ,−1), x(δ,1))

2}

+
∑

δ∈{−1,1}N−1

{d(x(δ,1), x(−δ,1))
2 + d(x(δ,−1), x(−δ,−1))

2}.

By our assumption, the second term is estimated by
∑

δ∈{−1,1}N−1

{d(x(δ,1), x(−δ,1))
2 + d(x(δ,−1), x(−δ,−1))

2}

≤ S2
∑

δ∼δ′
{d(x(δ,1), x(δ′,1))

2 + d(x(δ,−1), x(δ′,−1))
2}.

Therefore we obtain
∑

ε∈{−1,1}N

d(xε, x−ε)
2 ≤ S2

∑

ε∼ε′
d(xε, xε′)

2.

This completes the proof. 2
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