Ricci curvature and almost spherical multi-suspension

Shouhei Honda

1 Introduction

In this paper, we give a generalization of suspension theorem for almost maximal diameter that is proved by J.Cheeger and T.H.Colding. As a consequence, we can get some sphere theorems. And we introduce the relation to first eigenvalue of Laplacian and to the structure of tangent cone of non-collapsing limit spaces.

One of the main results of this paper is the following theorem;

Main Theorem 1

Let $\epsilon > 0$, M be an n dimensional complete Riemannian manifold $(n \ge 2)$ with $Ric_M \ge n-1$, we assume there exists $p_i, q_i \in M$ $(i = 1, 2, \dots, k)$ such that

for each
$$i$$
, $|\overline{p_i}, \overline{q_i} - \pi| < \epsilon$ holds, for $i \neq j$, $|\overline{p_i}, \overline{p_j} - \frac{\pi}{2}| < \epsilon$ holds.

Here $\epsilon < \epsilon_n$ is sufficiently small positive number. Then we have

- 1. $k \le n + 1$.
- 2. If $1 \le k \le n-1$, then there exist a compact length space Z $(diam_Z \le \pi)$ such that

$$d_{GH}(M, \mathbf{S}^{k-1} * Z) < \Psi(\epsilon|n).$$

3. If k = n, or n + 1, then

$$d_{GH}(M, \mathbf{S}^n) < \Psi(\epsilon|n).$$

Especially, M is diffeomorphic to S^n .

Here, $\Psi(\epsilon|n)$ is a function from $\mathbf{R}_{>0} \times \mathbf{N}$ to $\mathbf{R}_{>0}$ such that for each $n \in \mathbf{N}$

$$\lim_{\epsilon \to 0} \Psi(\epsilon|n) = 0.$$

And $S^{k-1} * Z$ is k-fold spherical suspension of Z.

 d_{GH} is the Gromov-Hausdorff distance between compact metric spaces.

Main Theorem 1 gives some sphere theorem in case k = n.

Let us review some related result.

Let M be an n dimensional complete Riemannian manifold with $Ric_M \ge n-1$.

Then, we have

$$diam_M \le \pi$$
, $rad_M \le \pi$, $vol(M) \le vol(\mathbf{S}^n)$.

Especially, M is compact.

Here, $diam_m$, rad_M , vol(M) are diameter, radius, volume of M each, and \mathbf{S}^n is n dimensional standard unit sphere in n+1 dimensional Eucildean space.

Of couse, if M is isometric to \mathbf{S}^n , then above inequality are equality. Conversely, If above some inequality satisfies equality, then M is isometric to \mathbf{S}^n .

Now, we consider perturbation version of this.

The perturbation version for volume and radius is the following that is proved by T.H.Colding.

Theorem 1.1 (T.H.Colding [10, 11])

With notation as above, we assume

$$vol(M) \ge vol(\mathbf{S}^n) - \epsilon \quad (or \ rad_M \ge \pi - \epsilon).$$

Here $\epsilon < \epsilon_n$ is sufficiently small positive number. Then we have

$$d_{GH}(M, \mathbf{S}^n) < \Psi(\epsilon|n).$$

Especially, M is diffeomorphic to S^n .

Here, last stetement, "diffeomorphic" is a result of stability theorem that is proved by J.Cheeger and T.H.Colding. (See Theorem 2.26 in section 2)

But a statement corresponding to a diameter is not true. But the following result is proved by J.Cheeger and T.H.Colding.

Theorem 1.2 (J.Cheeger, T.H.Colding [4])

With notation as above, we assume

$$diam_M \geq \pi - \epsilon$$
.

Here $\epsilon < \epsilon_n$ is sufficiently small positive number. Then there exist a compact length space Z with $diam_Z \le \pi$ such that

$$d_{GH}(M, \mathbf{S}^0 * Z) < \Psi(\epsilon|n).$$

Theorem 1.2 corresponds to case k = 1 of Main Theorem 1.

$$0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots$$

denotes eigenvalues of Laplacian on M.

Main Theorem 2

With notation as above,

Assumption of Main Theorem 1 holds $\iff \lambda_k \leq n + \epsilon$.

We will explain this theorem in section 3.

Acknowledgement

I am grateful to Professor Kenji Fukaya for numerous suggestions and advices. And I am grateful to Professor Takashi Sakai for pointing out Main Theorem 2.

2 Proof of Main Theorem 1

2.1 Preliminaries

Notation A function $\psi : \mathbf{R}_{>0}^k \times \mathbf{R}^l \to \mathbf{R}_{>0}$ such that

$$\lim_{\epsilon_1,\epsilon_2,\cdots\epsilon_k\to 0} \psi(\epsilon_1,\epsilon_2,\cdots\epsilon_k|c_1,c_2,\cdots,c_k) = 0,$$

it is denoted by

$$\Psi(\epsilon_1, \epsilon_2, \cdots, \epsilon_k | c_1, c_2, \cdots, c_k)$$
. (or simply, Ψ)

Therefore, for example,

$$2\Psi(\epsilon_1, \epsilon_2, \epsilon_3, \cdots, \epsilon_k | c_1, c_2, \cdots, c_l) = \Psi(\epsilon_1, \epsilon_2, \epsilon_3, \cdots, \epsilon_k | c_1, c_2, \cdots, c_l).$$

And we use the following notation;

$$a = b \pm \Psi \iff |a - b| < \Psi.$$

Z is a metric space, Z and $z \in Z, r > 0$, we put

$$\mathbf{B}_r(z) := \{ w \in Z | \overline{z, w} < r \}, \quad \overline{\mathbf{B}}_r(z) := \{ w \in Z | \overline{z, w} \le r \}, \quad \partial \mathbf{B}_r(z) := \{ w \in Z | \overline{z, w} = r \}.$$

Here, $\overline{z}, \overline{w}$ is a distance between z and w.

Definition 2.1 (length space)

We say that Z is a length space if for each $z_1, z_2 \in Z$, there exist a continuous map $c: [0,1] \to Z$ such that

$$length(c) = \overline{z_1, z_2}$$

Remark 2.2

We skip the definition of the length for above continuous map. See [2] for details.

Definition 2.3 (spherical susupension)

We define a metric on $[0,\pi] \times Z/_{\sim}$ (here, \sim is an equivalent relation such that $\{0\} \times Z$ and $\{\pi\} \times Z$ goes to point each.) as

$$\overline{(t_1,z_1),(t_2,z_2)} \stackrel{\text{def}}{=} \arccos(\cos t_1 \cos t_2 + \sin t_1 \sin t_2 \cos \min\{\overline{z_1,z_2},\pi\}).$$

Then, this metric space is denoted by

$$\mathbf{S}^0 * Z$$

and we call spherical suspension of Z. And we define

$$\mathbf{S}^k * Z := \overbrace{\mathbf{S}^0 * (\mathbf{S}^0 * (\cdots * (\mathbf{S}^0 * Z)) \cdots)}^{k+1}.$$

Remark 2.4

If Z is compact, then \mathbf{S}^0*Z is compact. And, if Z is length space, then \mathbf{S}^0*Z is also a length space.

We put $\mathcal{M} = \{\text{isometry class of compact matric space}\}, then,$

$$\mathbf{S}^0*:\mathcal{M}\longrightarrow\mathcal{M}$$

is uniformly continuous map for d_{GH} .

Namely, for W, Z: are compact metric space,

$$d_{GH}(Z, W) < \epsilon \Longrightarrow d_{GH}(\mathbf{S}^0 * Z, \mathbf{S}^0 * W) < \Psi(\epsilon)$$

holds.

Now we introduce a segment inequarity.

For an n dimensional complete Riemannian manifold M $(n \geq 2)$ with $Ric_M \geq n-1, g: M \longrightarrow \mathbf{R}_{\geq 0}$, we put $\mathcal{F}_g: M \times M \longrightarrow \mathbf{R}_{\geq 0}$ into

$$\mathcal{F}_g(x,y) := \inf_{\gamma} \int_{\gamma} g(\gamma(t))dt.$$

Here, infinimum runs all normal geodesic γ from x to y.

Theorem 2.5 (J.Cheeger, T.H.Colding [3])

With notation as above,

$$\int_{M\times M}\mathcal{F}_g(x,y)dxdy\leq C(n)volM\int_Mg(x)dx.$$

Here, C(n) is a positive constant depending only on n.

Remark 2.6

In fact, above theorem is a special case of segment inequality that is proved by J.Cheeger and T.H.Colding. They prove the statement under $Ric_M \ge -(n-1)$. But, in this situation, it is sufficient to prove main result.

2.2 Proof of Almost cosine formura (Analytic part)

From now on, fix an integer $n \geq 2$, a positive number ϵ , and M always denotes an n dimensional complete Riemannian manifold with $Ric_M \geq n-1$ and $p,q \in M$ such that $\overline{p,q} \geq \pi - \epsilon$ holds. We put $f(x) := \cos \overline{p,x}$.

Lemma 2.7 (T.H.Colding [10])

With notation as above, there exist $\tilde{f} \in C^{\infty}(M)$ such that

$$\frac{1}{vol(M)} \int_{M} |f(x) - \tilde{f}(x)|^{2} dx < \Psi(\epsilon|n),$$

$$\frac{1}{vol(M)} \int_{M} |\nabla f - \nabla \tilde{f}|^{2} dx < \Psi(\epsilon|n),$$

$$\frac{1}{vol(M)} \int_{M} |\mathrm{Hess}_{\tilde{f}} + \tilde{f} g_{M}|^{2} dx < \Psi(\epsilon|n).$$

Here g_M is Riemannian metric on M.

Lemma 2.8 (K.Grove, P.Petersen [17])

For each $x \in M$,

$$\overline{p,x} + \overline{q,x} - \overline{p,q} < \Psi(\epsilon|n).$$

Lemma 2.9

For each $x \in M$, $t \in [-1, 1]$ $(f^{-1}(t) \neq \phi)$,

1. If $f(x) \leq t$, then

$$\overline{x,f^{-1}(t)} + \overline{p,f^{-1}(t)} - \overline{x,p} = 0.$$

2. If f(x) > t, then

$$\overline{p,x} + \overline{x,f^{-1}(t)} - \overline{p,f^{-1}(t)} < \Psi(\epsilon|n).$$

Proof.

1. It is easy to see that there exist $y \in f^{-1}(t)$ such that

$$\overline{p,y} + \overline{x,y} = \overline{p,x}$$

On the other hand, for each $z \in f^{-1}(t)$,

$$\overline{x,y} = \overline{p,x} - \overline{p,y}$$

$$= \overline{p,x} - \overline{p,z}$$

$$\leq \overline{x,z}$$

So,

$$\overline{x,y} = \overline{x, f^{-1}(t)}.$$

This gives the claim.

2. We can assume $f(q) \le t$ without loss of generality. Similarly above argument, there exist $y \in f^{-1}(t)$ such that

$$\overline{x,y} + \overline{y,q} = \overline{x,q}$$

From Lemma 2.8,

$$\overline{p,x} + \overline{x,y} - \overline{p,y} < \Psi.$$

So, for each $z \in f^{-1}(t)$,

$$\begin{split} \overline{x,y} &\leq \overline{p,y} - \overline{p,x} + \Psi \\ &= \overline{p,z} - \overline{p,x} + \Psi \\ &< \overline{z,x} + \Psi. \end{split}$$

Therefore,

$$|\overline{x,y} - \overline{x,f^{-1}(t)}| < \Psi$$

This gives the claim.

Lemma 2.10

We take a $\tilde{f} \in C^{\infty}(M)$ as in Lemma 2.7.

Then, for each $x, y, z \in M$, there exists $\hat{x}, \hat{y}, \hat{z} \in M$ with the following properties.

- $\begin{aligned} 1. \ \ \overline{x,\hat{x}} &< \Psi(\epsilon|n), \quad \overline{y,\hat{y}} &< \Psi(\epsilon|n), \quad \overline{z,\hat{z}} &< \Psi(\epsilon|n), \\ &|f(\hat{x}) \tilde{f}(\hat{x})| &< \Psi(\epsilon|n), \quad |f(\hat{y}) \tilde{f}(\hat{y})| &< \Psi(\epsilon|n), \quad |f(\hat{z}) \tilde{f}(\hat{z})| &< \Psi(\epsilon|n). \end{aligned}$
- 2. For each two elements in $\hat{x}, \hat{y}, \hat{z}$, one is not contained cut locus of the other.
- 3. There exist a unique normal geodesic from \hat{x} to \hat{y} ;

$$\sigma: [0, \overline{\hat{x}, \hat{y}}] \to M$$

and $U \subset [0, \overline{\hat{x}, \hat{y}}]$ such that

(a) U is open and has full volume. And for each $u \in U$, there exist a unique normal geodesic from \hat{z} to $\sigma(u)$,

$$\tau_u: [0, l(u)] \to M \quad (l(u) := \overline{\hat{z}, \sigma(u)}).$$

(b) It has following property;

$$\int_{U} \left| f(\sigma(u)) - \tilde{f}(\sigma(u)) \right|^{2} du < \Psi(\epsilon|n),$$

$$\int_{U} \left| |\nabla \tilde{f}|(\sigma(u)) - \sin \overline{p, \sigma(u)} \right|^{2} du < \Psi(\epsilon|n),$$

$$\int_{U} \int_{0}^{l(u)} \left| \operatorname{Hess}_{\tilde{f}} + \tilde{f} g_{M} \right| (\tau_{u}(s)) ds du < \Psi(\epsilon|n).$$

Proof. From Theorem 2.5,

$$\frac{1}{(vol(M))^3} \int_{M^3} \mathcal{F}_{\mathcal{F}_{|\mathbf{Hess}_{\tilde{f}} + \tilde{f}g_M|}(c,)}(a, b) dadbdc < \Psi(\epsilon|n) \tag{\#}$$

We take specific $\Psi(\epsilon|n)$ such that above inequality (#) and Lemma 2.7 holds, and denotes by $\psi_0(\epsilon|n)$.

i.e

- 1. $\psi_0: \mathbf{R}_{>0} \times \mathbf{N} \to \mathbf{R}_{>0}$
- 2. For each $n \in \mathbb{N}$,

$$\lim_{\epsilon \to 0} \psi_0(\epsilon|n) = 0$$

holds.

3. Above inequality (#) and Lemma 2.7 holds if we replace the $\Psi(\epsilon|n)$ by $\psi_0(\epsilon|n)$.

And, we take $\psi_i : \mathbf{R}_{>0} \times \mathbf{N} \to \mathbf{R}_{>0}$ (i = 1, 2) with the following properties;

I. For each $n \in \mathbb{N}$,

$$\lim_{\epsilon \to 0} \psi_i(\epsilon|n) = 0$$

holds.

II.

$$\lim_{\epsilon \to 0} \frac{\psi_{i-1}(\epsilon|n)}{\psi_i(\epsilon|n)} = 0. \qquad (i = 1, 2)$$

 $\tilde{M}\subset M^3$ is a subset of M^3 consists of element $(a,b,c)\in M^3$ with the following properties;

- For each two elements in a, b, c, one is not contained cut locus of the other, and $\overrightarrow{a,b} \cap C_c$ is 0-set in $\overrightarrow{a,b}$. Here, C_c is cut locus of c.
- $|f(a) \tilde{f}(a)| \le \psi_1(\epsilon |n), \quad |f(b) \tilde{f}(b)| \le \psi_1(\epsilon |n), \quad |f(c) \tilde{f}(c)| \le \psi_1(\epsilon |n).$

$$\int_{\overrightarrow{a,b}} |f - \tilde{f}|^2 \le \psi_1(\epsilon|n), \qquad \int_{\overrightarrow{a,b}} ||\nabla \tilde{f}| - \sin \overline{p},||^2 \le \psi_1(\epsilon|n).$$

$$\mathcal{F}_{\mathcal{F}_{|\mathbf{Hess}_{\tilde{f}}+\tilde{f}g_{M}|^{2}}(c,\)}(a,b)\leq \psi_{1}(\epsilon|n).$$

Then, by using segment inequality, we have

$$vol(\tilde{M}) \ge (1 - \psi_2(\epsilon|n)) (vol(M))^3.$$

From this and Bishop-Gromov's volume comparison theorem, we have the claim. $\hfill\Box$

Lemma 2.11

For each $x \in M$, $t \in [-1,1]$ and $z \in f^{-1}(t)$, $y \in f^{-1}(t)$ such that

$$\overline{x,y} = \overline{x, f^{-1}(t)},$$

we take \hat{x},\hat{y},\hat{z} as in Lemma 2.10. (We use same notation in Lemma 2.10 below.)

1. If $f(x) \leq t$, then

$$\int_{U} \left| \nabla \tilde{f}(\sigma(u)) - \sin(\overline{p,x} - u) \sigma'(u) \right|^{2} du < \Psi(\epsilon|n).$$

2. If f(x) > t, then

$$\int_{U} \left| \nabla \tilde{f}(\sigma(u)) + \sin(\overline{p,x} + u) \sigma'(u) \right|^{2} du < \Psi(\epsilon|n).$$

Proof. First, Note that we have the following;

- 1. For each $u \in U$, $|\overline{p, \sigma(u)} (\overline{p, x} u)| < \Psi(\epsilon | n).$
- 2. For each $u \in U$, $|\overline{p, \sigma(u)} (\overline{p, x} + u)| < \Psi(\epsilon|n).$

We skip the proof of this result because it is easy to prove by Lemma 2.8.

We will give only the proof of case 1 by using this result. (Case 2 is also similally argument.)

$$\begin{split} \int_{U} \left| \nabla \tilde{f}(\sigma(u)) - \sin(\overline{p,x} - u) \sigma'(u) \right|^{2} du \\ &= \int_{U} \left(|\nabla \tilde{f}|^{2} (\sigma(u)) - 2 \sin(\overline{p,x} - u) (\tilde{f} \circ \sigma)'(u) + \sin^{2}(\overline{p,x} - u) \right) du \\ &= \int_{U} \left(\sin^{2}(\overline{p,x} - u) - 2 \sin(\overline{p,x} - u) (\tilde{f} \circ \sigma)'(u) + \sin^{2}(\overline{p,x} - u) \right) du \pm \Psi \\ &= 2 \int_{U} \left(\sin^{2}(\overline{p,x} - u) - \sin(\overline{p,x} - u) (\tilde{f} \circ \sigma)'(u) \right) du \pm \Psi \\ &= 2 \int_{U} \sin^{2}(\overline{p,x} - u) du - 2 \left[\sin(\overline{p,x} - u) \tilde{f} \circ \sigma(u) \right]_{0}^{\overline{x,y}} \\ &+ 2 \int_{U} - \cos(\overline{p,x} - u) \tilde{f} \circ \sigma(u) du \pm \Psi \\ &= 2 \int_{U} \sin^{2}(\overline{p,x} - u) du - 2 \left(\sin(\overline{p,x} - \overline{x}, \hat{y}) \tilde{f}(\hat{y}) - \sin\overline{p,x} \tilde{f}(\hat{x}) \right) \\ &+ 2 \int_{U} - \cos^{2}(\overline{p,x} - u) du \pm \Psi \\ &= 2 \int_{U} \left(\sin^{2}(\overline{p,x} - u) - \cos^{2}(\overline{p,x} - u) \right) du \\ &- 2 \left(\sin\overline{p,y} \cos\overline{p,y} - \sin\overline{p,x} \cos\overline{p,x} \right) \pm \Psi \\ &= -2 \int_{U} \cos(2\overline{p,x} - 2u) du - \sin 2\overline{p,y} + \sin 2\overline{p,x} \pm \Psi \\ &= \left[\sin(2\overline{p,x} - 2u) \right]_{0}^{\overline{x,y}} - \sin 2\overline{p,y} + \sin 2\overline{p,x} \pm \Psi \\ &= \sin 2(\overline{p,x} - \hat{x}, \hat{y}) - \sin 2\overline{p,x} - \sin 2\overline{p,y} + \sin 2\overline{p,x} \pm \Psi \\ &= \sin 2(\overline{p,x} - \hat{x}, \hat{y}) - \sin 2\overline{p,x} - \sin 2\overline{p,y} + \sin 2\overline{p,x} \pm \Psi \\ &= \Psi & \Box \end{split}$$

Lemma 2.12

Under same assumption as in Lemma 2.11,

$$\left|\frac{\cos \overline{\hat{z},\hat{x}} - \cos \overline{p,\hat{z}}\cos \overline{p,\hat{x}}}{\sin \overline{p,\hat{x}}} - \frac{\cos \overline{\hat{y},\hat{z}} - \cos \overline{p,\hat{y}}\cos \overline{p,\hat{z}}}{\sin \overline{p,\hat{y}}}\right| \times \min\{\sin^2 \overline{p,\hat{x}}, \sin^2 \overline{p,\hat{y}}\} < \Psi(\epsilon|n)$$

Proof. We will give only the proof under assumption of case 1 in Lemma 2.11.

Proof. We will give only the proof under assumption of case 1 in Lemma 2.11.
$$\left| \frac{\cos \overline{\hat{z}}, \hat{x} - \cos \overline{p}, \hat{z} \cos \overline{p}, \hat{x}}{\sin \overline{p}, \hat{x}} - \frac{\cos \overline{\hat{y}}, \hat{z} - \cos \overline{p}, \hat{y} \cos \overline{p}, \hat{z}}{\sin \overline{p}, \hat{y}} \right| = \left| \int_{U} \left(\frac{\cos l(u) - \cos \overline{p}, \hat{z} \cos(\overline{p}, \hat{x} - u)}{\sin(\overline{p}, \hat{x} - u)} \right)' du \right|$$

$$= \left| \int_{U} \left\{ \frac{\left(-\sin l(u) \ l'(u) - \cos \overline{p}, \hat{z} \sin(\overline{p}, \hat{x} - u) \right) \sin(\overline{p}, \hat{x} - u)}{\sin^{2}(\overline{p}, \hat{x} - u)} + \frac{\left(\cos l(u) - \cos \overline{p}, \hat{z} \cos(\overline{p}, \hat{x} - u) \right) \cos(\overline{p}, \hat{x} - u)}{\sin^{2}(\overline{p}, \hat{x} - u)} \right\} du \right|$$

$$\leq \frac{1}{\min\{\sin^{2} \overline{p}, \hat{x}, \sin^{2} \overline{p}, \hat{y}\}} \left\{ \int_{U} \left| -\sin l(u) < \tau'_{u}(l(u)), \sigma'(u) > \sin(\overline{p}, \hat{x} - u) \right|$$

$$+\cos l(u)f(\sigma(u)) - \cos \overline{p,\hat{z}} \left| du \pm \Psi \right\}$$

$$= \frac{1}{\min\{\sin^2 \overline{p, \hat{x}}, \sin^2 \overline{p, \hat{y}}\}} \left\{ \int_U \left| -\frac{d\tilde{f} \circ \tau_u(s)}{ds} \right|_{s=l(u)} \sin l(u) + \cos l(u)\tilde{f}(\tau_u(l(u))) - \tilde{f}(\tau_u(0)) \right| du \pm \Psi \right\}$$

$$=\frac{1}{\min\{\sin^2\overline{p,\hat{x}},\sin^2\overline{p,\hat{y}}\}}\bigg\{\int_{U}\bigg|\int_{0}^{l(u)}\frac{d}{ds}\Big(-\frac{d\tilde{f}\circ\tau_{u}(s)}{ds}\sin s+\cos s\ \tilde{f}(\tau_{u}(s))\Big)ds\bigg|du\pm\Psi\bigg\}$$

$$\leq \frac{1}{\min\{\sin^2 \overline{p, \hat{x}}, \sin^2 \overline{p, \hat{y}}\}} \left\{ \int_U \int_0^{l(u)} \left| \mathbf{Hess}_{\tilde{f}} + \tilde{f} g_M \right| (\tau_u(s)) ds du \pm \Psi \right\}$$

$$=\frac{1}{\min\{\sin^2\overline{p,\hat{x}},\sin^2\overline{p,\hat{y}}\}}\;\Psi\qquad \quad \Box$$

Proposition 2.13 (Almost cosine formura)

There exist $\delta = \delta(\epsilon, n) > 0$, ($\lim_{\epsilon \to 0} \delta(\epsilon, n) = 0$) with the following property; For each $x \in M$, we take $z_x \in \partial \mathbf{B}_{\frac{\pi}{2}}(p)$ such that

$$\overline{x, z_x} = \overline{x, \partial \mathbf{B}_{\frac{\pi}{2}}(p)}.$$

Then, for each $x, x' \in M \setminus (B_{\delta}(p) \cup B_{\delta}(q))$,

$$\cos \overline{x, x'} = \cos \overline{p, x} \cos \overline{p, x'} + \sin \overline{p, x} \sin \overline{p, x'} \cos \overline{z_x, z_{x'}} \pm \Psi(\epsilon | n)$$

holds.

Proof. This is clear by Lemma 2.12.

2.3 Proof of Main Theorem 1 (Geometric part)

In this section, We will estimate several Gromov-Hausdorff distance.

Lemma 2.14

Let $\epsilon > 0$, M be an n dimensional complete Riemannian manifold $(n \ge 2)$ with $Ric_M \ge n-1$, we assume there exists $p,q \in M$ such that $\overline{p,q} \ge \pi - \epsilon$ holds. Then,

$$d_{GH}(M, \mathbf{S}^0 * \partial \mathbf{B}_{\frac{\pi}{2}}(p)) < \Psi(\epsilon|n).$$

Here the metric on $\partial \mathbf{B}_{\frac{\pi}{2}}(p)$ is the restriction of M.

Proof. Under same notation in Lemma 2.13, we define

$$\phi: M \setminus \left(\mathbf{B}_{\delta}(p) \cup \mathbf{B}_{\delta}(q)\right) \to \mathbf{S}^0 * \partial \mathbf{B}_{\frac{\pi}{2}}(p) = [0,\pi] \times \partial \mathbf{B}_{\frac{\pi}{2}}(p) / \{0,\pi\} \times \partial \mathbf{B}_{\frac{\pi}{2}}(p)$$

as

$$\phi(x) = (\overline{p,x}, z_x).$$

This gives $\Psi(\epsilon|n)$ -Hausdorff approximation by Proposition 2.13.

Therefore, from this, the claim is clear. \Box

Now, We take specific $\Psi(\epsilon|n)$ such that Lemma 2.8 and Proposition 2.13 holds and denotes by $\psi_3(\epsilon|n)$.

Namely,

- 1. $\psi_3: \mathbf{R}_{>0} \times \mathbf{N} \to \mathbf{R}_{>0}$
- 2. For each n,

$$\lim_{\epsilon \to 0} \psi_3(\epsilon|n) = 0$$

holds.

3. Lemma 2.8 and Proposition 2.13 holds if we replace the $\Psi(\epsilon|n)$ in the conclusion by $\psi_3(\epsilon|n)$.

Besides, we take a function ψ_i (i = 4, 5, 6, 7, 8, 9, 10) with the following properties;

I.
$$\psi_i: \mathbf{R}_{>0} \times \mathbf{N} \to \mathbf{R}_{>0}$$

II. For each n,

$$\lim_{\epsilon \to 0} \psi_i(\epsilon|n) = 0, \qquad \lim_{\epsilon \to 0} \frac{\psi_{i-1}(\epsilon|n)}{\psi_i(\epsilon|n)} = 0 \qquad (i = 4, 5, 6, 7, 8, 9, 10)$$

holds.

Remark 2.15

More exactly, we take ψ_i to justify the following statement.

Lemma 2.16

Let $\epsilon > 0$, M be an n dimensional complete Riemannian manifold $(n \ge 2)$ with $Ric_M \ge n - 1$, we assume there exists $p_1, q_1, p_2, q_2 \in M$ with the following properties.

1.
$$|\overline{p_1, q_1} - \pi| < \epsilon$$
, $|\overline{p_2, q_2} - \pi| < \epsilon$, $|\overline{p_1, p_2} - \frac{\pi}{2}| < \epsilon$.

2.
$$\partial \mathbf{B}_{\frac{\pi}{2}}(p_1) \setminus (\mathbf{B}_{\psi_7(\epsilon|n)}(p_2) \cup \mathbf{B}_{\psi_7(\epsilon|n)}(q_2)) = \phi$$
.

Then,

$$d_{GH}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1), \mathbf{S}^0) < \Psi(\epsilon|n).$$

Especially,

$$d_{GH}(M, \mathbf{S}^1) < \Psi(\epsilon|n).$$

Proof. This is clear. \Box

Lemma 2.17

Let $\epsilon > 0$, M be an n dimensional complete Riemannian manifold $(n \ge 2)$ with $Ric_M \ge n - 1$, we assume there exists $p_1, q_1, p_2, q_2 \in M$ with the following properties.

1.
$$|\overline{p_1, q_1} - \pi| < \epsilon$$
, $|\overline{p_2, q_2} - \pi| < \epsilon$, $|\overline{p_1, p_2} - \frac{\pi}{2}| < \epsilon$.

2.
$$\partial \mathbf{B}_{\frac{\pi}{2}}(p_1) \setminus (\mathbf{B}_{\psi_7(\epsilon|n)}(p_2) \cup \mathbf{B}_{\psi_7(\epsilon|n)}(q_2)) \neq \phi$$
.

Then, for each $x \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_1) \setminus (\mathbf{B}_{\psi_7(\epsilon|n)}(p_2) \cup \mathbf{B}_{\psi_7(\epsilon|n)}(q_2)),$

$$\overrightarrow{p_2,x} \subset \mathbf{B}_{\psi_8(\epsilon|n)} (\partial \mathbf{B}_{\frac{\pi}{2}}(p_1)) \text{ and } \overrightarrow{q_2,x} \subset \mathbf{B}_{\psi_8(\epsilon|n)} (\partial \mathbf{B}_{\frac{\pi}{2}}(p_1)).$$

Here, for $x, y \in M$,

 $\overrightarrow{x,y} := \{z \in M | \text{ There exist } \gamma : \text{ normal geodesic from } x \text{ to } y, \text{ such that } z \in Im(\gamma)\}.$

Proof. We will give only the proof of the statement for $\overline{p_2}, \overrightarrow{x}$. (The proof of the other is similar.) First, we remark that

• for each $t \in [0, \overline{p_2, x}], x \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_1) \setminus (\mathbf{B}_{\psi_7(\epsilon|n)}(p_2) \cup \mathbf{B}_{\psi_7(\epsilon|n)}(q_2)),$ $\sigma : [0, \overline{p_2, x}] \to M$ is normal geodesic from p_2 to x, we have

$$\sigma(t) \in M \setminus (\mathbf{B}_{\delta(\epsilon|n)}(p_1) \cup \mathbf{B}_{\delta(\epsilon|n)}(q_1)).$$

Because, from Lemma 2.8 and triangle inequality,

$$\overline{p_1, \sigma(t)} \ge \frac{1}{2} (\overline{p_1, p_2} + \overline{p_1, x} - \overline{p_2, x})$$

$$\ge \frac{1}{2} (\frac{\pi}{2} - \epsilon + \frac{\pi}{2} - (\pi + \psi_3(\epsilon|n) - \psi_7(\epsilon|n))$$

$$= \frac{1}{2} (\psi_7(\epsilon|n) - \psi_3(\epsilon|n) - \epsilon)$$

$$\ge \delta(\epsilon|n)$$

and

$$\begin{split} \overline{p_1,\sigma(t)} &\leq \frac{1}{2} \big(\overline{p_1,p_2} + \overline{p_1,x} + \overline{p_2,x} \big) \\ &\leq \frac{1}{2} \big(\frac{\pi}{2} + \frac{\pi}{2} + \epsilon + \pi + \psi_3(\epsilon|n) - \psi_7(\epsilon|n) \big) \\ &= \pi - \frac{1}{2} \big(\psi_7(\epsilon|n) - \epsilon - \psi_3(\epsilon|n) \big). \end{split}$$

So

$$\begin{split} \overline{q_1,\sigma(t)} &\geq \pi - \epsilon - \overline{p_1,\sigma(t)} \\ &\geq \pi - \epsilon - \left(\pi - \frac{1}{2}(\psi_7(\epsilon|n) - \epsilon - \psi_3(\epsilon|n))\right) \\ &= \frac{1}{2} \left(\psi_7(\epsilon|n) - 3\epsilon - \psi_3(\epsilon|n)\right) \\ &\geq \delta(\epsilon|n). \end{split}$$

So, we can use Proposition 2.13, for $z_t \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_1)$ is an element such that $\overline{\sigma(t), z_t} = \overline{\sigma(t), \partial \mathbf{B}_{\frac{\pi}{2}}(p_1)}$ holds,

$$\cos \overline{p_2, \sigma(t)} = \cos \overline{p_1, p_2} \cos \overline{p_1, \sigma(t)} + \sin \overline{p_1, p_2} \sin \overline{p_1, \sigma(t)} \cos \overline{p_2, z_t} \pm 10 \psi_3(\epsilon | n),$$

$$\cos \overline{\sigma(t), x} = \cos \overline{p_1, \sigma(t)} \cos \overline{p_1, x} + \sin \overline{p_1, \sigma(t)} \sin \overline{p_1, x} \cos \overline{x, z_t} \pm 10 \psi_3(\epsilon | n).$$
From this, we have

From this, we have

$$\cos \overline{p_2, \sigma(t)} = \sin \overline{p_1, \sigma(t)} \cos \overline{p_2, z_t} \pm 20\psi_3(\epsilon|n),$$
$$\cos \overline{\sigma(t), x} = \sin \overline{p_1, \sigma(t)} \cos \overline{x, z_t} \pm 20\psi_3(\epsilon|n).$$

1. The case $\overline{p_2, \sigma(t)} \leq \frac{\pi}{2}, \overline{\sigma(t), x} \leq \frac{\pi}{2}$.

In this case

$$\cos \overline{p_2, \sigma(t)} \le \cos \overline{p_2, z_t} + \psi_4(\epsilon | n),$$
$$\cos \overline{\sigma(t), x} \le \cos \overline{x, z_t} + \psi_4(\epsilon | n).$$

So

$$\overline{p_2, \sigma(t)} \ge \overline{p_2, z_t} - \frac{1}{100} \psi_5(\epsilon|n),$$
$$\overline{\sigma(t), x} \ge \overline{x, z_t} - \frac{1}{100} \psi_5(\epsilon|n),$$

and from triangle inequality, we have

$$\left|\overline{p_2,\sigma(t)}-\overline{p_2,z_t}\right| \leq \frac{1}{10}\psi_5(\epsilon|n),$$

$$\left| \overline{\sigma(t), x} - \overline{x, z_t} \right| \le \frac{1}{10} \psi_5(\epsilon | n).$$

So

$$\cos \overline{p_2, \sigma(t)} = \sin \overline{p_1, \sigma(t)} \cos \overline{p_2, \sigma(t)} \pm \frac{1}{2} \psi_5(\epsilon | n),$$
$$\cos \overline{\sigma(t), x} = \sin \overline{p_1, \sigma(t)} \cos \overline{\sigma(t), x} \pm \frac{1}{2} \psi_5(\epsilon | n).$$

Thus, we have

$$|\overline{p_1,\sigma(t)} - \frac{\pi}{2}| < \psi_6(\epsilon|n).$$

Therefore, in this case, the claim is true.

2. The case $\overline{p_2, \sigma(t)} > \frac{\pi}{2}$.

In this case, from the result of case 1,

$$\cos \overline{\sigma(\frac{\overline{p_2, x}}{2}), \sigma(t)} = \sin \overline{p_1, \sigma(t)} \cos \overline{\sigma(\frac{\overline{p_2, x}}{2}), z_t} \pm 10\psi_6(\epsilon|n),$$
$$\cos \overline{\sigma(t), x} = \sin \overline{p_1, \sigma(t)} \cos \overline{x, z_t} \pm 20\psi_3(\epsilon|n).$$

An argument after this is similar to case 1.

3. The case $\overline{\sigma(t)}, \overline{x} > \frac{\pi}{2}$.

This case is also similar to an argument in case 2. \Box

Lemma 2.18

Under same assumption as in Lemma 2.17,

$$\partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1)) \neq \phi \text{ and,}$$

$$d_{GH}\left(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1), \mathbf{S}^0 * \left(\partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1))\right)\right) < \Psi(\epsilon|n).$$

Proof. For $x \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_1) \setminus (\mathbf{B}_{\psi_7(\epsilon|n)}(p_2) \cup \mathbf{B}_{\psi_7(\epsilon|n)}(q_2)),$

we take $z \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_2)$ such that

$$\overline{x,z} = \overline{x, \partial \mathbf{B}_{\frac{\pi}{2}}(p_2)}.$$

From Lemma 2.17,

$$z \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1)).$$

Then, we define

$$\phi: \partial \mathbf{B}_{\frac{\pi}{2}}(p_1) \setminus (\mathbf{B}_{\psi_7(\epsilon|n)}(p_2) \cup \mathbf{B}_{\psi_7(\epsilon|n)}(q_2)) \to \mathbf{S}^0 * \left(\partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1))\right)$$

as

$$\phi(x) = (\overline{p_2, x}, z).$$

By Proposition 2.13, this gives $\Psi(\epsilon|n)$ -Hausdorff approximation.

Lemma 2.19

Let $\epsilon > 0$, M be an n dimensional complete Riemannian manifold $(n \ge 2)$ with $Ric_M \ge n - 1$, we assume there exists $p_1, q_1, p_2, q_2 \in M$ with the following properties;

- 1. $|\overline{p_1, q_1} \pi| < \epsilon$, $|\overline{p_2, q_2} \pi| < \epsilon$, $|\overline{p_1, p_2} \frac{\pi}{2}| < \epsilon$.
- 2. $\partial \mathbf{B}_{\frac{\pi}{2}}(p_1) \setminus (\mathbf{B}_{\psi_7(\epsilon|n)}(p_2) \cup \mathbf{B}_{\psi_7(\epsilon|n)}(q_2)) \neq \phi$.
- 3. There exists $x, y \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1))$ with $\overline{x, y} \geq \pi \psi_9(\epsilon|n)$ such that

$$\partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)} \left(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1) \right) \setminus \left(\mathbf{B}_{\psi_{10}(\epsilon|n)}(x) \cup \mathbf{B}_{\psi_{10}(\epsilon|n)}(y) \right) = \phi.$$

Then,

$$d_{GH}\Big(\partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}\big(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1)\big), \ \mathbf{S}^0\Big) < \Psi(\epsilon|n).$$

Especially,

$$d_{GH}(M, \mathbf{S}^2) < \Psi(\epsilon|n).$$

Proof. This is clear. \Box

Lemma 2.20

Let $\epsilon > 0$, M be an n dimensional complete Riemannian manifold $(n \ge 2)$ with $Ric_M \ge n - 1$, we assume there exists $p_1, q_1, p_2, q_2 \in M$ with the following properties;

- 1. $|\overline{p_1, q_1} \pi| < \epsilon$, $|\overline{p_2, q_2} \pi| < \epsilon$, $|\overline{p_1, p_2} \frac{\pi}{2}| < \epsilon$.
- 2. $\partial \mathbf{B}_{\frac{\pi}{2}}(p_1) \setminus (\mathbf{B}_{\psi_7(\epsilon|n)}(p_2) \cup \mathbf{B}_{\psi_7(\epsilon|n)}(q_2)) \neq \phi$.
- 3. For each $x, y \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1))$ with $\overline{x, y} \geq \pi \psi_9(\epsilon|n)$,

$$\partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)} \big(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1) \big) \setminus \big(\mathbf{B}_{\psi_{10}(\epsilon|n)}(x) \cup \mathbf{B}_{\psi_{10}(\epsilon|n)}(y) \big) \neq \phi$$

Then, for each $x, y \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1))$, there exist $z \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1))$ such that

$$\left|\overline{z,x} - \frac{1}{2}\overline{x,y}\right| < \Psi(\epsilon|n), \qquad \left|\overline{z,y} - \frac{1}{2}\overline{x,y}\right| < \Psi(\epsilon|n).$$

Especially, there exist a compact length space Z with $diam_Z \leq \pi$ such that

$$d_{GH}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1)), Z) < \Psi(\epsilon|n).$$

Therefore,

$$d_{GH}(M, \mathbf{S}^1 * Z) < \Psi(\epsilon | n).$$

Proof.

1. The case $\psi_9(\epsilon|n) \leq \overline{x,y} \leq \pi - \psi_9(\epsilon|n)$.

By Lemma 2.17, (or similarly argument of the proof) there exist $w \in \overrightarrow{x,y}$ such that

$$\overline{x,w} = \frac{1}{2}\overline{x,y}, \quad \overline{y,w} = \frac{1}{2}\overline{x,y}$$

and

$$w \in \mathbf{B}_{\psi_{10}(\epsilon|n)} \big(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1) \big) \cap \mathbf{B}_{\psi_{10}(\epsilon|n)} \big(\partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \big).$$

We take $\hat{w} \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_1)$ such that $\overline{w, \hat{w}} < \psi_{10}(\epsilon|n)$ holds.

In addition, we take $z \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1))$ such that

$$\overline{\hat{w}, z} = \overline{\hat{w}, \partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1))},$$

then,

$$\overline{z,w} < \Psi(\epsilon|n).$$

Therefore, in this case, the claim is true.

2. The case $\overline{x}, \overline{y} > \pi - \psi_9(\epsilon | n)$.

By the assumption, there exist

$$w \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1)) \setminus (\mathbf{B}_{\psi_{10}(\epsilon|n)}(x) \cup \mathbf{B}_{\psi_{10}(\epsilon|n)}(y)).$$

Since

$$\overline{x,w} + \overline{w,y} \ge \overline{x,y} \ge \pi - \psi_9(\epsilon|n),$$

we have

$$\max\{\overline{x}, \overline{w}, \overline{w}, \overline{y}\} \ge \frac{1}{2} (\pi - \psi_9(\epsilon|n)).$$

So, we may assume

$$\overline{x,w} \geq \frac{1}{2} (\pi - \psi_9(\epsilon|n)).$$

We take $\hat{w} \in \overrightarrow{x,w}$ such that

$$\overline{x,\hat{w}} = \frac{1}{2} (\pi - \psi_9(\epsilon|n))$$

and $z \in \partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)}(\partial \mathbf{B}_{\frac{\pi}{2}}(p_1))$ such that

$$\overline{\hat{w}, z} = \overline{\hat{w}, \partial \mathbf{B}_{\frac{\pi}{2}}(p_2) \cap \overline{\mathbf{B}}_{\psi_8(\epsilon|n)} (\partial \mathbf{B}_{\frac{\pi}{2}}(p_1))}.$$

Then,

$$\left|\overline{x,z} - \frac{\pi}{2}\right| < \Psi(\epsilon|n).$$

From this and Lemma 2.8, we have the claim.

3. The case $\overline{x}, \overline{y} < \psi_9(\epsilon|n)$ In this case, we take z = y.

We can prove the last claim by using Gromov's pre-compactness theorem. \Box

From above results, we have next proposition.

Proposition 2.21

Let $\epsilon > 0$, M be an n dimensional complete Riemannian manifold $(n \ge 2)$ with $Ric_M \ge n-1$, and $p_1, q_1, p_2, q_2 \in M$ such that

$$|\overline{p_1,q_1}-\pi|<\epsilon, |\overline{p_2,q_2}-\pi|<\epsilon, |\overline{p_1,p_2}-\frac{\pi}{2}|<\epsilon.$$

Then, one of the following 1,2,3 holds.

1. There exist a compact length space Z with $diam_Z \leq \pi$ such that

$$d_{GH}(M, \mathbf{S}^1 * Z) < \Psi(\epsilon | n).$$

2.
$$d_{GH}(M, \mathbf{S}^2) < \Psi(\epsilon | n).$$

3.
$$d_{GH}(M, \mathbf{S}^1) < \Psi(\epsilon|n).$$

From similarly argument, we can show the next proposition.

Proposition 2.22

Let $\epsilon > 0$, M be an n dimensional complete Riemannian manifold $(n \ge 2)$ with $Ric_M \ge n-1$ and $p_i, q_i \in M$ $(i=1,2,\cdots,k)$ such that

 $\text{for each } i, \, |\overline{p_i,q_i}-\pi|<\epsilon \text{ holds, and for } i\neq j, \ |\overline{p_i,p_j}-\tfrac{\pi}{2}|<\epsilon \text{ holds.}$

Then, one of the following 1,2,3 holds.

1. There exist a compact length space Z with $diam_Z \leq \pi$ such that

$$d_{GH}(M, \mathbf{S}^{k-1} * Z) < \Psi(\epsilon|n).$$

2.
$$d_{GH}(M, \mathbf{S}^k) < \Psi(\epsilon|n).$$

3.
$$d_{GH}(M, \mathbf{S}^{k-1}) < \Psi(\epsilon|n).$$

Now, we give next lemma without the proof.

Lemma 2.23 (T.H.Colding [11])

For each $n \in \mathbf{N}$ $(n \ge 2)$, there exist C(n) > 0 with the following property. If an integer k satisfies $0 \le k < n$, and an n dimensional complete Riemannian manifold M satisfies $Ric_M \ge n - 1$,

$$d_{GH}(M, \mathbf{S}^k) \ge C(n)$$

holds.

Proposition 2.24

Let $\epsilon > 0$, M be an n dimensional complete Riemannian manifold $(n \ge 2)$ with $Ric_M \ge n-1$, and $p_i, q_i \in M$ $(i=1,2,\cdots,k)$ such that

$$\text{for each } i, \ |\overline{p_i,q_i}-\pi|<\epsilon \ \text{holds, and for } i\neq j, \ \ |\overline{p_i,p_j}-\tfrac{\pi}{2}|<\epsilon \ \text{holds.}$$

Then, we have the following.

1. If $1 \le k \le n-1$, then there exist a compact length space Z with $diam_Z \le \pi$ such that

$$d_{GH}(M, \mathbf{S}^{k-1} * Z) < \Psi(\epsilon|n).$$

2. If k = n, then

$$d_{GH}(M, \mathbf{S}_{+}^{n}) < \Psi(\epsilon|n),$$

or,

$$d_{GH}(M, \mathbf{S}^n) < \Psi(\epsilon|n).$$

Here,

 $\mathbf{S}_{+}^{n} := \{ \mathbf{x} = (x_{1}, x_{2}, \cdots, x_{n+1}) \in \mathbf{R}^{n+1} | x_{1}^{2} + x_{2}^{2} + \cdots + x_{n+1}^{2} = 1, x_{n+1} \ge 0 \},$ and the metric is the restriction of \mathbf{S}^{n} .

3. If k = n + 1, then

$$d_{GH}(M, \mathbf{S}^n) < \Psi(\epsilon|n).$$

Proof. This is a consequence of Proposition 2.22 and Lemma 2.23. \Box

Finally, we recall the following.

Theorem 2.25 (J.Cheeger, T.H.Colding [3, 5])

If $(M_i, p_i)_{i \in \mathbb{N}}$ is sequence such that M_i are n dimensional complete Riemannian manifolds with $Ric_{M_i} \geq -(n-1)$, $p_i \in M_i$ and Z is proper length space (i.e length space and its bounded closed subsets are compact), $z \in Z$

 $(M_i, p_i) \to (Z, z)$ $(i \to \infty)$: non-collapsing, pointed Gromov-Hausdorff convergence

then, for each tangent cone at z in Z, T_zZ

$$T_z Z \not\cong \mathbf{R}^{n-1} \times \mathbf{R}_{>0}.$$

Here,

 $\mathbf{R}^{n-1} \times \mathbf{R}_{\geq 0} := \{ \mathbf{x} = (x_1, x_2, \cdots, x_n) \in \mathbf{R}^n | x_n \geq 0 \}, \text{ the metric is the restriction of } \mathbf{R}^n.$

Theorem 2.26 (J.Cheeger, T.H.Colding [3, 5, 16])

For M: n dimensional compact Riemannian manifold with $Ric_M \geq -(n-1)$, there exist $\delta = \delta(M)$ with the following property. If N: n dimensional compact Riemannian manifold, $Ric_N \geq -(n-1)$ such that

$$d_{GH}(M,N) < \delta$$

then M is diffeomorphic to N.

Proof of Main Theorem 1.

Proposition 2.24 and Theorem 2.25, 2.26 implies Main Theorem 1.

Remark 2.27

Theorem 1.1 follows from Main Theorem 1.

Let M be an n dimensional complete Riemannian manifold $(n \geq 2)$ with $Ric_M \geq n-1$.

From Bishop-Gromov's volume comparison theorem, we have

$$vol(M) \ge vol(\mathbf{S}^n) - \epsilon \implies rad_M \ge \pi - \Psi(\epsilon|n)$$

Now, we consider the situation with $rad_M \geq \pi - \epsilon$.

Then, we have

for each $p \in M$, there exist $q \in M$ such that $\overline{p,q} \ge \pi - \epsilon$ holds.

First, we take arbitrary $p_1 \in M$.

Then, from above, there exist $q_1 \in M$ such that

$$\overline{p_1, q_1} \ge \pi - \Psi(\epsilon|n).$$

Thus, from Main Theorem 1, M is close to the space of 1-fold suspension of some compact length space.

Especially, there exist $p_2 \in M$ such that

$$|\overline{p_1,p_2} - \frac{\pi}{2}| < \Psi(\epsilon|n).$$

Similarly, there exist $q_2 \in M$ such that

$$\overline{p_2, q_2} \ge \pi - \Psi(\epsilon|n).$$

Thus, M is close to the space of 2-fold suspension of some compact length space.

If we repeat this argument, then the assumption of Main Theorem 1 for case k = n + 1 holds. It implies Theorem 1.1.

3 First eigenvalue of Laplacian

In this section, we give the relation between Main Theorem 1 and first eigenvalue of Laplacian. Let M be an n dimensional complete Riemannian manifold with $Ric_M \ge n-1$.

$$0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_n \le \lambda_{n+1} \le \dots.$$

denotes eigenvalues of Laplacian on M.

Theorem 3.1 (A.Lichnerowicz, M.Obata [20, 21])

With notation as above,

$$\lambda_1 \geq n$$
.

And the inequality is equality if and only if M is isometric to S^n .

Now, we consider perturbation version of this statement.

Theorem 3.2 (S.Y.Cheng, T.H.Colding, C.B.Croke [8, 10, 13])

- 1. If $diam_M \ge \pi \epsilon$, then $\lambda_1 \le n + \Psi(\epsilon|n)$ holds.
- 2. If $\lambda_1 \leq n + \epsilon$, then $diam_M \geq \pi \Psi(\epsilon|n)$ holds.

If we consider similarly statement for λ_{n+1} , then we have the following;

Theorem 3.3 (P.Petersen [26])

- 1. If $rad_M \ge \pi \epsilon$, then $\lambda_{n+1} \le n + \Psi(\epsilon|n)$ holds.
- 2. If $\lambda_{n+1} \leq n \epsilon$, then $rad_M \geq \pi \Psi(\epsilon|n)$ holds.

These means the following;

 $\lambda_1 \leq n + \epsilon \iff$ Assumption of Main Theorem 1 for k = 1 holds.

 $\lambda_{n+1} \leq n + \epsilon \iff$ Assumption of Main Theorem 1 for k = n + 1 holds.

We would like to consider whether a statement corresponding to λ_k is right.

Theorem 3.4 (P.Petersen [26])

We have,

 $\lambda_k \leq n + \epsilon \Longrightarrow Assumption of Main Theorem 1 holds.$

Remark 3.5

This is stated in [26] introduction. We will give the proof later.

We have a converse of it. They together imply

Main Theorem 2

We have,

Assumption of Main Theorem 1 holds $\iff \lambda_k \leq n + \Psi(\epsilon|n)$.

The rest of this papers devoted by the proof of Main Theorem 2.

First, we consider the case k = 2. i.e,

Let $\epsilon > 0$, M be an n dimensional complete Riemannian manifold $(n \geq 2)$ with $Ric_M \geq n-1$, and $p_1, q_1, p_2, q_2 \in M$ such that

$$|\overline{p_1,q_1}-\pi|<\epsilon, |\overline{p_2,q_2}-\pi|<\epsilon, |\overline{p_1,p_2}-\frac{\pi}{2}|<\epsilon.$$

In this situation, we put $f_i(x) = \cos \overline{p_i, x}$ (i = 1, 2) and take $\tilde{f}_i \in C^{\infty}(M)$ as in Lemma 2.7. Then we have the following

$$\frac{1}{vol(M)} \int_M f_i^2 dx = \frac{1}{n+1} \pm \Psi(\epsilon|n) \tag{3.1}$$

$$\frac{1}{vol(M)} \int_{M} |\nabla f_i|^2 dx = \frac{n}{n+1} \pm \Psi(\epsilon|n)$$
 (3.2)

$$\frac{1}{vol(M)} \int_{M} |\Delta \tilde{f}_{i}(x) + n\tilde{f}_{i}(x)|^{2} dx < \Psi(\epsilon|n). \tag{3.3}$$

(See Lemma 1.10 in [10])

Remark 3.6

Here, $\Delta = tr(\text{Hess})$. So, eigenvalues of Laplacian that we are considering now is one for $-\Delta = d^*d$.

Lemma 3.7

With notation as above,

$$\frac{1}{vol(M)} \int_{M} \tilde{f}_{i}^{2} dx = \frac{1}{n+1} \pm \Psi(\epsilon|n),$$

$$\frac{1}{vol(M)} \int_{M} |\nabla \tilde{f}_{i}|^{2} dx = \frac{n}{n+1} \pm \Psi(\epsilon|n).$$

Especially,

$$\frac{1}{vol(M)} \int_{M} \tilde{f}_{1} \tilde{f}_{2} dx = \frac{1}{vol(M)} \int_{M} f_{1} f_{2} dx \pm \Psi(\epsilon | n),$$

$$\frac{1}{vol(M)} \int_{M} g_{M}(\nabla \tilde{f}_{1}, \nabla \tilde{f}_{2}) dx = \frac{1}{vol(M)} \int_{M} g_{M}(\nabla f_{1}, \nabla f_{2}) dx \pm \Psi(\epsilon | n).$$

Proof.

$$\begin{split} \frac{1}{vol(M)} \int_M \tilde{f}_i^2 dx &= \frac{1}{vol(M)} \int_M (\tilde{f}_i - f_i + f_i)^2 dx \\ &= \frac{1}{vol(M)} \int_M (\tilde{f}_i - f_i)^2 dx + \frac{2}{vol(M)} \int_M f_i (\tilde{f}_i - f_i) dx + \frac{1}{vol(M)} \int_M f_i^2 dx \\ &= \frac{1}{n+1} \pm \Psi(\epsilon|n) \quad (\because \text{Cauchy-Schwartz inequality}) \end{split}$$

The proof of other equality is similar.

Lemma 3.8

We have the following;

$$\frac{1}{vol(M)} \int_{M} g_{M}(\nabla f_{1}, \nabla f_{2}) dx = -\frac{1}{vol(M)} \int_{M} f_{1} f_{2} dx \pm \Psi(\epsilon|n).$$

Especially, from Lemma 3.7,

$$\frac{1}{vol(M)} \int_{M} g_{M}(\nabla \tilde{f}_{1}, \nabla \tilde{f}_{2}) dx = -\frac{1}{vol(M)} \int_{M} \tilde{f}_{1} \tilde{f}_{2} dx \pm \Psi(\epsilon | n).$$

Proof. First, we take specific $\Psi(\epsilon|n)$ satisfies the conclusion of all statement in section 2 and denotes by $\psi_{11}(\epsilon|n)$. And we take a function ψ_{12} with the following properties;

- 1. $\psi_{12}: \mathbf{R}_{>0} \times \mathbf{N} \to \mathbf{R}_{>0}$.
- 2. For $\delta = \delta(\epsilon|n)$ is in Proposition 2.13.

$$\frac{\psi_{11}(\epsilon|n)^{\frac{1}{100}}}{\delta(\epsilon|n)} < \psi_{12}(\epsilon|n)$$

holds.

We put

$$A_{p_1} := B_{3\delta}(p_1) \cup B_{3\delta}(q_1) \cup C_{p_1}.$$

For each $x \in M \setminus A_{p_1}, s \in [0, \overline{p_1, x}]$, we define $c_x(s) \in M$ as

 $c_x(s)$ is a point on segment $\overline{p_1,x}$ such that $\overline{x,c_x(s)}=s$ holds.

Then,

$$\frac{1}{vol(M)} \int_{M} g_{M}(\nabla f_{1}, \nabla f_{2}) dx = \frac{1}{vol(M)} \int_{M \setminus A_{p_{1}}} g_{M}(\nabla f_{1}, \nabla f_{2}) dx \pm \psi_{11}(\epsilon|n)$$

$$\left(\because \frac{vol(A_{p_{1}})}{vol(M)} < \psi_{11}(\epsilon|n)\right)$$

$$= \frac{1}{vol(M)} \int_{M \setminus A_{p_{1}}} g_{M}(\nabla f_{1}, \nabla \tilde{f}_{2}) dx \pm 2\psi_{11}(\epsilon|n)$$

$$= \frac{1}{vol(M)} \int_{M \setminus A_{p_{1}}} \sin \overline{p_{1}, x} \frac{d\tilde{f}_{2} \circ c_{x}(s)}{ds} \Big|_{s=0} dx \pm 2\psi_{11}(\epsilon|n)$$

$$=\frac{1}{vol(M)}\int_{M\backslash A_{p_1}}\Bigl\{\sin\overline{p_1,x}\Bigl(\frac{\tilde{f}_2\circ c_x(\delta)-\tilde{f}_2\circ c_x(0)}{\delta}$$

$$-\frac{1}{\delta} \int_0^{\delta} (\delta - s) \frac{d^2 \tilde{f}_2 \circ c_x(s)}{ds^2} ds \Big) \Big\} dx \pm 2\psi_{11}(\epsilon | n)$$

$$= \frac{1}{vol(M)} \int_{M \setminus A_{p_1}} \sin \overline{p_1, x} \Big(\frac{f_2 \circ c_x(\delta) - f_2 \circ c_x(0)}{\delta} \Big) dx$$

$$+\frac{1}{vol(M)}\int_{M\setminus A_{p_1}}\sin\overline{p_1,x}\Big(\frac{\tilde{f}_2\circ c_x(\delta)-f_2\circ c_x(\delta)}{\delta}\Big)dx\tag{1}$$

$$-\frac{1}{vol(M)} \int_{M \setminus A_{p_1}} \sin \overline{p_1, x} \left(\frac{\tilde{f}_2 \circ c_x(0) - f_2 \circ c_x(0)}{\delta} \right) dx \tag{2}$$

$$-\frac{1}{\delta vol(M)} \int_{M \setminus A_{p_1}} \sin \overline{p_1, x} \int_0^{\delta} (\delta - s) \left(\frac{d^2 \tilde{f}_2 \circ c_x(s)}{ds^2} + \tilde{f}_2 \circ c_x(s) \right) ds dx \quad (3)$$

$$+ \frac{1}{\delta vol(M)} \int_{M \setminus A_{p_1}} \sin \overline{p_1, x} \int_0^{\delta} (\delta - s) \tilde{f}_2 \circ c_x(s) ds dx \pm 2\psi_{11}(\epsilon | n). \tag{4}$$

Now, we will prove the following;

Claim

$$|(1)| < \psi_{12}(\epsilon|n) \tag{3.4}$$

$$|(2)| < \psi_{12}(\epsilon|n) \tag{3.5}$$

$$|(3)| < \psi_{12}(\epsilon|n) \tag{3.6}$$

$$|(4)| < \psi_{12}(\epsilon|n) \tag{3.7}$$

Proof of claim.

1. Proof of (3.4).

$$|(1)| \le \frac{1}{\delta vol(M)} \int_{M \setminus A_{p_1}} |\tilde{f}_2 \circ c_x(\delta) - f_2 \circ c_x(\delta)| dx \qquad (5)$$

We use next estimate;

Estimate 1 There exist C(n) > 0 such that for each integrable function $h: M \to \mathbf{R}_{\geq 0}$,

$$\frac{1}{vol(M)} \int_{M \setminus A_{p_1}} h \circ c_x(\delta) dx \le \frac{C(n)}{vol(M)} \int_M h(x) dx.$$

Proof of estimate 1. We put

$$S_{p_1}(1) \subset T_{p_1}M$$
: unit sphere

and for $u \in S_{p_1}(1)$,

t(u) :=distance from p_1 to cut locus of direction of u > 0

$$\hat{S}_{p_1}(1) := \{ u \in S_{p_1}(1) | t(u) > 3\delta \}$$

$$\theta(t,u) := t^{n-1} \left(\det(g_{ij}|_{\exp_{p_1}(tu)}) \right)^{\frac{1}{2}} \qquad \left(g_{ij} := g_M\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right) \right).$$

Then,

$$\int_{M\backslash A_{p_1}} h \circ c_x(\delta) dx \leq \int_{\hat{S}_{p_1}(1)} \int_{3\delta}^{t(u)} h \circ c_{\exp_{p_1}(tu)}(\delta) \theta(t, u) dt du$$

$$= \int_{\hat{S}_{p_1}(1)} \int_{3\delta}^{t(u)} h(\exp_{p_1}((t - \delta)u) \theta(t, u) dt du$$

$$= \int_{\hat{S}_{p_1}(1)} \int_{2\delta}^{t(u) - \delta} h(\exp_{p_1}(\hat{t}u)) \theta(\hat{t} + \delta, u) d\hat{t} du \qquad (6)$$

From Laplacian comparison theorem, there exist C(n) > 0 such that

$$\theta(\hat{t}+\delta,u) \le \frac{\sin^{n-1}(\hat{t}+\delta)}{\sin^{n-1}\hat{t}} \, \theta(\hat{t},u) \le C(n) \, \theta(\hat{t},u) \quad (u \in \hat{S}_{p_1}(1), \ \hat{t} \in [2\delta, \ t(u)] \,).$$
 So,

$$(6) \le C(n) \int_{\hat{S}_{p_1}(1)} \int_{2\delta}^{t(u)-\delta} h(\exp_{p_1}(\hat{t}u)) \theta(\hat{t}, u) d\hat{t} du$$

$$\le C(n) \int_{S_{p_1}(1)} \int_0^{t(u)} h(\exp_{p_1}(\hat{t}u)) \theta(\hat{t}, u) d\hat{t} du$$

$$= C(n) \int_M h(x) dx$$

Therefore, we divide this by vol(M), we have **estimate 1**. \square

From this estimate,

$$(5) \leq \frac{C(n)}{\delta vol(M)} \int_{M} |\tilde{f}_{2} - f_{2}| dx$$

$$\leq \frac{C(n)}{\delta} \left(\frac{1}{vol(M)} \int_{M} |\tilde{f}_{2} - f_{2}|^{2} dx\right)^{\frac{1}{2}}$$

$$\leq \frac{C(n)}{\delta} (\psi_{11}(\epsilon|n))^{\frac{1}{2}}$$

$$< \psi_{12}(\epsilon|n)$$

Therefore, We have (3.4).

2. Proof of (3.5).

$$|(2)| \le \frac{1}{\delta vol(M)} \int_{M} |\tilde{f}_2 - f_2| dx$$

$$\leq \frac{1}{\delta} \left(\int_{M} |\tilde{f}_{2} - f_{2}|^{2} dx \right)^{\frac{1}{2}}$$

$$\leq \frac{1}{\delta} (\psi_{11}(\epsilon|n))^{\frac{1}{2}}$$

$$< \psi_{12}(\epsilon|n)$$

Therefore, We have (3.5).

3. Proof of (3.6).

$$|(3)| \leq \frac{1}{vol(M)} \int_{M \setminus A_{p_1}} \int_0^{\delta} \left| \mathbf{Hess}_{\tilde{f}_2} + \tilde{f}_2 g_M \right| (c_x(s)) ds dx \qquad \cdots (7)$$

We use next estimate;

Estimate 2 There exist C(n) > 0 such that for each integrable function $h: M \to \mathbf{R}_{\geq 0}$,

$$\frac{1}{vol(M)} \int_{M \setminus A_{p_1}} \int_0^{\delta} h \circ c_x(s) ds dx \le \frac{C(n)\delta}{vol(M)} \int_M h(x) dx.$$

We skip this proof because it is similar to estimate 1.

Then,

$$(7) \leq \frac{C(n)\delta}{vol(M)} \int_{M} \left| \mathbf{Hess}_{\tilde{f}_{2}} + \tilde{f}_{2}g_{M} \right| dx$$

$$\leq C(n)\delta \left(\frac{1}{vol(M)} \int_{M} \left| \mathbf{Hess}_{\tilde{f}_{2}} + \tilde{f}_{2}g_{M} \right|^{2} dx \right)^{\frac{1}{2}}$$

$$< \psi_{12}(\epsilon|n)$$

Therefore, We have (3.6).

4. Proof of (3.7).

From Lemma 3.7 and **estimate 2**, the proof is similar to |(3)|.

So, we have claim.

From this claim, we have the following;

$$\frac{1}{vol(M)} \int_{M} g_{M}(\nabla f_{1}, \nabla f_{2}) dx = \frac{1}{vol(M)} \int_{M \setminus A_{p_{1}}} \sin \overline{p_{1}, x} \left(\frac{f_{2} \circ c_{x}(\delta) - f_{2} \circ c_{x}(0)}{\delta} \right) dx
\pm 4\psi_{12}(\epsilon | n) \tag{8}$$

By Almost cosine formura,

$$\sin \overline{p_1, x}(f_2 \circ c_x(\delta) - f_2 \circ c_x(0)) = \sin \overline{p_1, x} \left(\cos \overline{p_1, p_2} \cos \overline{p_1, c_x(\delta)}\right)$$

$$+\sin\overline{p_1,p_2}\,\sin\overline{p_1,c_x(\delta)}\,\,\frac{\cos\overline{p_2,x}-\cos\overline{p_1,p_2}\cos\overline{p_1,x}}{\sin\overline{p_1,p_2}\,\sin\overline{p_1,x}}\big)$$

$$-\sin\overline{p_1,x}\cos\overline{p_2,x}\pm\psi_{11}(\epsilon|n)$$

$$= (\sin(\overline{p_1, x} - \delta) - \sin\overline{p_1, x})\cos\overline{p_2, x} \pm 3\psi_{11}(\epsilon | n)$$

We use mean value theorem,

$$(8) = \frac{1}{vol(M)} \int_{M \setminus A_{p_1}} -\cos \overline{p_2, x} \cos \overline{p_1, x} dx \pm 6\psi_{12}(\epsilon | n)$$

$$= -\frac{1}{vol(M)} \int_M f_1 f_2 dx \pm 10 \psi_{12}(\epsilon|n).$$

So, we have Lemma 3.8.

Lemma 3.9

We have

$$\Big|\frac{1}{vol(M)}\int_{M}g_{M}(\nabla \tilde{f}_{1},\nabla \tilde{f}_{2})dx\Big|,\ \, \Big|\frac{1}{vol(M)}\int_{M}\tilde{f}_{1}\tilde{f}_{2}dx\Big|<\ \, \Psi(\epsilon|n).$$

Proof. From (3.1), (3.2) and (3.3), we have

$$\frac{1}{vol(M)} \int_{M} g_{M}(\nabla \tilde{f}_{1}, \nabla \tilde{f}_{2}) dx = \frac{n}{vol(M)} \int_{M} \tilde{f}_{1} \tilde{f}_{2} dx \pm \Psi(\epsilon | n).$$

From this and Lemma 3.8, we have the statement. \Box

Theorem 3.10

We have

$$\lambda_2 \le n + \Psi(\epsilon|n).$$

Proof. From Lemma 3.9, we have

 \tilde{f}_1 , \tilde{f}_2 are linearly independent in $L_1^2(M)$.

So, from min-max principle, we have

$$\lambda_2 \leq \sup \Bigl\{ \int_M |\nabla (a_1 \tilde{f}_1 + a_2 \tilde{f}_2)|^2 dx \Big/ \int_M (a_1 \tilde{f}_1 + a_2 \tilde{f}_2)^2 dx \, \Big| \, a_1, \, a_2 \in \mathbf{R}, \, a_1^2 + a_2^2 \neq 0 \Bigr\}.$$

And from Lemma 3.9, for $a_1^2 + a_2^2 \neq 0$, we have

$$\int_{M} |\nabla (a_1 \tilde{f}_1 + a_2 \tilde{f}_2)|^2 dx / \int_{M} (a_1 \tilde{f}_1 + a_2 \tilde{f}_2)^2 dx \le n + \Psi(\epsilon | n).$$

Theorem 3.10 holds.

The proof of general case of Main Theorem 2 is similar.

Proof of Theorem 3.4.

Let us prove Theorem 3.4. We first recall some inequalities proved in [26]. Let $\tilde{f}_i \in C^{\infty}(M)$ (i = 1, 2) be eigenfunctions with

$$-\Delta \tilde{f}_i = \lambda_i \tilde{f}_i, \quad |\lambda_i - n| < \epsilon, \quad \int_M \tilde{f}_1 \tilde{f}_2 dx = 0.$$

Then we may assume that

$$\tilde{f}_i^2 + |\nabla \tilde{f}_i|^2 \le 1,$$

$$\frac{1}{vol(M)} \int_{M} \tilde{f}_{i}^{2} dx = \frac{1}{n+1} \pm \Psi(\epsilon|n),$$

$$\frac{1}{vol(M)} \int_{M} |\nabla \tilde{f}_{i}|^{2} dx = \frac{n}{n+1} \pm \Psi(\epsilon|n),$$

$$\frac{1}{vol(M)} \int_{M} |\tilde{f}_{i}^{2} + |\nabla \tilde{f}_{i}|^{2} - 1|dx < \Psi(\epsilon|n).$$

holds. (See Lemma 3.1 in [26].)

So, for each $p \in M$, there exist $\tilde{p} \in M$ such that

$$\overline{p,\tilde{p}} < \Psi(\epsilon|n) \text{ and } \tilde{f}_i^2(\tilde{p}) + |\nabla \tilde{f}_i|^2(\tilde{p}) = 1 \pm \Psi(\epsilon|n).$$

Now, we take specific $\Psi(\epsilon|n)$ satisfies the above inequalities, and denotes by $\psi_{13}(\epsilon|n)$.

And, we take $p_i, q_i \in M$ with

$$\tilde{f}_i(p_i) = \max \tilde{f}_i, \quad \tilde{f}_i(q_i) = \min \tilde{f}_i.$$

For $g_i(x) := \tilde{f}_i(p_i) - \tilde{f}_i(x) + \psi_{13}(\epsilon|n), \ h_i(x) := \tilde{f}_i(x) - \tilde{f}_i(q_i) + \psi_{13}(\epsilon|n) \in C^{\infty}(M)$, by using Cheng-Yau's gradient estimate, we have

$$\frac{|\nabla g_i|^2}{g_i^2}, \quad \frac{|\nabla h_i|^2}{h_i^2} < \frac{C(n)}{\psi_{13}(\epsilon|n)}.$$

Here, C(n) is a positive constant depending only on n. (See [3, 9].) Thus, If we take $\tilde{p}_i, \tilde{q}_i \in M$ as above, then

$$|\nabla \tilde{f}_i|^2(\tilde{p}_i), |\nabla \tilde{f}_i|^2(\tilde{q}_i) < \Psi(\epsilon|n).$$

Especially, we have

$$|\tilde{f}_i(p_i) - 1|, |\tilde{f}_i(q_i) + 1| < \Psi(\epsilon|n).$$

Now, we put $f_i(x) := \cos \overline{p_i, x}$, by $|\nabla \arccos \tilde{f_i}| \le 1$, we have

$$\tilde{f}_i > f_i - \Psi(\epsilon|n).$$

So, in the barrier sense,

$$\Delta(\tilde{f}_i - f_i) < \Psi(\epsilon|n).$$

From Theorem 7.2 in [26], we have

$$|\tilde{f}_i - f_i| < \Psi(\epsilon|n)$$

Especially,

$$\overline{p_i, q_i} \ge \pi - \Psi(\epsilon|n).$$

So, by (3.1), (3.2) we have

$$\frac{1}{vol(M)} \int_{M} |\nabla f_{i} - \nabla \tilde{f}_{i}|^{2} dx < \Psi(\epsilon|n).$$

From a calculation similar to the proof of Lemma 3.8 and Lemma 3.9, we have

$$\frac{1}{vol(M)} \int_{M} \tilde{f}_{1} \tilde{f}_{2} dx = \frac{\cos \overline{p_{1}, p_{2}}}{n+1} \pm \Psi(\epsilon|n).\cdots(3.8)$$

Since left hand side is equal to 0, we have

$$|\overline{p_1,p_2} - \frac{\pi}{2}| < \Psi(\epsilon|n).$$

Therefore, we have Theorem 3.4.

We remark that the above argument also gives an alternative proof of Theorem 3.3 in [26].

Corollary 3.11

There exist a positive constant C(n) depending only on n such that for M:n dimensional complete Riemannian manifold with $Ric_M \ge n-1$,

$$\lambda_{n+2} \ge C(n) > n.$$

Proof. If the assertion is false, then there exists a compact length space Y and for each $k \in \mathbb{N}$, complete Riemannian manifold M_k with $Ric_{M_k} \geq n-1$ such that the (n+2)-th eigenvalue λ_{n+2}^k satisfies

$$\lim_{k \to \infty} \lambda_{n+2}^k = n,$$

 $M_k \longrightarrow Y$: Gromov Hausdorff convergence.

From (3.8), there exists $p_i, q_i \in Y(i = 1, 2, \dots, n + 2)$ such that

for each i, $\overline{p_i,q_i}=\pi$ holds, and for $i\neq j, \overline{p_i,p_j}=\frac{\pi}{2}$ holds.

This is contradiction by Main Theorem 1. \square

Corollary 3.12

For M:n dimensional complete Riemannian manifold with $Ric_M \geq n-1$,

$$|\lambda_n - n| < \epsilon \Longrightarrow |\lambda_{n+1} - n| < \Psi(\epsilon|n).$$

Proof. This is clear by case k = n of Main Theorem 1,2.

4 A note on the relation to the structure of tangent cone of non-collapsing limit spaces

In this section, We remark that on Main Theorem 1 is similar to some results of the structure of tangent cone of limit space due to J.Cheeger, T.H.Colding.

Definition 4.1 (metric cone)

For Z: metric space, we define a metric on $[0,\infty)\times \mathbb{Z}/\{0\}\times\mathbb{Z}$ as

$$\overline{(t_1,z_1),(t_2,z_2)} \stackrel{\mathrm{def}}{=} (t_1^2 + t_2^2 - 2t_1t_2\cos\min\{\overline{z_1,z_2},\pi\})^{\frac{1}{2}}.$$

This metric spaces is denoted by

$$C(Z)$$
 $(z^* := [(0, z)])$

and is called by metric cone of Z.

Now, we consider following situation; $\{M_i\}_{i\in\mathbb{N}}$: n dimensional complete Riemannian manifolds $(n \geq 2)$ with $Ric_{M_i} \geq -(n-1)$, $m_i \in M_i$, and Y: proper metric space with $y \in Y$,

- $(M_i, m_i) \to (Y, y)$ $(i \to \infty)$: pointed Gromov-Hausdorff convergence
- There exist v > 0 such that for each i

$$vol(\mathbf{B}_{1}(m_{i})) > v > 0.$$

First, we review a result about the tangent cone T_yY at y in Y.

Theorem 4.2 (J.Cheeger, T.H.Colding [3, 5])

There exist a compact length space Z with $diam_Z \leq \pi$ such that

$$C(Z) \cong T_y Y$$
.

Next, we would like to introduce the suspension structure for Z in Theorem 4.2. The following results also follows from results in [3, 5].

Theorem 4.3

If there exists $p_i, q_i \in \mathbb{Z}$ $(i = 1, 2, \dots, k)$ such that

for each
$$i$$
, $\overline{p_i, q_i} = \pi$ holds, and for $i \neq j$, $\overline{p_i, p_j} = \frac{\pi}{2}$ holds.

then,

- 1. $k \leq n$.
- 2. If $1 \le k \le n-2$, then there exist a compact length space X with $diam_X \le \pi$ such that

$$Z \cong \mathbf{S}^{k-1} * X$$
.

3. If k = n - 1, or n, then

$$Z \cong \mathbf{S}^{n-1}$$
.

Proof. First we remark that

1. Generally, for a metric space X, there exist a natural isomorphism

$$C(\mathbf{S}^{k-1} * X) \cong \mathbf{R}^k \times C(X).$$

We next remark the equality below follows from splitting theorem by J.Cheeger, T.H.Colding.

2. If there exists $z_1, z_2 \in Z$ such that $\overline{z_1, z_2} = \pi$ holds, then for each $z \in Z$,

$$\overline{z_1, z} + \overline{z, z_2} = \pi.$$

Compare Lemma 2.8.

3. Since $dim_H Z = n - 1$ by the assumption of Theorem 4.3

$$Z \ncong \mathbf{S}^k$$
.

for $1 \le k \le n-2$.

Here $dim_H Z$ is Hausdorff dimension of Z. Compare Lemma 2.23.

Theorem 4.3 follows from these and an argument is similar to section 2.3. \Box

We will introduce to relation between Theorem 4.3 and some property of singular set of Y. we put

 $\mathcal{R} := \{ y_1 \in Y | \text{ For any tangent cone } T_{y_1}Y \text{ at } y_1, T_{y_1}Y \cong \mathbf{R}^n. \}$

$$\mathcal{S} := Y \setminus \mathcal{R}$$

 $S_k := \{y_1 \in Y | \text{Any tangent cone } T_{y_1}Y \text{ does not have splitting factor } \mathbf{R}^{k+1} \}$

Here, k is a non-negative integer.

Then, known result for $dim_H S_k$ is the following;

Theorem 4.4 (J.Cheeger, T.H.Colding [3, 5])

With notation as above,

$$dim_H S_k < k$$
.

Theorem 4.5 (J.Cheeger, T.H.Colding [3, 5])

With notation as above,

$$S = S_{n-2}$$
.

Especially,

$$dim_H S \leq n-2.$$

Remark 4.6

Let us explain relation of Main Theorem 1 to the splitting theorem of the limit space. We consider the following situation; $\{M_i\}_{i\in\mathbb{N}}: n$ dimensional complete Riemannian manifold $(n\geq 2)$ with $Ric_{M_i}\geq n-1,\,Z$: compact metric space,

$$M_i \to Z \ (i \to \infty)$$
: Gromov-Hausdorff convergence.

We consider metric cone of Z, C(Z), Almost cosine formura implies

Splitting theorem holds for
$$(C(Z), z^*)$$
.

i.e.

If C(Z) has a line passing z^* , then there exist a compact metric space X with $diam_X \leq \pi$ such that

$$C(Z) \cong \mathbf{R} \times C(X)$$
.

We can apply splitting theorem also to C(X).

Main theorem 1 is proved by applying to this argument iteratively.

And, the statement for k = n of Main Theorem 1 is

$$C(Z) \not\cong \mathbf{R}^n \times \mathbf{R}_{\geq 0}$$
.

Compare Theorem 2.25.

Note that these things, we have, Main Theorem 1 is equivalent to the following;

Main Theorem 1' For above Z, if there exists $p_i, q_i \in Z \ (i = 1, 2, \dots, k)$ such that

$$\overline{p_i, q_i} = \pi$$
, and $\det((\cos \overline{p_i, p_i})_{i,j}) \neq 0$ (*

then

1. $k \le n + 1$.

2. If $1 \le k \le n-1$, then there exist a compact length space X with $diam_X \le \pi$ such that

$$Z \cong \mathbf{S}^{k-1} * X.$$

3. If k = n, n + 1, then

$$Z \cong \mathbf{S}^n$$
.

We can replace the assumption of Theorem 4.3 by above (*).

References

- [1] M.T.Anderson, Metrics of positive Ricci curvature with large diameter. Manuscripta Math. 68 (1990), no.4, 405-415.
- [2] D.Burago, Y.Burago, and S.Ivanov, A course in metric geometry. Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI, (2001).
- [3] J.Cheeger, Degeneration of Rimannian metrics under Ricci curvature bounds. Scuola Normale Superiore, Pisa, (2001).
- [4] J.Cheeger, and T.H.Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. of Math. 144 (1996) 189-237.
- [5] J.Cheeger, and T.H.Colding, On the structure of spaces with Ricci curvature bounded below.I, J.Differential Geom. 45 (1997) 406-480.
- [6] J.Cheeger, and T.H.Colding, On the structure of spaces with Ricci curvature bounded below.II, J.Differential Geom. 54 (2000) 13-35.
- [7] J.Cheeger, and T.H.Colding, On the structure of spaces with Ricci curvature bounded below.III, J.Differential Geom. 54 (2000) 37-74.
- [8] S.Y.Cheng, Eigenvalue comparison theorems and its geometric applications. Math. Z. 143 (1975) 289-297.
- [9] S.Y.Cheng, and S.T.Yau, Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28 (1975) 333-354.
- [10] T.H.Colding, Shape of manifolds with positive Ricci curvature. Invent. Math. 124 (1996) 175-191.
- [11] T.H.Colding, Large manifolds with positive Ricci curvature. Invent. Math. 124 (1996) 193-214.

- [12] T.H.Colding, Ricci curvature and volume convergence. Ann. of Math. (2) 145 (1997) 477-501.
- [13] C.B.Croke, An Eigenvalue Pinching Theorem. Invent. Math. 68 (1982) 253-256
- [14] K.Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87 (1987) 517-547.
- [15] K.Fukaya, Hausdorff convergence of Riemannian manifolds and its applications. Recent topics in differential and analytic geometry, Adv. Stud. Pure Math. vol. 18-I, Academic Press, Boston, MA, (1990), 143-238.
- [16] K.Fukaya, Metric Riemannian geometry. Kyoto-Math (2004) 16.
- [17] K.Grove, and P.Petersen, A pinching theorem for homotopy spheres. JAMS 3 (1990) 671-677.
- [18] K.Grove, and P.Petersen (Eds), Comparison Geometry. Mathematical Sciences Research Institute Publications vol. 30 (1997).
- [19] K.Grove, and K.Shiohama, A generalized sphere theorem. Ann. of Math. (2) 106 (1977) no. 2, 201-211.
- [20] A.Lichnerowicz, Geometric des Groupes des transformationes. Dunod, Paris, (1958)
- [21] M.Obata, Certain conditions for a Riemannian manifold to be isometric to a sphere. J.Math. Soc. Fpn. (1962) 333-340.
- [22] Y.Otsu, On manifolds of positive Ricci curvature with large diameter. Math. Z. 206 (1991), no.2, 255-264.
- [23] Y.Otsu, K.Shiohama, and T.Yamaguchi, A new version of differentiable sphere theorem. Invent. Math. 98 (1989) 219-228.
- [24] Y.Otsu, T.Yamaguchi, T.Shioya, T.Sakai, A.Kasue, K.Fukaya, Riemannian manifolds and its limit. (in japanese) Memoire Math. Soc. Japan. (2004).
- [25] G.Perelman, Manifolds of positive Ricci curvature with almost maximal volume. JAMS 7, (1994) 299-305.
- [26] P.Petersen, On eigenvalue pinching in positive Ricci curvature. Invent. Math. 138 (1999) 1-21.
- [27] P.Petersen, and G.Wei, Analysis and geometry on manifolds with integral Ricci curvature bounds II. Trans Amer Math Soc. 353. (2000) no. 2 457-478.
- [28] T.Shioya, Eigenvalues and suspension structure of compact Riemannian orbifolds with positive Ricci curvature. Manuscripta Math. 99 (1999) no. 4 509-516.

Shouhei Honda

Department of Mathematics, Faculty of Science, Kyoto University, Japan. E-mail address: honda@math.kyoto-u.ac.jp