A NOTE ON THE BERGMAN METRIC OF BOUNDED HOMOGENEOUS DOMAINS

CHIFUNE KAI AND TAKEO OHSAWA

Let D be a bounded domain in \mathbb{C}^n and let ds_D^2 be the Bergman metric on D. In function theory of several variables, the Bergman metric has played an important role as a canonically defined invariant metric.

Recently it was shown that ds_D^2 is complete if D is hyperconvex, i.e. if D admits a bounded plurisubharmonic exhaustion function (cf. [1], [3], [8]). This achievement reflects the developments of pluripotential theory on hyperconvex domains (cf. [2]).

On the other hand, it has long been known that some of the hyperconvex domains, strongly pseudoconvex domains and bounded symmetric domains for instance, share a property stronger than the Bergman completeness.

Namely, the Bergman metric on such domains is not only complete but also admits a potential function whose gradient is bounded, when it is measured with respect to ds_D^2 . A remarkable consequence of this property is, according to a recent work of B.-Y. Chen [4], that the $L^2 \overline{\partial}$ -cohomology groups of type (p,q) vanish if $p+q \neq n$ and that they are infinite dimensional if p+q=n. (See also [6] and [7].)

Therefore, given any domain D with a complete Bergman metric, it is interesting to decide whether or not D enjoys this property. Homogeneous domains are particularly interesting because the description of the actions of the group of biholomorphic automorphisms on the middle-degree $L^2 \overline{\partial}$ -cohomology groups may then become a significant project which is very likely to be profitable.

The purpose of this note is to report the following simple but indispensable observation towards this direction of research.

Theorem 1. Let D be a bounded homogeneous domain in \mathbb{C}^n . Then there exists a real analytic function φ on D satisfying

$$ds_D^2 = \sum_{\alpha,\beta=1}^n \frac{\partial^2 \varphi}{\partial z_\alpha \partial \overline{z}_\beta} dz_\alpha d\overline{z}_\beta$$

and

$$\left|\sum_{\alpha=1}^{n} \frac{\partial \varphi}{\partial z_{\alpha}} dz_{\alpha}\right|_{ds_{D}^{2}} = const.$$

Here $|\cdot|_{ds^2_D}$ stands for the length with respect to ds^2_D .

Proof. As was shown in [11], every bounded homogeneous domain say D is biholomorphically equivalent to a domain $\Omega \subset \mathbb{C}^n$ such that the group

 $\{u \in \operatorname{Aut}(\Omega) \mid u \text{ extends to an affine transformation on } \mathbb{C}^n\}$

acts transitively on Ω .

Let $\sigma : D \to \Omega$ be a biholomorphism, and let $K_D(z)$ (resp. $K_{\Omega}(w)$) be the Bergman kernel function on D (resp. on Ω). Then we have

$$K_D(z) = K_{\Omega}(\sigma(z)) |\det \partial \sigma(z) / \partial z|^2,$$

$$ds_D^2 = \sigma^* ds_{\Omega}^2$$

and

$$ds_D^2 = \sum_{\alpha,\beta=1}^n \frac{\partial^2 \log K_\Omega(\sigma(z))}{\partial z_\alpha \partial \overline{z}_\beta} dz_\alpha d\overline{z}_\beta.$$

What we want to show is that

$$\left|\partial \log K_{\Omega}(\sigma(z))\right|_{ds_D^2} = \text{const.}$$

To see this, take any two points $\zeta, \xi \in D$ and let α be an affine transformation such that $\alpha(\Omega) = \Omega$ and $\sigma(\zeta) = \alpha(\sigma(\xi))$.

We note that

$$\partial \log K_{\Omega}(\alpha(w)) = \partial \log K_{\Omega}(w)$$

since α is affine.

Let $\tau = \sigma^{-1} \circ \alpha^{-1} \circ \sigma$. Then we have

$$\begin{split} \left| \left(\partial \log K_{\Omega}(\sigma(z)) \right) \right|_{z=\zeta} \Big|_{ds_{D}^{2}} &= \left| \left(\partial \log K_{\Omega}(\alpha(\sigma(\tau(z)))) \right) \Big|_{z=\zeta} \Big|_{ds_{D}^{2}} \right. \\ &= \left| \left(\partial \log K_{\Omega}(\sigma(\tau(z))) \right) \Big|_{z=\zeta} \Big|_{ds_{D}^{2}} \right. \\ &= \left| \tau^{*} \left(\left(\partial \log K_{\Omega}(\sigma(z)) \right) \Big|_{z=\xi} \right) \Big|_{ds_{D}^{2}} \\ &= \left| \left(\partial \log K_{\Omega}(\sigma(z)) \right) \Big|_{z=\xi} \Big|_{ds_{D}^{2}}. \end{split}$$

The last equality holds because τ is an isometry with respect to the Bergman metric.

As is naturally expected, the following is true.

Proposition. For any bounded homogeneous domain D, the constant arising as the length of $\partial \varphi$ in Theorem 1 does not depend on the choice of φ .

Proof. Clearly it suffices to consider Ω instead of D. Let ψ be a C^2 function on Ω satisfying $\partial \overline{\partial} \psi = \partial \overline{\partial} \log K_{\Omega}$ and $|\partial \psi| = \text{const.}$ We put $\omega = \partial \psi - \partial \log K_{\Omega}$. Then ω is a holomorphic 1-form on Ω satisfying

$$d|\partial \log K_{\Omega} + \omega|^2 = 0.$$

Let $w_0 \in \Omega$ be any point, let ξ be any tangent vector of Ω at w_0 , and let α_t be a 1-parameter group of affine transformations of Ω generated by a vector field X such that $X(w_0) = \xi$.

Since α_t are all isometries with respect to ds_{Ω}^2 , the Lie derivatives of ds_{Ω}^2 vanish with respect to X. Since α_t are all affine, the Lie derivatives of $\partial \log K_{\Omega}$ also vanish.

Therefore we obtain

$$0 = \xi |\partial \log K_{\Omega} + \omega|^{2}$$

= $(X|\partial \log K_{\Omega} + \omega|^{2})_{w_{0}}$
= $\langle (X\omega)_{w_{0}}, \omega_{w_{0}} \rangle + \langle \omega_{w_{0}}, (X\omega)_{w_{0}} \rangle.$

Here $\langle \cdot, \cdot \rangle$ denotes the inner product.

For the simplicity of notation we write $\xi \omega$ for $(X\omega)_{w_0}$ and write the result of (1) as

 $\langle \xi \omega, \omega \rangle + \langle \omega, \xi \omega \rangle = 0.$

Similarly, denoting by J the complex structure of Ω , we have

 $\langle (J\xi)\omega,\omega\rangle + \langle \omega, (J\xi)\omega\rangle = 0.$

Hence

(1)

$$\langle (\xi - iJ\xi)\omega, \omega \rangle + \langle \omega, (\xi + iJ\xi)\omega \rangle = 0.$$

Since ω is holomorphic we have

$$(\xi - iJ\xi)\omega = 0.$$

Therefore

$$\langle \omega, (\xi + iJ\xi)\omega \rangle = 0,$$

and hence

$$\langle \omega, \xi \omega \rangle = 0.$$

Since ξ was arbitrary, for any holomorphic vector field $\tilde{\xi}$ on a neighbourhood of w_0 satisfying $\tilde{\xi}(w_0) = \xi$ one has

$$\langle \omega, \widetilde{\xi}\omega \rangle = 0$$

near w_0 .

Therefore, similarly as above we obtain

$$\langle \xi\omega, \xi\omega \rangle + \langle \omega, \xi(\widetilde{\xi}\omega) \rangle = 0, \langle (J\xi)\omega, \xi\omega \rangle + \langle \omega, (J\xi)(\widetilde{\xi}\omega) \rangle = 0, \langle (\xi + iJ\xi)\omega, \xi\omega \rangle = 0,$$

so that $\langle \xi \omega, \xi \omega \rangle = 0$.

Hence ω is holomorphic and parallel, which is impossible unless $\omega = 0$.

That every bounded homogeneous domain D is equivalent to an affinely homogeneous domain Ω is a consequence of the fact that every bounded homogeneous domain is analytically equivalent to a Siegel domain of the 2nd kind. (See also [11].) Since K_{Ω} is not exhaustive on Ω (e.g. $K_{\Omega}(w) = \pi^{-1}(\operatorname{Re} w)^{-2}$ if $\Omega = \{w \in \mathbb{C} \mid \operatorname{Re} w > 0\}$), it is not clear whether or not Ω (or D) is hyperconvex. Nevertheless, combining Theorem 1 with completeness of the Bergman metrics on (not necessarily homogeneous) Siegel domains of the 2nd kind as was proved by Nakajima [10], together with B.-Y. Chen's theorem, we obtain the following.

Theorem 2. Let (D, ds_D^2) be a bounded homogeneous domain equipped with the Bergman metric and let $H_{(2)}^{p,q}(D)$ be the $L^2 \overline{\partial}$ -cohomology group of D of type (p,q). Then

$$\dim H^{p,q}_{(2)}(D) = \begin{cases} \infty & \text{if } p+q = n\\ 0 & \text{if } p+q \neq n \end{cases}$$

Moreover $H^{p,q}_{(2)}(D)$ are Hausdorff.

Note. B.-Y. Chen kindly gave us the following comments after we finished writing the manuscript.

1. Completeness of the Bergman metric of D follows from the homogeneity of D (an exercise!).

2. H. Donnelly [5] has proved that $\partial \log K_D$ is bounded with respect to ds_D^2 , which is already sufficient to conclude Theorem 2.

3. Any bounded homogeneous domain D is hyperconvex. In fact, as was shown by Mok and Yau [9], D admits an Einstein-Kähler metric whose volume form $V(z) = \bigwedge_{\alpha=1}^{n} (\sqrt{-1}dz_{\alpha} \wedge d\overline{z}_{\alpha})$ satisfy $V(z) > d(z)^{-2}(\log d(z))^{-2}$ near the boundary of D. Here d(z) denotes the euclidean distance to the boundary. Since D is homogeneous, the volume form of ds_D^2 and that of the Einstein-Kähler metric are different only by a constant multiple. Hence $\lim_{z\to\partial D} K_D(z) = \infty$. Combining this with Donnelly's result on the boundedness of $\partial \log K_D$, we can conclude that $-(\log K_D + M)^{-1}$ is a plurisubharmonic bounded exhaustion function of D for sufficiently large M.

In spite of all this, Theorem 1 might still be of independent interest because of the

Question: How does the length of $\partial \varphi$ depend on D?

References

- Błocki, Z. and Pflug, P., Hyperconvexity and Bergman completeness, Nagoya Math. J. 151 (1998), 221–225.
- [2] Carlehed, M., Cegrell, U. and Wikström, F., Jensen measures, hyperconvexity and boundary behaviour of the pluricomplex Green function, Ann. Polon. Math. 71 (1999), 87–103.
- [3] Chen, B.-Y., Bergman completeness of hyperconvex manifolds, Nagoya Math. J. 175 (2004), 165–170.
- [4] —, Infinite dimensionality of the middle L²-cohomology on non-compact Kähler hyperbolic manifolds, to appear in Publ. RIMS.
- [5] Donnelly, H., L₂ cohomology of the Bergman metric for weakly pseudoconvex domains, Illinois J. Math. 41 (1997), 151-160.
- [6] Donnelly, H. and Fefferman, C., L²-cohomology and index theorem for the Bergman metric, Ann. Math. 118 (1983), 593-618.
- [7] Gromov, M., Kähler hyperbolicity and L₂-Hodge theory, J. Diff. G. **33** (1991), 263–292.
- [8] Herbort, G., The Bergman metric on hyperconvex domains, Math. Z. 232 (1999), 183–196.
- [9] Mok, N. and Yau, S.-T., Completeness of the Kähler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions, The mathematical heritage of Henri Poincaré, Part 1 (Bloomington, Ind., 1980), 41-59, Proc. Sympos. Pure Math., 39, Amer. Math. Soc., Providence, RI, 1983.
- [10] Nakajima, K., Some studies on Siegel domains, J. Math. Soc. Japan 27 (1975), 54–75.

[11] Vinberg, E. B., Gindikin, S. G. and Pjateckiĭ-Šapiro, I. I., Classification and canonical realization of complex homogeneous bounded domains, Trudy Moskov. Mat. Obsc. 12 (1963), 359–388; Trans. Moscow Math. Soc. 12 (1963), 404–437.

Department of Mathematics, Faculty of Science, Kyoto University, Sakyo-ku606-8502, Kyoto, Japan

E-mail address: kai@math.kyoto-u.ac.jp

Graduate School of Mathematics, Nagoya University, Chikusa-ku 464-8602, Nagoya, Japan

 $E\text{-}mail\ address:\ \texttt{ohsawa@math.nagoya-u.ac.jp}$