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Abstract

We propose a rigorous computational method to prove the uniform
hyperbolicity of discrete dynamical systems. Applying the method to
the real Hénon family, we prove the existence of many regions of
hyperbolic parameters in the parameter space of the family.

1 Introduction and the Statement of the Results

Consider the problem of determining the set of parameter values for which
the real Hénon map

Ha,b : R2 → R2 : (x, y) 7→ (a − x2 + by, x) (a, b ∈ R)

is uniformly hyperbolic. If a dynamical system is uniformly hyperbolic,
generally speaking, we can apply the so-called hyperbolic theory of the
dynamical systems and obtain many results on the behavior of the sys-
tem. Despite its importance, however, proving hyperbolicity is a difficult
problem even for such simple dynamical systems as the Hénon maps.

The first mathematical result about the hyperbolicity of the Hénon map
was obtained by Devaney and Nitecki [11]. They showed that for any fixed
b, if a is sufficiently large then the non-wandering set of Ha,b is uniformly
hyperbolic and conjugate to the full shift of two symbols.

Later, Davis, MacKay and Sannami [8] conjectured that the area pre-
serving Hénon map Ha,−1 is uniformly hyperbolic if a is taken from some
intervals, and hence the dynamics is conjugate to a subshift of finite type.
Describing the configuration of stable and unstable manifolds, they iden-
tified the Markov partitions for these parameter values (see also Sterling-
Dullin-Meiss [22] and Hagiwara-Shudo [12]). Although the mechanism of
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hyperbolicity at these parameter values is clear by their observations, no
mathematical proof has been obtained so far.

The purpose of this paper is to propose a general method for proving
uniform hyperbolicity of discrete dynamical systems. Applying the method
to the Hénon map, we obtain a computer assisted proof of the hyperbol-
icity of Hénon map on many parameter regions including the intervals
conjectured by Davis et al.

Our results are summarized in the following theorems. We denote by
R(Ha,b) the chain recurrent set of Ha,b.

Theorem 1 (2-parameter family). If (a, b) is taken from the closure of the colored
regions of Figure 1, or if a < [−1, 6.25] and b ∈ [−1, 1], then R(Ha,b) is uniformly
hyperbolic.

The hyperbolicity of R(Ha,b) implies that Ha,b is R-stable on these pa-
rameter regions. We call such a region a “plateau”, because no bifurcation
occurs in R(Ha,b) and hence numerical invariants such as the topological
entropy, the number of the periodic points, etc., are constant on it.

Theorem 1 does not claim that a parameter value in the white region
is a non-hyperbolic parameter. It only guarantees that the colored regions
are contained in the set of hyperbolic parameter values. We can refine
Theorem 1 by performing more computations, that is, the more we perform
computations, the larger the colored regions will be.

It is interesting to compare Figure 1 with the bifurcation diagrams of the
Hénon map given by El Hamouly and Mira [13], and by Sannami [20, 21].
There must be a bifurcation on the boundary of a hyperbolic parameter
region, and in fact, the boundaries of plateaus in Figure 1 resemble the
bifurcation curves given in these papers.

Since the area-preserving Hénon family Ha,−1 is of particular importance,
we run a further computation restricted to it and obtain the following.

Theorem 2 (area preserving family). If a is in one of the following intervals:
[4.5383300781250, 4.5385742187500], [4.5388183593750, 4.5429687500000],

[4.5623779296875, 4.5931396484375], [4.6188964843750, 4.6457519531250],

[4.6694335937500, 4.6881103515625], [4.7681884765625, 4.7993164062500],

[4.8530273437500, 4.8603515625000], [4.9665527343750, 4.9692382812500],

[5.1469726562500, 5.1496582031250], [5.1904296875000, 5.5366210937500],

[5.5659179687500, 5.6077880859375], [5.6342773437500, 5.6768798828125],

[5.6821289062500, 5.6857910156250], [5.6859130859375, 5.6860351562500],

[5.6916503906250, 5.6951904296875], [5.6999511718750,∞),

then R(Ha,−1) is uniformly hyperbolic.
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Figure 1: uniformly hyperbolic plateaus
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The three intervals conjectured as hyperbolic parameter values by Davis
et al. appear in Theorem 2, thus we can say that Theorem 2 justifies their
observations.

Recently Cao, Luzzatto and Rios [6] showed that the Hénon map has a
tangency and hence is non-hyperbolic if the parameter is on the boundary of
the full horseshoe plateau (see also [4, 5]). This fact and Theorem 2 suggests
that Ha,−1 should have a tangency when a is close to 5.699951171875. In
fact, we can prove the following theorem using the rigorous computational
method developed by the author and Mischaikow [2].

Proposition 3. There exists a ∈ [5.6993102, 5.6993113] such that Ha,−1 has a
homoclinic tangency with respect to the saddle fixed point on the third quadrant.

Consequently, Theorem 2 and Proposition 3 yields the following.

Corollary 4. When we decrease a ∈ R of the area-preserving Hénon family Ha,−1,
the first tangency occurs in the interval [5.6993102, 5.699951171875).

We remark that Hruska [14, 15] also constructed a rigorous numerical
method for proving hyperbolicity of complex Hénon maps. The main differ-
ence between our method and Hruska’s method is that our method does not
prove hyperbolicity directly. Instead, it proves quasi-hyperbolicity, which
is is equivalent to hyperbolicity under the assumption of chain recurrence.
This enables us to avoid constructing a metric adapted to the hyperbolic
splitting. Another peculiar feature of our algorithm is that it is based on
the subdivision algorithm [9] and hence effective for inductive search of
hyperbolic parameters.

The structure of the rest of this paper is as follows. The notion of quasi-
hyperbolicity will be introduced in §2 and then an algorithm for proving
quasi-hyperbolicity will be proposed in §3. In the last section, §4, we apply
the method to the Hénon family and obtain Theorem 1 and 2.

2 Hyperbolicity and Quasi-Hyperbolicity

First we recall the definition of hyperbolicity. Let f be a diffeomorphism
on a manifold M and Λ a compact invariant set of f . We denote by TΛ the
restriction of the tangent bundle TM to Λ.

Definition 5. We say f is uniformly hyperbolic on Λ, or Λ is a uniformly
hyperbolic invariant set if TΛ splits into a direct sum TΛ = Es ⊕ Eu of two
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T f -invariant subbundles and there are constants c > 0 and 0 < λ < 1 such
that

‖T f n|Es‖ < cλn and ‖T f−n|Eu‖ < cλn

hold for all n ≥ 0. Here ‖ · ‖ denotes a metric on M.

We note that this definition involves two constants, c and λ. If we try
to prove hyperbolicity according to the definition, we must control two pa-
rameters at the same time, and the algorithm would be rather complicated.
We can omit the constant c by choosing a suitable metric on M, but con-
structing such a metric is also a difficult problem in general. The situation
is the same if we use the standard “cone fields” argument.

To avoid this computational difficulty, we introduce the notion of quasi-
hyperbolicity.

Definition 6. We say f is quasi-hyperbolic on Λ if T f : TΛ → TΛ has no
non-trivial bounded orbit.

It is easy to see that hyperbolicity implies quasi-hyperbolicity. The
converse is not true in general. However, when f |Λ is chain recurrent, these
two notions coincide.

Theorem 7 (Churchill-Franke-Selgrade [7], Sacker-Sell [19]). Assume that
f |Λ is chain recurrent, that is, R( f |Λ) = Λ. Then f is uniformly hyperbolic on Λ
if and only if f is quasi-hyperbolic on it.

intersection

pq

Figure 2: Λ := {p} ∪ {q} ∪ (Wu(p) ∩ Ws(q)) is quasi-hyperbolic, but is not
uniformly hyperbolic.
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Remark 8. The assumption of chain recurrence is essential for uniform
hyperbolicity. For example, consider two hyperbolic saddle fixed points
p and q in R3, with 1 and 2 dimensional unstable direction, respectively.
Assume that the unstable manifold Wu(p) of p intersects the stable manifold
Ws(q) of q, so that the sum of tangent spaces of these two manifolds span a
2-dimensional subspace (see Figure 2). Let Λ := {p} ∪ {q} ∪ (Wu(p) ∩Ws(q)).
Then Λ is quasi-hyperbolic, but clearly not uniformly hyperbolic because it
contains fixed points with different unstable dimensions and a connecting
orbit between them.

Recall that a compact set N is an isolating neighborhood [16] with respect
to f if the maximal invariant set

Inv f N := {x ∈ N | f n(x) ∈ N for all n ∈ Z}
is contained in int N, the interior of N. An invariant set S of f is said to be
isolated if there is an isolating neighborhood N such that Inv f N = S.

Here we note that the definition of quasi-hyperbolicity is equivalent
to saying that the zero section of the tangent bundle TΛ is an isolated
invariant set with respect to T f : TΛ → TΛ. In fact, it suffice to find an
isolating neighborhood that contains the zero section.

Proposition 9. Let K ⊂ M be a compact set containing Λ and N ⊂ TK be a
compact neighborhood of the zero section of TK. If N is an isolating neighborhood
with respect to T f : TM→ TM, then Λ is quasi-hyperbolic.

Proof. For a subset S of TM and δ ≥ 0, we define δS := {δ · v | v ∈ S}.
By linearity, if S is T f -invariant so is δS. Assume InvT f N ⊂ int N. If
we show that InvT f N does not contain a non-trivial orbit, then again by
linearity, it follows that there is no-nontrivial bounded orbit. A standard
compactness argument shows that there is δ > 1 such that δ InvT f N ⊂ N.
Since δ InvT f N is T f -invariant and contained in N, we have δ InvT f N ⊂
InvT f N, by definition. It follows that if v ∈ InvT f N, we have δnv ∈ InvT f N
for all n ≥ 0. Since InvT f N is bounded, v must be the zero vector. �

3 Algorithm

In this section, we assume that M = Rn and consider a diffeomorphism
fa : M → M that depends on k real parameters a = (a1, . . . , ak) ∈ Rk. Define
F : Rn ×Rk → Rk and TF : TRn ×Rk → TRn by

F(x, a) := fa(x) and TF(x, v; a) := T fa(x, v)
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where x ∈ Rn and v ∈ TxRn.
We denote by F the set of floating point numbers, or, the set of numbers

our computer can handle. Let IF be the set of intervals whose end-points
are in F. Namely,

IF := {I = [a, b] ⊂ R | a, b ∈ F}.
Similarly, we define the set of n-dimensional cubes

IFn := {I1 × · · · × In ⊂ Rn | Ii ∈ IF}.
Let X, V ∈ IFn and A ∈ IFk. We want to know the image of these cubes

under the map F and TF, that is, F(X × A) and TF(X × V × A). These are
not an object of IFn nor IF2n in general, but we require that we can enclose
these images using elements of IFn and IF2n.

Assumption 10. There is a computational method that inputs cubes X,V ∈
IFn and A ∈ IFk, and outputs Y ∈ IFn and W ∈ IF2n such that

F(X × A) ⊂ int Y and TF(X × V × A) ⊂ int W

hold rigorously.

As we will mention in the last section, for many classes of dynamical
systems, this assumption can be satisfied by using rigorous interval arith-
metic.

Here we recall the setting of Proposition 9. Let K ⊂ Rn be a compact set
that contains Λ and N ⊂ TRn the product of N and [−1, 1]n. We assume that
we can decompose K into a finite union of the elements of IFn, namely,

K =
⋃̀

i=1

K(i) where K(i) ∈ IFn.

We also decompose the fiber [−1, 1]n into a finite union of the elements of
IFn. By constructing products of cubes contained in the decompositions of
K and [−1, 1], we also decompose N as

N =

m⋃

j=1

N( j) where N( j) ∈ IF2n.

By Assumption 10, we can compute Y(i) ∈ IFn and W( j) ∈ IF2n such that

F(K(i) × A) ⊂ int Y(i) and TF(N( j) × A) ⊂ int W( j).

Next, we construct directed graphs G(F) and G(TF) from the information of
Y(i) and W( j) as follows:
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• G(F) has `-vertices: {v1, v2, . . . , v`}.
• There exists an edge from vp to vq if and only if Y(p) ∩ K(q) , ∅.

And similarly,

• G(TF) has m-vertices: {w1,w2, . . . ,wm}.
• There exists an edge from wp to wq if and only if W(p) ∩N(q) , ∅.

The most important property of G(F) is that if there exists x ∈ K(p) that is
mapped into K(q) by fa for some a ∈ A, then there must be an edge of G(F)
from vp to vq. This property also holds for G(TF).

We then use these directed graphs to enclose the chain recurrent set of
fa and the maximal invariant set of N. For this purpose, we define the
following notions.

Definition 11. The invariant set of a directed graph G is a subgraph of G
defined as

Inv G := {v ∈ G | ∃ edge that ends at v, and ∃ edge that starts at v}.

The set of strongly connected components of G is a subgraph of G defined as

Scc G := {v ∈ G | ∃ path from v to v}.

For a subgraph G of G(F), or G(TF), we define its geometric representation
by

|G| :=
⋃

vi∈G
K(i), or |G| :=

⋃

w j∈G
N( j),

respectively. Obviously, |G(F)| = K and |G(TF)| = N.

Proposition 12. For any a ∈ A,

Inv fa N ⊂ | InvG(F)| and InvT fa N ⊂ | InvG(TF)|.

Furthermore, for any a ∈ A, if R( fa) is contained in int K then

R( fa) ⊂ | SccG(F)|

holds.

8



Proof. The first claim follows immediately from the construction of G(TF).
We prove the latter claim. Since F(K(i) × {a}) ⊂ int Y(i) holds for all i and
the number of cubes in K is finite, we can choose ε > 0 such that if x ∈ K(i)
and y is a point with d( fa(x), y) < ε then y must be contained in Y(i). Here d
denotes a fixed metric ofRn. This implies that if such y is contained in K( j),
there must be an edge from vi to v j. Let x ∈ R( fa). From the assumption,
there exists p such that x ∈ K(p). Since R( fa) ⊂ int K, we can assume that
these is an ε-chain form x to itself that is contained in K, by choosing smaller
ε, if necessary. It follows that there must be a path of G(F) from vp to itself
and therefor x ∈ | SccG(F)|. This proves the claim. �

For the computation of Inv G, the algorithm of Szymczak [24] can be
used. There is also an algorithm for computing Scc G that is standard in the
algorithmic graph theory (see [23], for example).

Combining Proposition 9 and Proposition 12, we obtain the following
theorem.

Theorem 13. If | InvG(TF)| ⊂ int N, then fa is quasi-hyperbolic on Λa for all
a ∈ A.

Now we describe an algorithm to prove the quasi-hyperbolicity of in-
variant sets. The algorithm involves the subdivision algorithm [9], that is,
if it fails to prove quasi-hyperbolicity, then it subdivide all of the cubes in K
and N to have a better approximation of the invariant set.

Let Λa be the invariant set of our interest, that depends on a. We assume
that Λa ⊂ int K holds for all a ∈ A.

Algorithm 14. (For proving quasi-hyperbolicity for all a ∈ A)

1. If we know that Λa ⊂ R( fa) holds for all a ∈ A, compute SccG(F) and
replace K with | SccG(F)|. Otherwise compute InvG(F) and replace K
with | InvG(F)|.

2. Replace N with K × [−1, 1]n and decompose N into cubes using the
product of the decomposition of K and [−1, 1]n.

3. Compute InvG(TF).

4. If | InvG(TF)| ⊂ int N then stop.

5. Otherwise, refine the decomposition of K and [−1, 1] by bisecting all
cubes and then goto the step 1.
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The difference of SccG(F) and InvG(F) in the step 1 of Algorithm 14
is sometimes crucial. This is because | InvG(F)| may contain a connecting
orbit between the hyperbolic basic set of different indices, for example a
connecting orbit from a saddle periodic point to a sink, that violates quasi-
hyperbolicity.

The following theorem immediately follows from Theorem 13.

Theorem 15. If Algorithm 14 stops, then fa is quasi-hyperbolic on Λa for all a ∈ A.

Note that if there is a ∈ A for which Λa is not quasi-hyperbolic, then
Algorithm 14 never stops. Practically, therefore, Algorithm 14 is useful only
when A is very small or we are confident that all a ∈ A are quasi-hyperbolic
parameters.

Thus, when we want to apply our method for larger A, the algorithm
should involve an automatic selection of parameter values. This selection
is also realized with the subdivision algorithm. Assume A is decomposed
into a finite union of the elements of IFk,

A :=
⋃

i

A(i) where A(i) ∈ IFk.

Denote the set of cubes in the decomposition of A byA.

Algorithm 16. (Adaptive selection of quasi-hyperbolic parameters)

1. Start withA = {A}.
2. Choose a cube A(i) fromA according to the selection rule.

3. Load the data of N, K and their decompositions for A(i).

4. Apply the step 1, 2, and 3 of Algorithm 14.

5. If | InvG(TF)| ⊂ int N then remove A(i) fromA and goto the step 2.

6. Otherwise, bisect A(i) into two cubes and add these new cubes toA.
Save the data of N, K and their decompositions as the data for these
two cubes and remove A(i) fromA. Then goto the step 2.

In the step 2 of Algorithm 16, we do not specify the rule for selecting A(i).
This is because the effectiveness of a rule depends on the case. One example
of such a rule is selecting A(i) with smaller number of cubes in N and K.
Since the computational cost of step 1, 2 and 3 of Algorithm 14 depends
on the number of cubes, this rules makes our computation concentrated
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on parameter values on which the computation is fast. This rule works
sufficiently well for general purpose. But when we want to find a hyperbolic
region with very weak hyperbolicity, for example, we want to distribute
our computational effort to whole of the parameter space. In this case, we
should select all cubes inA sequentially.

4 Application to the Hénon Maps

In this section, we apply the method developed above to the chain recurrent
set R(Ha,b) of the Hénon family Ha,b : R2 → R2 : (x, y) 7→ (a − x2 + by, x)
where a, b ∈ R.

For this purpose, R(Ha,b) must be compact and to perform actual com-
putations, the size of it must be explicitly known. Further, in order to
use Theorem 7, we need to check that the dynamics restricted to R(Ha,b) is
chain recurrent. This is not trivial in this case because the phase space is
noncompact.

First we recall the numbers defined by Devaney and Nitecki [11]. Let

R(a, b) :=
1
2

(1 + |b| +
√

(1 + |b|)2 + 4a),

S(a, b) := {(x, y) ∈ R2 : |x| ≤ R(a, b), |y| ≤ R(a, b)}.

Then we can prove the following.

Lemma 17. R(Ha,b) ⊂ S(a, b), and Ha,b restricted to R(Ha,b) is chain recurrent.

Proof. If x < S(a, b), we can choose ε0 > 0 so small that if ε < ε0 then all
ε-chain thorough x must diverge to infinity and hence, x can not be chain
recurrent (this is a special case of Corollary 2.7 of [3]). The proof for the
second claim is the same as that for the compact case (see [18] for example),
because we can choose a compact neighborhood S′ of S(a, b) and ε0 > 0 such
that if ε < ε0 then all ε-chain from x ∈ R to x must be contained in S′. �

In the case of Hénon map, Assumption 10 can be satisfied using the
interval arithmetics on a CPU that satisfies IEEE754 standard for binary
floating-point arithmetic. This is also the case for an arbitrary polynomial
map ofRn. In our computation, we use the PROFIL/BIAS interval arithmetic
package [17].

We can restrict our computation to the case (a, b) ∈ [−1, 12] × [−1, 1],
because otherwise it follows from the proof of Devaney and Nitecki [11]
that R(Ha,b) is hyperbolic or empty.
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Therefore, we start with A := [−1, 12] × [−1, 1] and K := [−8, 8] × [−8, 8],
so N = K × [−1, 1]2. Then Lemma 17 implies R(Ha,b) ⊂ int K holds for all
(a, b) ∈ A. Then we prove Theorem 1 by applying Algorithm 16.

To obtain Theorem 2, we fix b = −1 and start the computation with
A := [4, 12]. The set K and N are the same as the computation for Theorem 1.

All of the source codes used in these computations are available at the
home page of the author [1]. It uses the data structure and the subdivision
algorithm implemented in the GAIO [10] package.
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Figure 3: results after 1, 10 and 100 hour computation (from left to right)

Finally, we mention about the computational cost of the method. To
achieve Theorem 1, we need 1000 hour computation with PowerPC 970
(2GHz) CPU. With the same CPU, 260 hours were used for Theorem 2. If we
restrict our computations to the regions with stronger hyperbolicity, then the
computations are much faster. For example, we can obtain the hyperbolic
plateaus illustrated in Figure 3 by 1, 10 and 100 hour computation.
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