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Abstract. In this paper, we propose the modular height of an abelian variety

defined over a field of finite type over Q, and prove its bounding property, that

is, the finiteness of abelian varieties with bounded modular height.

Introduction

The modular heights of abelian varieties and their bounding property played a
crucial role in Faltings’ first proof [2] of the Mordell conjecture. Although many
important results concerning finiteness properties over number fields (conjectures
of Tate, Shafarevich and Mordell among others) are now available over arbitrary
fields of finite type over Q, a similar generalization of the aforementioned theory of
Faltings does not seem to have been explicitly formulated. In this paper, we propose
a definition of the modular heights of abelian varieties and prove the finiteness of
abelian varieties with bounded modular height over a general field of finite type
over Q.

Let K be a field of finite type over Q. In order to properly define the height
function over K, we have to fix a polarization of K (see [9]). A polarization of K
is, by definition, a collection of data (B;H1, . . . ,Hd), where

• B is a normal and projective scheme over Spec(Z) such that its function
field is isomorphic to K;

• d = tr.degQ(K) and H1, . . . ,Hd are nef C∞-hermitian line bundles on B.

Let A be an abelian variety over K. By use of the Néron model of A over B defined
in codimension one (see Section 1.1), the Hodge sheaf λ(A/K;B) attached to A
is canonically defined as a reflexive sheaf of rank one on B. Moreover it carries a
locally integrable singular hermitian metric ‖ · ‖Fal induced by the Faltings’ metric
on the good reduction part of the Néron model of A. The arithmetic first Chern
class ĉ1(λ(A/K;B), ‖ · ‖Fal) is represented by a pair of a Weil divisor and a locally
integrable function. We define the modular height h(A) of A as the arithmetic
intersection number of ĉ1(λ(A/K;B), ‖ · ‖Fal) with H1, . . . ,Hd:

h(A) = d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λ(A/K;B), ‖ · ‖Fal)

)
.

The main objective of the present paper is to show the following finiteness result:
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Theorem A (cf. Theorem 6.1). Assume that the arithmetic divisors H1, . . . ,Hd

are big. Then, for an arbitrary fixed real number c, the set of K-isomorphism classes
of the abelian varieties over K with h(A) ≤ c is finite

This theorem can be viewed as an Arakelov geometric analogue of a result of Moret-
Bailly [8], where the ground field K is replaced by a function field over a finite field
and the height is defined by means of the ordinary intersection theory.

In our proof, we have to look at the compactified moduli space of abelian varieties
and the local behavior of the Faltings metric around the boundary. We do not
need, however, strong assertions due to Faltings-Chai [4]; basic facts stated in [12]
together with a lemma of Gabber are sufficient for our purpose.

The present paper is organized as follows. Basic notions and facts are prepared
in Section 1. In Section 2, we study height functions of singular hermitian line
bundles with logarithmic singularities. In Section 3, we observe some properties
of the Faltings modular height. The proof of the bounding property is done from
Section 4 through Section 6.

Finally we would like to express hearty thanks to the referee for a lot of comments
to improve the paper.

1. Preliminaries

1.1. Néron model. Let B be a noetherian normal integral scheme and K its
function field. Let A be an abelian variety over K. A smooth group scheme A → B
is called a Néron model of A over B if the following two conditions are satisfied:

(a) The generic fiber A×B Spec(K) of A → B is isomorphic to A over K;
(b) (Universal property) If X → B is a smooth B-scheme and X its generic

fiber, then any K-morphism X → A uniquely extends to a B-morphism
X → A.

If B is a Dedekind scheme, then there exists a Néron model of A over B (cf. [1]).
When B has higher dimensional, we still have a partial Néron mode A of A defined
over a big open subset U ⊆ B (i.e. B \ U is of codimension ≥ 2), and we call A a
Néron model over B in codimension one:

Proposition 1.1.1. There exists a Néron model of A over a big open set U of B.

Proof. Let us begin with the following lemma:

Lemma 1.1.2. Let S be a noetherian normal integral scheme and K its function
field. Let A be an abelian variety over K, and let A → S be a smooth group scheme
over S such that, for each point x of codimension one in S, the restriction of A → S
to A×S Spec(OS,x) is a Néron model of A over Spec(OS,x). If X → S is a smooth
S-scheme and X its generic fiber, then any K-morphism X → A uniquely extends
to an S-morphism X → A.

Proof. This follows from the universal property of Néron models and Weil’s
extension theorem (cf. [1, Theorem 1 in 4.4]). 2

Let us go back to the proof of Proposition 1.1.1. First of all, we choose a non-
empty Zariski open set U0 of B and an abelian scheme A0 → U0 whose generic fiber
is A. Let x1, . . . , xl be points of codimension one in B \ U0. Then there are open
neighborhoods U1, . . . , Ul of x1, . . . , xl respectively, and smooth group schemes Ai

over Ui of finite type with the following properties:
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(i) xj 6∈ Ui for all i 6= j.
(ii) The restriction of Ai → Ui to A ×Ui Spec(OB,xi) is a Néron model of A

over Spec(OB,xi) for all i.
(iii) Ai → Ui is an abelian scheme over Ui \ {xi} for all i.

For each i = 0, . . . , l, let Ai be the generic fiber of Ai → Ui and φi : A → Ai

an isomorphism over K. Note that x1, . . . , xl 6∈ Ui ∩ Uj for i 6= j. Thus, by
Lemma 1.1.2, the isomorphism φj ◦ φ−1

i : Ai → Aj over K extends uniquely to an
isomorphism ψji : Ai|Ui∩Uj

→ Aj |Ui∩Uj
over Ui ∩ Uj . Clearly, ψkj ◦ ψji = ψki.

Thus, if we set U = U0∪U1∪· · ·∪Ul, then we can construct a smooth group scheme
A over U of finite type such that A|Ui

is isomorphic to Ai over Ui. The universal
property of A → U is obvious by Lemma 1.1.2. 2

1.2. Semiabelian reduction. Let B be a noetherian normal integral scheme and
K the function field of B. Let A be an abelian variety over K. We say A has
semiabelian reduction over B in codimension one if there are a big open set U of
B (i.e., codim(B \U) ≥ 2) and a semiabelian scheme A → U such that the generic
fiber of A → U is isomorphic to A.

Proposition 1.2.1. Let B, K and A be same as above. Let m be a positive integer
which has a factorization m = m1m2 with m1,m2 ≥ 3 and m1 and m2 relatively
prime (for example m = 12 = 3 · 4). If A[m](K) ⊆ A(K), then A has semiabelian
reduction in codimension one over B.

Proof. Let x be a point of codimension one in B. Then there is mi which is not
divisible by the characteristic of the residue field of OB,x. Moreover, A[mi](K) ⊆
A(K). Thus, by [11, exposé 1, Corollaire 5.18], A has semiabelian reduction at x.

Let U0 be a non-empty Zariski open subset of B over which we can take an
abelian scheme A0 → U0 whose generic fiber is A. Let x1, . . . , xl be points of codi-
mension one in B \U0. Then there are open neighborhoods U1, . . . , Ul of x1, . . . , xl

respectively, and semiabelian schemes Ai over Ui with the following properties:

(i) xj 6∈ Ui for all i 6= j.
(ii) Ai → Ui is an abelian scheme over Ui \ {xi}.

Thus, as in Proposition 1.1.1, if we set U = U0 ∪ U1 ∪ · · · ∪ Ul, then we have our
desired semiabelian scheme A → U . 2

Lemma 1.2.2 (Gabber’s lemma). Let U be a dense Zariski open set of an integral,
normal and excellent scheme S and A an abelian scheme over U . Then there is a
proper, surjective and generically finite morphism π : S′ → S of integral, normal
and excellent schemes such that the abelian scheme A ×U π−1(U) over π−1(U)
extends to a semiabelian scheme over S′

Proof. In [12, Théorèm and Proposition 4.10 in Exposé V], the existence of
π : S′ → S and the extension of the abelian scheme is proved under the assumption
π : S′ → S is proper and surjective. Let S′η be the generic fiber of π. Let z
be the closed point of S′η and Z the closure of z in S′. Moreover, let S1 be the
normalization of Z. Then π1 : S1 → Z → S is our desired morphism. 2
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1.3. The Hodge sheaf of an abelian variety. Let G → S be a smooth group
scheme over S. Then the Hodge line bundle λG/S of G→ S is given by

λG/S = det
(
ε∗

(
ΩG/S

))
,

where ε is the identity of the group scheme G→ S.
Let B be a noetherian normal and integral scheme and K its function field. Let

A be an abelian variety over K and let A → U be the Néron model over B in
codimension one (see Section 1.1). The Hodge sheaf λ(A/K;B) of A with respect
to B is defined by

λ(A/K;B) = ι∗
(
λA/U

)
,

where ι : U → B be the natural inclusion map. Note that λ(A/K;B) is a reflexive
sheaf of rank one on B.

From now on, we assume that the characteristic of K is zero. Let φ : A→ A′ be
an isogeny of abelian varieties over K. Since there is an injective homomorphism

φ∗ : λ(A′/K;B) → λ(A/K;B),

we can find an effective Weil divisor Dφ such that

c1(λ(A′/K;B)) +Dφ = c1(λ(A/K;B)).

The ideal sheaf OB(−Dφ) is denoted by Iφ.

Lemma 1.3.3. Let φ∨ : A′∨ → A∨ be the dual of φ : A → A′. We assume that
B is the spectrum of a discrete valuation ring R and that A,A′ have semiabelian
reduction over B. Then Iφ · Iφ∨ = deg(φ)R.

Proof. Let R′ be an extension of R such that R′ is a complete discrete valuation
ring and the residue field of R′ is algebraically closed (cf. [7, Theorem 29.1]). Then,
by [12, Exposé VII, Théroèm 2.1.1], (Iφ · Iφ∨)R′ = deg(φ)R′. Here R′ is faithfully
flat over R. Thus Iφ · Iφ∨ = deg(φ)R. 2

1.4. Locally integrable hermitian metric. Let M be a complex manifold and
L a line bundle on M . A singular hermitian metric ‖ · ‖ of L is a C∞-hermitian
metric of L|U , where U is a certain dense Zariski open subset of M . If ‖ · ‖0 is an
arbitrary C∞-hermitian metric of L and σ 6= 0 is a local section of L around x, the
ratio µ = ‖σ‖/‖σ‖0 of the two norms is independent of σ, and hence µ is a positive
C∞-function defined on U . A locally integrable hermitian metric (or L1

loc-hermitian
metric) is a singular hermitian metric such that the function log(µ) on U extends
to a locally integrable function on M (of course this definition does not depend on
the choice of the C∞-hermitian metric of ‖ · ‖0).
Lemma 1.4.1. Let M be a complex manifold and (L, ‖ · ‖) a hermitian line bundle
on M . Let s be a non-zero meromorphic section of L over M . Then the hermitian
metric ‖ · ‖ is locally integrable if and only if so is log ‖s‖.

Proof. Let ‖ · ‖0 be a C∞-hermitian metric of L. Then

log ‖s‖ = log(‖ · ‖/‖ · ‖0) + log ‖s‖0.
Note that log ‖s‖0 is locally integrable. Thus log ‖s‖ is locally integrable if and
only if so is log(‖ · ‖/‖ · ‖0). 2
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Lemma 1.4.2. Let f : Y → X be a surjective, proper and generically finite mor-
phism of non-singular varieties over C. Let (L, ‖ · ‖) be a singular hermitian line
bundle on X. Assume that there are a non-empty Zariski open set U of X and a
hermitian line bundle (L′, ‖ ·‖′) on Y such that (L′, ‖ ·‖′) is isometric to f∗(L, ‖ ·‖)
over f−1(U). If ‖ · ‖′ is locally integrable, then so is ‖ · ‖.

Proof. Shrinking U if necessarily, we may assume that f is étale over U . We
set V = f−1(U). Let s be a non-zero rational section of L. Note that there is
a divisor D on Y such that L′ = f∗(L) ⊗ OY (D) and Supp(D) ⊆ Y \ V . Thus
f∗(s) gives rise to a rational section s′ of L′. Then log ‖s′‖′ is locally integrable
by Lemma 1.4.1. Since f∗(log ‖s‖)|V = log ‖s′‖′|V , we can see that f∗(log ‖s‖) is
locally integrable. Let [f∗(log ‖s‖)] be a current associated to the locally integrable
function f∗(log ‖s‖). Then, by [5, Proposition 1.2.5], there is a locally integrable
function g on X with f∗[f∗(log ‖s‖)] = [g]. Since f is étale over U , we can easily
see that

(f |V )∗[(f |V )∗( log ‖s‖|U )] = deg(f)[ log ‖s‖|U ].

Thus g = deg(f) log ‖s‖ almost everywhere over U . Therefore so is over X because
U is a non-empty Zariski open set of X. Hence log ‖s‖ is locally integrable on
X. 2

1.5. Hermitian metric with logarithmic singularities. Let X be a normal
variety over C and Y a proper closed subscheme of X. Let (L, ‖ · ‖) be a hermitian
line bundle on X. We say (L, ‖ · ‖) is a C∞-hermitian line bundle with logarithmic
singularities along Y if the following conditions are satisfied:

(1) ‖ · ‖ is C∞ over X \ Y .
(2) Let ‖ · ‖0 be a C∞-hermitian metric of L. For each x ∈ Y , let f1, . . . , fm

be a system of local equations of Y around x, i.e., Y is given by {z ∈ X |
f1(z) = · · · = fm(z) = 0} around x. Then there are positive constants C
and r such that

max
{ ‖ · ‖
‖ · ‖0 ,

‖ · ‖0
‖ · ‖

}
≤ C

(
−

m∑

i=1

log |fi|
)r

around x.
Note that the above definition does not depend on the choice of the system of local
equations f1, . . . , fm. Moreover it is easy to see that if (L, ‖ · ‖) is a C∞-hermitian
line bundle with logarithmic singularities along Y , then ‖ · ‖ is locally integrable.

Lemma 1.5.1. Let π : X ′ → X be a proper morphism of normal varieties over C
and Y a proper closed subscheme of X. Let (L, ‖ · ‖) be a hermitian line bundle on
X such that ‖ · ‖ is C∞ over X \ Y . If π(X ′) 6⊆ Y and (L, ‖ · ‖) has logarithmic
singularities along Y , then so does π∗(L, ‖ · ‖) along π−1(Y ). Moreover, if π is
surjective and π∗(L, ‖ · ‖) has logarithmic singularities along π−1(Y ), then so does
(L, ‖ · ‖) along Y .

Proof. Let {f1, . . . , fm} be a system of local equations of Y . Then

{π∗(f1), . . . , π∗(fm)}
is a system of local equation of π−1(Y ). Thus our assertion is obvious. 2
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1.6. Faltings’ metric. Let X be a normal variety over C and let f : A → X be
a g-dimensional semiabelian scheme over X. We assume that there is a non-empty
Zariski open set U of X such that f is an abelian scheme over U . Let λA/X be the
Hodge line bundle of A→ X, i.e.,

λA/X = det
(
ε∗

(
ΩA/X

))
,

where ε : X → A is the identity of the semiabelian scheme A→ X. Via the natural
isomorphism ρ : λAx

∼−→ fx∗(det(ΩAx)) at each x ∈ U , we define the Faltings
metric ‖ · ‖Fal of λA/X by

(‖α‖Fal,x)2 =
(√−1

2

)g ∫

Ax

ρ(α) ∧ ρ(α).

The Faltings metric is a C∞-hermitian metric on U and hence it is a singular
hermitian metric on X. Furthermore this metric is known to have logarithmic
singularities along the boundary X \ U (cf. [12, Théorèm 3.2 in Exposé I]) and in
particular a locally integrable hermitian metric.

Lemma 1.6.1. Let X be a smooth variety over C and X0 a non-empty Zariski open
set of X. Let A0 → X0 be an abelian scheme over X0. Let λ be a line bundle on
X such that λ|X0

coincides with the Hodge line bundle λA0/X0 of A0 → X0. Then
Faltings’ metric ‖ · ‖Fal of λA0/X0 over X0 extends to a locally integrable metric of
λ over X.

Proof. By virtue of Lemma 1.2.2 (Gabber’s lemma), there is a proper, surjective
and generically finite morphism π : X ′ → X of smooth varieties over C such that
the abelian scheme A0×X0 π

−1(X0) over π−1(X0) extends to a semiabelian scheme
f ′ : A′ → X ′. Let λA′/X′ be the Hodge line bundle of A′ → X ′ and ‖ ·‖′Fal Faltings’
metric of λA′/X′ . Then (λA′/X′ , ‖ · ‖′Fal)

∣∣
X′

0
is isometric to π∗0(λA0/X0 , ‖ · ‖Fal),

where X ′
0 = π−1(X0) and π0 = π|X′

0
. Therefore, by Lemma 1.4.2, ‖ · ‖Fal extends

to a locally integrable metric of λ over X. 2

1.7. The moduli of abelian varieties. In order to deal with the bounding prop-
erty of the modular height, we need a reasonable compactification of the moduli
space of polarized abelian varieties. For simplicity, an abelian variety with a polar-
ization of degree l2 is called an l-polarized abelian variety.

Theorem 1.7.1. Let g, l and m be positive integers with m ≥ 3. Let Ag,l,m,Q be
the moduli space of g-dimensional and l-polarized abelian varieties over Q with level
m structure. Then there exist

(a) normal and projective arithmetic varieties A∗g,l,m and Y ∗ (i.e., A∗g,l,m and
Y ∗ are normal and integral schemes flat and projective over Z),

(b) a surjective and generically finite morphism f : Y ∗ → A∗g,l,m,
(c) a positive integer n,
(d) a line bundle L on A∗g,l,m, and
(e) a semiabelian scheme G→ Y ∗

with the following properties:
(1) Ag,l,m,Q is a Zariski open set of A∗g,l,m,Q = A∗g,l,m×Z Spec(Q) and L is very

ample on A∗g,l,m.
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(2) Let λG/Y ∗ be the Hodge line bundle of the semiabelian scheme G → Y ∗.
Then f∗(L) = λ⊗n

G/Y ∗ on Y ∗Q = Y ∗ ×Z Spec(Q).
(3) Let UQ → Ag,l,m,Q be the universal g-dimensional and l-polarized abelian

scheme with level m structure. Let YQ be the pull-back of Ag,l,m,Q by
fQ : Y ∗Q → A∗g,l,m,Q, i.e., YQ = (fQ)−1(Ag,l,m,Q). Then GQ → Y ∗Q is an ex-
tension of the abelian scheme UQ×Ag,l,m,Q YQ → YQ. (Note that G|YQ → YQ
is naturally a g-dimensional and l-polarized abelian scheme with level m
structure.)

(4) L has a metric ‖ · ‖ over Ag,l,m,Q(C) such that f∗((L, ‖ · ‖)) is isometric to(
λG/Y ∗ , ‖ · ‖Fal

)⊗n over YQ(C). Moreover, ‖·‖ has logarithmic singularities
along A∗g,l,m,Q(C) \ Ag,l,m,Q(C).

Proof. Let UQ → Ag,l,m,Q be the universal l-polarized abelian scheme with level
m structure. By [12, Théorème 2.2 in Exposé IV], there are a normal and projective
variety A∗g,l,m,Q, a positive integer n and a very ample line bundle LQ on A∗g,l,m,Q
with the following properties:

(i) Ag,l,m,Q is an Zariski open set of A∗g,l,m,Q.
(ii) By Gabber’s lemma (cf. Lemma 1.2.2), there is a surjective and generically

finite morphism hQ : S′Q → A∗g,l,m,Q of normal and projective varieties over
Q such that the abelian scheme UQ×Ag,l,m,Q h

−1
Q (Ag,l,m,Q) → h−1

Q (Ag,l,m,Q)
extends to a semiabelian scheme G′Q → S′Q. Then h∗Q(LQ) = λ⊗n

G′Q/S′Q
.

Since LQ is very ample, there is an embedding A∗g,l,m,Q ↪→ PN
Q in terms of LQ. Let

A∗g,l,m be the closure of the image of

A∗g,l,m,Q ↪→ PN
Q → PN

Z .

Let L be the pull-back of OPN
Z

(1) by the embedding A∗g,l,m ↪→ PN
Z . We have obvious

isomorphisms A∗g,l,m,Q ' A∗g,l,m×Z Spec(Q) and LQ ' L|A∗g,l,m,Q
. Let S′ denote the

normalization of A∗g,l,m in the function field of S′Q. There exists an open subset S′0
of S′ such that G′ is an abelian scheme over S′0 and G′ ×S′ S

′
0 → S′0 coincides with

the abelian scheme UQ×Ag,l,m,Q h
−1
Q (Ag,l,m,Q) → h−1

Q (Ag,l,m,Q) over Q. Thus, using
Gabber’s lemma again, there are a surjective and generically finite morphism of
normal and projective arithmetic varieties h2 : Y ∗ → S′ and a semiabelian scheme
G → Y ∗ such that G → Y ∗ is an extension of G′ ×S′ h

−1
2 (S′0) → h−1

2 (S′0). Thus,
over Y ∗Q = Y ∗ ×Z Spec(Q), the semiabelian variety G is equal to G′Q ×S′Q Y

∗
Q → Y ∗Q

by the uniqueness of semiabelian extensions. Thus, if we set f = h · h1, then
f∗(L) = λ⊗n

G/Y ∗ over Y ∗Q .
Finally, since LQ|Ag,l,m,Q

= λ⊗n
UQ/Ag,l,m,Q

, if we give LQ a metric arising from the
Faltings metric of λUQ/Ag,l,m,Q , then assertion of (4) follows from Lemma 1.5.1 and
[12, Théorèm 3.2 in Exposé I]. 2

1.8. Arakelov geometry. In this paper, an arithmetic variety means an integral
scheme flat and quasi-projective over Z. If it is smooth over Q, then it is said to
be generically smooth.

Let X be a generically smooth arithmetic variety. A pair (Z, g) is called an
arithmetic cycle of codimension p if Z is a cycle of codimension p and g is a current
of type (p− 1, p− 1) on X(C). We denote by Ẑp(X) the set of all arithmetic cycles
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on X. We set
ĈH

p
(X) = Ẑp(X)/∼,

where ∼ is the arithmetic linear equivalence.
Let L = (L, ‖ · ‖) be a C∞-hermitian line bundle on X. Then a homomorphism

ĉ1(L)· : ĈH
p
(X) → ĈH

p+1
(X)

is define by

ĉ1(L) · (Z, g) =
(
div(s) on Z, [− log(‖s‖2Z)] + c1(L) ∧ g) ,

where s is a rational section of L|Z and [− log(‖s‖2Z)] is a current given by φ 7→
− ∫

Z(C)
log(‖s‖2Z)φ.

When X is projective, we can define the canonical arithmetic degree map

d̂eg : ĈH
dim X

(X) → R

given by

d̂eg

(∑

P

nPP, g

)
=

∑

P

nP log(#(κ(P ))) +
1
2

∫

X(C)

g.

Thus, if C∞-hermitian line bundles L1, . . . , Ldim X are given, then we can get the
number

d̂eg
(
ĉ1(L1) · · · ĉ1(Ldim X)

)
,

which is called the arithmetic intersection number of L1, . . . , Ldim X .

Let X be a projective arithmetic variety. Note that X is not necessarily gener-
ically smooth. Let L1, . . . , Ldim X be C∞-hermitian line bundles on X. By [6],
we can find a generic resolution of singularities µ : Y → X, i.e., µ : Y → X is a
projective and birational morphism such that Y is a generically smooth projective
arithmetic variety. Then we can see that the arithmetic intersection number

d̂eg
(
ĉ1(µ∗(L1)) · · · ĉ1(µ∗(Ldim X))

)

does not depend on the choice of the generic resolution of singularities µ : Y → X.
Thus we denote this number by

d̂eg
(
ĉ1(L1) · · · ĉ1(Ldim X)

)
.

Let L1, . . . , Ll be C∞-hermitian line bundles on a projective arithmetic variety
X. Let V be an l-dimensional integral closed subscheme on X. Then

d̂eg
(
ĉ1(L1) · · · ĉ1(Ll) |V

)

is defined by
d̂eg

(
ĉ1(L1

∣∣
V

) · · · ĉ1(Ll

∣∣
V

)
)
.

Moreover, for an l-dimensional cycle Z =
∑

i niVi on X,

d̂eg
(
ĉ1(L1) · · · ĉ1(Ll) |Z

)

is defined by ∑

i

nid̂eg
(
ĉ1(L1) · · · ĉ1(Ll) |Vi

)
.
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1.9. Notions concerning the positivity of Q-line bundles on an arithmetic
variety. Let X be a projective arithmetic variety and L a C∞-hermitian Q-line
bundle on X. Let us introduce several kinds of the positivity of C∞-hermitian
Q-line bundles.
•ample: L is ample if L is ample onX, c1(L) is positive form onX(C), and there

is a positive number n such that L⊗n is generated by the set {s ∈ H0(X,L⊗n) |
‖s‖sup < 1}.
•nef: L is nef if c1(L) is a semipositive form onX(C) and, for all one-dimensional

integral closed subschemes Γ of X, d̂eg
(
ĉ1(L) |Γ) ≥ 0.

•big: L is big if rkZH0(X,L⊗m) = O(mdim XQ) and there is a non-zero section
s of H0(X,L⊗n) with ‖s‖sup < 1 for some positive integer n.
•QQQ-effective: L is Q-effective if there is a positive integer n and a non-zero

s ∈ H0(X,L⊗n) with ‖s‖sup ≤ 1.
•pseudo-effective: L is pseudo-effective if there are (1) a sequence {Ln}∞n=1 of

Q-effective C∞-hermitianQ-line bundles, (2) C∞-hermitianQ-line bundlesE1, . . . , Er

and (3) sequences
{a1,n}∞n=1, . . . , {ar,n}∞n=1

of rational numbers such that

ĉ1(L) = ĉ1(Ln) +
r∑

i=1

ai,nĉ1(Ei)

in ĈH
1
(X)⊗Q and limn→∞ ai,n = 0 for all i. If L1 ⊗ L

⊗−1

2 is pseudo-effective for
C∞-hermitian Q-line bundles L1, L2 on X, then we denote this by L1 % L2.

1.10. Polarization of a finitely generated field over Q. Let K be a field of
finite type over the rational number field Q with d = tr.degQ(K). A polarization
B of K is a collection of data B = (B;H1, . . . ,Hd), where

(1) B is a normal and projective arithmetic variety whose function field is
isomorphic to K;

(2) H1, . . . ,Hd are nef C∞-hermitian line bundles on B.

Here deg(B) is given by
∫

B(C)

c1(H1) ∧ · · · ∧ c1(Hd).

Namely,

deg(B) =

{
[K : Q] if d = 0,
deg((H1)Q · · · (Hd)Q) on B ×Z Spec(Q) if d > 0.

If B is generically smooth, then the polarization B is said to be generically smooth.
Moreover, we say the polarization B = (B;H1, . . . ,Hd) is fine (resp. strictly fine)
if there are (a) a generically finite morphism π : B′ → B of normal projective
arithmetic varieties, (b) a generically finite morphism µ : B′ → (P1

Z)
d and (c) ample

C∞-hermitian Q-line bundles L1, . . . , Ld on P1
Z such that π∗(Hi)⊗ µ∗(p∗i (Li))⊗−1

is pseudo-effective (resp. Q-effective) for every i, where pi : (P1
Z)

d → P1
Z is the

projection to the i-th factor. Note that if H1, . . . ,Hd are big, then the polarization
(B;H1, . . . ,Hd) is strictly fine. Moreover, if B is fine, then deg(B) > 0.
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Proposition 1.10.1. Let B = (B;H1, . . . ,Hd) be a strictly fine polarization of K.
Then, for all h, the number of prime divisors Γ on B with

d̂eg(ĉ1(H1) · · · ĉ1(Hd) |Γ) ≤ h

is finite.

Proof. Let us begin with the following lemma.

Lemma 1.10.2. Let π : X ′ → X be a generically finite morphism of normal and
projective arithmetic varieties. Let H1, . . . ,Hd be nef C∞-hermitian line bundles
on X, where d = dimXQ. Then the following two statements are equivalent:

(1) For all h, the number of prime divisors Γ on X with

d̂eg(ĉ1(H1) · · · ĉ1(Hd) |Γ) ≤ h

is finite
(2) For all h′, the number of prime divisors Γ′ on X ′ with

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |Γ′) ≤ h′

is finite.

Proof. Let X0 be the maximal Zariski open set of X such that X0 is regular
and π is finite over X0. Then codim(X \ X0) ≥ 2. We set X ′

0 = π−1(X0) and
π0 = π|X′

0
. Let Div(X) and Div(X ′) be the groups of Weil divisors on X and X ′

respectively. Define the homomorphism π? : Div(X) → Div(X ′) as the composition
of natural homomorphisms:

Div(X) → Div(X0)
π∗0−→ Div(X ′

0) → Div(X ′),

where Div(X) → Div(X0) is the restriction map and Div(X ′
0) → Div(X ′) is defined

by taking the Zariski closure of divisors. Note that π∗π?(D) = deg(π)D for all
D ∈ Div(X).

First we assume (1). Note that the number of prime divisors in X ′ \X ′
0 is finite,

so that it is sufficient to show that the number of prime divisors Γ′ on X ′ with
Γ′ 6⊆ X ′ \X ′

0 and

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |Γ′) ≤ h′

is finite. By the projection formula,

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |Γ′) = d̂eg(ĉ1(H1) · · · ĉ1(Hd) |π∗(Γ′)).
Thus, by (1), the number of (π∗(Γ′))red is finite. On the other hand, the number
of prime divisors in π−1(π∗(Γ)red) is finite. Hence we get (2).

Next we assume (2). Let Γ be a prime divisor on X with

d̂eg(ĉ1(H1) · · · ĉ1(Hd) |Γ) ≤ h.

Then

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |π?(Γ))

= deg(π)d̂eg(ĉ1(H1) · · · ĉ1(Hd) |Γ) ≤ deg(π)h.

Thus, by (2), the number of π?(Γ)’s is finite. Therefore we get (1). 2
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Let us go back to the proof of Proposition 1.10.1. We use the notation in the
above definition of strict finiteness. By Lemma 1.10.2, it is sufficient to show that
the number of prime divisors Γ′ on B′ with

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |Γ′) ≤ h

is finite for all h.
There are Q-effective C∞-hermitian line bundles Q1, . . . , Qd on B′ with

π∗(Hi) = µ∗(p∗i (Li))⊗Qi

for all i. Note that

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |Γ′)
= d̂eg(ĉ1(µ∗(p∗1(L1))) · · · ĉ1(µ∗(p∗d(Ld))) |Γ′)+

d∑

i=1

d̂eg(ĉ1(µ∗(p∗1(L1))) · · · ĉ1(µ∗(p∗i−1(Li−1))) · ĉ1(Qi)·

ĉ1(π∗(Hi+1)) · · · ĉ1(π∗(Hd)) |Γ′).
Moreover, since Qi is Q-effective, the number of prime divisors Γ′ with

d̂eg(ĉ1(µ∗(p∗1(L1))) · · · ĉ1(µ∗(p∗i−1(Li−1))) · ĉ1(Qi)·
ĉ1(π∗(Hi+1)) · · · ĉ1(π∗(Hd)) |Γ′) < 0

is finite for every i. Thus we have

d̂eg(ĉ1(π∗(H1)) · · · ĉ1(π∗(Hd)) |Γ′) ≥ d̂eg(ĉ1(µ∗(p∗1(L1))) · · · ĉ1(µ∗(p∗d(Ld))) |Γ′)
except finitely many Γ′. On the other hand, by [10, Proposition 5.1.1], the number
of prime divisors Γ′′ on (P1

Z)
d with

d̂eg(ĉ1(p∗1(L1)) · · · ĉ1(p∗d(Ld)) |Γ′′) ≤ h

is finite. This completes the proof. 2

Remark 1.10.3. Let X be a normal and projective arithmetic variety of dimension
n. LetH1, . . . ,Hn−2 be nef C∞-hermitian line bundles onX and L a C∞-hermitian
line bundle on X. If L is pseudo-effective, then we can expect the number of prime
divisors Γ on X with

d̂eg(ĉ1(H1) · · · ĉ1(Hn−2) · ĉ1(L) |Γ) < 0

to be finite. If it is true, then Proposition 1.10.1 holds under the weaker assumption
that the polarization is fine.

2. Height functions in terms of hermitian line bundles
with logarithmic singularities

Let K be a finitely generated field over Q with d = tr.degQ(K). Let B =
(B;H1, . . . ,Hd) be a fine polarization of K. Let X be a projective variety over K
and L an ample line bundle on X. Moreover, let Y be a proper closed subset of
X. Let (X ,L) be a pair of a projective arithmetic variety X and a hermitian line
bundle L on X with the following properties:

(1) There is a morphism f : X → B whose generic fiber is X.
(2) The restriction of L to the generic fiber of f coincides with L.
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(3) L is ample with respect to the morphism f : X → B.
(4) Let Y be a closed set of X such that Y gives rise to Y on the generic fiber

of X → B. Then the hermitian metric of L has logarithmic singularities
along Y(C).

For x ∈ X(K) \ Y (K), we denote by ∆x the Zariski closure of the image of
Spec(K) → X → X . The height of x with respect to B and L is defined by

hB
L (x) =

d̂eg(ĉ1(f∗(H1)
∣∣
∆x

) · · · ĉ1(f∗(Hd)
∣∣
∆x

) · ĉ1(L
∣∣
∆x

))

[K(x) : K]
.

Note that since L∣∣
∆x

has logarithmic singularities along Y(C)∩∆x(C), the number

d̂eg(ĉ1(f∗(H1)
∣∣
∆x

) · · · ĉ1(f∗(Hd)
∣∣
∆x

) · ĉ1(L
∣∣
∆x

))

is well defined. Then we have the following proposition.

Proposition 2.1. (1) Given a positive integer e, there exists a constant C
such that

#{x ∈ X(K) \ Y (K) | hB
L (x) ≤ h, [K(x) : K] ≤ e} ≤ C · hd+1

for hÀ 0.
(2) There is a constant C ′ such that hB

L
(x) ≥ C ′ for all x ∈ X(K) \ Y (K).

Proof. We denote by ‖ · ‖ the hermitian metric of L. Let Q be an ample C∞-
hermitian line bundle on B. Then

hB

L⊗f∗(Q⊗n
)
(x) = hB

L (x) + nd̂eg(ĉ1(Q) · ĉ1(H1) · · · ĉ1(Hd)).

and we may assume that L is ample on X without loss of generality. Replacing L
by a suitable L⊗n

, we may furthermore assume that IY ⊗L is generated by global
sections, where IY is the defining ideal sheaf of Y. Let s1, . . . , sr be generators
of H0(X , IY ⊗ L). We may view s1, . . . , sr as global sections of H0(X ,L). Then
Y = {x ∈ X | s1(x) = · · · = sr(x) = 0}. Here we choose a C∞-hermitian metric
‖ · ‖0 of L such that ‖si‖0 < 1 for all i = 1, . . . , r. We denote (L, ‖ · ‖0) by L0

.
We claim

[K(x) : K]hB

L0(x) ≥ −
∫

∆x(C)

log
(
max

i
{‖si‖0}

)
c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd)).

Indeed we can find sj with sj |∆x
6= 0, so that

[K(x) : K]hB

L0(x) = d̂eg(ĉ1(f∗(H1)) · · · ĉ1(f∗(Hd)) | div(sj |∆x
))

−
∫

∆x(C)

log (‖sj‖0) c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd)).

Then our claim follows from the following two inequalities:

d̂eg(ĉ1(f∗(H1)) · · · ĉ1(f∗(Hd)) | div(sj |∆x
)) ≥ 0

and
‖sj‖0 ≤ max

i
{‖si‖0} < 1.
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Set g = ‖ · ‖/‖ · ‖0. Since ‖ · ‖ has logarithmic singularities, there are positive
constants a, b such that

| log(g)| ≤ a+ b log
(
− log(max

i
{‖si‖0})

)
.

Moreover
∣∣∣hB
L (x)− hB

L0(x)
∣∣∣ ≤ 1

[K(x) : K]

∫

∆x(C)

| log(g)|c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd)).

Note that
∫

∆x(C)

c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd)) = [K(x) : K] deg(B),

where deg(B) =
∫

B(C)

c1(H1) ∧ · · · ∧ c1(Hd) as in Section 1.10. Thus

∣∣∣hB
L (x)− hB

L0(x)
∣∣∣

deg(B)
≤ a+

b

∫

∆x(C)

log
(
− log(max

i
{‖si‖0})

) c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd))
[K(x) : K] deg(B)

.

On the other hand,

∫

∆x(C)

log
(
− log(max

i
{‖si‖0})

) c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd))
[K(x) : K] deg(B)

≤ log

(∫

∆x(C)

− log(max
i
{‖si‖0})c1(f

∗(H1)) ∧ · · · ∧ c1(f∗(Hd))
[K(x) : K] deg(B)

)
.

Hence we obtain
∣∣∣hB
L (x)− hB

L0(x)
∣∣∣

deg(B)
≤ a+ b log


 hB

L0(x)

deg(B)


 .

Note that there is a real number t0 such that a+ b log(t) ≤ t/2 for all t ≥ t0. Thus

hB

L0(x) ≤ max
{

deg(B)t0, 2hB
L (x)

}
.

Therefore, if h ≥ deg(B)t0/2, then hB
L (x) ≤ h implies hB

L0(x) ≤ 2h. Hence we get
the first assertion by virtue of [10, Theorem 6.4.1].

Next let us check the second assertion. Since

‖si‖ = g‖si‖0 ≤ exp(a)‖si‖0
(
− log(max

j
{‖sj‖0})

)b

≤ exp(a)‖si‖0 (− log(‖si‖0))b
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and the function t(− log(t))b is bounded from above for 0 < t ≤ 1, there is a
constant C such that ‖si‖ ≤ C for all i. Thus, if we choose si with si|∆x

6= 0, then

[K(x) : K]hB
L (x) = d̂eg(ĉ1(f∗(H1)) · · · ĉ1(f∗(Hd)) | div(si|∆x

))

−
∫

∆x(C)

log (‖sj‖) c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd))

≥ − log(C)
∫

∆x(C)

c1(f∗(H1)) ∧ · · · ∧ c1(f∗(Hd))

= − log(C) deg(B)[K(x) : K].

Thus we get (2). 2

3. The Faltings modular height

Let K be a field of finite type over Q with d = tr.degQ(K) and let B =
(B;H1, . . . ,Hd) be a generically smooth polarization ofK. LetA be a g-dimensional
abelian variety over K. Let λ(A/K;B) be the Hodge sheaf of A with respect to B
(cf. Section 1.3). Note that λ(A/K;B) is invertible over BQ because BQ is smooth
over Q. Let ‖ · ‖Fal be Faltings’ metric of λ(A/K;B) over B(C). Here we set

λ
Fal

(A/K;B) = (λ(A/K;B), ‖ · ‖Fal),

which is called the metrized Hodge sheaf of A with respect to B. In the case where a
Néron model A → U over B in codimension one is specified, λ

Fal
(A/K;B) is often

denoted by λ
Fal

(A/U). By Lemma 1.6.1, the metric of λ
Fal

(A/K;B) is locally
integrable. The Faltings modular height of A with respect to the polarization B is
defined by

hB
Fal(A) = d̂eg

(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λFal

(A/K;B)
)
.

Even if we do not assume that B is generically smooth, we can define the Faltings
modular height with respect to B as follows: Let µ : B′ → B be a generic resolution
of singularities of B. We set B

′
= (B′;µ∗(H1), . . . , µ∗(Hd)). Then, by (1) of the

following Proposition 3.1, hB
′

Fal(A) does not depend on the choice of the generic
resolution µ : B′ → B, so that hB

Fal(A) is defined to be hB
′

Fal(A). In the following,
B is always assumed to be generically smooth.

Proposition 3.1. Let π : X ′ → X be a generically finite morphism of normal and
projective generically smooth arithmetic varieties. Let K and K ′ be the function
field of X and X ′ respectively. Let A be an abelian variety over K. Then there is
an effective divisor E on X which has the following two properties:

(1) π∗ĉ1(λ
Fal

(A×K Spec(K ′)/K ′;X ′)) + (E, 0) = deg(π)ĉ1(λ
Fal

(A/K;X)).
Further, if π is birational, then E = 0.

(2) For a scheme S, we denote by S(1) the set of points of codimension one in
S. Then

{x ∈ X(1) | A has semiabelian reduction at x} ⊆ (X \ Supp(E))(1).

Moreover, if A×K Spec(K ′) has semiabelian reduction over X ′ in codimen-
sion one, then

{x ∈ X(1) | A has semiabelian reduction at x} = (X \ Supp(E))(1).
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Proof. (1) Let X0 be the maximal Zariski open set of X such that X0 is reg-
ular and π is finite over X0. Then codim(X \ X0) ≥ 2. We set X ′

0 = π−1(X0)
and π0 = π|X′

0
. Let Div(X) and Div(X ′) be the groups of Weil divisors on X

and X ′ respectively. A homomorphism π? : Div(X) → Div(X ′) is defined as the
composition of the natural homomorphisms:

Div(X) → Div(X0)
π∗0−→ Div(X ′

0) → Div(X ′),

where Div(X) → Div(X0) is the restriction map and Div(X ′
0) → Div(X ′) is defined

by taking the Zariski closure of divisors. Note that π∗π?(D) = deg(π)D for all
D ∈ Div(X).

Let X1 (resp. X ′
1) be a Zariski open set of X (resp. X ′) such that codim(X \

X1) ≥ 2 (resp. codim(X ′ \X ′
1) ≥ 2) and that the Néron model G (resp. G′) exists

over X1 (resp. X ′
1). Clearly we may assume that X1 ⊆ X0 and π−1(X1) ⊆ X ′

1. We
set U ′ = π−1(X1) andG′U ′ = G′|U ′ . Since G′U ′ is the Néron model of A×KSpec(K ′)
over U ′, there is a homomorphism G ×X1 U

′ → G′U ′ over U ′. Thus we get a
homomorphism

(3.1.1) α : ε′∗
(

g∧
ΩG′

U′/U ′

)
→ π∗ε∗

(
g∧

ΩG/X1

)∣∣∣∣∣
U ′

,

where ε and ε′ are the zero sections of G and G′ respectively.
Let s be a non-zero rational section of λ(A/K;X). Then

ĉ1(λ
Fal

(A/K;X)) = (div(s),− log ‖s‖Fal).

Moreover, since π∗(s) gives rise to a non-zero rational section of

λ(A×K Spec(K ′)/K ′;X ′),

we obtain

ĉ1(λ
Fal

(A×K Spec(K ′)/K ′;X ′)) = (div(π∗(s)),−π∗(log ‖s‖Fal)),

where π∗(log ‖s‖Fal) is the pull-back of log ‖s‖Fal by π as a function on a dense open
set of X(C). Let Γ1, . . . ,Γr be all prime divisors in X ′ \ U ′. Note that π∗(Γi) = 0
for all i. Then, since (3.1.1) is injective, there is an effective divisor E′ and integers
a1, . . . , ar such that

div(π∗(s)) + E′ = π?(div(s)) +
r∑

i=1

aiΓi.

Note that E′ =
∑

x′ lengthOX′,x′
(Coker(α)x′){x′}, where x′’s run over all points of

codimension one in U ′. Thus, since

π∗(π?(div(s)),−π∗(log ‖s‖Fal)) = deg(π)(div(s),− log ‖s‖Fal),

we have

π∗ĉ1(λ
Fal

(A×K Spec(K ′)/K ′;X ′)) + (π∗(E′), 0) = deg(π)ĉ1(λ
Fal

(A/K;X)),

yielding the fisrt assertion of (1). If π is birational, then U ′ → X1 is an isomorphism,
so that E′ = 0.

(2) Assume that there is an open neighborhood U of x such that Go|U is
semiabelian. Then Go|U ×U π−1(U) is semiabelian so that it is isomorphic to(
G′|π−1(U)

)o

. This shows that x 6∈ Ered. Conversely, if x 6∈ Ered and A×KSpec(K ′)
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has semiabelian reduction in codimension one, then there exists an open neighbor-
hood U ⊂ X1 of x such that the homomorphism

α : ε′∗
(

g∧
ΩG′

U′/U ′

)
→ π∗ε∗

(
g∧

ΩG/X1

)∣∣∣∣∣
U ′

is an isomorphism over π−1(U). Thus the natural homomorphism

ε′∗
(
ΩG′

U′/U ′

)
→ π∗ε∗

(
ΩG/X1

)∣∣
U ′

must be an isomorphism over π−1(U) and so is the morphism

Go ×X1 U
′ → (G′U ′)

o

over π−1(U), which means that Go is semiabelian over U . 2

Proposition 3.2. Let φ : A→ A′ be an isogeny of abelian varieties over K. Then

d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λFal

(A′/K;B)
)

− d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λFal

(A/K;B)
)

=
1
2

log(deg(φ)) deg(B)− d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) |Dφ

)
,

where Dφ is an effective divisor given in Section 1.3 and

deg(B) =
∫

B(C)

c1(H1) ∧ · · · ∧ c1(Hd)

as in Section 1.10.

Proof. This follows from the fact that

λ
Fal

(A′/K;B)⊗ (OB(Dφ),deg(φ)| · |can)

is isometric to λ
Fal

(A/K;B). 2

Proposition 3.3. If an abelian variety A over K has semiabelian reduction in
codimension one over B. Then

d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λFal

(A/K;B)
)

= d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λFal

(A∨/K;B)
)
,

where A∨ is the dual abelian variety of A.

Proof. Let φ : A→ A∨ be an isogeny over K in terms of ample line bundle on
A. Let φ∨ : A→ A∨ be the dual of φ. Then, by Proposition 3.2,

2d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λFal

(A∨/K;B)
)

− 2d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(λFal

(A/K;B)
)

= log(deg(φ)) deg(B)− d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) |Dφ +Dφ∨

)
.

On the other hand, by Lemma 1.3.3, Iφ · Iφ∨ = deg(φ)OB . (OB(Dφ +Dφ∨), | · |can)
is thus isometric to (OB ,deg(φ)−2| · |can), proving the assertion. 2
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Let A be an abelian variety over a finite extension field K ′ of K. Let m be a
positive integer such that m has a decomposition m = m1m2 with (m1,m2) = 1
and m1,m2 ≥ 3. Let us consider a natural homomorphism

ρ(A,m) : Gal(K/K) → Aut(A[m](K)) ' Aut((Z/mZ)2g).

Then there is a Galois extensionK(A,m) ofK ′ with Ker ρ(A,m) = Gal(K/K(A,m)).
Note that

Gal(K(A,m)/K ′) = Gal(K/K)/Ker ρ(A,m) ↪→ Aut((Z/mZ)2g).

Let B′′ be a generically smooth, normal and projective arithmetic variety with the
following properties:

(i) The function field K ′′ of B′′ is an extension of K(A,m).
(ii) The natural rational map f : B′′ → B induced by K ↪→ K ′′ is actually a

morphism.
Then we have the following.

Proposition 3.4. (1) The number

d̂eg
(
ĉ1(λ(A×K′ Spec(K ′′)/K ′′;B′′) · ĉ1(f∗(H1)) · · · ĉ1(f∗(H1))

)

[K ′′ : K]

does not depend on the choice of m and B′′, so that we denote it by hB
mod(A).

(2) hB
mod(A) ≤ hB

Fal(A).

Proof. These are consequences of Proposition 1.2.1, Proposition 3.1 and the
projection formula. 2

Proposition 3.5 (Additivity of heights). For abelian varieties A,A′ over K, we
have

hB
Fal(A×K A′) = hB

Fal(A) + hB
Fal(A

′),

hB
mod(A×K A′) = hB

mod(A) + hB
mod(A′).

Proof. Let A and A′ be the Néron models of A and A′ over B0, where B0 is a
big open set of B. Then A×B0 A′ is the Néron model of A×K A′ over B0. Thus

ĉ1(λ
Fal

A×B0A′/B0
) = ĉ1(λ

Fal

A/B0
) + ĉ1(λ

Fal

A′/B0
).

Hence we get our lemma. 2

4. Weak finiteness

Let us fix positive integers g, l and m such that m has a decomposition m =
m1m2 with (m1,m2) = 1 and m1,m2 ≥ 3. Let Ag,l,m,Q, f : Y → A∗g,l,m, L, n and
G→ Y be as in Theorem 1.7.1.

Let K be a field of finite type over Q with d = tr.degQ(K) and let B =
(B;H1, . . . ,Hd) be a generically smooth polarization of K.

Let A be a g-dimensional and l-polarized abelian variety over a finite extension
K ′ ofK with levelm structure. The abelian variety A naturally induces a morphism
xA : Spec(K ′) → A∗g,l,m, which in turn induces yA : Spec(K ′) → A∗g,l,m×ZSpec(K).
Let ∆A be the closure of the image of yA in A∗g,l,m×ZB. Let p : A∗g,l,m×ZB → A∗g,l,m
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and q : A∗g,l,m×ZB → B be the projections to the first factor and the second factor
respectively. The number

hB
L

(A) =
d̂eg

(
ĉ1(q∗(H1)

∣∣
∆A

) · · · ĉ1(q∗(Hd)
∣∣
∆A

) · ĉ1(p∗(L)
∣∣
∆A

)
)

deg(∆A → B)

is the height of yA ∈ (A∗g,l,m ×Z Spec(K))(K) with respect to L and B, of which
the behavior is controlled by the following proposition.

Proposition 4.1. There is a constant N(g, l,m) depending only on g, l,m such
that

|hB
L

(A)− nhB
mod(A)| ≤ log(N(g, l,m)) deg(B).

for every g-dimensional and l-polarized abelian variety A over K with level m struc-
ture, where

deg(B) =
∫

B(C)

c1(H1) ∧ · · · c1(Hd).

Proof. Let A be a g-dimensional and l-polarized abelian variety over K with
level m structure. Let K ′ be the minimal finite extension of K such that A, the po-
larization of A, the level m structure of A are defined over K ′. Let xA : Spec(K ′) →
A∗g,l,m be the morphism induced by A. Moreover let yA : Spec(K ′) → A∗g,l,m ×Z B
be the induced morphism by xA.

Let Spec(K1) be a closed point of Y ×A∗g,l,m
Spec(K ′). Then we have the following

commutative diagram:

Y

f

²²

Spec(K1)oo

²²
A∗g,l,m Spec(K ′)

xAoo

Here, two l-polarized abelian varieties A×K′Spec(K1) andG×Y Spec(K1) with level
m structures gives rise to the same K1-valued point of A∗g,l,m. Thus A×K′ Spec(K1)
is isomorphic to G×Y Spec(K1) over K1 as l-polarized abelian varieties with level
m structures because m ≥ 3. The above commutative diagram induces to the
commutative diagram:

Y ×Z B

²²

Spec(K1)oo

²²
A∗g,l,m ×Z B Spec(K ′)

yAoo

Let B1 be a generic resolution of singularities of the normalization of B in K1.
Note that a generic resolution of singularities (a resolution of singularities over Q)
exists by Hironaka’s theorem [6]. Then we have rational maps B1 99K Y ×Z B and
B1 99K ∆A such that a composition B1 99K ∆A → A∗g,l,m ×Z B of rational maps
is equal to B1 99K Y ×Z B → A∗g,m ×Z B. Thus there are a birational morphism
B2 → B1 of projective and generically smooth arithmetic varieties, a morphism
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B2 → ∆A and a morphism B2 → Y ×ZB with the following commutative diagram:

B1

π1

²²

B2
γoo β //

α

²²

Y ×Z B
f×id

²²
B ∆A

oo ι // A∗g,l,m ×Z B
Then

hB
L

(A) =
d̂eg

(
ĉ1(ι∗(p∗(L))) · ĉ1(ι∗(q∗(H1))) · · · ĉ1(ι∗(q∗(H1)))

)

deg(∆A → B)

=
d̂eg

(
ĉ1(α∗(ι∗(p∗(L)))) · ĉ1(α∗(ι∗(q∗(H1)))) · · · ĉ1(α∗(ι∗(q∗(H1))))

)

deg(B2 → B)

=
d̂eg

(
ĉ1(β∗((f × id)∗(p∗(L)))) · ĉ1(γ∗(π∗1(H1))) · · · ĉ1(γ∗(π∗1(H1)))

)

deg(B2 → B)
.

On the other hand, since f∗(L) = λ⊗n
G/Y over Y ×Z Spec(Q), there is an integer N

depending only on g, l and m such that

Nf∗(L) ⊆ λ⊗n
G/Y ⊆ (1/N)f∗(L)

on Y . Thus

Nβ∗(f × id)∗(L) ⊆ (λG×ZB/Y×ZB)⊗n ⊆ (1/N)β∗(f × id)∗(L).

Therefore

− d̂eg(ĉ1(γ∗(π∗1(H1))) · · · ĉ1(γ∗(π∗1(H1))) | (N))
deg(B2 → B)

+ hB
L

(A)

≤
nd̂eg

(
ĉ1(λ

Fal

G×Y B2/B2
)) · ĉ1(γ∗(π1

∗(H1))) · · · ĉ1(γ∗(π1
∗(H1)))

)

deg(B2 → B)

≤ d̂eg(ĉ1(γ∗(π∗1(H1))) · · · ĉ1(γ∗(π∗1(H1))) | (N))
deg(B2 → B)

+ hB
L

(A).

Note that

d̂eg(ĉ1(γ∗(π∗1(H1))) · · · ĉ1(γ∗(π∗1(H1))) | (N)) = log(N) deg(B2 → B) deg(B).

By Proposition 1.2.1, we can see that A ×K′ Spec(K1) has semiabelian reduction
in codimension one over B1. On the other hand, by Proposition 3.1,

γ∗(ĉ1(λ
Fal

G×Y B2/B2
)) = ĉ1(λ

Fal
(A×K′ Spec(K1)/K1;B1)).

Therefore we get
|hB

L
(A)− nhB

mod(A)| ≤ log(N) deg(B).
2

Corollary 4.2. Let l and e be positive integers and let K be a field finitely generated
over Q. Put d = tr.degQ(K) and fix a generically smooth and fine polarization
B = (B;H1, . . . ,Hd) of K. Then

(1) There exists a constant C = C(B, l, g) such that hB
mod(A) ≥ C for an

arbitrary l-polarized abelian variety A of dimension g over K.
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(2) There exists a constant C ′ = C ′(B, l, e, g) such that the set



A×K′ Spec(K)

∣∣∣∣∣∣∣∣∣∣

A is a g-dimensional and
l-polarized abelian variety
over a finite extension
K ′ of K with [K ′ : K] ≤ e

and hB
mod(A) ≤ h.





/
'K

has cardinality ≤ C ′ · hd+1 for hÀ 0.

Proof. Let us fix a positive number m such that m has a decomposition m =
m1m2 with (m1,m2) = 1 and m1,m2 ≥ 3. Then any l-polarized abelian variety
over K has a level m structure. Thus (1) is a consequence of Proposition 2.1 and
Proposition 4.1.

Let A be an l-polarized abelian variety over a finite extension K ′ of K. Let K ′′

be the minimal extension of K ′ such that A[m](K) ⊆ A(K ′′). Then [K ′′ : K ′] ≤
#(Aut(Z/mZ)2g). Thus, by using Proposition 2.1 and Proposition 4.1, we get (2).

2

5. Galois descent

Let A be a g-dimensional abelian variety over a field k. Let m be a positive
integer prime to the characteristic of k. Note that a level m structure α of A over
a finite extension k′ of k is an isomorphism α : (Z/mZ)2g → A[m](k′). If k′ is a
finite Galois extension over k, then we have a homomorphism

ε(k′/k,A, α) : Gal(k′/k) → Aut((Z/mZ)2g)

given by ε(k′/k,A, α)(σ) = α−1 · σA · α, where

σA : A×k Spec(k′)
idA ×(σ−1)a

−−−−−−−−→ A×k Spec(k′)

is the natural morphism arising from σ. Note that (σ · τ)A = σA · τA.

Lemma 5.1. Let k be a field, k′ a finite Galois extension of k and m ≥ 3 an
integer prime to the characteristic of k. Let (A, ξ) and (A′, ξ′) be two polarized
abelian varieties over k and let α, α′ be level m structures of A,A′ defined over k′.
If a k′-isomorphism

φ : (A, ξ)×k Spec(k′) → (A′, ξ′)×k Spec(k′)

as polarized abelian varieties over k′ satisfies
(a) φ · α = α′ and
(b) ε(k′/k,A, α) = ε(k′/k,A′, α′),

then φ descends to an isomorphism (A, ξ) → (A′, ξ′) over k.

Proof. For σ ∈ Gal(k′/k), let us consider a morphism

φσ = σ−1
A′ · φ · σA : A×k Spec(k′) → A′ ×k Spec(k′).

First of all, φσ is a morphism over k′. We claim that φσ · α = α′. Indeed, since
α−1 · σAα = α′−1 · σA′ · α′, we have

φσ · α = σ−1
A′ · φ · α · α−1 · σA · α = σ−1

A′ · α′ · α′−1 · σA′ · α′ = α′.
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Thus φσ preserves the level structures of A×k Spec(k′) and A′×k Spec(k′). Hence,
sincem ≥ 3 and φσ ·φ−1 preserve the polarization ξ of A over k′ (hence (φσ ·φ−1)N =
id for N À 1), by virtue of Serre’s theorem, we have φσ = φ, that is,

φ · σA = σA′ · φ
for all σ ∈ Gal(k′/k). Therefore φ descends to an isomorphism (A, ξ) → (A′, ξ′)
over k. 2

Proposition 5.2. Let B be an irreducible normal scheme of finite type over Z and
let K denote its function field. Fix a polarized abelian variety (C, ξC) of dimension
g defined over K. Then the set

S =



(A, ξ)

∣∣∣∣∣∣

(A, ξ) is a polarized abelian variety over K with
(A, ξ)×K Spec(K) ' (C, ξC) and A has semiabelian
reduction over B in codimension one.





modulo K-isomorphisms is finite.

Proof. For (A, ξ) ∈ S, let BA be a big open set of B over which we have a
semiabelian extension XA → BA of A. Let BR(A) denote the set of points x of
codimension one in BA such that the fiber of XA over x is not an abelian variety.

Claim 5.2.1. For any (A, ξ), (A′, ξ′) ∈ S, BR(A) = BR(A′).

Since A×K Spec(K) ' A′ ×K Spec(K), there is a finite extension K ′ of K with
A×K Spec(K ′) ' A′×K Spec(K ′). Let π : B′ → B be the normalization of B in K ′.
Then XA ×BA

π−1(BA) is isomorphic to XA′ ×BA′ π
−1(BA′) over π−1(BA ∩ BA′),

so that π−1(BR(A)) = π−1(BR(A′)), yielding the claim.

Let us fix a positive integer m ≥ 3 and (A0, ξ0) ∈ S. We set

U = B \

(B ×Z Spec(Z/mZ)) ∪ Sing(B) ∪

⋃

x∈BR(A0)

{x}

 .

Then U is regular and of finite type over Z. The characteristic of the residue field of
any point of U is prime tom. For (A, ξ) ∈ S, let UA be the maximal Zariski open set
of U over which XA is an abelian scheme. By the above claim, codim(U \UA) ≥ 2.

Claim 5.2.2. There exists a finite Galois extension K ′ of K such that every m-
torsion point of A is defined over K ′ whenever (A, ξ) ∈ S.

For (A, ξ) ∈ S, let KA be the finite extension of K obtaining by adding all m-
torsion points of A to K. Let VA be the normalization of U in KA. It is well-known
that VA is étale over UA. Moreover, by virtue of the purity of branch loci (cf.
SGA 1, Exposé X, Thérème 3.1), VA is étale over U because codim(U \ UA) ≥ 2.
Let M be the union of the finite extensions K ′ of K such that the normalization
of U in K ′ is étale over U . By construction, M is a Galois extension of K. Since
KA ⊆M , we have a continuous homomorphism

ρA : Gal(M/K) → Aut(A[m](K)) ' Aut((Z/mZ)2g)

such that ker(ρA) = Gal(M/KA). Since Gal(M/K) = π1(U), by [3, Hermite-
Minkowski theorem in Chapter VI], we have only finitely many continuous homo-
morphisms

ρ : Gal(M/K) → Aut((Z/mZ)2g).
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Thus there are only finitely many choices of Galois subgroups Gal(M/KA) ⊆
Gal(M/K) and of subfields KA ⊆M . This shows our claim.

Claim 5.2.3. For any (A, ξ), (A′, ξ′) ∈ S, (A, ξ) ×K Spec(K ′) ' (A′, ξ′) ×K

Spec(K ′).

There is a finite Galois extension K ′′ of K ′ such that an isomorphism

φ : (A, ξ)×K Spec(K ′′) → (A′, ξ′)×K Spec(K ′′)

is given over K ′′. Let α be a level m structure of A over K ′′ and α′ = φ · α. Then
ε(K ′′/K ′, A ×K Spec(K ′), α) = ε(K ′′/K ′, A′ ×K Spec(K ′), α′) = 1 because all m-
torsion points of A and A′ are defined over K ′. Thus A ×K Spec(K ′′) → A′ ×K

Spec(K ′′) descends to an isomorphism (A, ξ)×K Spec(K ′) → (A′, ξ′)×K Spec(K ′)
by Lemma 5.1.

Finally, let us see the number of isomorphism classes in S is finite. Fix (A0, ξ0) ∈
S and a level m structure α0 of A0 over K ′. Let φA : (A0, ξ0) ×K Spec(K ′) →
(A, ξ) ×K Spec(K ′) be an isomorphism over K ′. We set αA = φA · α0 and φA

A′ =
φA′ · φ−1

A : A×K Spec(K ′) → A′ ×K Spec(K ′) for (A, ξ), (A′, ξ′) ∈ S. Then αA′ =
φA

A′ · αA. Here let us consider a map

γ : S → Hom(Gal(K ′/K),Aut((Z/mZ)2g))

given by γ(A) = ε(K ′/K,A, αA). By Lemma 5.1, if γ(A) = γ(A′), then (A, ξ) '
(A′, ξ′) over K, while Hom(Gal(K ′/K),Aut((Z/mZ)2g)) is a finite group. This
completes the proof. 2

6. Strong finiteness

In this section, we give the proof of the main result of this paper.

Theorem 6.1. Let K be a finitely generated field over Q with d = tr.degQ(K).
Let B = (B;H1, . . . ,Hd) be a strictly fine polarization of K. Then, for any num-
bers c, the number of isomorphism classes of abelian varieties defined over K with
hB

Fal(A) ≤ c is finite.

Proof. Considering a generic resolution of singularities µ : B′ → B, we may
assume that B is generically smooth.

Let us consider the following two sets:

S0(c) =
{

(A, ξ)
∣∣∣∣

(A, ξ) is a principally polarized abelian variety
over K with hB

mod(A) ≤ 8c

}

S(c) =
{
A | A is an abelian variety over K with hB

Fal(A) ≤ c
}

By Corollary 4.2,
{
(A, ξ)× Spec(K) | (A, ξ) ∈ S0(c)

}
/'K is finite. If A is an

abelian variety over K, then (A × A∨)4 is a principally polarized abelian variety
over K (Zarhin’s trick; see [12, Exposé VIII, Proposition 1]). By Proposition 3.3
and Proposition 3.5,

hB
mod((A×A∨)4) = 8hB

mod(A).
Thus, if A ∈ S(c), then (A × A∨)4 ∈ S0(c). Here the number of isomorphism
classes of direct factors of (A × A∨)4 ×K Spec(K) is finite (cf. [12, Exposé VIII,
Proposition 2]). Thus {A×K Spec(K) | A ∈ S(c)}/'K is finite. In particular, there
is a constant C such that C ≤ hB

mod(A) for all A ∈ S(c).
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Let KA be the minimal finite extension of K such that A[12](K) ⊆ A(KA).
Then [KA : K] ≤ #Aut((Z/12Z)2g). Let BA be a generic resolution of singulari-
ties of the normalization of B in KA. By Proposition 1.2.1, A ×K Spec(KA) has
semiabelian reduction over BA in codimension one. Thus, by Proposition 3.1, there
is an effective divisor EA on B with

hB
Fal(A)− hB

mod(A) =
d̂eg(ĉ1(H1) · · · ĉ1(Hd) |EA)

[KA : K]
.

Here hB
mod(A) ≥ C for all A ∈ S(c). Thus we can find a constant C ′ such that

d̂eg(ĉ1(H1) · · · ĉ1(Hd) |EA) ≤ C ′

for all A ∈ S(c). Therefore, by virtue of Proposition 1.10.1, there is a reduced
effective divisor D on B such that, for all A ∈ S(c), A has semiabelian reduction
over B \D in codimension one. Hence, by Proposition 5.2, we have our assertion.

2

Remark 6.2. If the problem in Remark 1.10.3 is true, then Theorem 6.1 holds
even if the polarization B is fine.
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