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Abstract

We introduce a measure contraction property of metric measure spaces which
can be regarded as a generalized notion of the lower Ricci curvature bound on
Riemannian manifolds. This property is preserved under the measured Gromov-
Hausdorff convergence. Moreover, we will prove a generalization of the Bonnet-
Myers theorem.

1 Introduction

The notions of lower and upper ‘sectional’ curvature bounds on not necessarily Rieman-
nian metric spaces are introduced by Alexandrov by using the triangle comparison theo-
rems, and they are called Alexandrov spaces and CAT(K)-spaces, respectively (see [ABN],
[BGP], [G], [BBI], and the references therein). These spaces are quite interesting objects
themselves and, furthermore, they are turned out to be useful tools to study limit spaces
under the Gromov-Hausdorff convergence of sequences of Riemannian manifolds with
uniform lower or upper sectional curvature bounds. Now the Alexandrov spaces and
CAT(K)-spaces are ones of the most important objects in the metric geometry.

Once the importances of Alexandrov spaces and CAT(K)-spaces are understood, a
natural question arises: What about the lower bound of the ‘Ricci’ curvature? One reason
why this is a natural question is that the family of Riemannian manifolds with unifrom
lower Ricci curvature and upper diameter and dimension bounds is precompact in the
Gromov-Hausdorff topology ([G]). In their serial papers [CC], Cheeger and Colding in-
vestigate the limit spaces under the measured Gromov-Hausdorff convergence of sequences
of Riemannian manifolds with uniform lower Ricci curvature bounds, and consider the
convergence of the Laplacian (Fukaya’s conjecture, [F]).
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Recently, a breakthrough on this topic, so called ‘synthetic treatment of the lower Ricci
curvature bound on metric measure spaces’, is given by Sturm [S2] and Lott and Villani
[LV] (see also [RS]). They independently introduce mutually slightly different conditions.
More precisely, they consider the Wasserstein space on a metric measure space and adopt
the convexity of a (family of) functional(s) on that space as a generalized notion of the
lower Ricci curvature bound. However, there remains a problem on the treatment of the
dimension. Sturm’s condition does not contain a term of the dimension and it can be
regarded as the case where the upper bound of the dimension is the infinity. In addition
to it, Lott and Villani consider spaces having finite upper bounds on their dimensions
(N-Ricci curvature), but it is only for the nonnegative Ricci curvature case. So that it
is still unclear how to define spaces with a finite upper bound on their dimensions and
with a nonzero lower Ricci curvature bound. Furthermore, some basic questions to justify
their conditions are open, for instance, whether Alexandrov spaces satisfy these or not.

In this article, we introduce another kind of a generalization of the lower Ricci cur-
vature bound, the (K, N)-measure contraction property (Definition 2.1, the (K, N)-MCP
for short). Here K € R is the lower bound of the Ricci curvature and N > 1 is the upper
bound of the dimension, so that we can consider a situation which is not covered in [S2]
and [LV] (K # 0 and N < oo). This condition is defined in terms of the contraction of
a measure on a set to a point, and seems simpler and more geometrically understandable
than those considered in [S2] and [LV]. Indeed, we do not use the Wasserstein space to
define the (K, N)-MCP, and it is not difficult to see that Alexandrov spaces satisfy the
(K, N)-MCP (Proposition 2.7).

One of our main results is a generalization of the Bonnet-Myers theorem. Namely, we
shall show that, if a metric measure space (X, u) satisfies the (K, N)-MCP for some K > 0
and N > 1, then its diameter is less than or equal to 7/v/K (Theorem 4.2). Moreover,
for every point x € X, the set of points at a distance of 7/ VK from z consists of at
most one point (Theorem 4.4). We also prove a generalization of the Bishop-Gromov
volume comparison theorem (Theorem 5.1). In addition to these, we show that, for
an n-dimensional Riemannian manifold, the (K,n)-MCP is equivalent to that its Ricci
curvature is bounded from below by (n — 1)K (Theorem 3.2), and that the (K, N)-MCP
is preserved under the measured Gromov-Hausdorff convergence (Theorem 6.8). These
results as well as the (K, N)-MCP of Alexandrov spaces justify us to say that the (K, N)-
MCP is a generalized notion of the lower Ricci curvature bound. Techniques developed
in [RS], [S2], and [LV] play crucial roles in our discussions.

In the present article, we do not pursue the analytic property of the (K, N)-MCP, such
as Poincaré inequalities, Dirichlet forms, and harmonic functions. They will be treated in
other article(s).

The article is organized as follows. We give the definition of the (K, N)-MCP and
consider some basic properties, such as the doubling condition, in Section 2. In Section
3, we treat the Riemannian case. Section 4 is devoted to a generalization of the Bonnet-
Myers theorem. We prove a generalization of the Bishop-Gromov volume comparison
theorem in Section 5. In the last section, we consider the stability of the (K, N)-MCP
under the measured Gromov-Hausdorff convergence.

After this work is completed, I learn of a related work by Sturm [S3].



2 Measure contraction property

A metric space (X, dy) is called a length space if it satisfies dx(z,y) = inf, length(~) for
all x,y € X, where the infimum is taken over all rectifiable curves v from x to y. If, for
every =,y € X, there exists a curve v which satisfies dy(x,y) = length(), then we say
that (X, dx) is geodesic. Note that, if a length space is complete and locally compact,
then it is geodesic. A rectifiable curve 7 in a metric space (X, dx) is called a geodesic if
it is locally minimizing and has a constant speed. A geodesic 7 : [0,{] — X is said to
be minimal if it satisfies length(y) = dx(7(0),~v(l)). By taking a reparametrization of a
curve which attains the distance, every two points in a geodesic metric space are joined
by a (not necessarily unique) minimal geodesic.

Throughout this article, without otherwise indicated, let (X, dx) be a length space,
and let 41 be a Borel measure on X such that 0 < u(B(x,7)) < oo holds for every z € X
and r > 0, where B(x,r) (or BX(x,r)) denotes the open ball with center z € X and

radius r > 0. The closed ball with center x € X and radius r > 0 is denoted by B(z, )
or EX(ZL‘,T). Henceforce, we denote dx(z,y) by |z — y|x for z,y € X, and write simply
X instead of (X, dy).

As in [LV], let ' be the set of minimal geodesics, say v : [0,1] — X, in X and define
the evaluationg map e; : I' — X by e, (y) := 7(t) for each ¢t € [0,1]. We regard I as a
subset of the set of Lipschitz maps Lip([0, 1], X) with the Lipschitz topology. A dynamical
transference plan 11 is a Borel probability measure on I', and a path {p}ep1) € P*(X)
given by p; = (e;).I1 s called a displacement interpolation associated to I1, where we define
P?(X) as the set of all Borel probability measures, say p, satisfying [ |t —y|% du(y) < co
for some (and hence all) x € X.

For K € R, we define the function sx on [0,00) (on [0,7/vK) if K > 0) by

(1/VK)sin(vKt) if K >0,
SK(t) = t if K = O,
(1/v/=K)sinh(v/—Kt) if K <0.

Definition 2.1 For K € R and N > 1, a metric measure space (X, i) is said to satisfy
the (K, N)-measure contraction property (the (K, N)-MCP for short) if, for every point
z € X and measurable set A C X (provided that A C B(z,7/VK) if K > 0), there exists
a displacement interpolation {su}iejo1) C P?(X) associated to a dynamical transference
plan II = II,, 4 satisfying the following:

(1) We have pyp = 9, and gy = (p|a)” as measures, where we denote by (u|a)~ the
normalization of p4, i.e., (u|a)™ == p(A)™' - pa;

(2) For every t € [0, 1],

st = (D)) | ¥
e e ({SE g same) 2

holds as measures on X, where we set 0/0 = 1.



If there exists a measurable map ® : A — I satisfying eg o ® = x, e; 0 & = id4, and
IT = ®,[(1|4) "], then the inequality (2.1) yields that

dn > (0o ®), (t{ﬂ—_‘j@}mlmz) o) (22)

holds as measures on X. Here x4 stands for the characteristic function on A. This is the
case where, for each y € A, there exists an exactly one geodesic v € supp Il from z to y.

Lemma 2.2 The inequlity (2.2) is equivalent to that, for all t € [0,1] and measurable set
A" C A, we have

(e (@(A"))) >/ t{M}N_ldu(z) (2.3)
' = Ju Usk(z — z|x) ' '
Proof. Put ¥ :=¢e; 0P and
skt — 2"
in this proof for simplicity. We first assume (2.2). For a measurable set A’ C A, we have
HD(A)) > (0.0) (T(A)) = (- (B(AY) = v(A)

This implies (2.3). We next suppose (2.3). For a measurable set W C X \ V(A), we
immedately obtain (W) > 0 = (V,v)(W). If W C W(A), then (2.3) yields that

p(W) = p(WEH (W) = v (W) = (L)(W).
This completes the proof. a

The inequality (2.3) can be regarded as a generalization of the Bishop inequality under
a lower Ricci curvature bound Ric, > (N — 1)K (see Theorem 3.1 below), and is a reason
why we say that (2.1) is a kind of measure contraction property. We refer [S1], [KS1],
[R1], and [R2] (see also [O]) for other kinds of measure contraction property of metric
measure spaces. Note that a metric measure space consisting of only one point satisfies
the (K, N)-MCP for all K € R and N > 1. The following are clear by definition.

Lemma 2.3 (i) Suppose that K < 0 or K > 0 and diam X < 7/2v/K. Then the
(K, N)-MCP of (X, ) implies the (K, N")-MCP for all N' > N.

(i) If (X, dx, u) satisfies the (K, N)-MCP and if a,b > 0, then the scaled metric measure
space (X,a - dx,b- ) satisfies (K/a®, N)-MCP.

We remark that the (K, N)-MCP does not necessarily imply the (K, N')-MCP for
N’ > N if K > 0. Indeed, the N-dimensional sphere SV with the standard Riemannian
metric satisfies the (1, N)-MCP, but it does not satisfy the (1, N')-MCP because we have

(ui) i
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if 1/VK —r <tr<r<m/VK.
The following lemma is almost straightforward from the definition of the (K, N)-MCP,
and will be sharpened in Section 5.

Lemma 2.4 Let (X, p) satisfy the (K, N)-MCP. Then, for every x € X and 0 <r < R
(< 7/VK if K>0), we have

B, R) _ R {sK@R)}N‘{

W(B(r) = 7 ool Usk()

In particular, the set S(x,r) :={y € X ||z —y|x = r} has a null measure for any r € X
and r > 0 (provided that r < /K if K > 0).

Proof. The (K, N)-MCP with z =z, A = B(x, R), and t = r/R yields that

/L(B(SL’ 7’))

> pu(B(z,R))— inf

R 0<A<1 ((er/r)+Ie.B(a,r)) (B(2, 7))

SK

s il

2

e
(B R Eoggl{jﬁ R )
{

> _
- M(B( R ogil

SSK<()\2)} ((61)71[3(%1%)])

R o<1

_r inf {SK&%} u(B(z, R)).

Here the inequality in the third line follows from (eg).Il = d,. Indeed, it implies
(e1)'[B(z, R)] NsuppIl C (e,/z) ' [B(z, 7).
This completes the proof. O

In particular, the (K, N)-MCP implies the (local) doubling condition. Namely, for
any R >0 (R <7/VK if K >0),r € (0,R], and z € X, we have

(B )
H(B G rf2)) = O

where Cx yr < 00 is a constant depending only on K, N, and R. The doubling condi-
tion implies that every bounded closed ball in X is totally bounded. Therefore, if X is
complete, then it is proper (i.e., all bounded closed sets are compact) and hence geodesic.

Corollary 2.5 If (X, pu) satisfies the (K,N)-MCP and if it contains more than two
points, then the measure j is non-atomic.

Corollary 2.6 If (X, u) satisfies the (K, N)-MCP, then the Hausdorff dimension of X
18 less than or equal to N.



Proof. Lemma 2.4 yields that the function f(z) := limsup,_or"u(B(x,7))™ on X is
locally bounded. By [AT, Theorem 2.4.3], this implies that the N-dimensional Hausdorff
measure H”Y on X is also locally bounded. Therefore the Hausdorff dimension of X is
not greater than N. a

We end this section with a proposition which asserts that Alexandrov spaces satisfy
the MCP. As the Alexandrov space is considered as a metric space with a lower ‘sectional’
curvature bound, this proposition supports us for saying that the (K, N)-MCP is a gen-
eralized notion of a lower ‘Ricci’ curvature bound. See [BBI], [BGP], and [KS1] for the
definition of and terminologies on Alexandrov spaces.

Proposition 2.7 Let X be an n-dimensional, complete, and locally compact Alexandrov
space with curvature > K, and ‘H™ be the n-dimensional Hausdorff measure on X. Then

(X, H") satisfies the (K,n)-MCP.

Proof. This easily follows from [KS1, Lemma 6.1], we give an outline of the proof for
completeness. For a point z € X and a measurable set A C X, we define a map &~ =
dX,: A — T by ®¥(y) := v, where 7 : [0,1] — X is an arbitrarily chosen minimal
geodesic from x to y. Then we see that ®¥ is measurable as in the proof of [KSI,
Proposition 6.1], and we put II := (®X) * [(u|4)~]. The condition (1) in Definition 2.1
is clearly satisfied and the condition (2) follows from the curvature condition just as in
[KS1, Lemma 6.1]. O

3 Riemannian case

In this section, we consider the Riemannian case. See, for example, [Cl]] for fundamentals
on Riemannian geometry. Let (M, g) be an n-dimensional, complete Riemannian manifold
without boundary and denote by d, (or |- — - |,) and v, the Riemannian distance and
the Riemannian measure, respectively, on M induced from g. In addition, Ric, stands
for the Ricci tensor with respect to ¢ and the inequality Ric, > (n — 1)K means that
Ricy(&,€) > (n—1)K holds for every p € M and £ € S,M, where S,M C T,M is the unit
tangent sphere at p € M. For a point p € M and a unit tangent vector £ € S, M, we set

c(&) :=sup{r > 0|[p —ye(r)ly = r},
where we define ¢(r) := exp, 7. Define, for p € M,
C(p) = {re(c(§)) 1€ € S,M},

D(p) :={t{[§ € S,M, 0 <r <c(§)} CT,M,
D(p) = exp, D(p).

The set C(p) is called the cut locus of p. Recall that exp, : D(p) — D(p) gives a
diffeomorphism and that we can represent dv,(q) = (exp,)«[Ay(r;§) dr d€] on D(p), where
q = 7Ye(r) and A,(r;€) denotes the density of the Riemannian measure on S(p,r) induced
from g. Recall that we set S(p,r) := {¢ € M||p —¢q|l, = r}. The classical Bishop
comparison theorem asserts the following ([BC], cf. [C], Theorem 3.8]).
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Theorem 3.1 If (M, g) satisfies Ric, > (n — 1)K, then we have

. /
1 dAp(T, 6) (n . 1) SK(T)
Ap(ri&)  dr sk (r)
for all £ € Sy,M and r € (0,¢(€)). In particular, the function A,(r; €)/sk(r)"' is mono-
tone non-increasing in r € (0,c(§)).

IN

Given a point p € M and a measurable set A C M, as in the proof of Proposition
2.7, we define a map " = @)/, : A — T by ®),(¢q) := v, where v : [0,1] — M is an
arbitrarily chosen minimal geodesic from p to ¢. As C(p) has a null measure, the map
CID% ', 1s measurable and is uniquely determined upto a modification on a null measure set.

Theorem 3.2 Let (M, g) be an n-dimensional, complete Riemannian manifold without
boundary. Then a metric measure space (M,dy,v,) satisfies the (K,n)-MCP if and only
if Ric, > (n — 1)K holds.

Proof.  We first assume Ric, > (n — 1)K and fix a point p € M and a mesurable set
A C M. We shall show that the map ®" = @)/, defined as above satisfies (2.3) with
N = n which implies the (K, n)-MCP. It follows from Theorem 3.1 that, for any ¢ € [0, 1]
and measurable subset A’ C A,

(@) = [ e drs
expp )ND(p

si(tr) "
> t Ap(r; &) drd
expy (40D | S (7)
n—1
t _
- / t{w} dv,(q).
+ Usk(lp—dly)
Therefore ®M satisfies the inequlity (2.3).
Next we consider the converse, so that we suppose that (M, d,, v,) satisfies the (K, n)-

MCP. Fix p € M, £ € S,M, and an orthonormal basis {ey,... ,e,} in T,M with e; = £.
We denote by k; the sectional curvature of the plane spanned by e; and e; for each

1 =2,...,n. For a small r > 0, it follows from
s(r) 1 K , 4
=—(1+— @)
sk (2r) 2( Ty o)
that




On the other hand, it is not difficult to observe that the (K, n)-MCP implies

:ppé:fs)) - {f <<2?> }

and hence we have

f! (1 + %ﬁ) > {SZ}ZQ(:; }H +0(r?).

By taking the logarithm of both sides, we find

glog (1 + %H) > (n—1)log (ii@(g) + 0@

= (n—1)log (1 + %ﬁ) +0(r?).

As log(1 + s) = s + O(s?), the inequality above yields that

> %72 > (n — 1)%# +0(r?).

=2

Dividing both sides by r? and letting r tend to zero, we consequently obtain
Ricy(£,€) = ki > (n— K.
i=2

This completes the proof. O

The following are easily derived from Lemma 2.3(i) and Corollary 2.6 together with
the theorem above.

Corollary 3.3 Let (M, g) be an n-dimensional, complete Riemannian manifold without
boundary.

(i) Suppose that K < 0 or K > 0 and diam M < 7n/2V'K. If (M,g) satisfies Ric, >
(n—1)K and n < N, then (M,d,,v,) satisfies the (K, N)-MCP.

(ii) If a metric measure space (M, dg,v,) satisfies the (K, N)-MCP, then we haven < N.

4 Bonnet-Myers theorem

In this section, we shall show a generalization of the Bonnet-Myers theorem ([M]), that
is, the (K, N)-MCP with K > 0 and N > 1 implies that the diameter is less than or
equal to /v/K. By rescaling the distance, we may assume K = 1 (Lemma 2.3(ii)). For
x € X and s,t > 0 with s < t, we define A(z;s,t) := B(x,t) \ B(z,s), where we set
B(z,0) := 0. The symbol 6, 3(d) denotes a function depending only on « and § with
lims_0 04,(9) = 0. The following lemma will be a useful tool.
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Lemma 4.1 Let (X, u) satisfy the (1, N)-MCP. Then, for any v € X and s,t € [0,7/2]
with s < t, we have

w(A(z; s, 1) > p(Alz;m —t,m —s)).

Proof. We may assume that 7/(1 +2) < s <t <x/(l+ 1) holds for some [ € N. Take a
large M € N and set 6 = (t — s)/M. For 1 <m < M, we put

T—35—md
T—s5—(m—1)§
Ay = A(z;m — s —mé,m — s — (m — 1)d).

A 1=

As in the proof of Lemma 2.4, the (1, N)-MCP implies that, for each 1 < m < M and
1<k<l,

[L(A(ZL‘; )\f;(s + md), )\fn_l(s + m5)))
>

<7T —5— m(;)k_l Sin(s + (m _ 1)5) N-1
(m—s—(m—1))F (s + mé){ sin(m — s — mé) } 11(Am)

(r — s —md)! sin(s + (m —1)8) YV
~ (r—s—(m—1)d) (s+ md){ sin(s + mJd) } #(Am)- (41)

Here the second inequality follows from

AE (s 4+ m8) > AL (s +md)

:)\ﬁgl(l—ﬂ_s_(zm_l)é)(s—kmé)

:Ag2(1— W_S_(zm_ s —5(7T _WS__S(;T(SDCS)Q)(Seré)
= ... = (54 md) _52 (W(i;iznj’bi););)i(ermd)
28+m5—wﬁ_;j£f-n528+m6_ww—;j£?—na
>8+m6—MﬂitZ$+m6—M;§%%%%ﬁ

= s+ (m—1)d.



Summing up (4.1) in k =1,... ,[, we see that
(A AL (s +mé), s +md))

> (m—5—md)"! sin(s + (m — 1)d) }N_lu(Am)

s (m-nat ma){ sin(s 1 mo)
l . N-1
= 7Tl(—s :—T;jzé(wi;j— 5) {sins(;n—i 5)} #(Am)

= LMD 44 08) (14 O () ()

Cr—s—md
In/(l+2)

T r—7/(l+2)
[

= l—l-—l(l + QZ,N((S))M<AW)‘

Now we estimate p(A(x;s + (m — 1)§, X, (s +md))). To do this, take

(1+ O3 (8)) 1(Anm)

TE[mr—s—minm—s—(m—1)0— p(m,d)]

such that

w(Az; 7,7+ p(m, 8))) >

holds, where we put

T—s5—mod
p(m,d) = Py 1)5{)\m(s—|—m6) — (s+ (m—1)8)}.
We remark that p(m,d) > 0 and
‘”(”i—_l)(s(Ter(m’(g))
:s—l—(m—1)5—|—W_S_m(s{)\lm(s—l—mé)—(s+(m—1)6)}

< s+ (m—1)5+ X, (s +md) — (s + (m — 1)d)
= AL (s +md).
Again by the (1, N)-MCP, we have
(A s + (m —1)5, L, (s + md)))

S 5T (m—1)§ { sin(s + (m — 1)d) } w(Az; 7,7+ p(m, §)))

. 3+(m—1)5>6{sin(s+(m—1)5)} _M(A($;T,T+p(m,5)))

T—s—(m—1 sin(m — s — md)
s+(m—1)0 7w—s—md (
T—s—md m—s—(m—1)

= (1+ 91,N(<5))8+(m—_1)5u(14(x; 7,7+ p(m,d))).

T—38—md

T sin T

1+ 0,8 (0)) u(Ala; 7, 7 + p(m, 0)))
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By the choice of 7, it implies
p(A(z; s + (m —1)5, A, (s +md)))
> (14 6,5(8)0 AL (s +md) — (s + (m — 1)) pu(Ay)
= (1 + HZ,N(5))5_1{5 + (AL — 1) (s + m5)},u(Am).

Note that

9, . —m(m — )+ (m—1)(7 — s) l

= AL =1 —

06 |5_o (m—s)? T—s
Thus we observe

%)
ANo=1- + 66,(6).
T™— 58

Therefore we find

1(A(z; s + (m —1)3, X, (s + md)))

—1
] (e L) [
> (1 0 ) (1 + 00 )
146, n(0)
[+1 #(An)

Combining inequalities (4.2) and (4.3), we obtain
1(A(z; s + (m —1)6,5 + md)) > (14 O,n(0)) p(Apy)-
Summing up this inequality in m =1,... . M yields
p(A(z;s,t) > (1+0800)) p(Az; T — ¢, 7 — 5)).

By letting ¢ tend to zero, we complete the proof.

O

Theorem 4.2 (Bonnet-Myers theorem, 1) If a metric measure space (X, p) satisfies the

(K, N)-MCP for some K > 0 and N > 1, then we have diam X < 7/VK.

Proof. 1t suffices to consider the case of K = 1. Suppose that there exist two points
x,y € X with |x — y|x = 7 + € for some £ > 0. Since X is a length space, for any small
d € (0,e), we can take a unit speed curve v : [0,7 + ¢ + ¢'] — X such that v(0) = =,

v(m 4+ e+ ¢") =y, and that ¢’ € [0,0]. If we put z5 := (e + 25 + ¢’), then we find

e+20<|r—2lx <e+20+7, T—20—0 <|zs—y|lx <7 —20.

11



Put

T—ec—20—0
- — , A = e (supp 1l Bry.s))-

Then it follows from the (1, N)-MCP that

w2 Gt B ) () )

> (- ) {2 )

> (1 - ‘;*_2; ) {Sizi(g(;:;;(s) }Nlu(B(y,a))

-(- ) e

On one hand, we observe

AC B(Zg,t(’Zg —y!X+5)) C B(£,€+25+(5’+t(7‘(’—5))
= B(z, ).

On the other hand, we see
AC X\ Bz, |z — zslx + (|25 — ylx —9))

C X\ B(z,e+20+t(r — 35 —¢"))
C X\ Bz, — 4),
where the last implication follows from
e+20+t(r—30—10")
= [+ 20){(r— ) — (x 35— )} + (x — &) — 35~ )]

m —

>n—30—08 > — 44

Thus we have, by Lemma 4.1,
(A) < p(A(z;m —40,m)) < p(B(x,46)) < 4Vu(B(x,0)).

Therefore we obtain, since N > 1,

Mo (- e

as 0 tends to zero. However, this is a contradiction because we can exchange the roles of
r and y. O

Recall that we set S(z,7) ={y € X ||z —y|x =7} forx € X and r > 0.
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Lemma 4.3 Let (X, u) satisfy the (1, N)-MCP for some N > 1.

(i) For every x € X, the set S(x,m) has a null measure.
(i) If x,y € X satisfies |x — y|x = 7, then we have, for any € € (0,7/2),
p(B(z,e)) = u(B(y ).

Proof. (i) We can suppose that S(z,7) # 0, in particular, X contains more than two
points. Fix an arbitrary ¢ > 0 and let {z;}£, be a maximal 2e-discrete set in S(z, 3¢), i.e.,
{31, C S(z,3¢), |z;i—x;]x > 2¢ holds if i # j, and {B(x;,2¢)}M, covers S(z,3e). Note
that B(z;,)’s are mutually disjoint. For any y € S(z, 7), there exists a point z € S(z, 3¢)
such that |y — z|x <7 — 2¢, and |z — ;| x < 2¢ holds for some i. For such i, we observe

ly — xi|lx < |y —z2|x + |z —x|x <,

ly —xi|lx > |y —x|x — |z — z4|x =7 — 3e.

Namely, we see y € A(x;;m — 3¢, 7). Combining this with Lemma 4.1(i), we obtain

p(S(z, 7)) < u(ﬁA(xi;w - Bs,vr))

< 3%u(B(x,4¢)) — 0

as € tends to zero by Corollary 2.5. This completes the proof.
(ii) Tt is a straightforward corollary to Lemma 4.1 through Theorem 4.2 and (i) of this
lemma. Indeed, we have

p(B(x,)) > p(A(w;m —e,m) = p(X \ Bz, m —¢)) > pu(B(y, €)).
The converse inequality is obtained similarly. a

We remark that Lemma 4.3(i) is not covered by Lemma 2.4. Now we obtain the latter
half of our generalized Bonnet-Myers theorem.

Theorem 4.4 (Bonnet-Myers theorem, II) If a metric measure space (X, p) satisfies the
(K, N)-MCP for some K > 0 and N > 1, then, for any x € X, the set S(z,7/VK)

consists of at most one point.

Proof. Suppose that K = 1 and that there exist two points y,z € S(x,m) satisfying
e :=|y— z|x/2 > 0. Then, by Lemma 4.3, Theorem 4.2, and by Lemma 4.1, we obtain

2u(B(z,¢)) = u(B(y,¢)) + u(B(z,¢)) = n(Bly,e) U B(2,¢))
< p(Alzsm —e,m)) < p(B(z,e)).

This contradicts to pu(B(z,€)) > 0, and hence we complete the proof. O
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Corollary 4.5 If (X, ) satisfies the (K, N)-MCP, then it also satisfies the (K', N)-MCP
forall K' < K.

5 Bishop-Gromov volume comparison theorem

This section is devoted to proving an analogue of the Bishop-Gromov volume comparison
theorem. See [Cl, Theorem 3.10] for the Riemannian case. For n > 2, K € R, and
r >0 (re (0,n/VK)if K > 0), Vi(r) denotes the volume of a ball of radius  in
an n-dimensional, simply-connected, and complete Riemannian manifold with a constant
sectional curvature K.

Theorem 5.1 (Bishop-Gromov volume comparison theorem) Let (X, u) be a metric space
satisfying the (K,n)-MCP for somen € N withn > 2. Then, for any x € X, the function

1s non-increasing in v > 0.

Proof. The proof is based on the discretization of that in the Riemannian case. Take
r > 0. By Theorems 4.2 and 4.4, we can suppose r < W/\/E if K > 0. For a small
t € (0,1) and any [,m € N with [ < m, it follows from the (K,n)-MCP with = = =,
A= A(x;thr, t71r), and t = t™! that

p( Azt "))
tm—l n—1
> ™! sup {—SK(S T>} (A thr 7 1r))

t<s<1 SK(Stl_IT)

n—1
> m—I { : m—1 }/{ -1 }
>t { térslils;((st T) tiljglsK(st T)

X u(A(x;tlr, tl_lr)).

Thus we have, for all [ < j <m —1,

(A e, r Zt inf s (st 1r)" !

t<s<1

< {Zu(A(a:; tir, ti_lr)) }tj sup sg(st/~tr)nt

t<s<1

= p(B(z, t™ ')t sup sp(st/ ')
t<s<1
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Therefore we obtain
p(B(z, t'r))
1

= M(B(%tm_lr)) + M(A(:E;tjr, tj_lr))

3

J

r m—1
< |1+ t/ sup s st”l }/{ tt 1nfs st’l IH
{0 >t i st
< (B, 1)
< J J— 7 i—1, \n—1
< {3 s swtor ) /520 g st o)
x p(B(z, t" ! r)),
and hence
u(B(:v,tl_lr))/{Z(tj_lr—tjr) sup SK(stj_lr)”_l}
pa t<s<1
m—1 =1, g N i—1 yn—1
< pu(B(z,t r))/{_Z(t r tr)érslilsK(st T) }
This completes the proof by letting ¢ tend to 1. O

6 Stability and compactness

In this section, we consider the behavior of the (K, N)-MCP under the measured Gromov-
Hausdorff convergence. The Wasserstein space will play a crucial role. See [F] and [KS2]
for the measured Gromov-Hausdorff convergence, and see [LV], [S2], and [V] for the
Wasserstein space.

6.1 Measured Gromov-Hausdorff topology

We first recall the Gromov-Hausdorff distance between compact metric spaces. See [G]
for more details. For two closed subsets A and A’ in a metric space Z, the Hausdorff
distance d% between them is defined by

d% (A, A') = inf{e > 0| A C B(A',¢), A C B(A,e)}.

More generally, for two compact metric spaces X and Y, we define the Gromov-Hausdorff
distance dgg between them by

dan(X,Y) = inf di(o(X), (Y)),

where the infimum is taken over all metric spaces Z and isometric embeddings ¢ : X — Z
and ¢ : Y — Z. If we denote by C the isometric classes of compact metric spaces, then
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(C,dgp) is a complete metric space. The topology of C induced from dgp is called the
Gromov-Hausdorff topology. It is convenient to estimate the Gromov-Hausdorff distance
in terms of the e-approximating map. For metric spaces X and X', a (not necessarily
continuous) map ¢ : X — X' is called an e-approzimating map for e > 0 if it satisfies

B (p(X),e) D X’ and if
lo(@) = (y)lx — |z —ylx| <e
holds for all z,y € X. Note that a O-approximating map is nothing but an isometry.
Lemma 6.1 Let X,Y € C and € > 0.
(i) If deu(X,Y) < g, then there exists a 2e-approximating map from X to Y.
(ii) If there exists an e-approximating map from X to Y, then we have dgy(X,Y) < 2e.

In particular, a sequence {X;}3°; C C converges to X € C if and only if there exists a
sequence of g;-approximating maps ¢; : X; — X with lim; .., &; = 0. For the later use,
we recall an easily proved lemma.

Lemma 6.2 Let {X;}2, C C be a sequence of compact, geodesic metric spaces converging
to a compact metric space X € C in the Gromov-Hausdorff topology with a sequence {;}52,
tending to zero and e;-approzimating maps {p;}52,. For a sequence of minimal geodesics
v+ [0,1] — X, 1 € N, if the sequences of end points {pi(7:(0))}2, and {p:(7i(1))}32,
converge to some points x,y € X, respectively, then a subsequence of {p;0v;}32, converges
to a minimal geodesic from x to y uniformly.

We next recall the measured Gromov-Hausdorff convergence introduced in [F].

Definition 6.3 (Measured Gromov-Hausdorff convergence, [F]) A directed system of
metric measure spaces {(Xa, o) }aca 18 said to converge to a metric measure space (X, )
in the sense of the measured Gromov-Hausdorff convergence if there exists a directed
system of positive numbers {&, }aca satisfying the following conditions:

(1) {€a}aca converges to zero;

(2) For each o € A, we have a Borel, measurable, and e,-approximating map ¢, : X, —
X;

(3) A directed system of push-forward measures {(©a)«(tta)}a converges to p weakly, i.e.,
for any f € C(X), we have

tim [ 7 d(Gga)o(ua)) = [ i

Here C'(X) denotes the set of all continuous functions on X.
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If we define CM as the isomorphic classes of all compact metric spaces equipped with
Radon measures, then the measured Gromov-Hausdorff convergence gives a topology on
CM, and we call it the measured Gromov-Hausdorff topology. We know that this topology
is Hausdorff ([F, Proposition 2.7]) and that the projection CM (V) — C is proper, where
we set

CM(V) = A{(X,p) e CM|pu(X) <V}

for V> 0 ([F, Proposition 2.10]). For K € R, N > 1, V > 0, and D > 0, we define
CM(K,N,V,D) C CM(V) as the isomorphic classes of compact metric measure spaces
(X, p) in CM(V) satistying the (K, N)-MCP and diam X < D. The following is an
easy corollary of Gromov’s precompactness theorem ([G, Proposition 5.2]) by virtue of
Theorem 5.1.

Theorem 6.4 Let {(X;, 11;)}52, C CM(K,N,V,D). Then it has a subsequence which is
convergent in the measured Gromov-Hausdorff topology.

If we denote by (X, 1) € CM that limit space, then we immediately observe p(X) <V
and diam X < D. To show that (X, u) also satisfies the (K, N)-MCP, we need to recall
the Wasserstein space and some results in [LV].

6.2 Wasserstein spaces

Let X be a complete, separable metric measure space, and recall that P?(X) denotes the
set of all Borel probability measures, say i, satisfying [, |z — y|% du(y) < oo for some
(and hence all) z € X. Given two probability measures p,v € P?(X), a Borel measure
g on X x X is called a coupling of p and v if, for any measurable set A C X, we have
q(A x X) = pu(A) and ¢(X x A) = v(A). For example, the product measure p X v is a
coupling of y and v. We define the L2-Wasserstein distance dy, on P*(X) by

1/2
dw (p,v) := inf { (/ lz — y|% dq(z, y)) ‘ q : coupling of u and 1/}
XxX

for p,v € P?(X), and we call (P*(X),dw) the L?*-Wasserstein space over X. Then
(P?(X),dw) is a complete and separable metric space (see [S2, Proposition 2.10]). Fur-
thermore, (P?(X),dy ) is compact or a length space if and only if so is X, respectively.
In particular, if X is compact and geodesic, then so is (P*(X), dw).

Proposition 6.5 (cf. [V, Theorem 7.2]) A sequence {u;}32, C P*(X) converges to p €
P2(X) with respect to dy if and only if yu; converges to u weakly and

fim sup [ o=yl di(y) =0 (6.1)
X\B(z,R)

R—o0 jeN

holds for some (and hence all) point v € X.

We observe that (6.1) automatically holds true if X is bounded. The following two
results obtained in [LV] will play key roles in our discussions.
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Proposition 6.6 ([LV, Proposition 4.1, Corollary 4.3]) If ¢ : X — X' is a Borel,
e-approximating map, then o, : (P*(X),dw) — (P*(X'),dw) is E-approzimating with

& = 4e + {e(2diam X' + ¢)}/2.

In particular, if a sequence of compact metric spaces {X;}5°, converges to a compact
metric space X in the Gromov-Hausdorff topology with Borel, e;-approximating maps v;,
i € N, then the sequence {(P*(X;),dw)}2, converges to (P*(X),dw) in the Gromov-
Hausdorff topology with &;-approzimating maps (¢;)«-

Proposition 6.7 ([LV, Proposition 2.9]) Let X be a compact geodesic metric space. Then
any minimal geodesic in (P*(X), dw) is given by the displacement interpolation associated
to some dynamical transference plan.

6.3 Stability and compactness

All spaces in this subsection are assumed to be compact.

Theorem 6.8 (Stability) A measured Gromov-Hausdorff limit of a sequence of metric
measure spaces satisfying the (K, N)-MCP also satisfies the (K, N)-MCP.

Proof.  We first assume K < 0. Let {(X}, 1) }3°, C CM be a sequence of metric measure
spaces satisfying the (K, N)-MCP. We suppose that it converges to some metric measure
space (X, ) in the measured Gromov-Hausdorff topology, so that we have a sequence
{g;}52, tending to zero and a Borel, measurable, and ¢;-approximating map ¢; : X; — X,
1 € N, as in Definition 6.3.

Fix a point x € X and a measurable set A C X with p(A) > 0. For each (large) i € N,
we choose a point z; € gp{l(EX(:ﬁ,ai)) and put A; := p;'(A). We remark that, by the
definition of the e;-approximating map, ¢; *(B" (z,¢;)) is not an empty set. Moreover, as
w(A) >0, we know p;(A;) = ((vi)«pti)(A) > 0 and hence A; in not empty for large i. By
the (K, N)-MCP, for each i € N, we have a dymanical transference plan II; = II,, 4, such
that the displacement interpolation associated to it satisfies the conditions (1) and (2) in
Definition 2.1. Note that

(¢:)«((€0)+IL;) = (i) 02, = Opy(wi) — O

and, by Proposition 6.5,

(i)« ((e1)eI;) = (0i)upila,)™ = ([(0i)e(mi)]la) = (ula)”

in (P?(X),dw) as i diverges to the infinity, respectively. Thus it follows from Lemma
6.2 together with Proposition 6.6 that a subsequence of {(@;).[(e)«ILi]}icpa], @ € N,
converges to a minimal geodesic {1 };cjo,1) between d, and (]4)”. Again we denote this
convergent subsequence by {(¢;)[(€:).IL] }icp0,1), ¢ € N. Moreover, Proposition 6.7 implies
that {14 }icp,1) is the displacement interpolation associated to some dynamical transference
plan IT = II, 4 which clearly satisfies (eg).Il = 0, and (e1).I1 = (pu]a) .
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Now we consider the the condition (2) in Definition 2.1. We fix ¢t € (0, 1) and put

dv; = (er). (t{ itz = 7()]x,) }N_IMA» dHi(w),

sk (v —~(1)x,)

dv = (c)). (t{ sic(tlz = 7)) }Nlum) dnm)

sk (lz —~(1)]x)

on X; and X, respectively. Since (¢;)«[(e:).I1;] converges to (e;).Il weakly and X; con-
verges to X in the Gromov-Hausdorff topology, we find that (y;).(v;) converges to v
weakly as ¢ diverges to the infinity. The (K, N)-MCP of (X, u;) yields that u; > v;
holds as measures for every i. Therefore we have y > v and hence (X, u) satisfies the
(K, N)-MCP. This completes the proof in the case of K < 0.

If K > 0, then we take A C BX(z,7/vK) and set, for each i € N,

A; = o7 Y(A) N B (2,7 /VE).
Then a completely similar discussion proves the theorem. O
Combining this with Theorem 6.4, we obtain the compactness of CM (K, N,V, D).

Theorem 6.9 (Compactness) For any K € R, N > 1,V >0, and any D > 0, the set
CM(K,N,V,D) is compact in the measured Gromov-Hausdorff topology.

6.4 Non-compact case

The discussion in the previous subsection is also applicable to the non-compact case by
weakening the measured Gromov-Hausdorff convergence to the pointed one. We suppose
that all metric spaces appearing in this subsection are complete.

Definition 6.10 A directed system of pointed metric measure spaces {(Xa, flas 2a) faca
is said to converge to a pointed metric measure space (X, y, z) in the sense of the pointed
measured Gromov-Hausdorff convergence if there exist two directed systems {e, }aeca and
{7 }aca satisfying the following:

(1) {ea}aca tends to zero and {7, }aca diverges to the infinity;

(2) For each o« € A, we have a Borel, measurable, and e,-approximating map ¢, :
BXo(24,74) — BX(2,74);

(3) A directed system of push-forward measures {(©a)«(tta) faca converges to p vaguely,
i.e., for any f € Cy(X), we have

tim [ 7 d(Gga)o(ua)) = [ i

Here Cy(X) denotes the set of all continuous functions on X whose supports are
compact.
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Theorem 6.11 A pointed measured Gromov-Hausdorff limit of a sequence of pointed
metric measure spaces satisfying the (K, N)-MCP also satisfies the (K, N)-MCP.

Proof.

Take a point € X and a measurable set A C X. As X is proper, we can apply

the discussion in the proof of Theorem 6.8 to each AN B(x,m), m € N. This completes
the proof. O
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