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Abstract. In this paper we characterize symmetric Siegel domains among qua-
sisymmetric Siegel domains by means of the Cayley transform introduced by
Dorfmeister. We show that a quasisymmetric Siegel domain is symmetric if and
only if its Cayley transform image is convex.

1. Introduction

In the previous paper [7], we characterized symmetric tube domains (or sym-
metric Siegel domains of type I) among homogeneous ones by convexity of Cayley
transform images. The present paper is a continuation of [7] to non-tube type Siegel
domains. Specifically, we treat here quasisymmetric Siegel domains. This class of
Siegel domains is strictly wider than the class of symmetric ones, and one can find
a complete list of classification of irreducible quasisymmetric Siegel domains in [14,
p.240] and [15]. There are already some works on characterization of symmetric do-
mains among quasisymmetric domains: a characterization by the non-positivity of
the sectional curvature with respect to the Bergman metric [1], an algebraic one by
means of the Jordan algebra representations associated with the domain [2, Subsec-
tion 3.7], [14, Theorem V.3.5], and one by means of the infinitesimal automorphisms
of the domain [3, Theorem 3.3], [14, Proposition V.4.8].

In [3] Dorfmeister defined a Cayley transform for a quasisymmetric Siegel do-
main by using the Jordan algebra structure and the Jordan algebra representation
attached to the domain. When the domain is symmetric, this Cayley transform can
be identified with (the inverse of) the Cayley transform introduced by Korányi and
Wolf in [9], where their terminology is a Lie-theoretic one.

Our main theorem states that for an irreducible quasisymmetric Siegel domain
D, the Cayley transform image of D is convex if and only if D is symmetric.

We now describe the organization of this paper. In Section 2, we collect a few
basic facts concerning quasisymmetric Siegel domains. The definition of our Cayley
transform C is given and the main theorem is stated. In Section 3, the “only if”
part of the main theorem is proved. Our tool is a criterion due to Dorfmeister
(see Proposition 2.5). In Section 4 we verify that the Cayley transform image is
convex for the symmetric case. The main task is to identify our Cayley transform
with the Cayley transform defined in terms of the structure of Jordan triple system
introduced in the ambient vector space of D (see [10] and [14]). Then the image is,
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up to a linear isomorphism, the open unit ball for a certain norm, and the required
convexity follows immediately.

Thanks are due to Professor Takaaki Nomura for the encouragement and the
advices in writing this paper.

2. Preliminaries

2.1. Quasisymmetric Siegel domains. Let V be a finite-dimensional vector space
over R. An open convex cone Ω ⊂ V is called a homogeneous convex cone if Ω con-
tains no entire straight line (not necessarily passing through the origin) and the
linear automorphism group G(Ω) of Ω defined by

G(Ω) := {g ∈ GL(V ) | gΩ = Ω}
acts transitively on Ω. Let Ω ⊂ V be a homogeneous convex cone. Put W := VC,
the complexification of V . We denote by w 7→ w∗ the complex conjugation of W
with respect to V . Let U be a finite-dimensional vector space over C. We assume
that a Hermitian sesquilinear map Q : U × U → W (complex linear in the first
variable and antilinear in the second variable) is Ω-positive:

Q(u, u) ∈ Ω \ {0} for any u ∈ U \ {0}. (2.1)

The Siegel domain D defined by these data is

D := {(u,w) ∈ U ×W | Re w − 1
2
Q(u, u) ∈ Ω}. (2.2)

Let κ be the Bergman kernel of D, that is, the reproducing kernel of the Bergman
space of D. By [6, Lemma 5.1] we know that κ is expressed in the following form by
means of a strictly positive C∞ function η on Ω which has a holomorphic extension
to the tube domain Ω + iV :

κ(z1, z2) = η (w1 + w∗
2 −Q(u1, u2)) (zj = (uj, wj) ∈ D).

Moreover, by [6, §1] η is homogeneous: there exists an integer k such that

η(λx) = λkη(x) (λ > 0, x ∈ Ω). (2.3)

Let us take any E ∈ Ω and fix it. We know by [4, §2] that the bilinear form

〈x|y〉η := DxDy log η(E) (x, y ∈ V )

defines a positive definite inner product on V , where Dvf(u) := d
dt

f(u + tv)
∣∣
t=0

(u, v ∈ V ) for smooth functions f on V . We extend 〈·|·〉η to W by complex bilinearity

and denote it by the same symbol. We define a sesquilinear form (·|·)U on U by

(u1|u2)U := 〈Q(u1, u2)|E〉η (u1, u2 ∈ U). (2.4)

Then (·|·)U is a positive definite Hermitian inner product on U . For every w ∈ W ,
we define a complex linear operator ϕ(w) on U by

(ϕ(w)u1|u2)U = 〈Q(u1, u2)|w〉η (w ∈ W, u1, u2 ∈ U). (2.5)
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Evidently the assignment w 7→ ϕ(w) is also complex linear. By definition we have
ϕ(E) = Id. We introduce a product on V by

〈xy|z〉η = −1
2
DxDyDz log η(E) (x, y, z ∈ V ). (2.6)

Since η is a C∞ function, this product is commutative. Moreover we see by (2.3)
that E is a unit element.

From now on we assume that D is quasisymmetric, that is, we assume that the
vector space V with the product xy defined by (2.6) is a Jordan algebra. This means
that, in addition to the commutativity of the product, we have x(x2y) = x2(xy) for
all x, y ∈ V . Furthermore, this Jordan algebra is Euclidean in the sense of [5].
Indeed, 〈·|·〉η is an associative inner product: every Jordan multiplication operator

is self-adjoint relative to 〈·|·〉η. Moreover by [3, Theorem 2.1] Ω is self-dual with

respect to 〈·|·〉η. In this paper we suppose further that D is irreducible, so that Ω

is also irreducible (see [8, Theorem 6.3]) and V is simple. We have the following
proposition due to Dorfmeister [3, Theorem 2.1 (6)] (see also [11, Proposition 4.5]),
where we note that W is a complex Jordan algebra in a natural way.

Proposition 2.1. The linear map ϕ : w 7→ ϕ(w) is a ∗-representation of the Jordan
algebra W :

ϕ(w∗) = ϕ(w)∗ (w ∈ W ), (2.7)

ϕ(w1w2) = 1
2
(ϕ(w1)ϕ(w2) + ϕ(w2)ϕ(w1)) (w1, w2 ∈ W ), (2.8)

where, if A is a complex linear operator on U , then A∗ stands for the adjoint operator
of A with respect to (·|·)U .

Let E1, . . . , Er be a Jordan frame of V , that is, a complete system of orthogonal
primitive idempotents. Clearly, these elements also form a Jordan frame of W . Let
us put Uk := ϕ(Ek)U (k = 1, . . . , r), and recall the Hermitian inner product (·|·)U

defined by (2.4).

Lemma 2.2. The operators ϕ(Ek) (k = 1, . . . , r) are orthogonal projections onto
Uk, and we have an orthogonal direct sum U = U1 ⊕ · · · ⊕ Ur.

Proof. It is evident from (2.7) and (2.8) that the operators ϕ(Ek) are mutually
orthogonal self-adjoint idempotents with ϕ(E1) + · · ·+ ϕ(Er) = Id. ¤

The Euclidean Jordan algebra V has the Peirce decomposition: if we put

V (a, 1
2
) := {v ∈ V | av = 1

2
v} (a ∈ V ),

Vii := REi (i = 1, . . . , r),

Vkj := V (Ek,
1
2
) ∩ V (Ej,

1
2
) (1 ≤ j < k ≤ r),

then V decomposes into the following orthogonal direct sum:

V =
⊕

1≤j≤k≤r

Vkj.

We put Wkj := (Vkj)C (1 ≤ j ≤ k ≤ r).
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Lemma 2.3. For wkj ∈ Wkj (k > j), one has
(1) ϕ(wkj)Uj ⊂ Uk.
(2) ϕ(wkj)Uk ⊂ Uj.
(3) ϕ(wkj)Ul = 0 if l 6= j, k.

Proof. We have Ekwkj = 1
2
wkj. Hence

ϕ(wkj) = ϕ(Ek)ϕ(wkj) + ϕ(wkj)ϕ(Ek). (2.9)

Applying (2.9) to uj ∈ Uj, we get ϕ(wkj)uj = ϕ(Ek)ϕ(wkj)uj, so that we have
ϕ(wkj)uj ∈ Uk, and the statement (1) holds. By a similar argument, we get (2). To
prove (3), let l 6= j, k. Application of (2.9) to the vector ul ∈ Ul yields ϕ(wkj)ul =
ϕ(Ek)ϕ(wkj)ul. Similarly we have ϕ(wkj)ul = ϕ(Ej)ϕ(wkj)ul. Hence ϕ(wkj)ul ∈
Uj ∩ Uk = {0}. ¤

Let 〈v1|v2〉tr := tr(v1v2) be the inner product of the Euclidean Jordan algebra V
defined by the trace function of V . We know by [5, Proposition II.4.3] that 〈·|·〉tr is
associative. Since E1, . . . , Er are primitive idempotents, we have 〈Ek|Ek〉tr = 1 (k =
1, . . . , r). Since V is assumed to be simple, it follows from [5, Proposition III.4.1]
that the associative inner products 〈·|·〉η and 〈·|·〉tr are proportional to each other.

We put β0 := ‖Ek‖2
η > 0, independent of k. Then we have clearly

〈·|·〉η = β0 〈·|·〉tr . (2.10)

We introduce a positive definite Hermitian inner product (·|·)W on W by

(w1|w2)W := 〈w1|w∗
2〉η (w1, w2 ∈ W ).

Then the subspaces {Wkj}1≤j≤k≤r are orthogonal to each other with respect to (·|·)W

and we have by (2.5)

(ϕ(w)u1|u2)U = (Q(u1, u2)|w∗)W (w ∈ W, u1, u2 ∈ U). (2.11)

Moreover we have

(xy|z)W = (y|x∗z)W . (2.12)

Proposition 2.4. (1) For k > j, uj ∈ Uj, uk ∈ Uk, one has Q(uj, uk) ∈ Wkj.

(2) If uj ∈ Uj, then one has Q(uj, uj) = β−1
0 ‖uj‖2

U Ej.

Proof. (1) Let w ∈ W be arbitrary. Then by (2.12), (2.11) and (2.8)

(EjQ(uj, uk)|w)W = (ϕ(Ejw
∗)uj|uk)U

= 1
2
(ϕ(w∗)uj|ϕ(Ej)uk)U + 1

2
(ϕ(w∗)uj|uk)U

= 1
2
(Q(uj, uk)|w)W ,

where the last equality follows from Lemma 2.2. Thus EjQ(uj, uk) = 1
2
Q(uj, uk). In

a similar way we obtain EkQ(uj, uk) = 1
2
Q(uj, uk). Hence Q(uj, uk) ∈ Wkj.

(2) An argument similar to (1) shows EjQ(uj, uj) = Q(uj, uj). Hence Q(uj, uj) ∈
Wjj = CEj. Let us put Q(uj, uj) = λEj (λ ∈ C). By (2.4) we have

‖uj‖2
U = 〈Q(uj, uj)|E〉η = λ ‖Ej‖2

W .

Therefore we get λ = ‖Ej‖−2
W ‖uj‖2

U , which completes the proof. ¤
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To prove our main theorem, we quote the following criterion.

Proposition 2.5 ([2, Corollary 1]). The irreducible quasisymmetric Siegel domain
D is symmetric if and only if there exists a Jordan frame f1, . . . , fr of V such that

with Ũk := ϕ(fk)U we have ϕ(Q(u1, u2))u1 = 0 for all u1 ∈ Ũ1 and u2 ∈ Ũ2.

2.2. Cayley transform and main theorem. We put

I := {(u,w) ∈ U ×W | w + E is invertible in the Jordan algebra W}.
If (u,w) ∈ D (the closure of D), then by (2.1) and (2.2) we have w + E ∈ Ω + iV ,
so that w + E is invertible. Hence

D ⊂ I . (2.13)

Moreover, it is clear that I is an open set. We define the Cayley transform C by

C(u,w) :=
(
2ϕ

(
(w + E)−1

)
u, (w − E)(w + E)−1

)
((u,w) ∈ I ).

We set

Ĩ := {(u,w) ∈ U ×W | E − w is invertible in the Jordan algebra W}.
The inverse map of C is given by

C−1(u,w) =
(
ϕ

(
(E − w)−1

)
u, (E + w)(E − w)−1

)
((u,w) ∈ Ĩ ).

Now our main theorem is stated as follows:

Theorem 2.6. Let D be an irreducible quasisymmetric Siegel domain. Then, C(D)
is convex if and only if D is symmetric.

3. Proof of the “only if” part of the main theorem

Let D be an irreducible quasisymmetric Siegel domain. In this section we show
that the convexity of C(D) implies that D is symmetric. Before proceeding, we note
that the Shilov boundary of D coincides with the set Σ:

Σ = {(u,w) ∈ U ×W | Re w = 1
2
Q(u, u)}.

Let us assume that C(D) is convex. Let j, k be integers with 1 ≤ j < k ≤ r.
Let us take any non-zero uj ∈ Uj, uk ∈ Uk. We consider the following two points
z1, z2 ∈ Σ:

z1 = (uz1 , wz1) :=
(
uj + uk,

1
2
Q(uj + uk, uj + uk) + i Im Q(uj, uk)

)
,

z2 = (uz2 , wz2) :=
(−uj + uk,

1
2
Q(−uj + uk,−uj + uk)− i Im Q(uj, uk)

)
.

By Proposition 2.4 (2) we have

z1 =
(
uj + uk, (2β0)

−1 ‖uj‖2
U Ej + (2β0)

−1 ‖uk‖2
U Ek + Q(uj, uk)

)
,

z2 =
(−uj + uk, (2β0)

−1 ‖uj‖2
U Ej + (2β0)

−1 ‖uk‖2
U Ek −Q(uj, uk)

)
.
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We shall compute the Cayley transforms of z1, z2. For simpilicity we put

qjk := 〈Q(uj, uk)|Q(uj, uk)〉η ,

δj := 1 + (2β0)
−1 ‖uj‖2

U , δk := 1 + (2β0)
−1 ‖uk‖2

U ,

τ := δjδk − (2β0)
−1qjk.

(3.1)

Since z1 ∈ D, the element wz1 + E is invertible in W by (2.13). Hence [12, Lemma
10.2] together with (2.10) gives τ 6= 0 and

(wz1 + E)−1 =
∑

m6=j,k

Em + τ−1 (δkEj + δjEk −Q(uj, uk)) .

Therefore we have by Lemmas 2.2, 2.3 and Proposition 2.4 that

ϕ
(
(wz1 + E)−1

)
uz1 = τ−1 (δkuj + δjuk − ϕ(Q(uj, uk))(uj + uk)) .

Thus we get

C(z1) =
(
2τ−1 (δkuj + δjuk − ϕ(Q(uj, uk))(uj + uk)) ,

−
∑

m6=j,k

Em +
(
1− 2τ−1δk

)
Ej +

(
1− 2τ−1δj

)
Ek + 2τ−1Q(uj, uk)

)
.

A similar argument gives

C(z2) =
(
2τ−1 (−δkuj + δjuk − ϕ(Q(uj, uk))(uj − uk)) ,

−
∑

m6=j,k

Em +
(
1− 2τ−1δk

)
Ej +

(
1− 2τ−1δj

)
Ek − 2τ−1Q(uj, uk)

)
.

We consider the midpoint ξ of C(z1) and C(z2): ξ = (uξ, wξ) := 1
2
(C(z1) + C(z2)).

We have

uξ = 2τ−1 (δjuk − ϕ(Q(uj, uk))uj) ,

wξ = −
∑

m6=j,k

Em + (1− 2τ−1δk)Ej + (1− 2τ−1δj)Ek.

Since C is continuous in the open set I which contains D, we see that C(D) is
convex. Hence ξ ∈ C(D), so that C−1(ξ) ∈ D.

We shall compute ξ′ := C−1(ξ). First we have

(E − wξ)
−1 =

∑

m6=j,k

2−1Em +
(
τ(2δk)

−1Ej + τ(2δj)
−1Ek

)
.

Since uξ ∈ Uk by Lemma 2.3 and Proposition 2.4, it follows from Proposition 2.2
that if we put ξ′ = (uξ′ , wξ′), then

uξ′ = uk − δ−1
j ϕ(Q(uj, uk))uj, wξ′ = (τδ−1

k − 1)Ej + (τδ−1
j − 1)Ek.

Since ξ′ ∈ D, we have

Re wξ′ − 1
2
Q (uξ′ , uξ′) ∈ Ω.
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Hence it follows from Proposition 2.4 (2) that(
(Re τ)δ−1

k − 1
)
Ej

+
(
(Re τ)δ−1

j − 1− (2β0)
−1

∥∥uk − δ−1
j ϕ(Q(uj, uk))uj

∥∥2

U

)
Ek ∈ Ω.

Therefore the coefficient of Ek must be non-negative:

(Re τ)δ−1
j − 1− (2β0)

−1
∥∥uk − δ−1

j ϕ(Q(uj, uk))uj

∥∥2

U
≥ 0. (3.2)

Here by (2.5), we have
∥∥uk − δ−1

j ϕ(Q(uj, uk))uj

∥∥2

U

= ‖uk‖2
U + δ−2

j ‖ϕ(Q(uj, uk))uj‖2
U − 2δ−1

j Re(ϕ(Q(uj, uk))uj|uk)U

= ‖uk‖2
U + δ−2

j ‖ϕ(Q(uj, uk))uj‖2
U − 2δ−1

j Re qjk.

By this equality and (3.1) the left-hand side of (3.2) equals(
δjδk − (2β0)

−1 Re qjk

)
δ−1
j

− 1− (2β0)
−1

(‖uk‖2
U + δ−2

j ‖ϕ(Q(uj, uk))uj‖2
U − 2δ−1

j Re qjk

)

= (2β0)
−1δ−2

j

(
δj Re qjk − ‖ϕ(Q(uj, uk))uj‖2

U

)
.

Hence we have (
1 + (2β0)

−1 ‖uj‖2
U

)
Re qjk − ‖ϕ(Q(uj, uk))uj‖2

U ≥ 0. (3.3)

Since 〈·|·〉η is complex bilinear, we can find θ ∈ R such that

Re
〈
Q(eiθuj, uk)|Q(eiθuj, uk)

〉
η

= 0.

Replacing uj by eiθuj in (3.3), we get ‖ϕ(Q(uj, uk))uj‖U = 0, i.e., ϕ(Q(uj, uk))uj =
0. Now Proposition 2.5 tells us that D is symmetric.

4. The case of symmetric domains.

In this section we verify that the Cayley transform image of a symmetric Siegel
domain D is convex, keeping to the notation in Section 2. Since symmetric Siegel
domains are quasisymmetric, we can define a linear map ϕ : W → EndCU and
equip W with a complex Jordan algebra structure with unit element E as we did in
Section 2.

4.1. Jordan triple system associated with a symmetric Siegel domain.
Symmetric Siegel domains are described in terms of Jordan triple systems (JTS).
Here we recall that a finite-dimensional complex vector space Z is called a Hermitian
JTS if Z is endowed with a real trilinear map {·, ·, ·} : Z × Z × Z → Z such that

(JTS1) {x, y, z} is complex linear in x, z and antilinear in y.

(JTS2) {x, y, z} = {z, y, x}.
(JTS3) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}}.

For x, y ∈ Z, we define x¤y ∈ EndCZ by (x¤y)z := {x, y, z}. A Hermitian JTS Z
is said to be positive if the trace form (x, y) 7→ Tr(x¤y) is positive definite.
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We now describe how a structure of JTS is introduced in the ambient vector
space of D. We put Z := U⊕W . Define a real trilinear map {·, ·, ·} : Z×Z×Z → Z
by

{x + a, y + b, z + c}
:= 1

2
ϕ(c)ϕ(b∗)x +

(
1
2
ϕ(a)ϕ(b∗)z + 1

2
ϕ(Q(x, y))z + 1

2
ϕ(Q(z, y))x

)

+
(
(ab∗)c + a(b∗c)− b∗(ac) + 1

2
Q(x, ϕ(c∗)y) + 1

2
Q(z, ϕ(a∗)y)

)
,

(4.1)

where x, y, z ∈ U and a, b, c ∈ W . Clearly (JTS1) and (JTS2) hold. We see
by [14, Chapter V, §4, Exercise 5 (c)] that {·, ·, ·} satisfies (JTS3), so that Z is
a Hermitian JTS. Proposition III.4.2 of [5] together with (2.10) gives TrL(xy) =
(rβ0)

−1(dim V ) 〈x|y〉η. Hence it follows from [14, Chapter V, §4, Exercise 5 (a)] that
for x ∈ U, a ∈ W ,

Tr((x + a)¤(x + a)) = (rβ0)
−1(dim V + 1

2
dim U)

(‖a‖2
W + ‖x‖2

U

)
.

This shows that Z is positive.
Now we have introduced a structure of positive Hermitian Jordan triple system

in Z. The following equalities hold:

ww′ = {w, E,w′} (w, w′ ∈ W ), (4.2)

Q(u, u′) = 2{u, u′, E} (u, u′ ∈ U),

ϕ(w)u = 2{w, E, u} (w ∈ W, u ∈ U).

4.2. Convexity of the Cayley transform image. To verify that the Cayley
transform image of a symmetric Siegel domain is convex, we quote some results
of [10]. Though the contents of [10] are written in terms of Jordan pairs, we can
translate them easily into the language of Jordan triple systems (see [10, 2.9]). If
we write [·, ·, ·] for {·, ·, ·} used in [10], the translation is as follows:

[x, y, z] = 2{x, y, z}. (4.3)

Then, the positive Hermitian JTS Z gives a Jordan pair with a positive Hermitian
involution by [10, Corollary 3.16]. It should be noted that our translation is different
from [10, 2.9] by the multiplication constant 2. This modification is made for E to
be a tripotent in the sense of [10].

An element e ∈ Z is called a tripotent if {e, e, e} = e. We know by [10, Corollary
3.12] that every x ∈ Z can be written uniquely as x = λ1e1 + · · ·+ λnen where the
ei are pairwise orthogonal non-zero tripotents which are real linear combinations of
powers of x, and the λi satisfy 0 < λ1 < · · · < λn. We call the λi the eigenvalues of
x. We denote by |x| the largest eigenvalue of x. Then we see by [10, Theorem 3.17]
that | · | is a norm on Z, called the spectral norm. Let us denote by B the open unit
ball for the spectral norm.

By (4.2), E is a tripotent. Definition (4.1) of the triple product shows that
U (resp. W ) is the 1

2
-eigenspace (resp. 1-eigenspace) of the operator E¤E. In

particular, E is a maximal tripotent, and Z = U⊕W gives the Peirce decomposition
of Z with respect to E. By (4.2) and (4.3), the Jordan algebra structure on W
defined at the beginning of [10, §10] coincides with ours. Moreover the product
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◦ defined in [10, §10] is w ◦ u = ϕ(w)u (w ∈ W, u ∈ U). Hence we see by [10,
Proposition 10.3] that the Cayley transform γE defined in [10, §10] corresponding
to E is

γE(u,w) = (
√

2ϕ((E − w)−1)u, (E + w)(E − w)−1).

Now [10, Corollary 10.9] tells us that γE(B) = D. If we define a linear map T on
U ×W by T (u,w) := (

√
2u,w) (u ∈ U,w ∈ W ), then γE = C−1 ◦ T . Therefore we

get C(D) = T (B), which clearly implies that C(D) is convex.
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