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1 Introduction

Codimension one foliations and contact structures play important roles in the
study of topology and geometry of three dimensional manifolds. In [9], Eliash-
berg and Thurston combined the theories of these objects together as that of
confoliations. One of the fundamental results is that any codimension one foli-
ation on a three dimensional manifold except F = {S? x {x}} on 5% x St can
be perturbed into a positive (or negative) contact structure as a plane field.

They also introduced a special class of perturbations of foliations, so called
linear perturbations. Suppose a foliation generated by a plane field &. A linear
perturbation of £ is a one parameter family {Ker a;};c(—c ) of plane fields de-
fined by a family of 1-forms {o;} with & = Ker ag and (d/dt)(a: A doy) > 0.
Eliashberg and Thurston observed that if the kernel of g = day/dt|;=o also
generates a foliation, then (Ker (a4 ¢8),Ker (o« — t8)) is a pair of mutually
transverse positive and negative contact structures for any ¢ # 0. Indepen-
dently, Mitsumatsu [13] also studied the same deformation for invariant folia-
tions of Anosov flows and he called such a pair of contact structures a bi-contact
structure. Mitsumatsu, and Eliashberg and Thurston observed that bi-contact
structures correspond to projectively Anosov flows (or conformally Anosov flows
in [9]), which are the main objects of this paper.
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A flow ® = {®'},cr on a three dimensional manifold M is called a pro-
Jectively Anosov flow (or PA flow) if it has no stationary points and admits a
decomposition T'M = E* + E? by continuous plane fields such that

o FU(z)NE*(2) = T®(z) for any z € M, where T® is the line field tangent
to the orbits of @,

o DP'(E7(2)) = E7(P'(z)) for any o € {u,s}, 2 € M, and t € R, and
e there exist two constants C' > 0 and A € (0,1) such that
1D (/1) )|| - (DD | /7)) M < CN

for any z € M and t > 0, where D® = {D®"};cx is the induced flow on
TM/T®.

We call the decomposition TM = E" + E® a PA splitting. If it satisfies stronger
inequalities

DD (e jray (|| < O (DD jray()) I < CX°

for any z € M and ¢t > 0, then the flow is called an Anosov flow and the
splitting is called a weak-Anosov splitting '. We remark that a variant of a PA
splitting localized at a flow invariant set is called a dominated splitting, which
plays important roles in the modern theory of dynamical systems. See [4] for
example.

Any PA splitting is integrable, however, is not smooth in general. A PA flow
(or an Anosov flow) with a C"-smooth PA splitting is called C”-regular. When
a PA flow is C'°-regular, we simply say it is regular. From the viewpoint of
deformations of foliations, regular PA flows correspond to linear deformations
{Ker a;} of a foliation such that the derivative day/dt|i=p generates another
foliation.

Regular Anosov flows on three dimensional manifolds are completely classi-

fied by Ghys.

Theorem 1.1 ([10]). Up to finite covering, any regular Anosov flow on a three
dimensional closed manifold is smoothly equivalent to either the suspension flow
of a two dimensional hyperbolic toral automorphism or a quasi-Fuchsian flow
on the unit tangent bundle of closed surface of genus greater than one.

It is natural to ask whether the similar classification exists for regular PA
flows or not. In [16], Noda gave a classification of regular PA flows with an
invariant torus on a TZbundle over S*. After that, he and Tuboi gave a classi-
fication for certain manifolds, which can be summarized as follows.

Theorem 1.2 ([16],[17],[18], and [21]). Any regular PA flow on a Seifert
manifold or a T?-bundle over S* must be either an Anosov flow or represented
as a finite union of T2 x I-models.

Tt is different from but equivalent to the common definition of an Anosov flow as pointed
out by Doering [8, Proposition 1.1].



Roughly speaking, a T? x I-model is a flow on T? x [0, 1] which is transverse
to T2x {z} for any z € (0, 1) and is equivalent to a linear flow on each boundary.
See [16] for the precise definition. The author also approached the classification
from another direction. In [2], he showed that any regular PA flow on any closed
three dimensional manifold without non-hyperbolic periodic orbits is equivalent
to one of the flows that they classified.

In [17], Noda conjectured that there are no other regular PA flows. The
main theorem of this paper gives a solution of this conjecture and classify three
dimensional regular PA flows completely.

Main Theorem. Any C?-reqular PA flow on a closed and connected there di-
mensional manifold must be either an Anosov flow or represented as a finite
union of T2 x I models.

The theorem gives an answer to a conjecture posed by Mitsumatsu (Conjecture
4.3.3 in [14]) immediately.

Corollary 1.3. Any bi-contact structure associated with a reqular PA flow con-
sists of tight contact structures.

The proof is divided into two parts. In Section 2, we show a dichotomy on
dynamics of regular PA flows. Namely, either the set of periodic orbits is dense
in the manifold, or any positive or negative orbit converges to an invariant torus
with rotational dynamics. We can see that the latter implies that the flow is
represented by T? x I-models. In Sections 3 and 4, we show the former implies
that the flow is Anosov. It is done by proving the hyperbolicity of all periodic
orbits.

Acknowledgment The author would like to thank Prof. Takashi Inaba, who
pointed out that we can apply the stability theory and the level theory of
Cantwell and Conlon in our proof.

2 A dichotomy on dynamics

We fix a C%regular PA flow ® on a closed and connected three dimensional
manifold M. Let TM = E" 4+ E° be a IPA splitting associated to & and F*
the foliations generated by E* for p € {u,s}. Without loss of generality, we
can assume that both F* and F?® are transversely orientable. For a compact
$-invariant set A, we define the stable set W*(A) and the unstable set W¥(A)
by

WA) = {z€M|t_l>i_|I}100d(<I>t(z),A)—>0}
WH(A) = {zEM|t_l>ir_nood(<I>t(z),A)—>0}.

For p € {u, s}, let QL (®) be the union of all closed leaves of F# on which the
flow @ is topologically conjugate to a linear flow. Remark that Q¥(®) is a finite



union of ®-invariant tori and W*(Qy(®)) is an open neighborhood of ¥ (®).
Similarly, Q2 (®) is a finite union of ®-invariant tori and W*(:(®)) is an open
neighborhood of 2 (®).

For a foliation G on M, we denote the leaf of a foliation through a point
z € M by G(z). We also denote the orbit {®%(z) | z € R} of a point z € M by
O(z) and the set of periodic points of ® by Per(®). We say a periodic point zg
is s-regular when there exists an embedded compact annulus A C F?*(zy) such
that ®*(A) C Int A for any ¢ > 0 and MNi>o ®'(A) = O(zp). Similarly, we say a
periodic point zg is u-regular when there exists an embedded compact annulus
A C F¥(zy) such that ®~7(A) C Int A for any ¢ > 0 and MNiso O~ (A) = O(z).
We also say zqg is p-irregular if zy is not p-regular for p = u, s.

The aim of this section is to prove the following proposition.

Proposition 2.1. Either one of the followings hold:

1M = WS (QX(®)) U QL(®) = W (Q4(F)) UQH(®).

2. M = Per(®) and any periodic point of ® is s- and u-regular.

It is not hard to show that the former implies that ® is equivalent to one of
known models. Namely,

Proposition 2.2. If M = W*(Q¥(D)) UQL (D) = W (QL(D)) UQY(D), then ®
is represented by a finite union of T2 x I-models.

Proof. Fix a connected component Ty of 2 (®) and a connected component U of
W (To)\To. Take a subset B of W*(Ty) which is diffeomorphic to T? x [0, 1] so
that Ty C 0B and B\Ty C U. Let Ti be the component of §B different from Tp.
Notice that W?*(Q¥(®)) is the disjoint union of the stable sets of the connected
components of Q¥%(®). Since T, is connected and contained in W?*(Q%(®)), we
have T, C W*(T1) for some connected component 77 of Q¥ ().

Take a neighborhood B, of T; which is diffeomorphic to T? x [0, 1] so that
B. C W#(T1). Then, we have ®'°(T.) C Int B, for some ¢y > 0. Since ®'°(T})
separates two boundary components of B, in B., it must be incompressible in
B.. In particular, it is isotopic to 7} in B, It implies that there exists a subset
By of M which is diffeomorphic to T2 x [0, 1], and satisfies 9B; = Ty UT; and
Int B, =U.

Inductively, we can take sequences (7)), >0 and (By)n>0 so that T, is a con-
nected component of Q¥ (®)UQE (D), B, is a subset of M which is diffecomorphic
to T2 x [0,1], 9B, = T, UTp41, and B, N Byy1 = Thyq for any n. Since Q%(®)
and QZ(®) contain only finitely many tori, we have T,, = T, for some n # m.
It implies that M is a T%bundle over S*. By Noda’s classification [16], ® is
represented by a finite union of T2 x I-models. O

2.1 Return maps

We introduce the concept of return maps. For a finite set X, let 7, and my
be the projections from [—2,2]? x ¥ to the first and the second components



respectively. We say a subset R of [~2,2]? x X is a rectangle if it has the form
[, 24] x [y—, y4] x o0.

We call a C?-embedding ¢ : [-2,2]? x X—M with a finite set ¥ a canonical
cross section if

e Im 1 is transverse to TP,

o ([-2,2] xyx o) C F*(Y(x,y,0)) and P(z x [-2,2] x o) C F*(¥(2,y,0))
for any (z,y,0) € [-2,2]? x X, and

e both {®!(z) |t > 0} and {®'(z) |t < 0} intersect with ¢((—1,1)? x X} for
any z € M.

It is easy to see that the flow ® admits such an embedding.

Fix a canonical cross section ¥ : [—2, 2]?x X — M. We call a C?-diffeomorphism
7 : R— R’ between two rectangles R and R’ a return associated to (®, ¢) if there
exists a positive valued continuous function 7 on R such that ®7()(4(w)) =
¢ or(w) for any w € R. The function 7 is called the return time associated to
R. Note that 7 is uniquely determined since any return of a PA flow cannot
be the identity map. For a return r : R—R’, we can take C?-diffeomorphisms
7y : Te(R)—=m,(R') and 7y : my(R)—my(R') so that r(z,y, o) = (re(x), 7y (y), o)
for any (z,y,0) € R. We call the pair (ry,ry,) the zy-decomposition of r. For
a return r associated to (®,4), the map r=! is a return associated to (®~1,¢).
For a family R = {r;}¥*, of returns, we write R=! for a family {r; 1%+ of
returns associated to (®~1,¢).

We say a family R = {r : Rk—>RUZL1 of returns is full when

e [~1,1]? x ¥ is contained in both UZ*:l Ry, and UZ*:l R, and

e there exists a constant A > 0 such that if w € R, N ([—1,1]% x X) satisfies
rp(w) € [-1,1]? x X, then Qa(w) C Ry and Qa(rx(w)) C R}, where
Qalz,y,0) =t —Ajx+ Al x[y—Ay+ Al x 0.

It is easy to see that any canonical cross section admits a full family of returns.

Fix a full family R = {r : Ry—R}}F*, of returns associated to (®,1)).
For a subset A of [-2,2]? x X, we call a sequence (k(n)) -, an R-admissible
sequence for A if rp(ny o - -orpy|a is well-defined for any n =1,2,...,n,. We
say an R-admissible sequence (k(n))'z, for a point w of [-1,1]? x X is fine
when rgny o - orpy(w) C[—1, 12x S forany n=1,2,... n,.

For Ay > 0, we say an R-admissible sequence (k(n));z, for an interval [
is (R, Ay)-admissible if |rp(,) 0 --- o rpy(f)] < Ay, where |J] is the length of
an interval J. We call a sequence (I; = [z;, %] X y; X 0;);>1 of intervals in
[—2,2]? x © a Aq-family if there exists a family {(k;(n))"L, }i>1 of sequences
such that (k;(n))nz, is an (R, Aj)-admissible sequence for I; for any i > 1, n;
tends to infinity as i—oo, and limsup [ry,(n,) © - - - 7x;1)(fi)| > 0.

The following is the keystone to control the topology of the stable and un-
stable foliations.



Lemma 2.3. There exists a constant Ay > 0 such that any Aq-family {I;}32,
of intervals admits a sequence {z; € Y¥(I;)}$2, accumulating to a point of Q¥(P)
or an s-irreqular periodic point.

Proof. Notice that almost all arguments in the proof of Proposition 3.1 of [19]
(or Proposition 4.2 of [1]) work even if non-hyperbolic periodic orbits exist. They
allow us to take a constant A; > 0 such that if an interval [ = [z,2'] x y x o
admits an (R~1, Aj)-admissible sequence (k(n))S%; then (1) C W*(Q:(®)) or
Int (1) N W¥(O(z.)) # 0 for some s-irregular periodic point z..

Let (1;)i>1 be a Aj-family of intervals and {(k;(n))n2, }i>1 the corresponding
family of sequences. Put J; = Thi(ni) © - 0Tk, (1) (£;) and kZ(n) =k(ni—n+1)

for any n = 1,...,n;. Then, (ki(n))L, is an (R™!, A;)-admissible sequence for

Ji. By taking subsequences if it is necessary, we can assume that J; converges
to an interval J. = [Z,Z'] x § x ¢ and there exist sequences (k'(n))S2, and

(in)n>1 such that i, tends to infinity as n—oo and kf(n) = &'(n) for any n > 1
and i=1,...,i,. It is easy to check that (k'(n))S2, is an (R™1, A)-admissible
sequence for J,

By the choice of the constant Ay, there exists x, € (Z,#') such that ¢(z.,9,7) €
W*(Qs(®)) or Y(zs,y,0) € W*(O(z.)) for some s-irregular periodic point z,.
Hence, we can take a neighborhood U of y such that |J,,, @~ (z. x U x 7)
converges to a connected component of 22 (®) or O(z.) as T—oo. It follows the
lemma immediately. O

2.2 Local dynamics at periodic points

Put Perp(®) = Per(®)\{Q¥(P) U Q22 (P)}. The main aim of this subsection is
to show that any point of Perp(®) is u- and s-regular. It is a main step of the
proof of Proposition 2.1, and is done by a variant of the argument in [2].

Fix a canonical cross section v : [-2,2]? x ¥—M. For a periodic point
zo = ¥(xo, Yo, 00), we call areturn r : R— R’ the first return of zy if (zo, yo, 00) €
Int RNInt R, r(xo,y0,00) = (%o,¥y0,00), and the return time rp satisfies
Tr(w) = inf{t > 0| ' o ¢(w) € R’} for any w € R.

We say a point z of a topological space X 1s accessible from a subset A of X
when there exists a continuous map [ : [0, 1]=X such that {(1) = z and [(¢) € A
for any t € [0, 1).

Lemma 2.4. Let zy and z1 be periodic points of ® and suppose that zy 1is
accessible from W?*(O(z)) N FP(z1) for p € {u,s}. Then, there erists an
embedded closed annulus A C F*(z) satisfying 0A = O(z) U O(z1) and
Int A CW?*(O(z)) NWH¥(O(z1)). In particular, we have F*(zy) = FP(z1).

Proof. Without loss of generality, we can assume that zo = (2o, yo, 0¢) for some
(z0, Y0, 00) € [—1,1]*x X. We prove the lemma for the case p = u since the proof
for the other case is similar. Let » : R— R’ be the first return map of zg and 7
the return time associated to r. Put V = {®' o ¢)(w) | w € R,t € [0, 7(w)]} and
let G be the restriction of F# on V. It 1s easy to see that G i1s diffeomorphic to
the foliation {z x m, (R) x [0,1]/ ~}eer, (r) On (72 (R) x 7y (R) x [0, 1]) / (%, y, 1) ~



(re(z), ry(y),0). Hence, a leaf of G is non-contractible if and only if it contains
a periodic point of ®. See Figure 1.

Figure 1: A neighborhood V

Since z; is accessible from W*(O(zp)), there exist a simple closed curve
v transverse to T® and an embedded closed annulus A; C F*(z1) such that
dA1 =yUO(z1) and y UInt A C W*(O(20)). The curve ®'(y) is contained in
a leaf L of G for any sufficiently large ¢ > 0. By Poincaré-Bendixon’s theorem,
L must be non-contractible, and hence, 1t contains a periodic point. Since
v € W?*(O(z0)), we obtain L = G(zp). It implies that the existence of the
required embedded annulus. O

For w = (z,y,0) € [-1,1]? x ¥ and § > 0, we define intervals I§(w) and
1§ (w) by

Bw)=k—-3de+dlxyxo If(w)=ex[y—4d,y+4d] x 0.

Lemma 2.5. Let zg be an s-regular periodic point. Then, there exist a constant
8., > 0 such that any fine R-admissible sequence (k(n))SL, for w € ([—1,1] x
L)N=HWH(O(20))) satisfies (I3 (rp(nyo- - -orp1y(w))) C W*(O(20)) for some
n > 1. In particular, F¥(z) N W?*(O(zp)) is an open subset of F¥(z) for any
z € W (O(z0))-

Proof. Fix wg = (20, y0,00) € [—1,1]? x X so that ¢(wq) € O(z0). Let r : R—R’
be the first return of wy and (ry, 7y) the zy-decomposition of r. Since zp is s-
regular, there exists I, C m,(R) such that r,(I,) C Int I, and (), 5,72 (L) =
{zo}. Put Ay ={y € N5, " ([=2,2]) | limpe0 7y () = yo} and take § > 0so
that [t —4, z+0] C I, for any z € ry(I,). It is easy to see that (I, x Ay X 0¢) C
W?*(O(20)). In particular, ¢ (If(w)) C W*(O(z0)) for any w € 7o (1) x Ay X 0.

There exist a neighborhood Uy of O(zy) and a constant 7; > 0 such that
U(re(Ly) x Ay x 09) # 0 for any z € W*(O(z0)) N[ Ny50 @ *(Up). Hence, we
can take §, > 0 so that I3 (w) C W*(O(z)) for any w € [—1,1]? x ¥ with
Y(w) € W (O(z0)) N Ny>o P (Uo). It is easy to see that the constant 4,
satisfies the required condition. O

Lemma 2.6. The followings hold for any s-regular periodic point zg:



1. Fo(z) CW*(O(zp)) for any z € W*(O(z0))\F*(20)-
2. F*(20) N W*(O(z0)) is diffeomorphic to ST x R.

3. If F*(z0) ¢ W*(O(z0)), then there exist an s-irregular periodic point zy €
F*(z0) and an embedded closed annulus A C F?*(zy) such that 0A =
O(z0) UO(z1) and Int A C W*(O(z0)) N W¥(O(z1))).

Proof. Since zy 1s s-regular, we can take an embedded closed annulus Ay C
F*(z0) such that ®'(Ag) C Int Ay for any ¢ > 0 and ﬂt>0<1>t(A0) = O(zp).
Then, Wy = Ut>0<I>_t(A0) is a connected component of W*(O(z)) N F*(zp)
which is diffeomorphic to S' x R.

Fix aleaf L of F* with LNW?*(O(zy)) # 0 and take a connected component
W oof LNW?*(O(zp)). Tt is sufficient to show that if W # L then there exists
a periodic point z; € L\U which is accessible from W. In fact, if such z
exists, then Lemma 2.4 implies that there exists an embedded closed annulus
A C F?(zp) with 94 = O(z0) UO(z1) and Int A C W*(O(z0)) NW¥(O(z1))) In
particular, z; is s-irregular and W = Wy C F*(z0).

Suppose that W # L. Then, there exists zo = (20, y0,00) € ¥([—1,1]* x
) N (L\W) which is accessible from W. Put I, = [zg, 2] X yo x og for > .
Without loss of generality, we can assume that ¢ (Int I, ) C W for some zf > xo.

Fix a full family R = {r : Rk%Rz}Z"Zl of returns and let Ay > 0 and d,, > 0
be the constants obtained in Lemmas 2.3 and 2.5. Put A = min{A,d,,, 2{—x0}
and Cy = sup{||Dr|| | k =1, ..., ke}. We claim that for any « € (zo, 0 + A),
I, = [xo, 2] X yo x 0p admits an (R, A)-admissible sequence (ky(n));<, such
that |1y, (n,) © 7k, (1) (Le)] > C'l_lA and C7=(x — ®g) > A. In fact, take a fine
R-admissible sequence (k;(n));L, for (z,y0,00). Then, |rp sy o 7 1)(Le)] <

n=1

. (1)(®))) C W*(O(20)) and ¥(x) & W*(O(20)), there exists n, > 1 such that
(k(n))pzy is an (R, A)-admissible sequence for I, with |1y, (n,41) © 7k, (1) (1z)] >

n=1

CP (e — o) if (k’(n))”l is an R-admissible sequence for I,.. Since (I} (rx, (n) ©

CT1A. Tt is easy to see the sequence (k. (1)), satisfies the required conditions.

By the above claim, {IC;"A}Z'ZO is a Aj-family. Lemma 2.3 implies that z;
is a point of Q2(®) or an s-irregular periodic point. If the former holds, then
F*((wp)) is contained in Qf(®P). However, QI(P) does not intersects with
W?*(O(zy)). Therefore, ¥(wg) is an s-irregular periodic point. O

Recall that we say a leaf of a codimension one foliation is semi-proper when
it does not accumulate to itself from at least one side. We also say a leaf is
proper when it does not accumulate to itself from both sides.

Lemma 2.7. Let G be a C? codimension one foliation of a closed three dimen-
stonal manifold. Then, any semi-proper leaf of G diffeomorphic to S* x R has
trivial holonomy.

Proof. Let L be a leaf of G which is diffeomorphic to S* x R. Note that the end
set of L consists of two points. By the level theory of Cantwell and Conlon [5]
L is either proper or contained in an exceptional local minimal set. However,



Duminy’s theorem (See [7] for the proof) implies that the end of a semi-proper
leaf in an exceptional local minimal set must be a Cantor set. Hence, the leaf L
is proper. By a theorem of Cantwell and Conlon [6, Theorem 1], L has trivial
holonomy. O

Now, we show the main result of this subsection.
Proposition 2.8. Any point of Perp(®) is s- and u-regular.

Proof. We show that any zy € Perp(®) is u-regular. Once it is done, then we
apply it to the flow ®~! = {®~!} and obtain that any zg € Pery(®) is s-regular.

Suppose that zg is w-irregular. If F° has trivial holonomy along O(z),
then Per(®) N F*%(zy) contains a closed annulus, whose boundary consists of u-
irregular periodic points. Hence, we can assume that F° has non-trivial holon-
omy along O(zy) by replacing zy if it is necessary. Without loss of generality,
we also assume zg = ¥(wp) for some wy = (xq, Yo, 00) € [—1,1]* x X.

Take the first return r : R—R’ of zp and let (ry, ry) be the zy-decomposition
of . Since zg 1s u-irregular, it is s-regular. Hence, we can assume that I, =
7. (R) satisfies r,(I;) C Int I, and (1,5 7" ({z) = {x0}. Since zy is u-irregular,
we can take y1 € my(R)\{yo} such that |r,(y1) — yo| < |1 — yol. It implies that
there exists a compact interval I, C m,(R) such that r(I,) C I, and yo € 91,.
Put J, = (I X yo X o) and J, = ¢(x0 x I, X 0¢).

Put W = U;50 @ *(Jy). Lemma 2.6 implies that W = W*(O(z0)) N F*(z0)
and it is diffeomorphic to S* x R. Since Usso &' (Int Jy) NIm ¢ C Int J,, we
have W NInt J, = @. If F*(zy) coincide with W, then it must be a semi-proper
leaf of F*. In particular, it has trivial holonomy by Lemma 2.7. It contradicts
the choice of zg. Therefore, we obtain W # F*(zy).

By Lemma 2.6, there exist an s-irregular periodic point z; € F*(zy) and
an embedded closed annulus A® C F?*(zp) such that 0A® = O(z) U O(z1) and
Int A C W*(z2g). Let ¢; be the period of z; and put Al = || D® (Er /T®)(2;)
for ¢ = 0,1 and p € {u, s}. Notice that the orientation of the orbits of zy and z;
must be opposite since zg is u-irregular, z1 is u-regular, and F*(z) = F*(z1).
In particular, we have A§ - A} = 1. See Figure 2.

Figure 2: Annuli A® and A"



Since z; is s-irregular and ® is a PA flow, we have 1 < A} < A}, and hence,
Ab < A§ < 1. The latter implies that there exists a compact interval [}, C 7, (R)
such that ry (/) CInt I} and () 5,y (L) = {yo}

Put Jy 1= (xo x (I;\{yo}) x 00). Then, we have Usso <I>t(J3’/) NIm ¢ C Jj,
and J; C W?*(O(z0)). The former implies J; N W = @, and hence, J, C
W (Olz0)\F (z0).

Take an embedded annulus A* C F*(z1) such that F*(z) N J, # 0 for
any z € A¥\O(z1). Then, Lemma 2.6 implies A"\O(z1) C W?*(O(zp)). In
particular, z; is accessible from W?*(O(zp)) N F¥(z1). Applying Lemma 2.4 to
zo, 21, and p = u, we obtain an embedded annulus A in F¥(zg) = F*(z1). such
that A = O(zp) N O(z1). It implies A - Aj = 1 since the orientation of O(zp)
and O(z1)) in A must be opposite. However, it contradicts the inequalities

X4 =1, A9 < A4, and A < Ay O

Corollary 2.9. The leaf F?(zq) coincides with W*(O(zy)) and it is diffeomor-
phic to S* x R for any zq € Pery(®) and p € {u,s}.

Proof. Since zg is u- and s-regular, it is clear that W*(O(z)) C F*(z0). By
Lemma 2.6, non-existence of s-irregular periodic point in Pery(®) implies that
F*(z0) is a subset of W*(O(z0)) and is diffeomorphic to S* x R. The proof for
F¥(zp) is the same. O

2.3 Proof of Proposition 2.1

First, we show the Birkoff-Smale theorem in our setting.
Lemma 2.10. F*(zy) N F"(zy) C Perp(®) for any zg € Perp(P).

Proof. Take a canonical cross section ¢ : [=2,2]? x ¥—M. Without loss of
generality, we can assume that zo = ¥(wq) for some wg = (2q, Yo, 00) € [—1,1]?x
Y. Let 7 : R— R’ be the first return of zg and (7, ry) the zy-decomposition of 7.
Put I, = m,(R) and I, = m,(R). Since zq is u- and s-regular, we can assume that
r(ly) Clnt Iy, Iy CIntry(Iy), Ny>o 7" (Ie) = {zo}, and ()50 77" (1y) = {yo}-

Fix z1 € F*(z0) N F¥(20). By Corollary 2.9, we have F*{zy) = W*(O(z0)).
Hence, there exist {— < ty, 1 € I, and y; € I, such that ®'-(z) =
VY(zo,y1,00) and ®'+(z1) = ¥(x1,y0,00). For any neighborhood U C R of
(2o, y1,00), we can take a return 1 : Ry— R so that (xo,y1,00) € Int Ry C U,
(z1,90,00) € Int Ry C U, and ri(z0,41,00) = (21,%0,00). Let (r1q,714)
be the zy-decomposition of 1. We can see that r"(r,(R})) C mz(Ry) and
7" (my(R1)) C my(R}) for some n > 1. See Figure 3. Then, there exists
(4, Y«) € Ry such that 77 o ry z(2s) = (x4) and Ty © r1,y(y<) = (y«). Since
¥(2+, Yx, 09) is a periodic point of & and the neighborhood U can be arbitrary
small, we obtain that z; € Pery, (®). O

Now, we show Proposition 2.1. If Perj,(®) = ), then Theorem B of [1] implies
that the non-wandering set of ® coincides with Q¥(®) U Q2 (®). It is clear that
M =W (Q¥(®)) UQ(D) = WH(Q: (D)) UQY(P) in this case.

10
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Figure 3: Proof of Lemma 2.10

Suppose Per;, (®) # . By Lemma 2.10, we have F¥(z5) N F¥(z0) C Pery,(®)
for any zy € Perp(®). Since F* and F?® are mutually transverse, it implies that
F2(z) N F¥(z) C Perp(®) for any z € Pery (P).

We claim that F¥(z) C Pery(®) for any z € Pery(®). If it does not hold,
then there exists z; € Perp(®) which is accessible from F¥(z1)\Perp(®). Tt
implies that F?(z1) is a semi-proper leaf. However, it contradicts Lemma 2.7
since z is u-regular.

Applying the claim for the flow ®~1 we also have F*(z) C Per,(®) for any

z € Perp(®). It implies that Pery(®) is a non-empty open subset of M, and

hence, M = Pery, (®).

3 Markov families and the redcution to one di-
mensional dynamics

For p € {u, s}, let Per? (®) be the set of periodic point z. with ||D<i>t*
1, where t, is the period of z.. Put Per.(®) = Pery (®) U Pery ().

In this section, we fix a C?-regular PA flow ® and assume that M = Per(®)
and any periodic point of @ is s- and u-regular. In Subsection 3.1, we show
® admits a kind of Markov partitions. Such a partition allows us to reduce

(BEr[T®)(2.)

the family of return maps to a one-dimensional dynamical system. In Subsec-
tion 3.2, we apply a theorem of Manné to the reduced system and estimate
||D<i>t|Eu/T¢,(z)||. One of the consequences is that ®,(®) contains only finitely
many periodic orbits. The other is the flow is Anosov if Per,(®) is empty 2.

3.1 Markov families of returns

Fix a canonical cross-section ¢ : [—2,2]* x ¥—M. Recall that I§(w) and [¥(w)
be intervals [ — d,2 + 6] x y x 0 and ¢ x [y — 4§,y + J] X o respectively. for
§>0and w = (2,y,0) € [-1,1]? x X. The following lemma asserts that we
can regard I}(w) and I} (w) as the local stable and the unstable manifolds for
returns if J is sufficiently small.

2Tt also follows from Theorem B of [1].
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Lemma 3.1. Let {rk}z*zl be a full family of returns and e, > 0 a given con-
stant. There exist a constant Ar > 0 and a sequence (€,)°, which satisfy the
followings:

1. €y € (0,€4) for any n > 1 and tends to 0 as n—oo.

2. Any fine R-admissible sequence (k,)S%, for w € [-1,1]? x ¥ is also R-
admissible for the interval I} (w) and it satisfies ry,, o---org, (14, (w)) C
I? (g, o1, (w)) for any n > 1.

3. Any fine R™t-admissible sequence (k)2 for w € [=1,1]% x X is also

R~1-admissible for the interval I§  (w) and it satisfies rk_nlo~ . ~ork_11(IXR (w)) C

Ign(rk_nl o-- ~rk_11(w)) for anyn > 1.

Proof. Tt is enough to show the existence of Ag and (€,)n>1 which satisfies the
first and the second conditions. -

Let Ay be the constant in the definition of a full family R of returns. Take
Aj > 0in Lemma 2.3. Remark that there is no Aj-family {I;} of intervals since
any point of Pery (®) is u- and s-regular by Proposition 2.8.

Put A = min{e,, A;}. We claim that there exists Agx > 0 such that any
fine R-admissible sequence (k,)n>1 for w € [=1,1]* x ¥ is also an (R, A)-
admissible sequence for ISAR(w). In fact, if it does not hold, then for any § €
(0, A) there exist 6’ € (0,9) and w € [-1,1]? x ¥ and an (R,A) admissible
sequence (k(n)),z, such that [ryg,,y o - ra(1)(I5 (w))| = A. Hence, we can
take sequences (w;)$2; in [—1,1]*> x ¥ and (6;)$2, in (0,A) so that &; tends
to zero as i—o0, and {/§ (w;)}{2, is a Aj-family. However, it contradicts the
choice of Aj.

It is easy to see that if the constant dz that is obtained in the above claim
does not satisfies the second assertion of the lemma, then we can take a Ai-
family of intervals. However, it contradicts the choice of Aj. O

For a rectangle R = I x J x ¢ and a point w = (#,y, ) of R, we define two
intervals I* (R, w) and I*(R, w) by I’ (R,w) = I xyx o and [*(R,w) = x x J X 0.
We call a family R = {r), : Ry—R} }5~, of returns a Markov familyif there exists
a {0, 1}-valued (k« X ky)-matrix Ag = (a;;) such that

L. R; C Ua,jzl R]’
2. I'(R;,w) C I°(Rj,w) and I"(R;,w) C I"(R;,w) for w € R; N R; with

aij =1,
3. Int Rj N Int Rj/ =0if A5 = Q50 = 1 and _] ?é j/, and

4. there exists a sequence (€,)52; such that ¢, tends to zero as n—oo and
if a sequence (k(m))j,—y and w € Ry satisfies ar(nip(ng1) = 1 and
Th(n) © - © Tr(0) (W) € Ri(ngr) for any m=0,...,n— 1, then

< é€p.

n—1
I"(Ro,w) N ( () kmyo---o rku))_l(Rk(mH)))

m=0

12



We call Ar the transition matrix of P.

| |
| |

R; R
Figure 4: Markov family

Lemma 3.2. Any canonical cross-section admits a Markov family of returns.

Proof. Fix a full family P = {p; : Pl—>Pl’}§*:1 of returns associated to (®,¢). Let
AR be the constant obtained in Lemma 3.1 for some e, > 0. Since M = Per(®),

we can take a family R = {ry : Rk%Rz}Z"Zl of returns such that UZ*:l Rp D
[~1,1]? x ¥ and

e R, C[-1,1*x X, Ry C P, and rx = pi,|r, for some I,
e the diameters of Ry, and Rj, is less than Ag, and
e every boundary segment of 9 Ry, intersects with 1/ ~!(Per(®)) in its interior

for any k. Lemma 3.1 allows we can apply the proof of Theorem 2 in [20,
Appendix 2]. In fact, we obtain a Markov family as a subdivision of R. O

3.2 The reduced one-dimensional map

Fix a canonical cross-section ¢ and a Markov family R = {ry : Rg— R} }5~, of
returns with the transition matrix Ax = (ai;). Let m, be the projection defined
by my(z,y,0) = y. Put I, = ny(R}) x k for k € {1,...,k.} and I, = Z*:l
Take a partition {I;; | a;; = 1} of L. so that I;; = m,(R;) x ¢ for any i and j
with ai; = 1.

We define a map f : Li—1, so that f(y,i) = ((7yor;)(z,y,0)) x j for
(z,y,0) € R N R} with a;; =1 and y € I;;. For y € I, and n > 0, let I(y,n)
be the set of v € I, satisfying v € I ;. forany 0 <m <nify € J; It is
easy to see that f*(I(y,m +n)) C I(y, m).

mim

Lemma 3.3. If I(y,m) C f*(I(y,m)) fory € I. m > 0, and n > 1, then
I(y, m) contains a fixed point of f".

13



Proof. 1t is easy to see that the restriction of f on I(y, m) extend to a continus
map fi,, on I(y,m) uniquely for any y, m and n. In particular, if I(y, m) C
f*(I(y, m)) then the map f7 , has a fixed point.

It is easy to see that fm‘l'l( (I(y,m))) C 91, for any y € I. and m > 0.
Hence, we have 91(y, m)NPer(f;,,) C dl.. On the other hand, the construction
of the partition {I;;} implies 01, N Tik C Lis. O

Put &, = sup{|/(y,n)| |y € IL.}. The condition 4 in the definition of a
Markov family implies that 4,, tends to zero as n—oco. In particular, we have
UnsoI(y,n) = {y} for any y € L.

In the rest of the subsection, we estimate || D®!| . «/7a(z)|| by a variation of a
theorem of Mané [12] to f. For a C? map g : [=1" between intervals, we define
the distortion dist(g, ) of g by

dist(g, I) = sup{log|Dg(y)| — log |Dg(v')| | y, " € I}.

We define the intersection multiplicity of a family {S;} of subsets of a set S by
sup,cx #{7| # € X;}, where #5 is the cardinality of a set S. Notice that C} =
( k* L HED sup{|D(log |Df)|} is finite. Hence, if the intersection multiplicity of
a famlly {Int f™(I)}*—% of subintervals of I, is at most {, then dist(f", I) < C}l.

Proposition 3.4. There erists a sequence (Kn)nzl such that K, tends to in-
finity as n—oo and |(f) (y«)| > K, for any periodic point y. of period n.

Proof. We follow the proof of Theorem 1 of [11]. Since M = Per(®), there exists
a periodic point y;; € Int I;; of period m;; > 1 for any ¢,j with a;; = 1. Put
Jis = Hyij, n)\I(yij,n +1). Let Cy be the constant satisfying |J| > C for any
connected component J of J2 with a;; = 1.

Fix a periodic point y. € I of period ng. Suppose y. € Jm]” Without loss of
generality, we can assume that y, is the point closest to y;, 5, in {f7(y) | 0 < n <
ng—1}. Let J, be the minimal compact interval that contains y, and a connected
component of JZ»”;‘?DH. For 0 < n < ng, let J be the connected component of
F7™(Jx) that contains f?°~"(y.). It is easy to see that JPN{f™(y.) |0 < m <

ng — 1} = {f" " (y.)} for any 0 < n < ng. It implies that the intersection

multiplicity of {J2 172 Lis at most two. Since f?(J,.) C JZ’;]”D n JZ’;]”D "+ for
any 1 < n < mg — 1, the intersection multiplicity of {f?(J.)}™5" is also at
most two. Therefore, we have
dist(fme, Jremmey < dist(freTe  JreTmey 4+ dist(f70, JL)
< 204 +2C) = 4C,.
It implies that
o no mo |fm0 ‘]* |
Y W =10 )] > exni-acn Lo
> exp(—4C1)Cs -4, ),

and the last term tends to infinity as ng—oo. O
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Corollary 3.5. Pery(®) contains only finitely many orbits.

Proof. Since any periodic point of @ is s-regular, the set (I° (w, R})) contains
at most one periodic point for any w € Rj,. It implies that there exists a one-to-
one correspondence H between Per(f) and ( Z*:l R,) N Per(®). It is easy to
see that [(f") (y)| = 1 if and only if||D<i>t|(Eu/T¢,)(H(y))|| = 1 for any y € Per(f),
where n is the period of y and ¢ is that of H(y). Hence, the corollary follows
from Proposition 3.4. O

The next 1s the main results of this subsection.

Proposition 3.6. For any given constant a > 0 and any neighborhood U, of
Peryy (®), there exists T > 0 such that any z € M\ ﬂtZT(U*) satisfies

sup{|[D®'|(gu/ra))ll | L > 0} > a.

Corollary 3.7. If a C?-reqular PA flow ® on a 3-dimensional manifold satisfies
Per(®) = M and Per} (®) = Peri(®) =0, the it is an Anosov flow.

Proof. Proposition 3.6 implies that any z € M satisfies ||D<i>tz (Eu/T) ()| > 2
for some ¢; > 0. By the compactness of M, there exists 7' > 0 such that
||D<I>T|(Eu/T¢,)(Z)|| > 2 for any 2z € M. Similarly, we can also take 7" > 0 such

that ||D<i>_TI|(Es/Tq>)(Z)|| > 2forany z € M. O

In the proof of the proposition, we follow the argument in Theorem 5.1 of
[15, Chapter ITI]. Let Py, = Uz;l(ﬂ'y(1/)_1(Pef§:(q))) N Ry,) x k). Remark that P,
coincides the set of periodic points p. of f with |(f")(p.)| = 1, where n is the
period of p,.

Lemma 3.8. There exists N1 > 1 such that any y € L.\ P. satisfies I(f™ (y), N1)N
P, =0 for some ny > 0.

Proof. Since P, is finite, there exists Ny > 1 such that I(y., N1 —1) contains at
most one point of P, for any y. € I,.

Fix y € I. such that I(f*(y), N1) N P, # 0 for any n > 0. Let y, be the
unique point of P, in I(f"(y), N1) for n > 0. Since both f(y,) and yn41 is
contained in I(f"*1(y), Ny — 1), we have y,1+1 = f(yn). In particular, f*(yo) €
I(f" (y), N1) for any n > 1. Since [\,»o /" (I(y, N1)) = {y}, we have y = yy €
Ps. - O

Lemma 3.9. There exist No > 1 and Cy > such that

(/" (y), N2)|

I W)l 2 exp(=C) e =g o

foranyy € I, and n > 1 with I(f™(y), N2) N P. = 0.
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Proof. By Proposition 3.4, there exists a sequence (K, ),>1 such that K, tends
to infinity as n—oo, and |(f?)’(y)| > K, for any periodic point y of period n.
Take ny > 1 so that K, > 2exp(Cy) for any n > n;. We also take A\yp < 1
and Nz > 1 so that |(f?) (y)| > Ao for any n < ny, yo € Fix(f")\Ps, and
y € I(y, Na2).

We claim that there exists Ag > 1 such that if yo € I, satisfies f™(yo) €
I(yo, N2) and I(yo, N2) N P = 0, then |(f™) (y)| > Ao for any y € I(yo, N2+ n).
We can assume that f™(yo) € I(yo, N2) for 1 < m < n — 1 without loss of
generality. Then, the intersection multiplicity of {f™(I(yo, N2 +n —m))}2 %
is one and there exists a periodic point y. € I(yo, N2 + n)\Ps of period n. If
n > ny, then we have |(f*) (y)| > exp(=C1)|(f") (y«)| > 2. If n < nq, then it
is clear that [(f")' (y)| > Ao.

We say an interval I C I, is (A, n)-compatible when

o Int fi()NInt f7(I) =0 or fi(I) C f7(I) for any 0 <i < j < n, and
o B I U P C FH(0) for 0< i < j < k < m then [F(D)] 2 AP (D]

By Lemma5.7 of [15, Chapter I11], we have """ _ | f™(I)] < A(A=1)"*( Z*:l 7.
for any (A, n)-compatible interval I. In particular, there exists C2 > 1 such that
dist(f™, I) < C4y for any (Ag, n)-compatible interval I.

We show that I(y, Na + n) is (Ag, n)-compatible if y € I, and n > 1 sat-
isfy I(f"(y), N2) N P. = 0. Once it is done, the proof is completed. First, it
is clear that the first condition holds. Suppose integers i < 7 < k < n sat-
isfy f'(I(y, N2 + n)) U f/(I(y, N2 + n)) C f*(I(y, N2 + n)). Since f/(y) €
I(f*(y), N3) = I(f'(y), N3), we can apply the claim above to yo = f'(y),
n = j—iand I(yo, No) = I(fi(y), N2). It implies that |f7(I(y, N2 + n))| >
Xo|fi(I(y, Ny + n))|. Therefore, I(y, N2 + n) is (Ao, n) compatible. O

Proof of Proposition 3.6. 1t 1s enough to show that for any given « > 0 there
exists N > 1 such that sup{|(f")/(y)| | » > 0} > o for any y € I°\f~V (P)).
Let Ny, Ny and C3 be the numbers obtained in Lemmas 3.8 and 3.9. Fix
N > Ny so that [I(y, N1)| > aexp(Co)|I(y', N1 + N)| for any y,y’ € L.
Take y € L\fY (P,). Then, Lemma 3.8 implies ("% (y), N1) N P. = 0 for
some n > 1. By Lemma 3.9, we obtain

1/ (), M)

[1(f" Y (), N4)|

|(fn+N)/(y)| > eXp(—Cz) |I(y, Ny + N)| Za

> exp(—Ch)

O

4 Regular PA flows without invariant tori

In this section, we fix a C%-regular PA flow and assume that M = Per(®) and
any periodic point of ® is s- and wu-regular. The goal is to show that Per.(®)
is empty. The author recommend that the readers should refer to [3], which
provides a sketch of the proof for the case that ® admits a global cross-section.
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First of all, we fix a good parameter change of ® and a family of coordinates
associated to the flow. Remark that F* F* and Per.(®) does not depend on
the parameter change of ®.

Fix a neighborhood U, of Per.(®) and a C*-foliation G on U, so that T, M =
T.G & T®(z) for any z € U.. Recall that Per,(®) contains only finitely many
periodic orbits by Corollary 3.5. We replace @ by its parameter change if it is
necessary, and assume that

1. all z. € Per,(®) have the same period Ty, and
2. D®(T.G) = Tge()G for any t > 0 and z € ﬂi’:o O~ (U,).

Let X be the vector field that generates ®. For each p € {u, s}, we fix a
C? unit vector field Y* so that {X,Y”} is a framing of Ef and Y?(z) € T.G
if z € U.. We replace the norm || - || on TM so that {X,Y?* Y%} forms an
orthonormal framing of 7M. Remark that D®' (X (z)) = X (®'(z)), and hence,
||[D®*(X(2))]| =1 for any z € M and t € R.

Let {e,(w), ey (w), es(w)} be the natural basis of T, R? at w = (2, y, s) € R>.
For w € [-2,2]® and § > 0, we define cones Cy(w,d) and Cy(w, ) in T, ]R3 by

Co(w, ) = {aes(w) + beg(w) | |af < d[b]},
Cy(w,0) = {aes(w) + bey(w) | [a] < 3]b[}.

We call an embedding ¢, : [-2,2]><M a canonical coordinate if

Dot (X(p(w) € {ae(w) |a >0},
D7 (Y (p(w)) € Cu(w,1/4),
D7 (Y (p(w))) € Cy(w.1/4)

for any w € [—2,2])?, We can take a finite family {¢, }sex of canonical coordi-
nates so that

L Upex o ((=1,1)%) = M,

2. the map ¢(z,y,0) = wo(x,y,0) is a canonical cross-section associated to
®, and

3. if Im @, N Per, (@) # B, then Im ¢, N Per,(®) = ¢, (0 x 0 x [—2,2]),
Im ¢, C ﬂtT;_T* O~ (U,), and ¢, ([—2,2]* x 5) C G(ps(0,0,s)) for any
se[-2,2].

We put 3, = {0 € ¥ | Im ¢, NPer,(®) # 0}. Remark that Dy (Y?#) is parallel
to e, and Dp; (YY) is parallel to e, on Im ¢, for o € X,.

For p € {u,s} and t € R, we define a vector field Y;” by Y, (®(z)) =
D®'(Y*?(z)). For ¢ € X, we define functions 7, p, Ty y, and 7 ¢ on Im ¢, by
(71—0717(2)’ 770,3/(2)’ FUVS(Z)) = (l‘, Y, 5) for z = gog(l‘, Y, 5)'

In Subsection 4.1, we show that the curves tangent to Y satisfy a kind of
uniform continuity as graphs of functions in canonical coordinates. It allows
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the argument in [3] to work well. In fact, in Subsection 4.2, we estimate the
distortion of a holonomy map of F* in two ways and the comparition of them
implies Per,(®) = . Combined with Propositions 2.1, 2.2, and Corollary 3.7,
it completes the proof of the main theorem.

4.1 Quasi-invariant vector fields

For p € {u,s}, z € M, and 6 > 0, we define a cone C*(z,d) in T, M by
C?(,8) = {aX(2) +0Y°(2) | lal < 318]).

We also define functions @ and b on M x R by
YR () = als, )(81() + b, Y (@(2)),

Lemma 4.1. D®'(C%(z,8)) C C*(®'(2),ad) for any z € M, t > 0, a >
2b(z,8)|71, and § > |a(z,1)].

Proof. Proof is by elementary calculation. Since D®'(X(z))) = X(®%(z)), we
have

D@ (aX(z) +bY"(2)) = (a+b-a(z,4))X(2) +b- l;(z,t)Y“(z).
for a,b € R. If o > 2|b(z,)|~1, § > |a(z,t)|, and |a| < 8]b|, then

la+b-al=0)] < Bl6+la(z, 1))
< 2 fbz ) - |8l (20) = (ad)lb - bz, 1),

It implies the required inclusion. O
The aim of this subsection is to show the following.
Proposition 4.2. There exists Ay € (0,1/4) such that

1. If a curve J C M 1s tangent to Y,* fort > 0, and satisfies J C Im ¢, and
|76y (J)] < Ay for o € X, then |, 5(J)| < 1/4, and

2. if a curve J C M s tangent to Y2, fort > 0, and satisfies J C Im ¢, and
|76 = (J)| < Ay for o € X, then |mo,(J)] < 1/4.

We prepare two lemmas to prove the proposition. The first allows us to
control the expansion of cones in a small neighborhood of Per.(®). The second
asserts the existence of the uniform lower bound of the angle between Y,* and
X outside any given neighborhood of Per, (®).

For any subset V of M, we define the escape-time function 7'5 V={0 <
t < oo} by

mE(z) =inf{t > 0] ®'(2) ¢ V}.
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Lemma 4.3. Suppose that z, € Per,(®) and a neighborhood U of O(z) are
given. There exist a neighborhood V- C U of O(z.) and a function Ty, on {a > 0}
such that if z € V satisfies 7&(z) > Ty () then

DOV ) (C¥(z,6)) C CH(D™V ) (), ad)

for any d > 0.

Proof. Without loss of generality, we can assume that z, = ¢,(0,0,0) for some
o € Z,. Let r : R— R’ be the first return of z. and (7., ry) the xy-decomposition
of r. We remark that ®* (¢(z,y,0)) = Y or(z,y, o) for any (z,y, ) € R, Since
ze is u- and s-regular, we have |r(2)| < 2] and |r;'(y)| < |yl if 2,y # 0.
Take a subrectangle Ry = I x I, x ¢ of R so that (0,0,0) € Int Ry and V =
Uo<ier, @75 (¥ (Ro)) satisfies V N1p([—2,2]* x ¢) = ¢(Ro). Put I, = ry " (1y)
for'n > 0.

We claim that there exists a sequence (K )p>1 such that |(r$)’(y)| > K, for
any n > 1 and y € I,\Ip41. Put I = I, N[0,2] and I; = I, N [-2,0]. Since
the intersection multiplicity of {If\I]}n>1 is one for p € {+, —}, there exists
Cy > 0 such that dist(ry, I[5\I] ) > Ci for any n > 1 and p € {4, —}. Hence,
we have

5\ 17|
T\

for any y € I\I}, . Since I,, converges to {0}, the right term tends to infinity
as n—00.

Put B, = ¢(I; x (In\In41) x o). If z € V satisfies 7'5(,2) < 00, then there
exist t.(z) € [0,7] and n.(z) > 0 such that z € @_t*(z)(Bn*(z)). Notice that
®t+ ()T~ () is contained in a subset O~ (Bn,(2)=n) of V for any z € V,
n < ne(z) +1, and t € [0,7%). Since 7¥(2) = 0 for any z € By, it implies
n(2)Th +t.(2) = 7'5(,2)

Since both Y* and Y4, are parallel to Dy, o e, on ([-2, 2]? x o), there
exists Cy > 1 such that

[(r) (9)] > exp(=Ch)

D™ (Y ()] > C3H(ry) ()] > Ko
for any z = ¥(z,y,0) € B,. Since D®,7, X(2) = X(®"T*(2)), it implies
DO (C*(2,8)) C C* (@™ (2), C2 K, 16)
for any z € B, and § > 0. By Lemma 4.1, we can take C3 > 0 so that

DO (C(z,4)) C CU(P'(z),C5d) for any z € M, d > 0, and t € [0, T%]. Hence,
if 2 € V satisfies ¢ (2) < oo, then

DOV ) (C¥(z,6)) C CH (™) (2), CaC3K T )0)
for any § > 0. Since K, tends to infinity as n—oo and n.(z) = T, H(rE(2) —
te(2)) > Tt - 7¥(2) — 1, this completes the proof. O
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Lemma 4.4. For any given neighborhood U of Per,(®), there exist . > 0 such
that if z € M satisfies ®'(z) € U fort > 0, then Y (z) C C¥%(z,4.).

Proof. To prove the lemma, it is sufficient to show that there exist d., . > 0 such
that if z € M satisfies ®(z) ¢ U for¢ > 0, then D®*(C¥(z,4.)) C C*(P!(z,6.)).

By Lemma 4.3, there exists an open neighborhood V; of Per.(®) and a
function Ty, such that Vo C U and

D™ (2)(C*(2,8)) € (@75 (), ad) 1)

for any o > 0, > 0, and z € V; with 7'50 > Ty, (o). Put Vi = (V50 @71 (V0).
By Proposition 3.6, there exists T} > 0 such that sup{I;(z,t) [t >0} > 2 for
any z € M\®~71(V.). By Lemma 4.1, we can take §; > 0 and a; > 0 so that
DT (C4(2,6)) ¢ C¥(®T1(2), a16,) for any 2 € M and § > 6.

We define a function 7§ on ®~7+(Vp) by i (z) = 77 (®{(z)) + 7. Put
T = Tvo(ozl_l) + Ty and take an open set Vi = {z € ®~T1(Vp) | 7 (2) > To}.
By the inclusion (1), we have

DO ) (C¥(2,8)) € (@) (2),6) (2)

for any § > 9, and z € V.

Notice that sup{b(z,t) |t > 0} > 2 for any z € M\V; since ®=T(V,) C V4.
By Lemma 4.4 and the compactness of M\V}, there exist 0 < 7 < 7, 0, > J1,
and a function 75 : M\Vy—[r, 73] such that

D™ ) (C¥(2,8)) € (@) (2),8) (3)

for any § > 4. and z € M\V;. By Lemma 4.1, we can take &, so that
DO (C(z,4%)) C C*(P'(z),d4) for any z € M and t € [0, max{T}, T2 }].
Fix ¢ > 0 and zg € M\® *(U). By the inclusions (2) and (3), there exists a

sequence (ti)li*:‘gl such that to = 0, ¢;, <t <t;, 41 and each t; satisfies

L. @ (z0) € Vi and tiy1 =t 4+ 77 (®% (20)) > t; + T, or
2. ®'(z0) € M\V1 and tipy = t; + 75 (P (20)) >t + 71
Remark that D®% (C%(z,8.)) C C* (P (29), ) by the inclusions (2) and (3).

We see t —t;, < max{Ty, m»}. In fact, if ®%i+ (z0) € V4, then <I>tl(z0) €V for
t' € [ti, +Ti,t;,+1]. Since ®'(zq) € U, it implies t —¢;, < Ty. If Pie-1(2g) € V1,
then ¢t — 7, < 75(®%+(20)) < 7. Therefore, we obtain D®'(C¥(z,6.)) C
C*(®"(z9),d.) by the choice of d.. O

Proof of Proposition 4.2. We only prove the former assertion. The latter is
given by applying the former to the flow ®~1.
Take dg > 0 so that

D7t (V" (90 () C Cy(w,d0/4) (4)
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Figure 5: Proof of Lemma 4.4

for any w € [-2,2]3, 0 € X, and t € [0, T%].
For o € X, let 5 : R,— R, be the first return of (0,0,0) and (ry .z, 70y)
the zy-decomposition of r,. Remark that

o’ (300($’ Y 5)) = SDU(TUJ ($)’ rU,y(y)’ 5)

for any (x,y,0) € R and s € [-2,2], and |rsq(2)] < |z| and |r;731/(y)| < ly| if
z,y # 0. Fix intervals I, and I, so that (0,0) € Int I, x [, and I, x I, x ¢ C R,
for any o € X,.

Take a neighborhood U; of Per,(®) so that U; NIm ¢, = @ for o € L\X,
and U1 NIm ¢,, C @0, (To,0(lz) X Iy x [=2,2]) for o, € E,. By Lemma 4.4,
there exists §; > 0 such that if w € [-2,2]% and o € X satisfy ¢, (w) ¢ Uy then

D7 (Y (g () C Cy(w,d1/4) (5)

for any ¢t > 0.

Fix ¢, € (0,min{d;*,d7}/4) so that [~2¢.,2¢.] C I, and put B? =
Po (15 o (1) % [=2€4,26] x [=2,2]) for ¢ € Xi and n > 0. Take a neighbor-
hood Us C U; of Per.(®) so that Us NIm ¢, C Bl for any ¢ € X,. By Lemma
4.4 again, there exists 63 > 0 such that if w € [~2,2] and ¢ € ¥ satisfy
o (w) & Ua, then

Do (¥, (0 ())) € Cy(10,82/4) (6)

for any ¢ > 0. Put A; = min{d; ', e.}.
Suppose a curve J C M is tangent to Y;* for ¢ > 0, and satisfies J C Im ¢,
and |7, 4(J)] < Ay for ¢ € X. Then, there exists a function hy such that

25" (1) = {(x0,5,hs () | ¥ € 7o,y ()}, where 75, () = {0}

If JAU; = B, then the inclusion (6) implies that |74 s (J)| < (d2/4)|mey(J)| <
1/4.

Suppose J NUs # @. Then, o is an element of ¥, and J C B2\ B2+! for
some n > 1. It implies

™" () = 0o ({(rg 3 (x0), 753" (), ha (9)) | € 7oy (1)})
for any 0 < m < n. In particular, we have J C B2~™\B2~™+1 and

76,5 (@7 ()] = |7, ()], |70,y (@77 ()] < |70,5()] < e
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Take N > 1so that NT, <t < (N + 1)T%. If n > N, then ®~V7+(J) is tangent
to Y yp, and is contained in BCO, C Im ¢,. Hence, we have
Tos (N = 7o (@7 ()]
< (80/4) 7oy (@7 ()] < doex < 1/4
by the inclusion (4) and e. < &5 /4.
If n < N, then =77+ (J) c B\ B! and hence, ®="T+(J) N U; = §. Since
o—nT. (/) is tangent to Y, , we have
75 ()] = |mo (@7 (1))
< (81/4)|moy (BT ()] < bres < 1/4

by the inclusion (5) and the inequality e, < 67 /4. O

4.2 Hyperbolicity of periodic orbits

The goal is the following proposition, which completes the proof of the main
theorem combining with Propositions 2.1,2.2 and Corollary 3.7.

Proposition 4.5. Per.(®) = 0.

We need some preparation to prove the proposition. Suppose Per:(®) #
and fix z. = ¢4, (0,0,0) € Peri(®). Let Ay € (0,1/4) be the constant obtained
in Proposition 4.2. For ¢t > 0, we define a map H; : [0,A]*=<M so that
H(0,y) = ¢0,(0,4,0), 7, «(He(z,y)) = x, and H([0,Aq] X y) is a curve
tangent to Y, for any (z,y) € [0, Aq]%.

Lemma 4.6. H; is well-defined and satisfies the followings:
L H ([0, A1 % 9) C o ([0, Ar] % [~1/4,1/4] x 0) for any y.
2. He(0 x [0,A1]) = @0, (0 x [0, Aq] x 0) is tangent to Y.
3. Hor,(2,0) = @o, (£,0,0) for any n > 0.

Proof. The first assertion is a consequence of the choice of A; The second follows
from the fact that Y7 is parallel to Dg,, oe; on Im ¢, .

Put J = ¢,,([0,A1] x 0 x 0). Then, we have ®*T+(J) C J. Since Y is
parallel to Dg,, o e, on Im ¢,,, the interval ®*7+(J) is tangent to Y. It
implies the last assertion of the lemma. O

Put
Cy = sup{||Des ||, || Dp; || | o € X}

It is easy to see that
. C§1|J| < |ps(J)| < Cg|J| for any interval J C Im ¢,, and
e if an interval J C M satisfies J N, ([—3/2,3/2]%) # 0 and |J| < (4Cx) ™1,
then J C po((—2,2)3).
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Fort >0,y € [0, Aq], and A € (0, Ay), we define an interval Ji(y; A) tangent
to Y5 by Ji(y; A) = @ o H ([0, A] x y).

Lemma 4.7. There exists Ay € (0, A1) such that |J:(y; Az)| < (4Cxg)~t for
anyt >0 and y € [0, Aq].

Proof. Fix a full family {rg : Rk—>R“ZL1 of returns associated to (®,). Let
75 be the return time of ry. Put T4 = sup{ms(w) |k =1,... ks, w € Ry} and
C1 = supq{||D®'|| | t € [0,T4]}. Since Do (Y2, (0o (w))) is transverse to the
zs-plane, there exists A > 0 such that if an interval J is tangent to Y*, for
t € [0,74] and satisfies J N, ([—1,1]%) £ 0 and |7, »(J)| < A for 0 € X, then
/] < (4C:Cs)~".

Suppose (0,0,0,) € Int Ry,. By Lemma 3.1, we can take Ay > 0 so that
any fine R-admissible sequence for (0,y, o) with y € [0, A4] is also an (R, A)-
admissible sequence for [0, Ay] X y x ko.

Fix t > 0 and y € [0,A;]. Take a fine R-admissible sequence (k(n))n>1
for (0,y,04). Put wo = (0,y,04), to = 0 wy = rr(ny © -+ 0 rr1y(wo) and
t, = 22:1 Ti(m) (Wm—1) for any n > 1. Take n. > 0 so that t,, <t <t,, 41.
It is easy to see ®'m (¢, (0,y,0)) = ¥(wy,) and 0 < ¢ —t,, < Ty. It implies
that

|Tor w0 @ o Hp([0, As] x y)| < A,

where Rz(n*) C [-2,2)* x o’. Since '+ o Hp([0, Az] X y) is tangent to Y2, ,,
we have

|®ine o H, ([0, Ag] x y)| < (4C1Cx) ™.

It is easy to see that the lemma follows from the choice of C7. O

Since M = Per(®) and Per,(®) contains only finitely many periodic orbits,
there exists (xp,yn) € [0, Ag] x [0, Aq] such that z, = He(xp, ypn) is a point of
Per(®)\Per.(®). Put Jy = ¢o, ([0, 25] x 0 x0) and v = ®* 0 p,, (0 x [0, yp] x 0).
We define a map hy : Jo—=Ji(yp; zp) by

hi (o (x,0,0)) = @ (He(x,yn)).

Remark that ®=% o h; and h; o ®~¢ are the holonomy maps of F% between Jg
and ®~(Ji(yn; xs)) along vo, and between ®°(Jo) and J;(ys; xp) along 4. See
figure 6.

Lemma 4.8. There exists T, > 0 such that (dist(h,7,, Jo))n>0 is a bounded
sequence.

Proof. Suppose Hi(Th,Yn) = Pou(en,yn,sn)- SINCE 21 = 9o, (Th,Yn, sn) is a hy-
perbolic periodic point, there exist maps g : [0, 25]—[0, 5], 7 : [0, 25]—={t >
0}, and a constant A € (0,1) such that g(zp) = x4, 7 (g, (x,yn, sn)) =
Yo, (9(2),yn, sn), and 0 < ¢'(x) < A for any x € [0, zp]. Put T}, = 7(xp). Then,
we see that ®"T%(2;,) = 2z, and Jor, (yn;2h) = o, (97([0,24]) X yn X sp). In
fact, the former is clear, and the latter follows from the fact that Y is parallel
to Do, (ez) on Im ¢, , and hence, Jor, (yn;2n) C wo, ([—2,2] X yn X s3).
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Je(yn; xn)

DTy (yn; xn))

o
7o — T
Za <I>_t o ht ht ° (I)—t
Jo
@ (Jo)
Figure 6: The holonomy maps ®~¢ o h; and h; o ®~¢
Put C, = sup{|D(log |Dg(z)|)| | # € [0, 24]}. Then, we have
n—1
dist(g”, [0,2]) < D dist(g, g™ ([0, 21])
m=0
n—1 n—1
< D Culg™([0,xa) < D CuNay < Ch(1— M) ey,
m=0 m=0

We define maps {y and I; from [0, 2] to M by ly(x) = ¢, (#,0,0) and {1 (z) =
Yo, (T, yn, sp). Tt is easy to see

hat, (2) = ©"T" 0 Hyr, (I (2), yn) = lio g™ oI5 (2)

for any z € Jo = ¢, ([0, 2] x 0 x 0). Since (dist(g”, [0, 24]))n>1 is a bounded
sequence, the sequence (dist(hyn7,, Jo))n>0 also is. O

Lemma 4.9. The family {dist(h; o &7, @t(Jo))}tzo 15 bounded.

Proof. For t > 0, there exist sequences (y, (t))Z(:tgJ in [0, A4] and (o, (t))n(t) in
Y such that

e Yo(t) =0, 00(t) = 0w, Yn(e)(t) = A,
o Y (1) < ynt1(t) and o, (t) # opy1(t) for any n, and
o &' o Hy(0 X [yn(t), yn41(1)] x 0) is contained in ¢, (+)([—1,1]?) for any n.

Let L, (t) be the connected component of {y € [0,A]|®" o Hi(0,y) €
Co.()([=3/2,3/2]%)} that contains y,(t). Put I,(t) = @' o H (0 x Ly(t))
and By (t) = UyELn(t) Je(y; zp). Note that L,(t) contains [y, (t), Ynt1(t)] and
I,(t) is the connected component of v, Ny, (¢)([—3/2,3/2]%) that contains & o
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Hi(0,yn(t)). Since |Jy(y; 24)| < (4Cs)™" and Ji (y; 21) "o, (1) ([—3/2,3/2]°) # 0
for any y € L, (t), we have B, (t) C Im ¢, (). It implies

o (t)(Bn (1)) = 7o ()0 (Je (U (1); 28)) X 7o 1),y (1n (1))

where 75 (2) = (T0,2(%), Toy(2)).

Since Yy is a C? vector field transverse to F¥, there exists C; > 0 such that
dist(m5 ¢, J) < Cy|mox(J)| and dist((7o,2|5) 71, 7o w(J)) < Cilmo(J)| for any
interval J which is tangent to Yy and is contained in Im ¢,. It is easy to see
that

n(t)
dist(hy 0 @', ®'(Jo)) < 2C1 > |7 (0),0 (e (tn (£); 24))] (7)
n=0
for any ¢ > 0. Hence, it is sufficient to show that the latter sum is bounded by
a constant.

Fix 77 > 0 so that v ¢ Im ¢, for any ¢ € ¥ and ¢t > 7). We claim
that [p,,(t),e(ln(t))| > Ay for any ¢t > 77 and n = 0,...,n(t). Suppose
[T (t),0 (In (t))] < A1. Since I, (t) is tangent to Y;* and I, (t) N ¢, ) ([—1,1]°)
contains ®*o Hy (0, y, (t)), Proposition 4.2 implies that I,, (t) C ¢, () ([—5/4, 5/4]3).
It contradicts that I, (Z) is a connected component of v, N, (1)([—3/2,3/2]%)
and v & Im @5, (1)

The claim implies

7o), (Je(yn (1); 2n))| < Av - Area(ms, (1) (Bn (1)), (8)

where Area is the Lebesgue measure on R? Hence, it is sufficient to show
that the intersection multiplicity of {B,(t) | 0,(t) = o} is less than 8C% for
any t > Ty and ¢ € X. In fact, the inequality (8) implies that the sum
ZZ(:t()J |To,(6),2 (e (Yn (t); 1)) | is bounded by (8C%) - (44#X). The proof is com-
pleted by the inequality (7).

Suppose that intersection multiplicity of { B, (t) | o, (t) = o} is at least 8C%
for to > Ty and o € X. Then, there exist (zq, yo) € [-2,2]? and sy, s2 € [2,2]
such that 0 < 53 — 51 < (4CE)~! and @, (z0, yo, s;) € &' (Im Hy,) for i = 1,2.
Put L = ¢, (z0 X yo X [s1,52]). Since L is tangent to X and ||D®* (X (2))|| =
|| X (®(2))]| = 1 for any z, we have |[®~%(L)| = |L| < (4Cx)~!. Since 9®~to(L)
is contained in a subset Im Hy, of ¢o, ([=1, 1]%), we have ®~% (L) C Im ¢,,. In
particular, gog*l o ®~'o(L) is an interval parallel to the s-axis. Such an interval
intersects with Im H, at most once. It contradicts 9®~"(L) C Im Hy,. O

Proof of Proposition 4.5. Suppose Per}(®) is non-empty. Take periodic points
Ze = 90, (0,0,0) € Per. (®) and zp = o, (h, yn, sn) € Per.(®P), and an interval
Jo = ¢o.([0,2,] x 0 x 0) tangent to Y as above. Notice that ®T+(Jy) C Jo
and (1,5, 9" (Jo) = {z}. Since |[D(®|5,)(z.)|| = D™ |5+ 7o)zl = 1
we obtain dist(®!|s,, Jo) tends to infinity as t—oo. However, it contradicts
Lemmas 4.8 and 4.9. Therefore, Perf(®) is empty. Applying it to the flow @1,
we obtain that Pery (®) also is. O

bl
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