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Abstract

We define new L2-invariants which we call the secondary Novikov-Shubin
invariants. We calculate the first secondary Novikov-Shubin invariants of finitely
generated groups by using random walk on Cayley graphs and see in particular
that these are invariant under quasi-isometry.

1 Introduction

In this paper we study the secondary Novikov-Shubin invariants. These new L2-
invariants are naturally defined by a modifying the original definition of the Novikov-
Shubin invariants (Section 2). By using the secondary Novikov-Shubin invariants, we
can study density functions whose Novikov-Shubin invariants are infinite. It is known
that the first Novikov-Shubin invariants of finitely generated groups classify infinite
virtually nilpotent groups ([5, Lemma 2.46.]). By using the first secondary Novikov-
Shubin invariants, we would like to study finitely generated groups which are not
virtually nilpotent. We prove the following in Section 4.

Theorem 1.1.
Let G be an infinite amenable finitely generated group and 0 < a < 1. Then,

(i) β1(G) = 0 ⇔ p(n) � exp(−nb) (0 < ∀b < 1),
(ii) β1(G) = 2a

1−a
⇔ p(n) ¹ exp(−nb) (0 < ∀b < a) and p(n) � exp(−nb) (a < ∀b < 1),

(iii) β1(G) = ∞ ⇔ p(n) ¹ exp(−nb) (0 < ∀b < 1).
In particular the first secondary Novikov-Shubin invariants of finitely generated

groups are invariant under quasi-isometry.

Here β1(G) is the first secondary Novikov-Shubin invariant of G (Section 3) and
p(n) is the asymptotic equivalence class of the probability of return after n steps for
random walk on Cayley graph of G (Section 4).

Example 1.2.
If U is a non-trivial finite group and d = 1, 2, . . ., then the asymptotic equivalence

class of U o Zd is exp(−nd/d+2) ([8, Theorem 3.5.]). Thus

β1(U o Zd) = d.
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In particular any positive integer can occur as the first secondary Novikov-Shubin in-
variants of finitely generated groups. In the case where d = 1, we know the spectral
density function of U o Z ([3, Corollary 3.], [2, Theorem 5.], [1, Theorem 1.1.]). Hence
we can also get

β1(U o Z) = 1

by a direct calculation.

Remark 1.3.
The asymptotic equivalence class of Z o Z is exp(−n1/3(ln(n))2/3) ([8, Theorem

3.11.]). Thus
β1(Z o Z) = 1.

Though exp(−n1/3(ln(n))2/3) and exp(−n1/3) are not asymptotically equivalent, their
first secondary Novikov-Shubin invariants are equal.

Gromov indicates that the Novikov-Shubin invariants of a certain class of groups
may be invariant under quasi-isometry ([4, p.241]). Naturally we can formulate the
following conjecture.

Conjecture 1.4.
The secondary Novikov-Shubin invariants of groups of finite type are invariant un-

der quasi-isometry.

The author does not know whether these conjectures are true. The Novikov-Shubin
invariants of amenable groups are studied by Roman Sauer ([9]).

The author would like to express his gratitude to my adviser Professor Tsuyoshi
Kato for numerous suggestions. The author would like to express his gratitude to
Professor Masaki Izumi who taught him the outline of the proof of Claim 4.5.

2 The secondary Novikov-Shubin invariants of den-

sity functions

Definition 2.1.
We say that a function F : [0,∞) → [0,∞] is a density function if F is monotone

non-decreasing and right-continuous. If F and F ′ are two density functions, we write
F ¹ F ′ if there exist C > 0 and ε > 0 such that F (λ) ≤ F ′(Cλ) holds for all λ ∈ [0, ε].
We say that F and F ′ are dilatationally equivalent (in signs F ' F ′) if F ¹ F ′ and
F ′ ¹ F . We say that F is Fredholm if there exists λ > 0 such that F (λ) < ∞, in
which case we write F⊥(λ) := F (λ) − F (0). If F and F ′ are two Fredholm density
functions and F⊥ ' F ′⊥, we say that F and F ′ are dilatationally equivalent up to
L2-Betti numbers.

If F and F ′ are two Fredholm density functions which are dilatationally equivalent,
surely F and F ′ are dilatationally equivalent up to L2-Betti numbers.

We will recall the definition of the L2-Betti numbers and the Novikov-Shubin in-
variants of density functions. For the details, we refer to [5, Chapter 1, 2.].
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Definition 2.2.
Let F be a Fredholm density function. The L2-Betti number of F is

b(2)(F ) := F (0).

Its Novikov-Shubin invariant is

α(F ) := lim inf
λ→0+

ln(F (λ)− F (0))

ln(λ)
,

provided that F (λ) > b(2)(F ) holds for all λ > 0. Otherwise, we put α(F ) := ∞+.

The L2-Betti numbers of density functions are invariant under dilatational equiv-
alence and the Novikov-Shubin invariants of density functions are invariant under di-
latational equivalence up to L2-Betti numbers ([5, Chapter 2.]).

Definition 2.3.
Let F be a Fredholm density function. The secondary Novikov-Shubin invariant of

F is

β(F ) := lim inf
λ→0+

− ln(− ln(F (λ)− F (0)))

ln(λ)
,

provided that F (λ) > b(2)(F ) holds for all λ > 0. Otherwise, we put β(F ) := ∞+.

Lemma 2.4.
Let F and F ′ be two Fredholm density functions. Then,

F⊥ ¹ F ′⊥ ⇒ β(F ) ≥ β(F ′).

In particular the secondary Novikov-Shubin invariants of density functions are in-
variant under dilatational equivalence up to L2-Betti numbers.

Proof. Since F⊥ ¹ F ′⊥, there exist C > 0 and ε > 0 such that F⊥(λ) ≤ F ′⊥(Cλ) holds
for all λ ∈ [0, ε]. Hence,

ln(− ln(F⊥(λ)))

− ln(λ)
≥ ln(− ln(F ′⊥(Cλ)))

− ln(λ)
=

ln(− ln(F ′⊥(Cλ)))

− ln(Cλ)
· − ln(Cλ)

− ln(Cλ) + ln(C)
.

Since − ln(Cλ)

− ln(Cλ) + ln(C)
→ 1 (λ → 0+),

we have
β(F ) ≥ β(F ′).

We find the following relationship between the Novikov-Shubin invariants and the
secondary Novikov-Shubin invariants.
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Lemma 2.5.
Let F be a Fredholm density function. Then,

(i) α(F ) = ∞+ ⇔ β(F ) = ∞+

(ii) α(F ) < ∞⇒ β(F ) = 0

Proof. (i) is clear by definition. We will prove (ii), that is,

β(F ) > 0 and β(F ) 6= ∞+ ⇒ α(F ) = ∞.

Since

β(F ) := lim inf
λ→0+

ln(− ln(F⊥(λ)))

− ln(λ)
,

for ∀ε > 0, 1 > ∃λ0 > 0 such that

β(F )− ε ≤ inf
λ∈(0,λ0]

ln(− ln(F⊥(λ)))

− ln(λ)
.

Hence for ∀λ ∈ (0, λ0],

β(F )− ε ≤ ln(− ln(F⊥(λ)))

− ln(λ)
.

When we take

ε =
1

2
β(F ),

then for ∀λ ∈ (0, λ0],

1

2
β(F )(− ln(λ)) ≤ ln(− ln(F⊥(λ))).

Thus
exp(1

2
β(F )(− ln(λ)))

− ln(λ)
≤ − ln(F⊥(λ))

− ln(λ)
.

Since
exp(1

2
β(F )(− ln(λ)))

− ln(λ)
→∞ (λ → 0+),

we have
α(F ) = ∞.

We see that any possible value can occur as the secondary Novikov-Shubin invariant
of a density function.

Example 2.6. Let us define density functions Fs for s ∈ [0,∞]t{∞+} by Fs(0) = 0
and for λ > 0 by

F0(λ) = λ,

Fs(λ) = exp

(
− 1

λs

)
,

F∞(λ) = exp

(
− exp

(
1

λ

))
,

F∞+(λ) = 0.
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Then we can check for s ∈ [0,∞] t {∞+},
β(Fs) = s.

3 The secondary Novikov-Shubin invariants of groups

Definition 3.1.
Let X be a free G-CW-complex of finite type. We define its cellular p-th spectral

density function and its cellular p-th secondary Novikov-Shubin invariant by the the
cellular L2-chain complex C

(2)
∗ (X) of X as follows:

Fp(X) := F (cp|im(cp+1)⊥ : im(cp+1)
⊥ → C

(2)
p−1(X))

:= trN (G) E
c∗pcp|im(cp+1)⊥

λ2 ,

βp(X) := β(Fp(X)),

where N (G) is the group von Neumann algebra of G.

The dilatational equivalence class of Fp(X) is invariant under G-homotopy equiv-
alence ([5, Theorem 2.55. (1)]). Hence βp(X) is also.

Remark 3.2. In the case when X is a cocompact free proper G-manifold without
boundary and with G-Riemannian metric, by using L2-de Rham complex, we can define
its analytic spectral density function and its analytic secondary Novikov-Shubin invari-
ant. However when we regard X as a free G-CW-complex of finite type, its cellular
spectral density function and its analytic one are dilatationally equivalent ([5, Theo-
rem 2.68.]). Hence its cellular secondary Novikov-Shubin invariant is the same as its
analytic one.

Definition 3.3.
Let n be a non-negative integer or n = ∞. Define Fn to be the class of groups

for which BG are CW-complexes which have a finite number of p-dimensional cells for
p ≤ n, where BG are the classifying spaces of G.

Example 3.4.

G ∈ F0 ⇔ G : a discrete group,

G ∈ F1 ⇔ G : a finitely generated group,

G ∈ F2 ⇔ G : a finitely presented group,

G ∈ F∞ ⇔ G : a group of finite type.

Definition 3.5.
Let G ∈ Fn. Then for 1 ≤ p ≤ n,

Fp(G) := Fp(EG),

b(2)
p (G) := b(2)

p (EG),

αp(G) := αp(EG),

βp(G) := βp(EG),
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where EG is the classifying space for free proper G-actions.

4 The first secondary Novikov-Shubin invariants of

groups

Let G be a finitely generated group and S be a finite set of generaters of G. The
Cayley graph CS(G) of (G,S) is the following connected one-dimensional free G-CW-
complex. Its 0-skelton is G. For each element s ∈ S we attach a free equivalent G-cell
G×D1 by the attaching map G× S0 → G which sends (g,−1) to g and (g, 1) to gs.
We will study the first secondary Novikov-Shubin invariant of CS(G). We can identify

cS : C
(2)
1 (CS(G)) → C

(2)
0 (CS(G))

with ⊕
s∈S

rs−1−1 :
⊕
s∈S

l2(G) → l2(G),

where rh(
∑

g∈G λgg) :=
∑

g∈G λggh−1 (h, g ∈ G, λg ∈ C).
The following is clear since F1(X) and F1(CS(G)) are dilatationally equivalent up

to L2-Betti numbers ([5, Lemma 2.45, Theorem 2.55. (1)]).

Lemma 4.1.
Let G be a finitely generated group and let X be a connected free G-CW-complex of

finite type. Then for any finite set S of generaters of G, we have

β1(X) = β1(CS(G)).

In particular β1(CS(G)) is independent of the choice of the finite set S of generaters
and we have

β1(G) = β1(CS(G)).

Moreover we will prove that β1(G) is invariant under quasi-isometry. We can assume
that S is symmetric, i.e. s ∈ S implies s−1 ∈ S and S does not contain the unit element
of G. We will recall simple random walk on CS(G). The probability distribution is

p : G → [0, 1], g 7→
{ |S|−1 if g ∈ S,

0 if g /∈ S.

Thus the transition probability operator is

P =
∑
s∈S

1

|S|rs−1 : l2(G) → l2(G),

in particular,

P = id− 1

2|S|cSc∗S.
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Then for n ∈ Z≥0

p(n) := trN (G) P n

is the probability of return after n steps for random walk on Cayley graph. It is well
known that p(n) on n ∈ 2Z≥0 is a non-increasing function.

In the following, we regard p(n) as the function which is defined only on the even
numbers.

Definition 4.2.
Let u, v be two positive non-increasing functions defined on the positive real axis.

We write u ¹ v if there exists C ≥ 1 such that

∀t > 0, u(t) ≤ Cv(t/C).

We say that u and v are asymptotically equivalent (in signs u ' v) if u ¹ v and v ¹ u.
When a function is defined only on the even numbers, we extend it to the positive real
axis by linear interpolation. We will use the same notation for the original function
and its extension.

Remark 4.3.
The asymptotic equivalence class of p(n) is invariant under quasi-isometry ([7,

Theorem 1.2]).
In particular the asymptotic equivalence class of p(n) is independent of the choice

of the finite symmetric set S of generaters of G.

Theorem 4.4.
Let G be a finitely generated group and 0 < b < 1. Then,

(i) G is non-amenable or finite ⇔ β1(G) = ∞+,
(ii) G is infinite amenable and p(n) ¹ exp(−nb) ⇒ β1(G) ≥ 2b

1−b
,

(iii) G is infinite amenable and p(n) � exp(−nb) ⇒ β1(G) ≤ 2b
1−b

.

Proof. If G is finite, then obviously β1(G) = ∞+. Hence we can assume that G is
infinite. We have

F (λ) := trN (G)(χ[1−λ,1](P )) = F⊥
1 (CS(G))(

√
2|S|λ).

Indeed, because trN (G) E
cSc∗S
0 = 0 when G is infinite ([5, Theorem 1.35. (8)]),

F⊥
1 (CS(G))(

√
2|S|λ) = trN (G) E

c∗ScS

2|S|λ − trN (G) E
c∗ScS

0

= trN (G) E
cSc∗S
2|S|λ − trN (G) E

cSc∗S
0 = trN (G) E

1
2|S| cSc∗S
λ

= trN (G)(χ[0,λ](
1

2|S|cSc∗S)) = trN (G)((χ[0,λ] ◦ f)(P ))

= trN (G)(χ[1−λ,1](P )),

where f(µ) := 1− µ. Then
β1(G) = 2β(F ).
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(i) is clear since it is well known that the spectrum of P contains 1 if and only if G is
amenable. For n ∈ 2Z>0,

(1− λ)n(χ[−1,−1+λ] + χ[1−λ,1])(P ) ≤ P n.

Hence
(1− λ)nF (λ) ≤ p(n). (1)

Also
P n ≤ (1− λ)nχ(−1+λ,1−λ)(P ) + (χ[−1,−1+λ] + χ[1−λ,1])(P ).

Claim 4.5.
When −1 ∈ σ(P ), we have

trN (G)(χ[−1,−1+λ](P )) = trN (G)(χ[1−λ,1](P )).

We will prove this after the proof of this theorem.
By Claim 4.5, when −1 ∈ σ(P ), for λ ∈ [0, 1]

p(n) ≤ (1− λ)n + 2F (λ)

When −1 /∈ σ(P ), for λ ∈ [0, 1 + inf σ(P )),

p(n) ≤ (1− λ)n + 2F (λ).

Hence if λ > 0 is sufficiently small,

p(n) ≤ (1− λ)n + 2F (λ). (2)

We will prove (ii). By (1) and p(n) ¹ exp(−nb), for 0 < ∃C ≤ 1

F (λ) ≤ p(n)

(1− λ)n
(∀n ∈ 2Z>0)

≤ C−1 exp(−Cnb)

(1− λ)n
(∀n : sufficiently large even number).

Hence we have

CF (λ) ≤ exp(−Cnb)

(1− λ)n
(∀n : sufficiently large even number). (3)

For 0 < ∀ε < b, we put

nλ :=

[[(
1

λ

)1/(1−b+ε)
]]

,

where [[v]] is the gratest even number not greater than v. Then

(
1

λ

)1/(1−b+ε)

− 2 < nλ ≤
(

1

λ

)1/(1−b+ε)

.
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When λ > 0 is sufficiently small,

1

21/b

(
1

λ

)1/(1−b+ε)

< nλ ≤
(

1

λ

)1/(1−b+ε)

. (4)

By (3) and (4), when we sufficiently reduce λ > 0 if necessary,

CF (λ) ≤ exp(−Cnb
λ)

(1− λ)nλ

< exp

(
−C

2

(
1

λ

)b/(1−b+ε)
)

1

(1− λ)(
1
λ)

1/(1−b+ε)

= exp

(
−C

2

(
1

λ

)b/(1−b+ε)
)

1
{

(1− λ)
1
λ

}( 1
λ)

(b−ε)/(1−b+ε)

≤ exp

(
−C

2

(
1

λ

)b/(1−b+ε)
)

exp

(
2

(
1

λ

)(b−ε)/(1−b+ε)
)

= exp

{(
−

(
1

λ

)b/(1−b+ε)
)(

C

2
− 2

(
1

λ

)−ε/(1−b+ε)
)}

≤ exp

{
C

4

(
−

(
1

λ

)b/(1−b+ε)
)}

.

Hence

− ln(− ln CF (λ))

ln(λ)
≥

− ln
{

C
4

(
1
λ

)b/(1−b+ε)
}

ln(λ)

=
b

1−b+ε
ln

(
1
λ

)
+ ln

(
C
4

)

− ln(λ)

→ b

1− b + ε
(λ → 0+).

Thus for 0 < ∀ε < b,

β(F ) = β(CF ) ≥ b

1− b + ε
.

Hence

β(F ) ≥ b

1− b
.

Next we will prove (iii). Since p(n) � exp(−nb),

1 ≥ ∀C > 0,∀N > 0,∃n ≥ N (n ∈ 2Z>0) s.t. p(n) >
1

C
exp(−Cnb).

When we fix 1 ≥ C > 0, we put ΛC :=
{
n ∈ 2Z>0|p(n) > 1

C
exp(−Cnb)

}
. By (2), for

n ∈ ΛC and λ > 0 which is sufficiently small,

2F (λ) ≥ p(n)− (1− λ)n >
1

C
exp(−Cnb)− (1− λ)n.
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Hence
2F (λ) ≥ exp(−Cnb)− (1− λ)n. (5)

For ∀r > b
1−b

,

nλ :=

[[
1

λr/b

]]
+ 2.

Then for λ which is sufficiently small,

1

λr/b
< nλ ≤ 1

λr/b
+ 2 ≤ 21/b

λr/b
. (6)

By (5) and (6), when we sufficiently reduce λ > 0 which satisfies nλ ∈ ΛC if necessary,

2F (λ)

≥ exp(−Cnb
λ)− (1− λ)nλ

> exp

(
−2C

(
1

λ

)r)
− (1− λ)

1

λr/b

= exp

(
−2C

(
1

λ

)r)
−

{
(1− λ)

1
λ

} 1

λ(r−b)/b

≥ exp

(
−2C

(
1

λ

)r)
− exp

(
−

(
1

λ

) r−b
b

)

= exp

(
−2C

(
1

λ

)r) (
1− exp

{
2C

(
1

λ

)r

−
(

1

λ

)(r−b)/b
})

= exp

(
−2C

(
1

λ

)r) (
1− exp

[(
1

λ

)r
{

2C −
(

1

λ

)r((1−b)/b)−1
}])

> 0.

Hence

− ln(2F (λ)) ≤ 2C

(
1

λ

)r

− ln

(
1− exp

[(
1

λ

)r
{

2C −
(

1

λ

)r((1−b)/b)−1
}])

. (7)

Let 1 > δ > 0. Then for λ > 0 which is sufficiently small,

1− exp

[(
1

λ

)r
{

2C −
(

1

λ

)r((1−b)/b)−1
}]

≥ 1− δ > 0.

Since

− ln

(
1− exp

[(
1

λ

)r
{

2C −
(

1

λ

)r((1−b)/b)−1
}])

≤ − ln(1− δ) =: D

and (7), we have

− ln(2F (λ)) ≤ 2C

(
1

λ

)r

+ D.
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Thus

− ln(− ln(F (λ)))

ln(λ)
≤ ln(2C

(
1
λ

)r
+ D + ln(2))

− ln(λ)

→ r (λ → 0+).

Because β(F ) is defined by using “lim inf”,

β(F ) ≤ r.

Thus we have

β(F ) ≤ b

1− b
.

Now Theorem 1.1. is clear.
Finally we will prove claim 4.5.

Lemma 4.6. Let G be a finitely generated group and S be a finite symmetric set of
generaters of G where e /∈ S. Then,

σ(P ) 3 −1 ⇒ ∃f : G → S1 : group homomorphism s.t. f(s) = −1 (∀s ∈ S),

where P := 1
|S|

∑
s∈S rs−1.

Proof. Since σ(P ) 3 −1,

∃(ξn)n∈N ⊂ l2(G) s.t. ‖ξn‖ = 1, ‖Pξn + ξn‖ → 0 (n →∞).

Then,

|〈Pξn + ξn, ξn〉| ≤ ‖Pξn + ξn‖‖ξn‖
→ 0 (n →∞).

Since

2|S|〈Pξn + ξn, ξn〉 = 2
∑
s∈S

〈rsξn + ξn, ξn〉

=
∑
s∈S

〈(rs + rs−1 + 2)ξn, ξn〉

and rs + rs−1 + 2 is a positive operator, we have

〈(rs + rs−1 + 2)ξn, ξn〉 → 0 (n →∞).

Because rs−1 is unitary,

〈(rs + rs−1 + 2)ξn, ξn〉 = 〈(rs + 1)ξn, ξn〉+ 〈(rs−1 + 1)ξn, ξn〉
= 〈(rs + 1)ξn, ξn〉+ 〈ξn, (rs + 1)ξn〉
= 2 Re〈(rs + 1)ξn, ξn〉
= 2 Re〈(1 + rs−1)ξn, rs−1ξn〉.
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Thus for ∀s ∈ S,

‖rsξn + ξn‖2 = Re ‖rsξn + ξn‖2

= Re〈(rs + 1)ξn, (rs + 1)ξn〉
= Re〈(rs + 1)ξn, rsξn〉+ Re〈(rs + 1)ξn, ξn〉
→ 0 (n →∞).

Here we define for ∀si1 , si2 , . . . , sim ∈ S

f(si1si2 · · · sim) := lim
n→∞

〈rsi1
si2
···sim

ξn, ξn〉.

This is well-defined since for ∀s ∈ S

lim
n→∞

〈rsξn, ξn〉 = −1

and for ∀si1 , si2 , . . . , sim+1 ∈ S

|〈rsi2
···sim+1

ξn, ξn〉+ 〈rsi1
si2
···sim+1

ξn, ξn〉|
= |〈rsi2

···sim+1
ξn, ξn〉+ 〈rsi1

rsi2
···sim+1

ξn, ξn〉|
= |〈rsi2

···sim+1
ξn, ξn〉+ 〈rsi2

···sim+1
ξn, rs−1

i1

ξn〉|
= |〈rsi2

···sim+1
ξn, (1 + rs−1

i1

)ξn〉|
≤ ‖rsi2

···sim+1
ξn‖‖(1 + rs−1

i1

)ξn‖
→ 0 (n →∞).

Proof of Claim 4.5. For ∀ξ =
∑

g∈G ξgg ∈ l2(G), we define

U(ξ) :=
∑
g∈G

f(g)ξgg.

This is unitary on l2(G) and U(e) = e (e ∈ l2(G)). Moreover we have Urs = −rsU .
Indeed, by Lemma 4.6,

Urs(ξ) =
∑
g∈G

f(gs−1)ξggs−1

=
∑
g∈G

f(g)f(s−1)ξggs−1

= −
∑
g∈G

f(g)ξggs−1

= −rsU(ξ).

Hence we have
UPU−1 = −P.
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Since U is unitary,

Uχ[−1,−1+λ](P )U−1 = UEP
λ U−1

= EUPU−1

λ

= χ[−1,−1+λ](UPU−1)

= χ[−1,−1+λ](−P )

= χ[1−λ,1](P ).

Thus,

trN (G)(χ[−1,−1+λ](P )) = 〈χ[−1,−1+λ](P )e, e〉
= 〈χ[−1,−1+λ](P )U−1e, U−1e〉
= 〈Uχ[−1,−1+λ](P )U−1e, e〉
= 〈χ[1−λ,1](P )e, e〉
= trN (G)(χ[1−λ,1](P )).

¤
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