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Abstract

We give a necessary and sufficient condition for the stability and
the freeness of the family of A2-type arrangements. Moreover, we
determine explicitly when the normalization of the sheafification of its
module of reduced logarithmic vector fields is isomorphic to TP2(−2).

0 Introduction

A hyperplane arrangement A is a finite collection of codimension one affine
hyperplanes of a fixed vector space V . We say A is central if each hyperplane
is a vector subspace of V . For each central hyperplane arrangementA, we can
define the S(:= Sym(V ∗))-module D(A) ' D0(A)⊕ S(1) (see Definition 1.1
and 1.7), and call D(A) (resp:D0(A)) the module of logarithmic vector fields
(resp:the module of reduced logarithmic vector fields). Roughly speaking,
these modules consist of derivations of S tangent to hyperplanes in A. In
the study of hyperplane arrangements, the structure of D(A) is intensively
studied. For example, we say an arrangement A is free if D(A) is a free S-
module, and the combinatorial characterization of free arrangements is one of
the most important problems in the arrangement theory. On the other hand,

recently, instead of the module D0(A) the sheafification D̃0(A) is also studied.

It is known that D̃0(A) is a reflexive sheaf, and the study gives new insight
into the theory of arrangements. These results are often obtained by using
algebraic geometry. In algebraic geometry, the stability (or the semistability)
of torsion free sheaves on the projective space Pn is an important concept
and plays a key role in the vector bundle theory and moduli problem (for the
definition of the stability, see Definition 1.9). We say an arrangement A in a
vector space V is stable (resp:semistable) if the reflexive (and hence torsion
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free) sheaf D̃0(A) is a stable (resp:semistable) torsion free sheaf on P(V ).
The stability of normal crossing arrangements was studied in [1], and some
criterions for the stability of arrangements were given in [8]. In this article
we study the stability of the family of arrangements which are not normal
crossing. To apply algebraic geometry to arrangement theory, it is important
to study the stability of arrangements. Let K be an algebraically closed field
of characteristic zero. We say {A(k)}∞k≥1 is a family of arrangements in a
K-vector space V if it consists of the set of arrangements A(k) (k ∈ Zk>0) in
a fixed vector space V satisfying A(k) & A(k+1) for all k. To state the main
theorem, we introduce the following definition of the family of arrangements.

Definition 0.1 Let {A(k)}∞k=1 be a family of arrangements.

(a) The family {A(k)} is called free if there exists an integer k0 such that
A(k) is a free arrangement for k ≥ k0.

(b) The family {A(k)} in a vector space V is called stable if there exists an

integer k0 such that ˜D0(A(k)) is a stable reflexive sheaf on P(V ) for
k ≥ k0.

For the rest of this section, let V be a three-dimensional vector space over
K unless otherwise specified, and {X, Y, Z} be a basis for V ∗. In this article,
we consider the stability of the following arrangements.

Definition 0.2 An arrangement A in V is called an A2-type arrangement
if A is defined by

X = a1Z, (a1 + 1)Z, . . . , a2Z,

Y = b1Z, (b1 + 1)Z, . . . , b2Z,

X + Y = c1Z, (c1 + 1)Z, . . . , c2Z,

Z = 0,

where a1 ≤ a2, b1 ≤ b2, and c1 ≤ c2 are integers.

Definition 0.3 A family of arrangements {A(k)}∞k=1 in V is called a family
of A2-type arrangements if A(k) is an A2-type arrangement defined by

X = (−k + a1 + 1)Z, . . . , (k + a2 − 1)Z,

Y = (−k + b1 + 1)Z, . . . , (k + b2 − 1)Z,

X + Y = (−k + c1 + 1)Z, . . . , (k + c2 − 1)Z,

Z = 0,

where a1 ≤ a2, b1 ≤ b2, and c1 ≤ c2 are integers which do not depend on k.
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For example, the pictures of {A(k)}|Z=1 (k = 1, 2, 3) when (a1, a2, b1, b2, c1, c2) =
(0, 0, 0, 0, 0, 0) are drawn in Figure 1.

@
@
@
@
@
@
@
@
@

A(1)

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@
@

A(2)

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@
@

A(3)

Figure 1: Example of A2-type arrangements

Note that the initial arrangement A(1) determines the family of A2-type
arrangements. Since the arrangement in Definition 0.2 is just the cone over
affine arrangements associated with the root system of type A2, we call it the
A2-type arrangement. Note that the A2-type arrangement is a special case
of the deformation of the Coxeter arrangement of type A2 defined in [6]. It
is obvious that these arrangements are not normal crossing. By induction it
is easy to see that any family of A2-type arrangements is contained in the
family such that the initial arrangement A(1) is (1) or (2) below.

X = 0, Z, . . . , cZ (c ≥ 0),

Y = 0,

X + Y = (a− 1)Z, . . . , (a + b)Z (b ≥ −1),

Z = 0. (1)

X = 0, Z, . . . , cZ (c ≥ 0),

Y = 0, Z,

X + Y = (a− 1)Z, . . . , (a + b)Z (b ≥ −1),

Z = 0. (2)

Here a, b, c are integers. Now we can state the main results in this article.
See Definition 1.11 for the definition of the normalization of vector bundles.

Theorem 0.4 Let {A(k)}∞k=1 be the family of A2-type arrangements in V
such that A(1) is defined by

X = 0, Z, . . . , cZ (c ≥ 0),

Y = 0,

X + Y = (a− 1)Z, . . . , (a + b)Z (b ≥ −1),

Z = 0.
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Then the following holds:

(a) The family {A(k)} is free if and only if

2a + b− c = 0, 1, 2.

(b) There exists an integer k0 such that the normalization of ˜D0(A(k)) is
isomorphic to TP2 ⊗O(−2) for k ≥ k0 if and only if

2a + b− c = −1, 3.

(c) The family {A(k)} is stable if

2a + b− c > 3,

or

2a + b− c < −1.

Theorem 0.5 Let {A(k)}∞k=1 be the family of A2-type arrangements in V
such that A(1) is defined by

X = 0, Z, . . . , cZ (c ≥ 0),

Y = 0, Z,

X + Y = (a− 1)Z, . . . , (a + b)Z (b ≥ 1),

Z = 0.

Then the following holds:

(a) The family {A(k)} is free if and only if

2a + b− c = 1, 2, 3.

(b) There exists an integer k0 such that the normalization of ˜D0(A(k)) is
isomorphic to TP2 ⊗O(−2) for k ≥ k0 if and only if

2a + b− c = 0, 4.

(c) The family {A(k)} is stable if

2a + b− c > 4,

or

2a + b− c < 0.
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From these theorems, we can see that the stability and the freeness of
˜D0(A(k)) are determined by the combinatorics of A(k). Moreover, we give

a partial answer to the 3-shift problem, which is the conjecture on the root
system posed by Yoshinaga (see Remark 3.3).

The organization of this article is as follows. In Section 1, we review
some definitions and results on hyperplane arrangements and the stability of
vector bundles on the projective space Pn. In Section 2, we prove Theorem
0.4 through several steps. In Section 3, we prove Theorem 0.5. Since the
proof is parallel to that of Theorem 0.4, we give an outline of the proof. As
a corollary of these proofs, we give a partial answer to the 3-shift problem.

Notation. Z denotes the ring of integers and K denotes an algebraically
closed field of characteristic zero. In this article, let the variables a, b, c denote
integers. For a vector space V over K, V ∗ denotes the dual vector space of
V . Let S = ⊕d∈ZSd be a commutative graded ring with a unit, where Sd is
a homogeneous part of S with degree d. We assume that S is noetherian,
Sd = 0 for all d < 0, S0 = K and S is generated by S1 as a K-algebra for
every graded ring S. DerK(S) is the S-module of K-linear derivations of S.
For any integer d ∈ Z and a graded S-module M which is finitely generated
over S, Md is a homogeneous part of M with degree d. We assume that
Md = 0 for all d < 0. M̃ denotes the sheafification of M , so M̃ is a coherent
sheaf on Proj(S). For a vector bundle E on the projective space PnK, ci(E)
denotes the i-th Chern class of E and we put the Chern polynomial ct(E) of
E as

ct(E) :=
n∑

i=0

ci(E)ti.

For a finite set A, its cardinality is denoted by |A|.

1 Preliminaries

In this section, we review some elementary definitions which will be used in
this article. First we recall those of hyperplane arrangements, for which we
refer the reader to [5]. Let us fix an l-dimensional K-vector space V ' Kl.
A hyperplane arrangement (or a simple arrangement) A is a finite collection
of affine hyperplanes in V . We often say an “arrangement” instead of a
“ hyperplane arrangement”, and call an arrangement in an l-dimensional
vector space an “l-arrangement”. We say an arrangement A is central if
each hyperplane in A is a vector subspace of V . In this article, we assume
all arrangements are “central” and non-empty. Note we can regard a central

5



l-arrangement as the arrangement in Pl−1 ' P(V ). Let {X1, . . . , Xl} be a
basis for V ∗ and put S := Sym(V ∗) ' K[X1, . . . , Xl]. For each hyperplane
H ∈ A, let us fix a nonzero linear form αH ∈ V ∗ such that its kernel is H,
and put

Q(A) :=
∏
H∈A

αH .

Definition 1.1 For an arrangement A, the S-module D(A) is defined by

D(A) : = {θ ∈ DerK(S) | θ(αH) ∈ S · αH (∀H ∈ A)}
= {θ ∈ DerK(S) | θ(Q(A)) ∈ S ·Q(A)}.

We call D(A) the module of logarithmic vector fields (with respect to

A). We say a nonzero element θ =
∑l

i=1 fi
∂

∂Xi

∈ D(A) is homogeneous of

degree p if fi ∈ Sp for 1 ≤ i ≤ l. An arrangement A is free if D(A) is a free
S-module. When A is free, there exists a homogeneous basis {θ1, . . . , θl} for
D(A). Then the exponents of a free arrangement A are defined by

exp(A) := (deg(θ1), . . . , deg(θl)).

It is known that exp(A) do not depend on the choice of a basis.
Next, we define a multiarrangement, which was introduced and studied

by Ziegler in [13].

Definition 1.2 ([13]) We say a pair (A,m) is a multiarrangement if A is
a simple arrangement and

m : A → Z>0

is a map from A to positive integers. The map m is called a multiplicity
function.

A simple arrangement A can be thought of as a multiarrangement with
m ≡ 1. By the same way as for simple arrangements, we define the module
of logarithmic vector fields D(A, m) for a multiarrangement (A,m).

Definition 1.3 For a multiarrangement (A,m), the S-module D(A,m) is
defined by

D(A,m) := {θ ∈ DerK(S) | θ(αH) ∈ S · αm(H)
H (∀H ∈ A)}.
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Let H0 ∈ A be a hyperplane in an arrangement A. The restriction of A
to H0 is a simple arrangement A ∩ H0 := {H ∩ H0 | H ∈ A \ {H0}}. This
restriction has a natural structure of the multiarrangement (A∩H0, m), i.e.,
the multiplicity function m : A ∩H0 → Z>0 is defined by

m : A ∩H0 3 H ′ 7→ |{H ∈ A |H ∩H0 = H ′}|.
For details, see [13] or [12]. It is known that D(A,m) is a reflexive mod-
ule (e.g., see Theorem 4.75 in [5] and Theorem 5 in [13]). We can define the
freeness and exponents of the multiarrangements by the same way as for sim-
ple arrangements. The exponents of a free multiarrangement are sometimes
called multi-exponents. The following theorem due to K. Saito is useful to
see the freeness of an arrangement and determine its basis.

Theorem 1.4 (Saito’s criterion) Let (A,m) be an l-multiarrangement,
D(A,m) be its module of logarithmic vector fields, and θ1, . . . , θl ∈ D(A,m)
be homogeneous elements. Then the following two conditions are equivalent:

(1) {θ1, . . . , θl} forms a basis for D(A,m) over S.

(2) θ1∧θ2∧ . . .∧θl = u
∏

H∈A α
m(H)
H (

∂

∂X1

∧ . . .∧ ∂

∂Xl

) for some u ∈ K\{0}.

For the proof, see Theorem 4.19 in [5] and Theorem 8 in [13]. We often
consider the sheafification of the S-module D(A), and its Chern polynomial
can be calculated from the combinatorics of A. To see this, let us intro-
duce some notations. The characteristic polynomial of an arrangement A is
defined by

χ(A, t) :=
∑

X∈LA

µ(X)tdim X ,

where LA is a lattice which consists of the intersections of elements of A,
ordered by reverse inclusion, 0̂ := V is the unique minimal element of LA
and µ : LA −→ Z is the Möbius function defined as follows:

µ(0̂) = 1,

µ(X) = −
∑
Y <X

µ(Y ), if 0̂ < X.

It is known that for a central arrangement A, its characteristic polynomial
χ(A, t) can be divided by (t− 1). Moreover, the reduced characteristic poly-
nomial χ0(A, t) is defined by

χ0(A, t) := χ(A, t)/(t− 1)
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and the Poincaré polynomial π(A, t) by

π(A, t) :=
∑

X∈LA

µ(X)(−t)codim X .

The polynomials χ(A, t) and π(A, t) are related as follows:

χ(A, t) = tlπ(A, −1/t),

and these polynomials are important concepts in the theory of hyperplane
arrangements. Actually there are a lot of combinatorial or geometric inter-
pretations of the characteristic polynomial. For details, see [5]. We can use
π(A, t) to calculate the Chern polynomial.

Theorem 1.5 ([3], Theorem 4.1) For a polynomial F (t) ∈ Z[t], let F (t)
denote the class of F (t) in Z[t]/(tl). Let A be a central l-arrangement and

assume D̃(A) is a vector bundle on P(V ). Then it holds that

ct(D̃(A)) = π(A,−t).

In particular, if l = 3 and

χ0(A, t) = t2 − c1t + c2,

then for any central 3-arrangement A it holds that

ct(D̃(A)) = (1− c1t + c2t
2)(1− t).

Recently, Wakamiko gave exponents and an explicit basis for the module
of logarithmic vector fields of any 2-multiarrangement consisting of three
lines in [11]. We use the exponents in this article.

Theorem 1.6 ([11], Theorem 3.8) Let V be a two-dimensional vector space,
{X, Y } be a basis for V ∗, S := Sym(V ∗), and (A,m) be a multiarrangement
in V such that

A = {X = 0, Y = 0, X + Y = 0}
and that

m({X = 0}) = k1,

m({Y = 0}) = k2,

m({X + Y = 0}) = k3.
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Here, k1, k2, k3 ∈ Z>0 and assume that

k3 ≥ max{k1, k2}.

Let us put |k| := ∑3
i=1 ki.

(a) If

k3 < k1 + k2 − 1,

then it holds that

|d1 − d2| =
{

0 if |k| is even,
1 if |k| is odd,

where (d1, d2) are the multi-exponents of the free S-module D(A,m).

(b) If

k3 ≥ k1 + k2 − 1,

then the multi-exponents of (A,m) are (k1 + k2, k3).

By Theorem 1.4, it holds that
∑3

i=1 ki = d1 + d2. Hence the exponents
of the 2-multiarrangement consisting of three lines can be completely deter-
mined by Theorem 1.6.

Next, let us consider the theory of 3-arrangements. Let A be an arrange-

ment in a three-dimensional vector space V . Then the sheaf D̃(A) is a rank

three vector bundle on P2 since D̃(A) is reflexive (e.g., see [2]). Fix a basis
{X, Y, Z} for V ∗ in such a way that the hyperplane {Z = 0} is an element of
A. Define S := S(V ∗) = Sym(V ∗) ' K[X, Y, Z]. In this situation, we define
the module of reduced logarithmic vector fields D0(A) as follows:

Definition 1.7 The S-module D0(A) is defined by

D0(A) := {θ ∈ D(A) | θ(Z) = 0}.

Note that for any (central) arrangement A, there exists an derivation

θE := X
∂

∂X
+ Y

∂

∂Y
+ Z

∂

∂Z
∈ D(A).
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We call this derivation θE the Euler derivation. It is obvious that

D0(A) ' D(A)/(S · θE).

Hence the structure of D0(A) does not depend on the choice of the coordi-
nates of V . Moreover, in the notation of Theorem 1.5, it holds that

ct(D̃0(A)) = 1− c1t + c2t
2.

As we saw above, we can restrict a given arrangement A on the plane H0 :=
{Z = 0} ∈ A. Moreover, we can obtain a multiarrangement (A ∩ H0, m)
and the restriction homomorphism

ϕ : D0(A) → D(A ∩H0, m),

defined as follows:

D0(A) 3 θ 7→ θ|Z=0 ∈ D(A ∩H0, m).

For the details of this homomorphism, see [13]. We can compute the codimen-
sion (as K-vector spaces) of the image of ϕ from the characteristic polynomial
of A and the exponents of D(A∩H0, m) by the following theorem, which is
a variant of Theorem 3.2 in [12].

Theorem 1.8 (Yoshinaga) With the above notation, let {θ1, θ2} be a basis
for a free S/(S · Z)-module D(A ∩H0, m) such that deg(θi) = di (i = 1, 2).
Then the dimension of coker(ϕ) (as a K-vector space) is finite and is given
by

χ0(A, 0)− d1d2.

In particular, A is free if and only if

χ0(A, 0) = d1d2.

In [12], Yoshinaga showed the same statement as in Theorem 1.8 for the
logarithmic differential module Ω(A), and we can prove Theorem 1.8 by the
same way as in [12].

Next, we review some definitions and results on the stability of vector
bundles on projective spaces. The reference for the stability of vector bundles
is Chapter II of [4]. First, we define the stability and semistability of torsion
free sheaves.
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Definition 1.9 A torsion free sheaf E on the projective space PnK is said to
be stable if for any coherent subsheaf F ⊂ E with 0 < rank(F ) < rank(E)
we have

c1(F )

rank(F )
<

c1(E)

rank(E)
,

and semistable if

c1(F )

rank(F )
≤ c1(E)

rank(E)
.

Moreover, we say E is unstable if E is not stable. In this article, we will use
the following definitions and results.

Lemma 1.10 ([4], Lemma 1.2.4, Ch. II) A torsion free sheaf E on the
projective space PnK is stable if and only if E ⊗ OPn(d) is stable for some
d ∈ Z.

Definition 1.11 For a rank two vector bundle E on PnK (n ≥ 2), there exists
the unique integer d ∈ Z such that

c1(E ⊗OPn(d)) ∈ {0,−1}.

We call E⊗OPn(d) the normalization of E or the normalized E. The normal-
ized Chern polynomial of E denotes the Chern polynomial of the normalized
E.

Lemma 1.12 ([4], Lemma 1.2.5, Ch. II) Let E be a rank two bundle on
Pn (n ≥ 2) and E ⊗ OPnK(d) be its normalization. Then E is stable if and
only if

H0(Pn, E ⊗OPnK(d)) = 0.

Moreover, if c1(E) is even, then E is semistable if and only if H0(Pn, E(d−
1)) = 0.
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Lemma 1.13 ([4], Lemma 1.2.7, Ch. II) For a rank two bundle E on
P2K, put ci := ci(E) (i = 1, 2). If

c2
1 − 4c2 ≥ 0,

then E is unstable.

Theorem 1.14 ([8], Theorem 4.5) Let A be an arrangement of d lines in
P2, H0 be a line in A, and let us put A′ := A \ {H0}. Then the following
holds:

(i) If d is odd, then A is stable if A′ is stable and |A ∩H0| > (d + 1)/2.

(ii) If d is odd, then A is semistable if A′ is semistable and |A ∩ H0| >
(d− 1)/2.

(iii) If d is even, then A is stable if A′ is semistable and |A ∩H0| > d/2.

Theorem 1.15 Assume that E is a stable rank two bundle on P2K such that
c1(E) = −1 and c2(E) = 1. Then

E ' ΩP2(1) ' TP2(−2).

For the proof of Theorem 1.15, see Theorem 3.1.3 and Example 1 of
section 3.2 in Chapter II of [4].

2 Proof of Theorem 0.4

In this section, we prove Theorem 0.4. From now on, we fix a three-dimensional
K-vector space V and a basis {X,Y, Z} for V ∗. Let us put S := Sym(V ∗) '
K[X, Y, Z]. We consider the family of A2-type arrangements {A(k)}∞k=1 de-
fined in Definition 0.3. As mentioned in the introduction, it suffices to con-
sider the families such that A(1) is expressed as (1) or (2). In this section,
we consider (1). In this case, the A2-type arrangement A(k) is expressed as

X = (−k + 1)Z, . . . , (k + c− 1)Z

Y = (−k + 1)Z, . . . , (k − 1)Z,

X + Y = (−k + a)Z, . . . , (k + a + b− 1)Z,

Z = 0. (3)
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First, we consider the following six lines to calculate the characteristic poly-
nomial of A(k):

A1 : = {X = (−k + 1)Z},
A2 : = {X = (k + c− 1)Z},
A3 : = {Y = (−k + 1)Z},
A4 : = {Y = (k − 1)Z},
A5 : = {X + Y = (−k + a)Z},
A6 : = {X + Y = (k + a + b− 1)Z}.

Let us call these six lines exterior lines in A(k). For each k, let us fix the
exterior line Hk ∈ A(k) such that αHk+1

−αHk
= Z or −Z, and let us consider

the multiarrangements (A(k) ∩ Hk,mk), where mk is a canonically induced
multiplicity function on A(k) ∩Hk.

Definition 2.1 With the above notation, we say an exterior line Hn in A(n)
is stable if for all k ≥ n, it holds that

|{L ∈ A(k + 1) ∩Hk+1| mk+1(L) = 2}| = |{L ∈ A(k) ∩Hk| mk(L) = 2}|+ 1,

and

|{L ∈ A(k + 1) ∩Hk+1| mk+1(L) = 1}| = |{L ∈ A(k) ∩Hk| mk(L) = 1}|+ 2.

It is easy to see that all exterior lines in A(k) are stable for all k À 0.
This fact plays a key role in the stability problem, for we can calculate the
characteristic polynomial of A(k) easily if all exterior lines are stable. Let
us explain the reason for it. From the general theory on arrangements, it is
obvious that the reduced characteristic polynomial χ0(A(k), t) of the central
arrangement A(k) is equal to the characteristic polynomial of the non-central
2-arrangement {A(k) \ {Z = 0}}|Z=1 =: dA(k) (the deconing of A(k). See
Chapter two of [5]). Let dH := H|Z=1 (H ∈ A) denote the deconing of
H. When all exterior lines are stable, we can determine the position of the
intersection points {dAi ∩ dAj}1≤i<j≤6. For example, the intersection point
dA1 ∩ dA5 is (−k + 1, a− 1), hence it is on the line X = −k + 1 and between
the two lines Y = k − 1 and Y = −k + 1 for sufficiently large k. So we can
draw a picture of an arrangement dA(k), and we can obtain the characteristic
polynomial of A(k) by using that picture. Then Theorem 1.5 allows us to

obtain the Chern polynomial of ˜D0(A(k)) as follows:
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Lemma 2.2 With the above notation, for sufficiently large k, it holds that

ct( ˜D0(A(k))) = 1 − (6k + b + c− 2)t

+
(
(3k +

1

2
b +

1

2
c− 1)2 + (a +

1

2
b− 1

2
c− 1

2
)2 − 1

4

)
t2.

By the same way, we can prove the following results which will be used
later.

Lemma 2.3 Let {A(k)}∞k=1 be the family of A2-type arrangements such that
A(1) is defined by

X = 0, Z, . . . , cZ (c ≥ 0),

Y = 0,

X + Y = (a− 1)Z, aZ, . . . , (a + b)Z (b ≥ −1),

Z = 0.

(a) Let Hk be the exterior line in A(k) defined by

Hk := {X + Y = (k + a + b− 1)Z}.
Then for sufficiently large k, it holds that

|A(k) ∩Hk| = 3k + a + b− 1.

(b) Let H ′
k ∈ A(k) be the exterior line defined by

H ′
k : = {X = (k + c− 1)Z}.

Then

|A(k) ∩H ′
k| = 3k − a + c.

Example 2.1 With the above notation, let us consider the case when a =
b = 1, and c = 0. According to Lemma 2.2, its Chern polynomial is

ct( ˜D0(A(k))) = 1− (6k − 1)t + (9k2 − 3k + 1)t2 (4)

for sufficiently large k. However, when k = 1, the characteristic polynomial
of A(1) is given by t2 − 5t + 6. Hence it holds that

ct( ˜D0(A(1))) = 1− 5t + 6t2,

which is not equal to (4) when k = 1. Hence the assumption k À 0 is
necessary.
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By using Lemma 2.2, we can obtain the following criterion for the freeness
of {A(k)}.

Proposition 2.4 The family of A2-type arrangements {A(k)} is free if and
only if

2a + b− c = 0, 1, 2.

Proof. Note that for sufficiently large k,

|A(k)| − 1 = −c1( ˜D0(A(k))) = 6k + b + c− 2.

First, let us assume b + c is even. In this case, we know the multi-exponents
of the multiarrangement (A(k)∩{Z = 0}, m) due to Theorem 1.6 (since the
condition in that theorem is satisfied for sufficiently large k), i.e.,

exp(A(k) ∩ {Z = 0}, m) = (3k +
1

2
b +

1

2
c− 1, 3k +

1

2
b +

1

2
c− 1).

From Theorem 1.8, A(k) is free if and only if

c2( ˜D0(A(k))) = (3k +
1

2
b +

1

2
c− 1)2.

By Lemma 2.2, this condition is equivalent to

(2a + b− c)(2a + b− c− 2) = 0.

Secondly, let us assume that b + c is odd. We can use the same argument as
above, hence A(k) is free if and only if

(3k +
1

2
b +

1

2
c− 1

2
)(3k +

1

2
b +

1

2
c− 3

2
) = c2(D̃0(A(k))).

By Lemma 2.2, this condition is equivalent to

(2a + b− c− 1)2 = 0,

and these complete the proof. ¤
Note that when A(k) is free, its exponents are

(1, 3k +
1

2
b +

1

2
c− 1, 3k +

1

2
b +

1

2
c− 1) (5)
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if b + c is even, and

(1, 3k +
1

2
b +

1

2
c− 1

2
, 3k +

1

2
b +

1

2
c− 3

2
). (6)

if b + c is odd.

Next, we prove a sufficient and necessary condition for the normalization

of D̃0(A) to be isomorphic to TP2(−2).

Proposition 2.5 Let {A(k)}∞k=1 be the family of A2-type arrangements such
that A(1) is defined by

X = 0, Z, . . . , cZ (c ≥ 0),

Y = 0,

X + Y = (a− 1)Z, . . . , (a + b)Z (b ≥ −1),

Z = 0.

Then there exists an integer k0 such that the normalization of ˜D0(A(k)) is
isomorphic to TP2 ⊗O(−2) for k ≥ k0 if and only if

2a + b− c = 3, or − 1.

Proof. The “only if” part follows immediately from Lemma 2.2. We show

the “if” part. The strategy of the proof is to show the stability of ˜D0(A(k))
and to show that the normalized Chern polynomial is 1 − t + t2, for they
enable us to use Theorem 1.15. Since the proof is the same, we consider only
the case when 2a + b− c = 3. Note that

|A(k)| = 6k + b + c− 1 = 6k + 2a + 2b− 4.

Let Hk be the exterior line defined in Lemma 2.3 (a) and {B(k)} be the
family of A2-type arrangements defined by

B(k) := A(k) \Hk.

From Theorem 1.14, A(k) is stable if B(k) is semistable and

|A(k) ∩Hk| > |A(k)|
2

.

Since

|A(k) ∩Hk| = 3k + a + b− 1 (from Lemma 2.3 (a)),

16



and

|A(k)|
2

=
6k + 2a + 2b− 4

2
= 3k + a + b− 2,

it suffices to show B(k) is semistable. First, assume b > −1. Then B(1) is
defined by

X = 0, Z, . . . , cZ (c ≥ 0),

Y = 0,

X + Y = (a− 1)Z, . . . , (a + b− 1)Z,

Z = 0.

Since 2a + (b− 1)− c = 2, Proposition 2.4 shows B(k) is free with exponents

(1, 3k + a + b− 3, 3k + a + b− 3).

Therefore ˜D0(B(k)) ' O(−3k − a− b + 3)⊕O(−3k − a− b + 3) and this is
a semistable vector bundle. When b = −1, Lemma 2.2 and Lemma 2.3 (a)
shows

ct( ˜D0(B(k))) = 1− (6k + 2a− 8)t + (9k2 + 6ak − 24k + a2 − 8k + 16)t2.

Hence Theorem 1.6 and Theorem 1.8 shows ˜D0(B(k)) ' O(−3k − a + 4) ⊕
O(−3k − a + 4), and this is also semistable. Since the normalization of
˜D0(A(k)) is ˜D0(A(k))(3k + a + b− 3) and its Chern polynomial is 1− t + t2,

Theorem 1.15 completes the proof. ¤
In particular, {A(k)} is stable when 2a + b− c = −1 or 3. Summarizing

results above, we can show the following classification on the stability and
the freeness when c = 0.

Proposition 2.6 Let {A(k)}∞k=1 be the family of A2-type arrangements such
that A(1) is defined by

X = 0,

Y = 0,

X + Y = (a− 1)Z, . . . , (a + b)Z (b > −1),

Z = 0.

Then the following holds:

17



(a) The family {A(k)} is free if and only if

2a + b = 0, 1, 2.

(b) There exists an integer k0 such that the normalization of ˜D0(A(k)) is
isomorphic to TP2(−2) for k ≥ k0 if and only if

2a + b = −1, 3.

(c) The family {A(k)} is stable if

2a + b > 3

or

2a + b < −1.

Proof. (a) and (b) have been already proved in Proposition 2.4 and Propo-

sition 2.5. So it suffices to show ˜D0(A(k)) is stable for sufficiently large k
when 2a + b 6= −1, 0, 1, 2, 3. Note

−c1(D̃0(A)) = |A(k)| − 1 = 6k + b− 2.

Let Hk ∈ A(k) be the exterior line defined in Lemma 2.3 (a). We show the
result by the induction on 2a + b. First, we show that we may assume

2a + b > 3.

To show that, let us assume that

2a + b < −1.

Then replacing X and Y by −X and −Y , we obtain a new family of A2-type
arrangements such that the initial arrangement is defined by

X = 0,

Y = 0,

X + Y = (−a− b)Z, . . . , (−a + 1)Z,

Z = 0.

Put

A := −a− b + 1.

18



Then it holds that

2A + b = −2a− b + 2 > 3.

Since the structure of the module of logarithmic vector fields D(A) for a cen-
tral arrangement A is invariant under every invertible linear transformation
of A, we may assume 2a + b > 3. Now let us assume the statement is true
for 2a + b = g− 1 (g ≥ 4) (When 2a + b = 3, the statement is already shown
in Proposition 2.5). We show the statement when 2a + b = g. According to
Theorem 1.14 and Lemma 2.3 (a), we can show the statement is true if the
arrangement B(k) := A(k) \Hk is stable and the inequality

|A(k) ∩Hk| = 3k + a + b− 1 > 3k +
b

2

holds. This inequality is equivalent to

2a + b > 2.

Since we have assumed 2a+b > 3, it suffices to show that {B(k)} is a stable family.
Assume that {B(k)} is not a stable family. When b 6= −1, the induction hy-
pothesis and Proposition 2.4 assert that B(k) must be free. So it holds that

2a + (b− 1) = 0, 1, 2.

Since A(k) is not free, it must hold that

2a + b = 3,

but in this case {A(k)} is stable due to Proposition 2.5. When b = −1, we
can prove the statement by using the same argument as in Proposition 2.5.
¤
Proof of Theorem 0.4. The statements (a) and (b) in Theorem 0.4 have
been already proved in Proposition 2.4 and Proposition 2.5. So it suffices
to show (c). By the same way as in the proof of Proposition 2.6, we may
assume that 2a + b− c < −1. Then we can show (c) by the induction on c,
using Lemma 2.3 (b) and the same argument as in the proof of Proposition
2.6. ¤

Example 2.2 We show two examples, each of which satisfies the condition
(b) or (c) of Theorem 0.4 but the statement does not hold for small k. These
are caused by the fact that not all exterior lines are stable.
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(b) In the notation of Theorem 0.4, let us put a = 1, b = 1, c = 0. In
this case 2a + b − c = 3, so for sufficiently large k, the normalization

of ˜D0(A(k)) is isomorphic to TP2 ⊗ OP2(−2). However, the reduced

characteristic polynomial of A(1) is t2−5t+6, hence ˜D0(A(1)) cannot
be isomorphic to TP2 ⊗OP2(−4).

(c) In the notation of Theorem 0.4, let us put a = 2, b = 6, c = 3. In

this case 2a + b− c = 7, so for sufficiently large k, ˜D0(A(k)) is stable.
However, the reduced characteristic polynomial of A(1) is t2−13t+41.

Since (13)2− 4 · 41 = 5 > 0, Lemma 1.13 shows ˜D0(A(1)) is not stable
(not semistable, in fact).

On the other hand, if the family of A2-type arrangements satisfies the
condition (a) of Theorem 0.4, thenA(k) is free for all k ≥ 1. This follows from
the calculation of characteristic polynomials and Theorem 1.8. However, if
we denote (1, dk

1, dk
2) as the exponents of A(k), then |dk

1−dk
2| is not constant

for all k. For sufficiently large k, |dk
1 − dk

2| is equal to 0 if |A| is odd and 1 if
|A| is even.

3 Proof of Theorem 0.5

In this section, we prove Theorem 0.5. Hence we consider the family of A2-
type arrangements {A(k)}∞k=1 such that the A2-type arrangement A(k) is
expressed as

X = (−k + 1)Z, . . . , (k + c− 1)Z (c ≥ 0),

Y = (−k + 1)Z, . . . , kZ,

X + Y = (−k + a)Z, . . . , (k + a + b− 1)Z (b ≥ −1),

Z = 0. (7)

We classify the freeness and the stability of these arrangements. Theorem
0.5 can be obtained by using the same argument as in the previous section,
so we give only the outline. We begin with the following lemma, which can
be proved by using stable exterior lines.

Lemma 3.1 With the above notation, for sufficiently large k, it holds that

ct( ˜D0(A(k))) = 1 − (6k + b + c− 1)t

+
(
(3k +

1

2
b +

1

2
c− 1

2
)2 + (a +

1

2
b− 1

2
c− 1)2 − 1

4

)
t2.
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Proof of Theorem 0.5. We can show (a) and (b) of Theorem 0.5 by the
same way as in the proof of Proposition 2.4 and Proposition 2.5, so leave to
the reader. Hence it suffices to show (c). Let us put

Lk := {Y = kZ} ∈ A(k)

and

B(k) := A(k) \ Lk.

We know the stability of B(k) from Theorem 0.4. Hence by calculating
|A(k) ∩ Lk| and using Theorem 1.14, we can reduce the proof to Theorem
0.4. ¤

Remark 3.1 According to the main theorems, we can see that for the family

of A2-type arrangements, the freeness and the stability of the bundle ˜D0(A(k))
can be completely determined by the combinatorics of A(k) for sufficiently
large k.

Remark 3.2 In Theorem 0.4 and 0.5, it is easy to find the least integer k0

such that the statements of the theorems hold for all k ≥ k0, i.e., k0 is just
the least integer which satisfies the condition in Theorem 1.6 and makes all
the exterior lines in A(k) stable.

Remark 3.3 Let {A(k)}∞k=1 be the family of A2-type arrangements such that
the initial arrangement is defined as (1) (resp:(2)) in the introduction. Then
from Theorem 0.4 and 0.5, it holds that

˜D0(A(k))⊗OP2(−3) ' ˜D0(A(k + 1)). (8)

for sufficiently large k if

−1 ≤ 2a + b− c ≤ 3 (resp : 0 ≤ 2a + b− c ≤ 4).

Yoshinaga conjectured (8) is true for all the families of A2-type arrangements.
This conjecture is called the 3-shift problem. We can see that the Chern poly-
nomials (Lemma 2.2), splitting types on the infinite line {Z = 0} (Theorem
1.6), and the stability (Theorem 0.4 and 0.5) support the 3-shift problem.
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Mass., 1980.

[5] P. Orlik and H. Terao, Arrangements of hyperplanes. Grundlehren der
Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin, 1992.

[6] A. Postnikov and R. P. Stanley, Deformations of Coxeter hyperplane
arrangements. J. Combin. Theory Ser. A 91 (2000), no. 1-2, 544–597.

[7] H. Schenck, A rank two vector bundle associated to a three arrange-
ment, and its Chern polynomial. Adv. Math. 149 (2000), no. 2, 214–
229.

[8] H. Schenck, Elementary modifications and line configurations in P2.
Comment. Math. Helv. 78 (2003), no. 3, 447–462.
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