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1 Introduction

In this paper, we give a generalization of suspension theorem for almost maximal

diameter that is proved by J.Cheeger and T.H.Colding. As a consequence, we

can get some sphere theorems. And we introduce the relation to first eigenvalue

of Laplacian and to the structure of tangent cone of non-collapsing limit spaces.
One of the main results of this paper is the following theorem:;

Main Theorem 1
Let € > 0, M be an n dimensional complete Riemannian manifold (n > 2) with
Ricpr > n — 1, we assume there exists p;,q; € M (i =1,2,--- , k) such that

for each i, [p;,q; — | < € holds, for i # j, |p;,p; — 5| < € holds.
Here € < ¢, is sufficiently small positive number. Then we have
1. k<n+1.

2. If1 <k <mn-—1, then there exist a compact length space Z (diamz < )
such that

dor(M,SF1 % Z) < U(e|n).
3. If k=mn,or n+ 1, then
den(M,S™) < ¥(e|n).

Especially, M is diffeomorphic to S™.

Here, U(e|n) is a function from Rso x N to Rs¢ such that for each n € N

lir% U(eln) = 0.

And S¥=1 x Z is k-fold spherical suspension of Z.
da g is the Gromov-Hausdorff distance between compact metric spaces.
Main Theorem 1 gives some sphere theorem in case k = n.



Let us review some related result.

Let M be an n dimensional complete Riemannian manifold with Ricp, >
n—1.

Then, we have

diampy <7,  radpy <w, wvol(M) < wvol(S™).

Especially, M is compact.

Here, diam,,, rady;, vol(M) are diameter, radius, volume of M each, and
S™ is n dimensional standard unit sphere in n 4+ 1 dimensional Eucildean space.

Of couse, if M is isometric to S™, then above inequality are equality. Con-
versely, If above some inequality satisfies equality, then M is isometric to S™.

Now, we consider perturbation version of this.

The perturbation version for volume and radius is the following that is proved
by T.H.Colding.

Theorem 1.1 (T.H.Colding [10, 11])
With notation as above, we assume

vol(M) > vol(S™) —e  (or radyy > m—e).
Here € < €, is sufficiently small positive number. Then we have
deu (M, S™) < U(eln).
Especially, M is diffeomorphic to S™.

Here, last stetement, ”diffeomorphic” is a result of stability theorem that is
proved by J.Cheeger and T.H.Colding. (See Theorem 2.26 in section 2 )

But a statement corresponding to a diameter is not true. But the following
result is proved by J.Cheeger and T.H.Colding.

Theorem 1.2 (J.Cheeger, T.H.Colding [4])
With notation as above, we assume

diampr > 7™ — €.

Here € < €, is sufficiently small positive number. Then there exist a compact
length space Z with diamy < w such that

dau (M, S°x Z) < U(e|n).

Theorem 1.2 corresponds to case k = 1 of Main Theorem 1.

O=X <A <A<

denotes eigenvalues of Laplacian on M.



Main Theorem 2
With notation as above,

Assumption of Main Theorem 1 holds <= A\, < n +e.

We will explain this theorem in section 3.

Acknowledgement
I am grateful to Professor Kenji Fukaya for numerous suggestions and advices.
And I am grateful to Professor Takashi Sakai for pointing out Main Theorem 2.

2 Proof of Main Theorem 1

2.1 Preliminaries

Notation 0 A function ¢ : R%; x R! — Rg such that

lim (e, €2, - -€xlcr,co, -+, cx) =0,
€1,€2, € —0
it is denoted by

U(eq, €, €xlci,ca,- -+ ,c). (or simply, ¥)

Therefore, for example,

2U (e, €,€3, - €xlcr, o, ,¢) = Ver, €, €3, €gler, ca, -, ).

And we use the following notation;
a=bxV¥ = |a—-b <.
7 is a metric space, Z and z € Z,r > 0, we put
B.(2) ={we Zlz;w <r}, B.(2):={we Zlz;w<r}, B.(2):={weZ|z;w=r}.
Here, Z,w is a distance between z and w.

Definition 2.1 (length space)
We say that Z is a length space if for each z1, 29 € Z, there exist a continuous
map c: [0,1] — Z such that

length(c) = 71, 22

Remark 2.2
We skip the definition of the length for above continuous map. See [2] for details.

Definition 2.3 (spherical susupension)
We define a metric on [0, 7] x Z/.. (here, ~ is an equivalent relation such that
{0} x Z and {w} x Z goes to point each. ) as



(t1,21), (t2, 22) def arccos(cos ty costs + sin ty sin tg cos min{z7, zz, 7 }).
Then, this metric space is denoted by
SO% Z

and we call spherical suspension of Z.
And we define

k+1

Sk*Z::SO*(SO*(-~-*(SO*Z))--~).

Remark 2.4
If Z is compact, then S° x Z is compact. And, if Z is length space, then S® x Z
is also a length space.
We put M = {isometry class of compact matric space}, then,
S% : M — M
is uniformly continuous map for dgpy.
Namely, for W, Z : are compact metric space,

dGH(Z, W) < €— dGH(SO * 7, SO x W) < \I/(E)
holds.

Now we introduce a segment inequarity.
For an n dimensional complete Riemannian manifold M (n > 2) with
Ricyy >n—1,9: M — Rxo , we put Fy: M x M — R into

Fy(z,y) == il;lf/g(v(t))dt.

~
Here, infinimum runs all normal geodesic v from x to y.

Theorem 2.5 (J.Cheeger, T.H.Colding [3])
With notation as above,

/ Fo(z,y)dedy < C(n)volM [ g(x)dz.
MxM M

Here, C(n) is a positive constant depending only on n.

Remark 2.6

In fact, above theorem is a special case of segment inequality that is proved by
J.Cheeger and T.H.Colding. They prove the statement under Ricpys > —(n—1).
But, in this situation, it is sufficient to prove main result.



2.2 Proof of Almost cosine formura (Analytic part)

From now on, fix an integer n > 2, a positive number ¢, and M always denotes an
n dimensional complete Riemannian manifold with Ricy; > n—1 and p,q € M
such that ;g > 7 — € holds. We put f(z) := cosp, T

Lemma 2.7 (T.H.Colding [10]) }
O With notation as above, there exist f € C*°(M) such that

/ (@) - F@)Pde < W(eln),

vol

/ \Vf = Vf[Pdz < U(en),
vol
. Hess; + fgu[*de < U
vl (M) M| essj+ fom|"dz < W(e[n).
Here gps is Riemannian metric on M.

Lemma 2.8 (K.Grove, P.Petersen [17])
For each x € M,

DT +GT—D,q < V(eln).

Lemma 2.9
For eachw € M, t € [-1,1] (f~1(t) # ¢),

1. If f(z) < 't, then

xvfil(t) +pvf71(t) —T,p= 0.

2. If f(x) > t, then

T+, [T ) —p, fH(E) < ¥eln).
Proof.
1. O Tt is easy to see that there exist y € f~1(t) such that

8

p,y+z,y=n,

On the other hand, for each z € f~1(¢

~

,Yy=p,T—py
=p,Tr—p,z
<7zZz

So,



T =57 ).
This gives the claim.

2. We can assume f(q) <t without loss of generality. Similarly above argu-
ment, there exist y € f~1(¢) such that

From Lemma 2.8,

PT+ZT,Yy—p,y<Vv

So, for each z € f=1(t),

TY<py—p,x+V¥
=D, Z—p, T+ v
<zZ,xz+VY
Therefore,
Ty -5 < v
This gives the claim. O
Lemma 2.10

We take a f € C*°(M) as in Lemma 2.7.
Then, for each x,y,z € M, there exists Z,y,zZ € M with the following
properties.

1 2,8 < U(eln), y,9<¥(e|n), =z 2<VY(en),
(@) = @) < Cleln), (@) —F@)] < Veln), |f(2) = FE)] < Uleln).

2. For each two elements in I, §, 2, one is not contained cut locus of the other.

3. There exist a unique normal geodesic from & to ¥;

o: 0,29 — M
and U C [0,%,9] such that

(a) U is open and has full volume. And for each u € U, there exist a
unique normal geodesic from % to o(u),

T [0,0(w)] = M (l(u) := 2,0(u)).
(b) It has following property;



/U | Fo(u) — Flo(u)|*du < U (eln),
/U ||Vf\(a(u)) - Sinp,Tu)de < U(eln),

I(w) -
/U/O Hess 7 + fgar|(Tu(s))dsdu < W(e[n).

Proof. From Theorem 2.5,

1 /
_— F. - (e (a,b)dadbde < U (en #
T DA

We take specific ¥(e|n) such that above inequality (#) and Lemma 2.7 holds,
and denotes by g (e|n).

ie

1. ¢02R>0XN—>R>0

2. For each n € N,

lir% Po(eln) =0

holds.

3. Above inequality (#) and Lemma 2.7 holds if we replace the ¥(e|n) by
wo(e\n).
And, we take ©; : Ryg x N — Ryq (i = 1,2) with the following properties;
I. For each n € N,
1in% Yi(eln) =0
holds.

1.
Yoldn) 21 g)

lim —— 1 ,

e—0 ’l/)l (€|n)

M C M?3 is a subset of M? consists of element (a,b,¢) € M3 with the
following properties;

e For each two elements in a, b, ¢, one is not contained cut locus of the other,
— —
and a,bN C, is 0-set in a, b. Here, C. is cut locus of c.

o [f@)=f@)] < u(eln), [FB)=FO) < prleln), [f(e)=F(e)] < Yuleln).



/7; 1 = FI2 < v (elm), [ 197 = sinpr|*< v (eln).

a!

f‘F\HeSSerf_ngz(C’ )<a’ b) < (6|n)
Then, by using segment inequality, we have
~ 3
vol(M) > (1 — ta(eln)) (vol(M))".

From this and Bishop-Gromov’s volume comparison theorem, we have the
claim. O

Lemma 2.11
For eachx € M, t € [—1,1] and z € f~1(t), y € f~'(t) such that

m = x’ fﬁl(t),

we take Z,7,Z as in Lemma 2.10.0 We use same notation in Lemma 2.10
below.O

1. If f(x) < t, then

zﬂvﬂﬂ@yﬁm@ﬁfuwmm%u<me.

2. If f(x) > t, then

zﬂvﬂﬂ@ymm@ﬁ+uwmm%u<me.

Proof. First, Note that we have the following;

1. For each u € U,

p,o(u) = (0,7 —u)| < ¥(eln).

2. For each u € U,

p,o(u) — (0,7 + u)| < ¥(eln).

We skip the proof of this result because it is easy to prove by Lemma 2.8.



We will give only the proof of case 1 by using this result. (Case 2 is also
similally argument.)

/ |V F(o(u) — sin(p;T — w)o’ (u)|*du
U
= [ (97t = 25w = w)(F o o) (1) +sin(7r7 = )
= /U (sinQ(m —u) — 2sin(p, T — u)(fo o) (u) + sin®(p, T — u))du + U
— 2/ (sinQ(W —u) —sin(p, T — u)(fo J)/(u))du + 0
U

= 2/ sin(p, @ — u)du — 2[sin(W—U)fOU(U)]§7y
U

+2/ —cos(p; % —u)f o o(u)du £ U
U

:2/ sin2(p,xfu)dufZ(sin(p,i—i,g))f@)fsinp,x f(:%))
U
2 | —cos®(p;z —u)du+ ¥
+ /U cos”(p, T — u)du

= 2/U (sin®(p,Z — u) — cos®(p,Z — u))du

— 2(sinp,3jcosp,y — Sinmcosm) + U

= 72/ cos(2p-T — 2u)du — sin 2p, gy + sin2p, x + ¥
U

= [sin(2p;7 — 2u)] "7 — sin2p;y + sin 25,7 £ ¥

=sin2(p,z — &,9) — sin2p, T — sin 2p, g + sin2p, ¢ + ¥

=V ]



Lemma 2.12
Under same assumption as in Lemma 2.11,

COSZ,T — COSP,2COSP,T COSY,Z — COSP,yCOSD, 2

sinp, & sinp, y

xmin{sin® p, Z, sin® p, 7} < ¥(e|n)

Proof. We will give only the proof under assumption of case 1 in Lemma 2.11.
cosl(u) — cosp, 2cos(p,z —u)\’
‘ / ( P, 2 > s
sin(p, & — )

_ ’ / { (—sinl(u) I'(u) — cosp, Zsin(p, & — u)) sin(p, & — u)
U

sin?(p, & — u)

COS 2, & — cosp, 2COSDp, & _ cos 9,2 — cosp,ycosp,

sinp, & sinp, §

(cosl(u) — cosp, Z cos(p, & — u)) cos(p, & — u)
+ s du
sin“(p, & — u)

—sinl(u) < 7, (l(u)), 0’ (u) > sin(p, & — u)

1
S {/
min{sin®p, #,sin”p, g} Ju

+cosl(u) f(o(u)) — cosp, 2

du:t\Il}

dfOTu( )

mln{sm p, &,sin’ p, U}

sinl(u) 4 cosl(u) f(ru (1)) — f(7.(0))

s=l(u)

duj:\I'}

min{sin’ p, z,sin? p, 7}

z(u) d( dfOTu(s)
ds

sin s 4- cos s f(ru(s))> ds

du:t\IJ}

(u)
; {//l |Hess —i—ng|7'u dsdu:t\IJ}

mln{sm p, &,sin’ p, p. 9}

_ ! v m
min{sim2 p, &,sin? P9}

Proposition 2.13 (Almost cosine formura)
There exist § = d(e,n) > 0, ( lim_o d(e,n) =0 ) with the following property;
For each x € M, we take z, € OBz (p) such that

10



7.7 = ,0B5(p).
Then, for each z,x' € M \ (Bs(p) UBs(q)),
cos ¥, 7' = cos P, T cos p, ¥’ + sinp, Tsinp, v’ cos z, 27 + V(e|n)
holds.
Proof. This is clear by Lemma 2.12. O

2.3 Proof of Main Theorem 1 (Geometric part)

In this section, We will estimate several Gromov-Hausdorff distance.

Lemma 2.14

Let € > 0, M be an n dimensional complete Riemannian manifold (n > 2) with

Ricpr > n — 1, we assume there exists p,q € M such that p,q > m — € holds.
Then,

dar (M, S° 0Bz (p)) < U(eln).
Here the metric on OBz (p) is the restriction of M.
Proof. Under same notation in Lemma 2.13, we define
¢ M\ (Bs(p) UBs(q))— S° x 9Bz (p) = [0, 7] x OBz (p)/{0, 7} x IBz (p)
as
6(x) = (77, 2).

This gives ¥(¢|n)-Hausdorff approximation by Proposition 2.13.
Therefore, from this, the claim is clear. (|

Now, We take specific ¥(e[n) such that Lemma 2.8 and Proposition 2.13
holds and denotes by 13(e[n).
Namely,

1. ¢3IR>0XN—>R>0
2. For each n,
lir% P3(eln) =0
holds.

3. Lemma 2.8 and Propositon 2.13 holds if we replace the ¥(e[n) in the
conclusion by 3 (e|n).

Besides, we take a function ¢;(i = 4,5,6,7,8,9,10) with the following prop-
erties;

11



I wiZR>0XN—>R>Q
II. For each n,

lim 4 (¢[n) = 0, e LGOI (i =4,5,6,7,8,9,10)

=0 P;(e|n)
holds.

Remark 2.15
More exactly, we take 1; to justify the following statement.

Lemma 2.16

Let € > 0, M be an n dimensional complete Riemannian manifold (n > 2) with
Ricyr > n — 1, we assume there exists pi1,q1,p2,q2 € M with the following
properties.

1. |p1>Q1—7T‘<€7 |p27q2_7T|<67 |plap2_g|<6'

2. 0Bz (p1) \ (Bys(ejn)(P2) UBy () (42)) = ¢

Then,
dar (0Bz (p1),S°) < U(eln).
Especially,
dar(M,St) < U(e|n).
Proof. This is clear. O
Lemma 2.17

Let e > 0, M be an n dimensional complete Riemannian manifold (n > 2) with
Ricy; > n — 1, we assume there exists pi1,q1,p2,q2 € M with the following
properties.

L pr,qi— 7| <e |p2, @2 —7 <e |pr,p2— 5| <e
2. 0Bz (p1) \ By (en) (P2) U By () (42)) # 6.
Then, for each x € 0Bz (p1) \ (B (efn) (P2) U By epm) (42)),
P2, % C Byg(em) (0B (p1)) and g2, 7 C By, (ejn) (9B (p1))-
Here, for xz,y € M,

7,7 = {z € M| There exist v : normal geodesic from x to y, such that
z € Im(v)}.

Proof. We will give only the proof of the statement for ps, .
(The proof of the other is similar.)
First, we remark that

12



e O for each t € [0,p2,7], * € OBz (p1) \ (Bys(eln) (P2) U By (en) (42)),
o :[0,pz, %] — M is normal geodesic from py to x, we have

o(t) € M\ (Bs(ejn)(p1) UBis(ejn) (q1))-

Because, from Lemma 2.8 and triangle inequality,

v

p1,0(t) (p1,P2 +P1,T — D2, T)

v
| =N =N =

(5 =€+ 2 = (7 + vsleln) — wreln))

(¥r(eln) — ¥s(eln) —e)

vV
> N
N
S

and

p170-(t)§ (p17p2 +p1,ﬂ?+p2,$)

<

N~ N~

(g + % + e+ 7+ P3(eln) — Yr(en))

=~ 5 (drleln) — €~ (elm).
So

05,70 27—~ pro()
> 7~ e (m— 5 (Wr(eln) — € ~ ga(eln))

_ %(an) — 3¢ — s(e|n))
> 6(€[n).

So, we can use Proposition 2.13, for z; € 8B%(p1) is an element such that
o(t),z = o(t),0Bz (p1) holds,

cos pa, o (t) = cosPr, Pz cos 1, o(t) + sin Py, pa sinpy, o () cos D, zr = 103 (e|n),

coso(t),x = cospy,o(t) cosPr, T + sinpy, o(t) sinpr, T cos T, z; = 103 (e|n).

From this, we have

cos po, o(t) = sinpy, o(t) cos Pz, 2z £ 2003 (e|n),

coso(t), x = sinpy, o(t) cosT, z; + 20¢3(eln).

13



1. The case p2,0(t) < 5, 0(t),z < 7.

In this case

cos pa, o (t) < cosPa, 2zt + a(eln),

coso(t),x < cosT, z; + Y4(eln).

So )
p270(t) 2 P2, 2t — m¢5(€|n)7
1
ST
o(t),x > T,z 100¢5(e|n),

and from triangle inequality, we have
—_— 1
2. o(t) — P2, 2| < E¢5(€|n),

- 1
_TE|< — .
|a(t),z x,zt|_ 101/15(6\71)

So

1
cos pa, o(t) = sinpy, o(t) cospa, o(t) = §w5(e|n),

1
coso(t),x = sinpy,o(t)coso(t), z + 51#5(6\71).

Thus, we have
—_— T
|p1,0(t) — §|< Ye(€[n).

Therefore, in this case, the claim is true.

2. The case p2,0(t) > 3.

In this case, from the result of case 1,

cos J(pz’x), o(t) =sinpy,o(t) COSO’(Z%), 2 £ 10¢6(eln),

coso(t), x = sinpy, o(t) cosT, z; = 20)3(e|n).

An argument after this is similar to case 1.

3. The case o(t),z > 7.

This case is also similar to an argument in case 2. [ O

Lemma 2.18
Under same assumption as in Lemma 2.17,
OBz (p2) NBuygy(ejn) (0Bz (p1)) # ¢ and,

don (035 (). 8+ (085 (12) 1 Bus (03 (m)) ) < Wlcln).

14



Proof. For z € aB%(pl) \ (B (ejn) (P2) U By, (efn) (42))

we take 2z € OBz (p2) such that

T,Z = 2,0Bz (p2).
From Lemma 2.17,
z € OBz (p2) NByy(in) (0B z (p1)).

Then, we define

& : OB (p1)\ By () (P2)UB s e (42)) — 8% (9B 5 (2) By e (9B 5 (1) )

as
(ZS(:E) = (an z, Z)
By Proposition 2.13, this gives ¥(e|n)-Hausdorff approximation. |
Lemma 2.19

Let e > 0, M be an n dimensional complete Riemannian manifold (n > 2) with
Ricy; > n — 1, we assume there exists pi1,q1,p2,q2 € M with the following
properties;

L pr,qi — 7| <e |p2,@2—7 <e |pr,p2— 5| <e
2. 0Bz (p1) \ (Bys(ejn)(P2) UByy () (42)) # -

3. There exists z,y € OBz (p2) NByy(ejn) (0Bz (p1)) with T,7 > m — hg(e|n)
such that

OBz (p2) N By (en) (0B (P1)) \ (Buso(eln) (%) UBysyqeim) (v)) = ¢-
Then,
dan (9B (p2) N By (9B3 (1)), S°)< W(eln).
Especially,
dom(M, S?) < U(eln).
Proof. This is clear. O

Lemma 2.20

Let € > 0, M be an n dimensional complete Riemannian manifold (n > 2) with
Ricpy > n — 1, we assume there exists p1,q1,p2,q2 € M with the following
properties;

15



L |pr,qi — 7| <e |p2, 2 —7|<e |p,p2— 3| <e
2. 9Bz (p1) \ (Bys(eln) (P2) UBy(ejn) (42)) # ¢
3. For each z,y € OBz (p2) N Byy(ejn) (0Bz (p1)) with T, 5 > m — g(€|n),

OBz (p2) N By (en) (0B (01)) \ (Byyo(eln) () UByyo(en) (¥)) # ¢

Then, for each z,y € OBz (p2) N Buyg(ejn) (0Bz (p1)), there exist
z € 0Bz (p2) N Byg(epn) (aBg(pl)) such that

1 1
|va - §m|< \Ij(€|n)a |Zvy - ixay|< \I/(€|TL)

Especially, there exist a compact length space Z with diamz < w such that
dan (9B (92) N By, (0B3 (1)), Z) < W(eln).
Therefore,
dou(M,SY * Z) < W(e|n).
Proof.

1. The case vg(eln) < T, 7 < 7 — g (€|n).
By Lemma 2.17, (or similarly argument of the proof [ there exist w € , 3
such that

—_

1
l‘ﬂ«”—a%% yaw_ixay

and
w € By, o(cjn) (0B 2 (91)) "By, (cln) (0B z (p2)).-

We take w € 0Bz (p1) such that w, @ < 910(e|n) holds.
In addition, we take z € 9Bz (p2) N By, (en) (0B z (p1)) such that

uA)v = UA}) aB% (pQ) N Ewg(dn) (8B% (pl))v
then,
zZ,w < U(eln).
Therefore, in this case, the claim is true.

2. The case T,§ > m — g (€|n).

By the assumption, there exist
w € 0Bz (p2) N Buyy(en) (0B (P1)) \ (Buyy(efn) () U By (efm) (v))-

Since

16



xaw+way2x?yzﬂ_w9(€|n)a

we have

max{Z,w,w,y} > 1 (7 — vo(e|n)).

So, we may assume

5

W > %(71’ - wg(e|n)).

We take w € x,w such that

8

(71' — 1/19(6\71))

N | =

7w:

and z € Bz (p2) N By, (ejn) (0B z (p1)) such that

W,z = w, 0Bz (p2) N Byy(en) (0B (p1)).

Then,

7,z — g|< W (eln).

From this and Lemma 2.8, we have the claim.

3. The case T,y < 1o(e|n)

In this case, we take z = y.

We can prove the last claim by using Gromov’s pre-compactness theorem.
O

From above results, we have next proposition.

Proposition 2.21
Let € > 0, M be an n dimensional complete Riemannian manifold (n > 2) with
Ricyr > n— 1, and p1,q1,p2,q2 € M such that

P 1 — 7| <€ |p2,@z—7| <€ [pr,p2z— 5| <e

Then, one of the following 1,2,3 holds.

1. There exist a compact length space Z with diamyz < w such that
dor(M,S' x Z) < U(e|n).

2. dom(M,S?) < ¥(eln).

3. dom(M,S) < U(eln).

17



From similarly argument, we can show the next proposition.

Proposition 2.22
Let € > 0, M be an n dimensional complete Riemannian manifold (n > 2) with
Ricyy >n—1 and p;,q; € M (i =1,2,--- k) such that

for each i, [p;, s — 7| < € holds, and for i # j, |pi,p; — 5| < € holds.
Then, one of the following 1,2,3 holds.

1. There exist a compact length space Z with diamyz < 7 such that
dGH(M, Sk—1 & Z) < \I’(E‘TL)

2. da(M,S*) < U(e|n).
3. den (M, Sk_l) < U(eln).

Now, we give next lemma without the proof.

Lemma 2.23 (T.H.Colding [11])
For each n € N (n > 2), there exist C(n) > 0 with the following property. If
an integer k satisfies 0 < k < n, and an n dimensional complete Riemannian
manifold M satisfies Ricp; > n — 1,

dGH(M, Sk) Z C’(n)
holds.

Proposition 2.24
Let € > 0, M be an n dimensional complete Riemannian manifold (n > 2) with
Ricyy >n—1, and pi,q; € M (i =1,2,--- , k) such that

for each i, [p;, ¢; — 7| < € holds, and for i # j, |pi,p; — 5| < € holds.
Then, we have the following .

1. If1 < k < n—1, then there exist a compact length space Z with diamyz < w
such that

darg(M,SF1 % Z) < U(eln).
2. If k =n, then
dau(M,S%) < Y(en),
or,

dGH(M, Sn) < \Il(e|n)
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Here,
ST i={x=(z1,22," ,p41) € R" 2l +a3+ 422, =1, 2,41 >0},

and the metric is the restriction of S™.

3. If k=n+1, then
der(M,S™) < U(e|n).

Proof. This is a consequence of Proposition 2.22 and Lemma 2.23. O

Finally, we recall the following.

Theorem 2.25 (J.Cheeger, T.H.Colding [3, 5])
If (M;, p;)ien is sequence such that M; are n dimensional complete Riemannian
manifolds with Ricy;, > —(n — 1), p; € M; and Z is proper length space (i.e
length space and its bounded closed subsets are compact), z € Z
(M;,p;) — (Z,z) (i — o0) : non-collapsing, pointed Gromov-Hausdorff
convergence

then, for each tangent cone at z in Z, T,Z
T.7Z % R 1 x Rzo.
Here,
R"1 x Rso := {x = (21,22, -+ ,2,) € Rz, > 0}, the metric is the
restriction of R™.
Theorem 2.26 (J.Cheeger, T.H.Colding [3, 5, 16])
For M: n dimensional compact Riemannian manifold with Ricyr > —(n — 1),

there exist 6 = §(M) with the following property. If N: n dimensional compact
Riemannian manifold, Ricy > —(n — 1) such that

dGH(]W7 N) <6
then M is diffeomorphic to N.

Proof of Main Theorem 1.
Proposition 2.24 and Theorem 2.25, 2.26 implies Main Theorem 1. O

Remark 2.27
Theorem 1.1 follows from Main Theorem 1.

Let M be an n dimensional complete Riemannian manifold (n > 2) with
Ricpy >n— 1.

From Bishop-Gromov’s volume comparison theorem, we have

vol(M) > vol(S™) —e = rady >m— ¥(en)

Now, we consider the situation with rady; > 7 —e.
Then, we have
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for each p € M, there exist ¢ € M such that p,g > m — € holds.

First, we take arbitrary p; € M.
Then, from above, there exist ¢ € M such that

P1,q1 > 7 — U(eln).

Thus, from Main Theorem 1, M is close to the space of 1-fold suspension of
some compact length space.
Especially, there exist po € M such that

0
|p1,p2 — 5‘ < \I/(6|’I’L)

Similarly, there exist ¢go € M such that
P2, @2 > ™ — Y(eln).

Thus, M is close to the space of 2-fold suspension of some compact length
space.

If we repeat this argument, then the assumption of Main Theorem 1 for case
k =n+1 holds. It implies Theorem 1.1.

3 First eigenvalue of Laplacian

In this section, we give the relation between Main Theorem 1 and first eigenvalue
of Laplacian. Let M be an n dimensional complete Riemannian manifold with
Ricpy > n— 1.

O=X <A<l <A< A <
denotes eigenvalues of Laplacian on M.

Theorem 3.1 (A.Lichnerowicz, M.Obata [20, 21])
With notation as above,

)\1277,.

And the inequality is equality if and only if M is isometric to S™.

Now, we consider perturbation version of this statement.
Theorem 3.2 (S.Y.Cheng, T.H.Colding, C.B.Croke [8, 10, 13])

1. If diamp; > m — €, then Ay < n + U(e|n) holds.

2. If \y <n+e€, then diamp; > m — U(eln) holds.

If we consider simillaly statement for A1, then we have the following;
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Theorem 3.3 (P.Petersen [26])
1. Ifradps > — €, then A\pp1 < n+ ¥(eln) holds.

2. If \py1 < n—e, then rady; > 7 — V(eln) holds.

These means the following;

A1 < n+ e <= Assumption of Main Theorem 1 for k¥ = 1 holds.
Ant+1 < n+ e <= Assumption of Main Theorem 1 for £ = n + 1 holds.
We would like to consider whether a statement corresponding to A is right.

Theorem 3.4 (P.Petersen [26])
We have,

A < n+ e = Assumption of Main Theorem 1 holds.

Remark 3.5
This is stated in [26] introduction. We will give the proof later.

We have a converse of it. They together imply

Main Theorem 2
We have,

Assumption of Main Theorem 1 holds <= A\, < n + U(e|n).

The rest of this papers devoted by the proof of Main Theorem 2.

First, we consider the case k = 2. i.e,
Let € > 0, M be an n dimensional complete Riemannian manifold (n > 2)
with Ricyr > n — 1, and p1, g1, p2,q2 € M such that

P 1 — 7| <€ |p2,@z—7| <€ [pr,p2— 5| <e

In this situation, we put f;(x) = cosps, & (i = 1,2) and take fi € C>*(M) as
in Lemma 2.7. Then we have the following

1 9o, 1

1 2, N
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/ AFi(e) + nfio)Pde < U(en).  (33)

vol

(See Lemma 1.10 in [10])

Remark 3.6

Here, A = tr(Hess). So, eigenvalues of Laplacian that we are considering now

is one for —A = d*d.

Lemma 3.7
With notation as above,

/ fode = — + w(cln),

vol

/ |V fil*da = —ﬂ/( n).

vol

Especially,

1
vol / fifods = s /Mflfzdxiwn),

vol (M)
Proof.

1 - 1 -
vl () 1y izdl’zm/M(fi—frFfi)zdx

b 2
el MUEIOR

/fl i fldx—k

1 + U(eln) (.- Cauchy-Schwartz inequality)
n

The proof of other equality is similar. O

Lemma 3.8
We have the following;

22
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W /M gM(vf17Vf2)d$C = —W /M fi1fodx £ \I/(€|7’L)

Especially, from Lemma 3.7,

1 ;o F 1 -
Uol(m/]w gM(vf17Vf2)dI = ’U()l(]\f)/M flfgdl‘:t \IJ(€|7’L)

Proof. First, we take specific U(eln) satisfies the conclusion of all

statement in section 2 and denotes by ¢;1(€e[n). And we take a function 112
with the following properties;

1. ¢12 : R>0 XN — R>0.

2. For § = §(e|n) is in Proposition 2.13,

Y11 (en) ™
S(eny < Vazlen)
holds.

We put
Ap, = Bss(p1) UBss(q1) U Cp,.

For each z € M\ A,,,s € [0,p1, %], we define ¢, (s) € M as

¢.(8) is a point on segment py, & such that x, ¢, (s) = s holds.

Then,

1 1
vol (M) /M gm(Vf1, V fo)dw = vol(M) /M\Apl gm (V 1,V fa)dz + 111 (e|n)

(- % < 11(€ln))

1 .
= Dy, 970 TN 20

_ 1 . 7df-2 o Cm(s)
= vol(3) /M\AP1 sinpy, T I s:odx =+ 211 (eln)
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B 1 R fQOCz((S)_J;ZOCz(O)
= vol (M) /M\Apl {smpl,x( 5

5 2 f o

vol(M) 4
1 L fzocx(§)_f2°cx(5)
+ wol(M) /M\Ap1 smpl,x( 3 )dw (1)
1 N f~2ocz(0)_f2002(0)
~ a3 /M\Ap1 smpl,m< 5 )d(L’ (2)

1 L J d2f~zocz(s) N
_ W /M\Ap1 smp1,$/0 (6 — S)(T + fao cx(s))dsdx (3)

1

)
¥ Sool(h) /M\Am s [ (5= 5)faocsladsde £ 2. ()

Now, we will prove the following;

Claim
[(D)] < t12(e|n) (3.4)
[(2)] < Y12(eln) (3.5)
[(3)] < ¥12(eln) (3.6)
[(4)] < t12(e|n) (3.7)

Proof of claim.

1. Proof of (3.4).
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1 N
0 < 5o /M\Am Froca®) = froc@de  (5)

We use next estimate;

Estimate 1 There exist C'(n) > 0 such that for each integrable function
h: M — R,

1 oc x Cn) z)dx
vol (M) /JM\API hoes(d)dr < vol(M) /M hla)dz.

Proof of estimate 1. We put

Sp, (1) C Tp, M : unit sphere

and for u € S, (1),

t(u) := distance from p; to cut locus of direction of u > 0

Spi (1) = {u € Sy, (Dt(u) > 35}

DD
ax/ 8xj

Nl

9(t7 u) = tn_l (det(gij‘exppl (tu))) ( gij ‘= M ) )

Then,

W
/ ho ey(8)da < / / h o Corp. () (8)0(t, u)dtdu
M\A,, 8,, (1) /35 P

t(u)
:/ / h(exp,, ((t — 6)u)0(t, u)dtdu
8y, (1) /36

t(u)—48 R
/ / h(exp,, ( (tu))0(t + 6, u)dtdu  (6)
8y, (1) J26

From Laplacian comparison theorem, there exist C'(n) > 0 such that
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t(u)—
/ / h(exp,, ( (tu))0(t, uw)dtdu
Spy (1) /26

t(u) R R R
< C(n) [S . / h(exp,, (Fu))0(F, u)didu

n) /M h(z)dx

Therefore, we divide this by vol(M

From this estimate,

- 51}0[ /

vol

C(n)

), we have estimate 1.

|fo — folda

/ \f2 = fol dxé

< == (Wn(eln)

< 12(€n)

Therefore, We have (3.4). O

2. Proof of (3.5).

@)= 5vol

26

377 [\ oo

O



IA
SN
[N

() 172 = o)

(Y11 (e[n))?

IN
| =

< 1p12(€|n)

Therefore, We have (3.5). O

3. Proof of (3.6).

1 s .
1(3)] < W /M\Ap1 /0 ’Hessf2 + fng‘(cz(S))dsdx - (7)

We use next estimate;

Estimate 2 There exist C'(n) > 0 such that for each integrable function
h: M — RZO7

; ’ O CplS)asax C(n)(S xX)ax
vol(M) /M\Apl/o ho cals)dsdr < vol(M) /M hlw)de.

We skip this proof because it is similar to estimate 1.

Then,

C(n)o
(N =< vol(M)

/M‘Hessf2 + fggM |dx

1 . 3
< C(n)d(m /M|Hessf~2 + fggMFdSIJ)

< th12(€n)

Therefore, We have (3.6). O
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4. Proof of (3.7).
From Lemma 3.7 and estimate 2, the proof is similar to |(3)]. O

So, we have claim. O

From this claim, we have the following;

gM(thVfg)dxzvol(ljw)/M\Apl Sinm(fgocm(é)ngchE(o))dx

st /s

+ 4¢12(e|n) (8)

By Almost cosine formura,

Sinpr, Z(f2 0 ¢(8) — f2 0 ¢z (0)) = sinpy, & (cos P, p2 cos p1, ¢z (0)

COS P2, X — COSP1, P2 COSphﬂC)

+sinpy, p2 sinpy, c,(0) T ——
sinpy,ps SINPy,T

—sinpy, Z cosDa, T £ P11(en)

= (sin(p1, T — 8) — sinpy, T)cos Pz, T & 3h11(€n)

We use mean value theorem,

1

(8) = vl (3) /M\A — €08 Pz, T €08 Py, Zdx £ 6eh12(e|n)
Pr1

_ % /M fifodx £10¢12(en).

ol

So, we have Lemma 3.8. O

Lemma 3.9
We have

’ 1

wol(M) /M 9 (V 1,V fo)de

: ‘Uolzm/Mflfgdm‘< U(en).
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Proof.  From (3.1), (3.2) and (3.3), we have

1
—_ doe £V .
T [ (Ve = e [ fifada & w(eln)
From this and Lemma 3.8, we have the statement. O

Theorem 3.10
We have

A2 < n+ Ulen).

Proof.  From Lemma 3.9, we have

f 15 fg are linearly independent in L%( M).

So, from min-max principle, we have

Ag < SUP{ " |V(a1f1+a2fg)|2dx//M(a1f1+a2f2)2dfc ai, az € R, a%—i—ag # 0}-

And from Lemma 3.9, for a? + a3 # 0, we have
/ V(a1 fi + a2f2)|2dx// (a1 f1 + asfo)?de < n+ U(en).
M M

Theorem 3.10 holds. O
The proof of general case of Main Theorem 2 is similar.

Proof of Theorem 3.4.
Let us prove Theorem 3.4. We first recall some inequalities proved in [26].
Let f; € C°°(M) (i = 1,2) be eigenfunctions with

~Afi=Nifi, |Ni—n|<e / fifodz = 0.
M

Then we may assume that

FAHIVAEE<,

it L e = g el
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1

— fl2de = —— + W
T [V FPds = (e,

1 - _
woitis L 1T+ VAR = 1lde < w(eln).

holds. (See Lemma 3.1 in [26].)
So, for each p € M, there exist p € M such that

pop < Uleln) and F2(5) + |VFI2(p) = 1 £ U(eln).

Now, we take specific U(e|n) satisfies the above inequalities, and denotes by
Y13(eln).
And, we take p;,q; € M with

filpi) = max fi,  fi(q;) = min f;.
For g;(x) = fi(pi) — fi(x) + ¢s(eln), hi(x) := fi(x) = fi(a:) + vr3(eln) €
C*> (M), by using Cheng-Yau’s gradient estimate, we have
Vol [Vhi? _ C(n)
g; I3 Prz(eln)”

Here, C(n) is a positive constant depending only on n. (See [3, 9].)
Thus, If we take p;,§; € M as above, then

IVAP@), VAP (@) < Y(eln).

Especially, we have

[fi(p) =11, [filgs) +1] < ¥(eln).

Now, we put f;(x) := cospy, T, by |V arccos fZ| <1, we have

fi> fi— U(eln).

So, in the barrier sense,

A(fi = fi) < ¥(eln).
From Theorem 7.2 in [26], we have

|fi = fil < W(eln)
Especially,

Pi: i = ™ — V(eln).
So, by (3.1), (3.2) we have
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/ IV — Vfil2dz < U(e|n).

vol

From a calculation similar to the proof of Lemma 3.8 and Lemma 3.9, we
have

/ fifada = 70051“’1’2 + U(eln). - (3.8)

vol
Since left hand side is equal to 0, we have
™
|p1,p2 — 5‘ < \I/(6|’I’L)

Therefore, we have Theorem 3.4. ]

We remark that the above argument also gives an alternative proof of The-
orem 3.3 in [26].

Corollary 3.11
There exist a positive constant C(n) depending only on n such that for M : n
dimensional complete Riemannian manifold with Ricy; > n — 1,

)\n+2 Z C’(n) > n.

Proof. 1If the assertion is false, then there exists a compact length space Y
and for each k € N, complete Riemannian manifold M}, with Ricp, > n —1
such that the (n + 2)-th eigenvalue A, satisfies

i Mz =1
M, — Y : Gromov Hausdorff convergence.
From (3.8), there exists p;,q; € Y (i = 1,2, ,n + 2) such that
for each 7, p;,q; = 7 holds, and for i # j,p;, p; = 5 holds.
This is contradiction by Main Theorem 1. O

Corollary 3.12
For M : n dimensional complete Riemannian manifold with Ricy; > n — 1,

[An — 1| <€ = | A1 — n| < T(eln).

Proof.  This is clear by case k = n of Main Theorem 1,2. O
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4 A note on the relation to the structure of tan-
gent cone of non-collapsing limit spaces

In this section, We remark that on Main Theorem 1 is similar to some results
of the structure of tangent cone of limit space due to J.Cheeger, T.H.Colding.

Definition 4.1 (metric cone)
For Z: metric space, we define a metric on [0,00) x Z/{0} x Z as

(t1,71), (t2, 22) %ef (t2 + t2 — 2t1ty cos min{z1, 23, 7}) 2.
This metric spaces is denoted by
Cc(2) (z":=(0,2)])

and is called by metric cone of Z.

Now, we consider following situation; {M;};en : n dimensional complete
Riemannian manifolds (n > 2) with Ricpy, > —(n — 1), m; € M;, and Y :
proper metric space with y € Y,

o (M;,m;) — (Y,y) (i — 00): pointed Gromov-Hausdorff convergence

e There exist v > 0 such that for each ¢

vol(B1(m;)) > v > 0.

First, we review a result about the tangent cone T,Y at y in Y.

Theorem 4.2 (J.Cheeger, T.H.Colding [3, 5])
There exist a compact length space Z with diamyz < w such that

C(Z)=T,Y.

Next, we would like to introduce the suspension structure for Z in Theorem
4.2. The following results also follows from results in [3, 5].

Theorem 4.3
If there exists p;,q; €Z (i = 1,2,--- k) such that

for each i, p;, q; = 7 holds, and for i # j, pi,p; = 5 holds.
then,
1. k<n.

2. If1 < k < n—2, then there exist a compact length space X with diamx <
7 such that
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Z =8k 1y X,
3. If k=n—1,0r n, then
Z=8"1
Proof. First we remark that

1. Generally, for a metric space X, there exist a natural isomorphism

C(SF—1 % X) = R* x C(X).

We next remark the equality below follows from splitting theorem by
J.Cheeger, T.H.Colding.

2. If there exists 21, zo € Z such that z1,2z3 = 7 holds, then for each z € Z,

21,2 + 2,29 = T.

Compare Lemma 2.8.

3. Since dimyZ = n — 1 by the assumption of Theorem 4.3

Z %Sk,

for1<k<n-2.

Here dim g Z is Hausdorff dimension of Z. Compare Lemma 2.23.

Theorem 4.3 follows from these and an argument is similar to section 2.3.
O

We will introduce to relation between Theorem 4.3 and some property of
singular set of Y. we put

R = {y1 € Y| For any tangent cone T,,Y at y;, T,,,Y =R".}
S:=Y\R
Sk := {y1 € Y|Any tangent cone T}, Y does not have splitting factor R*+1}

Here, k is a non-negative integer.
Then, known result for dimySy is the following;
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Theorem 4.4 (J.Cheeger, T.H.Colding [3, 5])
With notation as above,

Theorem 4.5 (J.Cheeger, T.H.Colding [3, 5])
With notation as above,

S = Sn,Q.
Especially,
dimgS <n — 2.

Remark 4.6

Let us explain relation of Main Theorem 1 to the splitting theorem of the limit
space. We consider the following situation ; {M;};en : n dimensional complete
Riemannian manifold (n > 2) with Ricp, > n — 1, Z: compact metric space,

M; — Z (i — o0): Gromov-Hausdorff convergence.
We consider metric cone of Z, C(Z), Almost cosine formura implies
Splitting theorem holds for (C(Z), z*).
ie.

If C(Z) has a line passing z*, then there exist a compact metric space X
with diamx < 7 such that

C(Z) 2R x C(X).

We can apply splitting theorem also to C'(X).
Main theorem 1 is proved by applying to this argument iteratively.
And, the statement for £ = n of Main Theorem 1 is

C(Z) A;Ié R” x Rzo.

Compare Theorem 2.25.
Note that these things, we have, Main Theorem 1 is equivalent to the fol-
lowing;

Main Theorem 1’ For above Z, if there exists p;,¢; € Z (i =1,2,--- , k)
such that

i, ¢; = m, and det((cos Py, p;)i,;)# 0 (*)
then

1. k<n-+1.
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2. If 1 <k <n-—1, then there exist a compact length space X with diamyx <
7 such that

Z > Skl X

3. If k=n,n+1, then

N
1%

S

We can replace the assumption of Theorem 4.3 by above (k).
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