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Abstract

We introduce the k-convexity and the L-convexity of a metric space as gen-
eralizations of the CAT(0)-property and of the nonpositively curved property in
the sense of Busemann, respectively. Some Banach spaces and CAT(1)-spaces with
small diameters satisfy these convexities. We prove the first variation formula on a
k-convex and L-convex metric space, and extend some known results, including the
Dirichlet problem, on the Cheeger-type Sobolev spaces.

1 Introduction

CAT(0)-spaces or, more generally, nonpositively curved metric spaces in the sense of
Busemann (NPC spaces for short) are one of the most important objects in both of the
geometry and the analysis on metric spaces (see [Ba], [BH], [J], [KS], and references
therein). On one hand, the CAT(0)-property of a geodesic metric space is defined as a
generalization of the nonpositivity of the sectional curvature on a Riemannian manifold.
On the other hand, the definition can also be regarded as a convexity of (the square of)
the distance function.

In this article, we introduce two generalized notions of the convexity, the k-convexity
and the L-convexity, of geodesic metric spaces (Definitions 2.1 and 2.6). Actually the
k-convexity and the L-convexity include the CAT(0)-property and the NPC property as
special cases, respectively. Moreover, [P-spaces with 1 < p < 2 as well as CAT(1)-spaces
with diameters less than 7/2 are both k-convex and L-convex (§3). It seems interesting
and is an advantage of this context to be able to treat these different kinds of spaces
simultaneously.

For a k-convex and/or L-convex metric space (X, dy), it is natural to ask whether the
known facts on CAT(0)-spaces and NPC spaces are still true or not. We first consider the
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geometric part of this problem. Since X may be a Banach space, the canonical discussion
using the ‘angle’ is needed to be modified in this setting. For instance, we can not regard
spaces of directions and the boundary at infinity as metric spaces. However, it is still
possible to define directly the distances on tangent cones and the cone at infinity. Then
the convexity of X descends to them (Propositions 4.2 and 4.4). Furthermore, as our
main theorem in the geometric part, we prove the first variation formula for arclength
(Theorem 5.2), which generalizes that on Alexandrov spaces with curvature bounded from
above ([OT]).

In the latter half of the article, we study the Cheeger-type Sobolev spaces for maps
from an arbitrary metric measure space into a k-convex and/or L-convex metric space,
and extend some results obtained in [O1]. To be precise, we modify the definition of
the Cheeger-type energy form (Definition 6.1) given in [C] and [O1] (but they coincide
if the target space is NPC) in order to overcome the difficulty arising from the lack of
the convexity of the energy form. The idea is essentially contained in the proof of the
unique existence of a minimal generalized upper gradient (Theorem 7.3). As one of our
main results, we solve the Dirichlet problem (Theorem 9.3) in the case where the sourse
space satisfies the doubling condition and the weak Poincaré inequality, and where the
target space is proper and L-convex. We emphasize again that the target space can be a
CAT(1)-space (e.g., a convex set in a unit sphere) with diameter less than 7.

The article is organized as follows: We define the k-convexity and the L-convexity
in Section 2, and give examples in Section 3. In Section 4, we consider some geometric
properties, the structures of tangent cones and the cone at infinity, and foot-points. We
prove the first variation formula for arclength in Section 5. Sections 6-9 are devoted
to the study of the Cheeger-type Sobolev spaces for maps into a k-convex and/or L-
convex metric space. After giving the definition of the Cheeger-type Sobolev space in
Section 6, we prove the unique existence of the minimal generalized upper gradient and
the minimality of Lip u for a Lipschitz map u in Sections 7 and 8, respectively. In the last
section, we treat the Dirichlet problem.

Acknowledgements. 1 would like to express my gratitude to Professor Takashi Shioya for
his valuable comments.

2 Definitions of convexities

Throughout this article, let (X, dx) be a geodesic metric space. A rectifiable curve = :
[0,]] — X is called a geodesic if it is locally minimizing and has a constant speed
(i.e., parametrized proportionally to the arclength). A metric space (X, dyx) is said to be
geodesic if any two points x,y € X can be connected by a rectifiable curve v : [0,]] — X
satisfying v(0) = z, v(I) = y, and length(y) = dx(z,y). Clearly such = is a geodesic if it
has a constant speed, so that we call such a curve a minimal geodesic between x and y.
For z € X and r > 0, we denote by B(x,r) the open ball with center x and radius r. For
a,b € R, we set aVb:=max{a,b} and a Ab:= min{a, b}. Henceforce, we denote dx(x,y)
by |z — y|x for brevity.



2.1 k-convexity

Definition 2.1 Let k € (0,2].

(1) An open set U in a geodesic metric space (X, dyx) is called a Ci-domain for k if, for
any three points z,y, z € U, any minimal geodesic v : [0, 1] — X between y and z,
and for all ¢ € [0, 1], we have

k
e =70l < (1= Dle —ylx +tle =2k — 51 =)ty — =% (2.1)

(2) A geodesic metric space (X, dx) is said to be k-convez for k if X itself is a Cx-domain.

(3) A geodesic metric space (X, dx) is said to be locally k-convex for k if every point in
X 1is contained in a Cj-domain.

(4) A geodesic metric space (X, dy) is said to be locally (k)-convez if every point z € X
is contained in a Cj-domain for some k = k(z) € (0, 2].

The inequality (2.1) means that (02/0t?)|z — v(t)|% > k in the weak sense. We
remark that the k-convexity for k = 2 coincides with the CAT(0)-property. As for the
CAT(0)-property, the inequality (2.1) for ¢t = 1/2 implies that for all ¢ € [0, 1].

Lemma 2.2 [If an open ball B(x,r) C X is a Cx-domain, then, for any two points in
B(z,7), a minimal geodesic between them is unique. In particulr, every two points in a
k-convexr metric space is connected by a unique minimal geodesic.

Proof. Fix two points y, 2z € B(x,r) and let v,& : [0,1] — X be two minimal geodesics
between y and z. Note that v and ¢ are contained in B(z,r) by the k-convexity. For
t € (0,1), take a minimal geodesic 7 : [0,1] — X from ~(¢) to &£(t). It follows from the
k-convexity that

= 1(/2) < gy~ 1O + 5ly — €O — Sh(0) — €0

k
=y — 2% — gh(t) — &),

and that

) — e

!Z—MU%@S(L%V@—ﬂﬁ—S

Therefore we have

k
N T

02— B~ Epo - <o

It implies v(t) = £(¢). O



Fory, z € B(z,r), we denote the unique minimal geodesic from y to z by v, : [0, 1] —
B(x,r), and 7,.(t) by (1 —t)y + tz.

Lemma 2.3 Assume that B(x,r) is a Cx-domain. Then, for any y,x € B(z,r) and all
t € [0,1], we have

2
o = =(0)x < {0 =)z —ylx +tle — 2% = (1= )ty — 2[5} (2.2)

Proof. Put v =r,,, fixt € (0,1), and let £ : [0,1] — X be a minimal geodesic from x
to v(t). By the k-convexity, for any s € (0,1), we see

(1= s)sle — ()%

S S P S O

k
2

= ([ =s)lz —ylx +st’ly — 2lx — 5 (1= s)slz —y(H)lx-

Similarly, we have
2 2 2 . k 2
2 = &(s)lx = (L= s)lz = 2fx +s(1 = )7y — 2l — 5 (1 = s)sfe =7 (t)[x-
These yield

ly — 2% < (Jy — &(s)lx +1€(s) — 2[x)”

1
<ly- E(s)Ix + i §(s)Ix
1 k
< H{(1= 90—y + o8l — 5 — £ - sl — (0
+ %{(1 = )k — 2P+ 5(1 = 07ly — 2 — 51— sl - 7@@}

1 1
= (1) (gl =l gl of ) + ol — ol

k

- m(l — s)slz —y(t)[%.

Therefore we obtain

1

2(1 — 1)t 1
o= 2@F < 220 (o yB + 1l -5~y - o1

2
= A0 =Dz —ylk +tle =25 = (1 =ty — 2[5}

Letting s tend to 1, we complete the proof. O
The inequality (2.2) can be regarded as the ‘(2/k) x CAT(0)-inequality’.

Corollary 2.4 Fvery k-convexr metric space is contractible.



Proof. Fixapointz € X. Fort € [0,1], we defineamap @, : X — X by (y) := a4y (2).
Then ®y(y) = x and ®,(y) =y for all y € X. It suffices to show that @, is continuous in
y. For y,z € X, Lemma 2.3 yields that

2,(5) - B

< 2{0 = 01uly) — i + tly) — ol — (1~ Dl — =)
< 2{0 = 08—y + H12ly) — ylx + by — 21x)?
— (L= )t~ ylx ~y — 21x))

9
:Eﬁl—ﬂﬂx—M§+WP%VM—M§+%O—ﬂm—ykw—dx

[\]

+tly — 2% — (1= t)tje — y|5x + 2(1 — )tz — y|x|y — 2|x
— (1= t)tly — 2%}

2
:E“ﬂy—d§+4ﬂ—ﬂﬂm—mXW—zh}
Hence |®;(y) — ®¢(2)|x tends to zero as |y — z|x — 0. 0

Remark 2.5 In [O3], we consider the converse inequality of (2.1) in a Banach space
(V|- 1), more precisely,

2v)? + 2w|? — v +w]* < K|v — w|?

for K > 1 and v,w € V. We have observed that this condition geometrically means that
the (one-dimensional) curvature of the unit sphere of V' is not greater than K (see [O3,
§2]). In this context, the k-convexity on a Banach space can be interpreted as a kind of
lower curvature bound on its unit sphere. Compare this with §3.2 in this article.

2.2 L-convexity

Definition 2.6 Let L;, Ly > 0. An open set U in a geodesic metric space (X, dy) is
called a C'p-domain for (Ly, Ls) if, for any three points z,y, z € U, any minimal geodesics
v,€ :10,1] — X between x and y, x and z, respectively, and for all ¢ € [0, 1], we have

(0 - ety < (14 1, B AL,

2

The L-convezity, the local L-convezity, and the local (L)-convexity of a geodesic metric
space are defined in the similar manner as for the k-convexity (see Definition 2.1).

The following are straightforward by definition.
Lemma 2.7 FEvery two points in a Cr-domain is connected by a unique minimal geodesic.

Lemma 2.8 Fvery L-convex metric space is contractible.



Lemma 2.9 Let U C X be a Cp-domain, z,y,z € U, and let v : [0,1] — U be a
(unique) minimal geodesic between y and z. Then, for allt € [0, 1], we have

() = s (B)]x < (1 # L [ (=)l A L2>ds)t|y .

The L-convexity for L; = 0 amounts to the nonpositively curved property in the sense
of Busemann (see [J] for the definition). So that the k-convextiy for £k = 2 (i.e., the
CAT(0)-property) implies the L-convexity for L; = 0. However, it is not clear whether
the analogue holds for general k, that is, whether the k-convexity for k& € (0,2) implies
the L-convexity for some (Lj, Ls) = (Ly(k), L2(k)) or not. We know only that we can
not take Ly(k) = 0 for k € (0,2) (see Proposition 3.1 below). On the other hand, since
every strictly convex Banach space is clearly L-convex for L; = 0, the k-convexity does
not follow from the L-convexity even for L; = 0 (see Proposition 3.3 below).

3 Examples

3.1 CAT(1)-spaces

In this subsection, we will show the following:

Proposition 3.1 (i) A CAT(1)-space (X,dx) with dlam X < /2 —¢, € € (0,7/2), is
k-convex for k = (m — 2¢)sine/ cose.

(ii) A CAT(1)-space (X,dx) with diam X <7 —¢, € € (0,7), is L-convex for

(Ly, Lo) = <(”_5) _Smg,w—e).

(m—¢)sine

Proof. (i) We first show the k-convexity. To do this, it is sufficient to consider the two-
dimensional sphere S?. Take three points x,y, z € S* with |z —y|s2 V |z — 2|s2 V [y — z|s2 <
/2 — e and set a := |x — yls2, b= |x — 2|2, ¢ := |y — 2|s2/2, and d = |x — 7,.(1/2)|se.
Then we need to estimate

2 1 2 1 2 2
f(a,b,c) ::C—2(§a +§b —d)

from below. The proof consists of three steps.
Step 1 We may assume a = b.
Step 2 We can suppose a = 7/2 — .

Step 3 It is sufficient to take a limit as ¢ — 0.

We prove only the third step, so that we assume a = b = 7/2 — ¢. By the spherical
cosine formula, we know
cos(m/2—¢) sine

cosd = = .
cosc cosc

6



If we consider d as a function of ¢, then we observe

1 sinesinc sin ccosd

d(c)=—

!
. cosd) = ————— = — —.
smd( ) sind cos?c coscsind

On the other hand, we calculate

fle) = %{(g —5)2 —d2}, F(e) = %[— 2dd'c? — 20{ <g —s>2 —d2H.

Put g(c) := —d'dc — (7/2 — €)* + d*. Then ¢g(0) = 0 and

cosd
¢'(c) = ———5—{cd(sin® d + sin” ¢) — d cos csin csin® d
cos? csin” d
2

— ¢sin” ccos d sin d}

d
— —;:OS_ 3 d{c sin? ¢(d — cosdsind) + dsin® d(c — cos csin c)}
cos? csin

> 0.
Thus we see f'(¢) > 0 and it follows from lim.od = (7/2 — ¢) that

—4dd’ 2d si d i
lim f(c) = lim = lim casmecosd CC'OS = (m — 2¢) sma.
c—0 c—0 c c—0 ccoscsind CoS €

This completes the proof of the k-convexity.

(i) We next consider the L-convexity. Take three points z,y, 2 € S? with |z — y|g V
|z — 2|2 V|y—z|s2 <m—e¢, and set a 1= |z —yls2, b 1= |z — 2z|s2, c(t) 1= |Yay () — Yz (t)]s2,
and d := ¢(1) = |y — z|s2. We have, for any t € (0, 1),

t t
? < PI% # = {a® + V? — 2abcos Lyxz}'/?,

and hence we estimate {a?+b*—2ab cos Zyxz}/d? from above. It follows from the spherical
cosine formula together with

(a—b)*sinasinb < 2ab(1 — cos(a — b))

that
a’ + b* — 2abcos Lyrz _ a® + b* — 2abcos Lyxz
d? - 2(1 — cosd)
(@ —b)? + 2ab(1 — cos Lyxz)
~ 2(1 —cos(a — b)) + 2sinasinb(1 — cos Lyxz)
< ab < (77 - 8) 2
~ sinasinb T \ sine
_ {1+ (W—s)—sins(ﬂ_g)}2
(m —¢)sine ‘
This completes the proof. O



Note that

ine —¢€) —sine
lim (7 — 2¢) MRE 2, lim (r—¢) e
e—m/2 cos e e—r (m—¢)sine

Corollary 3.2 An Alexandrov space with a local upper curvature bound is both locally
k-convex and locally L-convex for any k € (0,2) and Ly, Ly > 0.

In particular, a k-convex metric space for k& € (0,2) is not necessarily L-convex for
Ly = 0, in other words, nonpositively curved in the sense of Busemann. Moreover, we
also observe that the local k-convexity (or the L-convexity) of a simply-connected metric
space does not imply the global one. Namely, the Cartan-Hadamard-type theorem does
not hold for both of the k-convexity and the L-convexity. See [BH, Chapter I1.4] for
the cases of the CAT(0)-property and the nonpositively curved property in the sense of
Busemann.

3.2 k-convex Banach spaces

Let (V,|-|) be a Banach space and set

5(e) == inf{1—‘x7+y‘

x,er,]x\Sl,]y|§1,]x—y!28}

for ¢ € [0,2]. The following is almost straightforward from the definition of the k-
convexity. See, for example, [LT] for the terminologies on Banach spaces.

Proposition 3.3 If a Banach space (V,|-|) is k-convez as a metric space, then it satisfies
§(e) > ke?/16. In particular, (V,|-|) is uniformly convex with the modulus of convexity
of power type 2, and has cotype 2.

Proof. For x,y € V with |z| <1, |y| <1, and with |z — y| > ¢, we see

and hence

2
1—‘x+y > 1 1—)$+y) L)
2 2 2 16

O

Example 3.4 For a measure space (Z,u) and p € (1,2], the Banach space LP(Z) is
k-convex for k =2(p — 1).

3.3 Riemannian polyhedra without focal points

Example 3.5 ([Bo, Theorem 1.3]) A universal covering of a compact Riemannian poly-
hedron without focal points is k-convex for some k > 0.



4 Fundamental geometric properties

In this section, we consider some geometric properties of k-convex and/or L-convex metric
spaces. See [Ba] and [BH]| for the case of CAT(0)-spaces. The results in this section are
not used in the following sections.

4.1 Spaces of directions and tangent cones

Let (X, dx) be an L-convex metric space (possibly for Ly = o0). For x € X, we define
¥ as the set of nonconstant geodesics emanating from z. For three points z,y,2z € X,
we set Zxyz = £ig3. Here AZjZ denotes a comparison triangle in R2, i.e., a (geodesic)
triangle in R? with |Z — §lge = |z — y|x, |7 — Z|r2 = |y — 2|x, and |Z — Z|ge = |2 — x|x.

Lemma 4.1 For any v,& € X! and s,t > 0, the limit
ing e y(s2) = €t
e—

exists. In particular, lim._o Z~y(e)x€(e) exists.

Proof. By changing s and t if necessary, we may assume that v and £ have the unit
speed. For all € € (0,1), it follows from the L-convexity that

My (se) — €(t9)x < (1 . t) 7 (s) = £(0)]x.

So that there exists a monotone decreasing sequence {e;}5°, tending to zero such that the
limit lim, .o &; *|y(s8;) —&(te;)| x exists. Denote the limit by a > 0. Then, for ¢ € [g;41, &),
we have

i

= h(se) — £t =572

_ se; + tg;
<e 1(1 ; L1—> Iy (ses) — £(t21) x

and, similarly,

s+t
2

el (sgin) = Eltein)|x < (1 + Lie

)ewss) ().

Thus we see lim._oe~vy(se) — £(te)|x = a. O

Different from CAT(0)-spaces, the ‘angle’ lim._o Zv(¢)z&(<) depends on the choice
of the parametrizations of v and . Define the space of directions X, at x € X by
Y, =3/ ~, where v ~ £ holds if lim._,o Zy(g)x{(e) = 0. Put

K. =%, %x[0,00)/ ~,
where (7, s) ~ (&, t) holds if lim. e~ |y(se) — £(te)|x = 0. Then
(7, 8) = (&)l = lim e |y (s) — £(te) | x

gives a distance function on K. Define the tangent cone (K,,|-|k,) at x € X as the
completion of (K, |- |x:).



Proposition 4.2 For an L-convex metric space (X,dx) and x € X, the tangent cone
(K., | |k,) is geodesic. If, in addition, (X, dx) is k-convezx, then (K, |- |k,) is L-convex
for Ly = 0 and k-convex for the same k as (X, dx).

Proof. 'The proof is similar to the case of CAT(0)-spaces (see [BH, Chapter I1.3, Theorem
3.19]). We give the outline for completeness.

We first show that (K, ||k, ) is geodesic. To do this, since (K, ||k, ) is the completion
of (K., |- |kz), it suffices to see that every two points [v, s, [§,t] € K, have approximate
midpoints, where we denote by [v, s] the equivalent class containing (7, s) € ¥, x [0, 00).
For ¢ > 0, set y. := (1/2)y(se) + (1/2)&(te) € X and v, := [yu,.,e '] € K,. By the
L-convexity, we have

. 1
[[17: 8] = velrey = lim €—5|7(8€5) — Yay. ()| x

1 r—y(se)|lx + | — Ye
S_(1+L1| 7( )lX | y|X)|7(55>_ys|X

e 2
— (1 JrLl|x —(se)lx + |z — y5|X) Iy(se) — &£(te)|x
2 2e
- %H%S} — &tk

as € tends to zero. Therefore K, is geodesic.

Next, we suppose that (X,dy) is k-convex. By the discussion above, there exists a
sequence {e;}2°, tending to zero for which {v.,}2, converges to a midpoint vy between
[v, s] and [¢,t]. We shall prove that vy is a unique midpoint. Let v € K, be a midpoint
of [, s] and [, ], and take a sequence {v; = [, s;]}52; C K. which converges to v with
respect to | - |k,. The L-convexity yields that

|z — vi(si€)|x + | — ye|x
- |%‘(8i5) - ye|x-

1
Vg — Ve|kry, < = (1 + Ly
€ 2

By Lemma 2.3, we have
lim 8_2|’Yi(5i5) - ys|,2x
e—0

2 (1 1 1
<t 25 { Shutse) =) + 3hulse) = €0k - ghoe) - e

= 2 b= sl + o (6 1, — 1)~ €t
By letting ¢ — oo, we conclude v = vy. Therefore any two points in K, is connected
by a unique minimal geodesic. In particular, the sequence {v.}.~o tends to vy as e — 0,
and hence the geodesic 7, (s)e(te) converges to a unique minimal geodesic between [, s]
and [¢,t]. Now the L-convexity of (K, |- |k,) for Ly = 0 follows from the L-convexity of
(X, dx) by taking a scaling limit. It is similar to the k-convexity. a

10



4.2 The cone at infinity

Let (X, dx) be a complete, L-convex, and k-convex metric space. A nonconstant geodesic
7 :[0,00) — X is called a geodesic ray if it is globally minimizing, i.e., length(vy|jy) =
|7(0) — v(1)|x holds for all I > 0. Note that, if L; = 0, then every geodesic is globally
minimizing. Two geodesic rays v and & are said to be asymptotic if |y(t) — &(t)|x is
bounded from above uniformly in ¢ € [0, c0). Define

X (00) := {unit speed geodesic rays}/ ~,
where v ~ £ holds if they are asymptotic.

Lemma 4.3 Fiz a point v € X. For any o € X(00), there exists a unique unit speed
geodesic ray vy satisfying v(0) = xg and vy € o.

Proof. We first show the uniqueness. Let v, £ : [0,00) — X be two mutually asymptotic,
unit speed geodesic rays with v(0) = £(0) = z. For any ¢t € (0,00) and 7" > ¢, the L-
convexity implies that

v(#) = €(0)]x < (1+ Lle) [y (1) = &(T) | x-

Since 7 and £ are asymptotic, by letting 7" — oo, we have v(t) = £(1).
We next consider the existence. Fix £ € o, put lp := |zg — &(T)|x for each T' > 0,
and let v : [0,lr] — X be a unit speed geodesic from zy to £(7). For T > S > 0 and
€ (0,1_), where we put [_ :=lg Alp and I} := lg V I, it follows from the L-convexity
and the k-convexity that

s(t) = yr(®)x < 1+ L1L2)2;7_|7s(l—) — ()%

2 l I\ 1
<(1+ Lle)Q%{ <1 — Z)F —\5(5) — (M5 — (1 - Z) Zli}

(1t L) 2 — )+ (T =8P — (1, — 1)}

kl_1,
p 2t° 2 2
= (1+ L1Ly) lelT{(T - S = (=1}
= (14 Ll (T = 1) = (5~ H(T + 1) — (5 + 1))

< (1+ L1L2)272|x0 - 5(0)‘)(( lTlST B lTlSS>.

Letting S, T — oo, we see that vy converges to a geodesic ray v with y(0) = xy. Again

11



from the L-convexity, it holds that, for any 7" > 0 and ¢ € (0,ip A T),

t t
VT(EZT) - f(ET) .

< 1+ L) (1= £ )l 0) — €0l + i =T
T T

Ivr(t) — E@)|x <

T
+t}1——
T

X

<+ L) (1= )l = SO+ oo — €0l
T T

— (14 LiLe)|zo — £(0)]x
as T — oo. Therefore v is asymptotic to &, and it completes the proof. a

Let v and & be two unit speed geodesic rays emanating from a common point and
s,t > 0. Then, for any 7" > 1, we have

(14 LiLo) "M (s) = €(t)lx S T7HA(sT) = €(tT)|x < s + 1.

It implies lim supp_, o T7y(sT) — £(tT)|x < oo and is positive unless v(As) = £(At) for
all A > 0. Moreover, it clearly holds that

lim sup T~ |3/ (sT) — € (¢T) | = lim sup T~ |(sT) — £(T)]x
T—o0 T—o0
for any unit speed geodesic rays 7" and £ which are asymptotic to v and &, respectively.
We remark that, if Ly = 0, then T7!|y(sT) — £(tT)|x is monotone non-decreasing in 7,
and hence limp_o, T~ |y(sT) — £(tT)|x exists.
We define the cone at infinity of X as the set

CooX = X(00) x [0,00)/ ~,
where (0,0) ~ (7,0) for all 0,7 € X(00), equipped with a distance

[(0,5) = (7, )lcox = limsup T~ y(sT) — £(1T)|x,
T—o00
where v € ¢ and £ € 7. We already observed that | - |¢_x is well-defined and non-
degenerate.

Proposition 4.4 Let (X,dx) be a complete, L-convex, and k-convex metric space. Then
the cone at infinity (Coo X, ||c x) s complete. If, in addition, Ly = 0, then (Cx X, ||c..x)
is L-convex for Ly =0 and k-convex for the same k as (X, dx).

Proof. In this proof, by virtue of Lemma 4.3, we fix a point o € X and identify X (c0)
with the set of unit speed geodesic rays starting at xy. Then the completeness is easily
deduced from the fact that, for any ~v,£ € X(o0) and s,¢, A > 0, we have

7(As) = EQD)]x < (14 LaLo) A limsup Ty (sT) — £(4T) x.

T—o00
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Assume L; = 0 in the following. We first verify that (Coo X, |- |, x) is geodesic. To do
this, we fix 7,£ € X(00) and s,t > 0, and will find a midpoint of [y, s] and [, t], where we
denote by [, s] € Co X the equivalent class containing (7, s) € X (00) x [0, 00). Without
loss of generality, we may assume s,¢ > 0 and 0 < |[v, s] — [£,t]|c.x < s+ t. For each
T >0, put xp := (1/2)y(sT) + (1/2)E(tT) and Iy := |zg — xr|x. The triangle inequality
yields

S+t = T(T) — E0T)x} < 25 < Sfs 1+ T (sT) — E(T)]),

so that there exists a sequence {7;}°, tending to the infinity for which lim; .. I1,/7T;
exists. Denote the limit by a € (0,s 4+ t). For j > i > 1, it follows from the L-convexity
for L1 = 0 that

1 [
Zo + le —(sTh)
z lT X
1 T; T; 1|y, T
< I Dy, T 1y &Ll T
T{<fn“+n“}'m)x+nm |
< olor, — (Tl + |~ 2
— |, s 2
ST T, — xt\7 T,
1
- 5”778] - [gat]lCooX
as i, j — oo. Hence we have, by Lemma 2.3,
1 {( sz) lTi } 2
— |, — x T
Tz‘2 " Iz, Iz, " X
2 1 Iz, r, |
< lipen {0y
> k’j—? |:2‘7(S ) { lTj Zo + ZT wT } .
1 I I 2
sfem) = 4 (1= 2 w0+ ar o = h(sT) - 0T
2 Iz, Iz, v 4

— 0

as 1,7 — oo. It implies that {’nyxTi 122, converges to a geodesic ray which is clearly a
midpoint of [, s|] and [¢,t] by construction.

The uniqueness of a minimal geodesic follows from the same discussion as that in the
proof of Proposition 4.2. Consequently, we obtain the L-convexity for L; = 0 and the
k-convexity of (CoX, | - |c..x) by taking a scaling limit of dx. O

4.3 Foot-points

Let (X, dx) be a complete, k-convex metric space. A subset A C X is said to be geodesi-
cally convez if, for every two points x,y € A, we have ~,, C A. For a closed, geodesically
convex subset A C X and a point € X, the foot-point Fa(z) of z to A is defined as a
point in A which satisfies |z — F4(z)|x = dist(x, A). Tt follows from the k-convexity that
such a point exists uniquely.

13



Proposition 4.5 Let (X,dx) be a complete, k-convexr metric space and A C X be a
closed, geodesically convex subset. Then, for any x,y € X, we have

8 :
[Fa(@) = Fa@)lx < oAl = ylx + dist({z, y}, A) Yo — ylx.
In particular, the map Fa is (1/2)-Hélder continuous on each bounded set.

Proof. Fix z,y € X and put ' := Fu(x), v := Fa(y), and 2z := (1 — t)a’ + ty for
t €10,1]. We may assume dist({z,y}, A) = dist(x, A). By the k-convexity, we have

k
o -2} <lr—alx <A -tr =2k +tlr —yk — 50— t)ta" —y'[%.

2
It implies
(k/2)]a" =y |5 < |z =¥k — Jo — 2%

<(lz—ylx +ly = ¥Ix)* = (lz —ylx — |y — 2'|x)?
<(lz—ylx +ly—2'[x)* = (lz —ylx — [y — 2'|x)?
=4l —y[x|y — 2'[x
<Alx — y|x{|z — y|x + dist(z, A)}.

This completes the proof. O

5 First variation formula
We start this section with a variation of Lemma 4.1.

Lemma 5.1 Let an open ball B C X be a Cy-domain. Then, for any three distinct points
x,y,z € B, the function

1—(k/2)tly — 2|x

cos 2y, (t) — i P—

is monotone non-increasing in t € (0,1]. In particular, lim;_ Za:yfyyz(t) exists.

Proof. Put v =1, and fix t € (0,1] and A € (0,1). It follows from the k-convexity that

k
[z =y < (1= Nz = ylx + Ale = 7(O)x = 51 = MDAy = 2[x)"

14



By the cosine formula, we obtain

lz—ylx + Mty — 2|x)? — |z —v(\)|%

/ At) =
cos Zayy(\t) 2At|z — ylxly — 2|x

N 1
2Mx — ylx|y — 2|x
k
< Mo = k= N =20 + {50 - 0ae+ 002y - 5
o= s+ (= ) — [ — 10
2t|r — ylxly — =[x
(A= D2+ (k/2)(1 = NP2

2t\x—y\X |y_Z‘X
~ 1—(k/2)
= cos Zzyy(t) — (1 — N\)——Zt|ly — 2| x.
yy(t) — ( )ﬂx—yk|y |x

O

Different from CAT()-spaces, two limits lim, .o Zzyy,.(t) and lim, o Z7y,.(t)yz may
be different. A geodesic metric space (X, dx) is said to be locally geodesics extendable
if, for each z € X, there exists 6 = d(x) > 0 for which every unit speed geodesic
v [—¢,0] — X with 7(0) = z can be extended to a geodesic 7 : [—¢, ] — X satisfying
7 = v on [—¢,0. For z € X and r > 0, we define S(z,7) := {y € X ||z —y|x = r}.
The symbols 6, 3(c) and O,pg(e) denote functions depending only on « and [ with
lim. 6, 5(e) = 0 and limsup,_,, |Oq 5(€)|/e < 00, respectively. The following first varia-
tion formula for arclength is an analogue of that in [OT] (see also [OS, Theorem 3.5] and
(02, Theorem 2.2.3]). We give a precise proof for the thoroughness.

Theorem 5.2 (First variation formula) Let (X, dx) be a locally compact, locally geodesics
extendable, and geodesic metric space. We suppose that an open ball B C X is a Cy- and
Cr-domain, and take two distinct points x,y € B. Then, for z € B, we have

= ylx = o= 2lx = ly = 2| cos (1im Zay.(1)) + Onylly = 21%),

Proof. Fix a small ¢ € (0,0(y)) so that S(y,e) is compact, and choose a finite set
{z:}Y, C S(y,e) for which {B(z;,&?)}Y, covers S(y,e). By Lemma 5.1, we can find
t. € (0,¢] such that

cos Ziyvyzi(s) — COS <1iﬁé ZiU?/VyZi (0)‘ <e

holds for all ¢ and s € (0, t./¢].

Note that we may assume z € B(y, t.) since then ¢ = 6, ,(|ly — z|x). For z € B(y,t.)\
{y}, take z € S(y,e) and i satisfying that z = v,:(s) for some s € (0,t./¢) and that
1z — zilx < &% We put 2’ := v,5(t:/¢) and 2} := 7,.,(t-/¢). Then it follows from Lemma
5.1 that

1— (k/2)

1= (k/2)
2|z —ylx !

se > cos Layz — .
2|z —ylx

cos Qir% Z:nyyyz(t)) > cos Zayz —

15



Moreover, by the L-convexity, we see

| cos Layz' — cos Zxyzl|

I 15l b Sl oot b SO ot 15 Sl 1> Sl 1.

20z —ylxly — '[x 20z —ylxly — zilx
o 1 /2 /2
- th‘l' _le“lE Zi|X |‘T z |X‘
1
- - _ t r_
< (e =yl )l —
(e =l )+ L) Ele =
—(Jx — e)—|z — 2
=tz —ylx Ylx T le 1£)2 X
1+ Lie)e
< g(’x —ylx + ).
[z —ylx
Thus we have | cos Zzyz' — cos Zxyzl| = O, (¢) and, by a similar discussion,

| COos Z$y7y2(t> — COS Zmy’yyzi (t)l = Ox,y(s)
for small ¢ > 0. Therefore we obtain
Cos Qir% ny’yyz(t)> > cos Zxyz + O, 4(e) > cos Zxyz + O, ()

> cos Zayz, + Oy y(e)
= cos (Pn& 2Ty Yy, (t)) + O, 4(¢)
— cos (lim Zeyy,. (1)) + 00y 0)

and hence

) cos Zxyz — cos <1ir% nyyyz(t)) ‘ = O0,4(¢) = Ouy(ly — 2|x).
Combining this with

v —ylx — v —zlx| _ ly—z2% = (lz —ylx — |z — 2|x)*

cos Zxyz —
ly — z|x 2 —ylxly — 2[x
|?J—Z’X
2z —ylx’

we consequently obtain

7 —ylx — |7 — 2|x = |y — z[x cos Zayz + O,y (Jy — 2|%)

= |y — 2l cos (lim Zyy (1)) + Ouy(ly - 2I3).
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6 Cheeger-type Sobolev spaces

This short section is devoted to recalling the definition of the Cheeger-type Sobolev space.
See [C] (function case) and [O1] (map case) for more on this space. Throughout the
remainder of this article, without otherwise indicated, let (Z,dz) and (X, dx) be metric
spaces, U C Z be an open set, and let u be a Borel regular measure on Z such that any
ball with finite positive radius is of finite positive measure.

A Borel measurable function g : U — [0, 00] is called an upper gradient for a map
u: U — X if, for any unit speed curve v : [0,l] — U, we have

[u(3(0)) —u(v(1))] < / o(+(s)) ds.

Take a point xy € X and fix it as a base point, and let 1 < p < co. For two measurable

1/p

maps u,v : U — X, we define |u — |z := ([, |u— vl dp)™" and

LP(U; X) :={u: U — X |measurable, |u — zq|p» < 00}/ ~,

where xy denotes the constant map to xg and u; ~ us holds if u; = uy a.e. on U. The
function |-|» defines a distance on LP(U; X). A function g € LP(U) is called a generalized
upper gradient for u € H'"7(U; X) if there exists a sequence {(u;, g;)}32; such that g; is
an upper gradient for w;, and u; — w in LP(U; X) and ¢g; — ¢ in LP(U), respectively, as
1 — 00.

Definition 6.1 For v € LP(U; X)), we define the Cheeger-type p-energy of u as

E,(u) := inf{] g|§p(U) | g is a generalized upper gradient for u}.

Define the Cheeger-type (1, p)-Sobolev space by
H'"(U; X) := {u € LP(U; X) | E,(u) < oo}.

Note that, by the definition of the p-energy, it holds that |g|7, > E,(u) for any
generalized upper gradient g for u. A generalized upper gradient g € LP(U) for a map
u € HYP(U; X) is said to be minimal if it satisfies |g[}, = E,(u).

Remark 6.2 The definition above of E, is slightly different from those in [C] and [O1]
at the point that we require that {g;}:2, is convergent in LP(U). However, they coincide
in the case where (X, dx) is L-convex for L; = 0 by the existence of minimal generalized
upper gradients ([O1, Theorem 3.2]).

7 Minimal generalized upper gradients

Throughout this section, let (X, dx) be an L-convex metric space. We emphasize that the
k-convexity is not supposed, and hence, by Proposition 3.1, we can take as X a CAT(1)-
space whose diameter is less than 7. In this situation, the energy form E, is not convex,
but we can estimate how the convexity is violated. For two maps uy,us : U — X and
t € [0, 1], denote by (1 — t)uy + tus the map U 3 z — (1 — t)ui(z) + tus(z) € X.
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Lemma 7.1 Let uj,us : U — X be maps and t € [0,1]. For any upper gradient g, and
go for uy and usy, respectively, and for any function ® : U — (0, 00) with infp(, ) & >0
for every r > 0 and z € U, the function

g ={(1—1t)g +tg2 {1 + Li(|lus — ua|x A L2) + @}

is an upper gradient for the map v := (1 — t)u; + tus.
In particular, if uy,us € H"P(U; X) with 1 < p < oo, then we have v € H'?(U; X)
and

Ep(0)'? < (14 LiL){(1 = ) Ep(u1) V7 + tE, (uz)'/7}.

Proof. Fix a unit speed curve v : [0,]] — U. We may assume fol gi o vds < oo for
1 = 1,2, and then w; o« is uniformly continuous for ¢ = 1,2. Take a sufficiently large
n > 1 for which

max [u;(v(s)) — (1)) |y < _inf @/(2L1)

holds if |s — s'| < I/n. Set l; := (j/n)l and z; := y(l;) for 0 < j < n. By the L-convexity,
we have

[0(7(0)) —v(v(1))] 4 < Z [v(zj-1) — v(z))|x

< Zﬂv(zj—l) = Yun (z7)us(z—1) (O |5 F [V (2 )un(z_0) (£) — v(25) | x }

< Z Hl y (luz(zj-1) — wa(zj-1)[x + \2u2(2j1) —u1(z)]x) A 2L2}

(1 — )ur(zj-1) — wa(z)|x

N {1 L g, () = ezl + |2u1(zj) —ua(z)]x) A 2L2}

X tlug(z;-1) — U2(Zj)|X}

SZ/.J' {14 Li(Jur — uo|x A La) + ®H(1 — t)g1 + tgo}] 0 vds

l
:/ goyds.
0

This completes the proof. O

The following simple lemma will play a key role.

Lemma 7.2 Let {g;}3°,{fi}2, C L*(U) and g € LP(U). If gi — g and f; — 0 in LP(U)
as i — oo, and if | f;| < L < oo holds uniformly in i > 1, then we have g; f; — 0 in LP(U)
as 1 — 00.

18



Proof. 1t follows from |f;| < L that

1/p 1/p
ifil” d - i|Pd
‘(/U|gf| u) (/U|gf| u)

1/p
< L(/ I —gl”du) — 0
U
as 1 — oo. For any R > 0, we observe

limsup/ lgfi|P dp < lim sup { / lgL|P du +/ |Rf:[P d,u}
i—oo  JU i—00 {lg|>R} U

=LP / |g]” dp.
{lg|>R}

Letting R tend to the infinity, we conclude

hmsup/ |gi fil? dp = limsup/ 9l dp = 0.
U U

1—00 1—00

O

Theorem 7.3 For any u € HY(U; X) with 1 < p < oo, there exists a unique minimal
generalized upper gradient g, € LP(U) for u.

Proof. The proof is essentially along that of [O1, Theorem 3.2]. For n > 1, take a
sequence {(un, gn:) 2, and a function g, € LP(U) satisfying that u,; — u in LP(U; X)
and g,; — ¢, in LP(U) as i — 00, gn,; is an upper gradient for u,;, and that |g,|.» <
E,(u)Y? 4+ n~t. If E,(u) = 0, then clearly g, — 0 in LP(U) as n — oo, and hence the
constant function 0 is a unique minimal generalized upper gradient.

We suppose E,(u) > 0 and fix m > n > 1. The triangle inequality yields that
(1/2)up; + (1/2)uy,; — win LP(U; X). By Lemma 7.1, the function

1

1 ._
(igm,i + égnz) {1+ Ly (|tbms — tnilx A La) +i7'}

is an upper gradient of (1/2)u,; + (1/2)u,; and, by Lemma 7.2, which converges to
(1/2)gm + (1/2)g,, in LP(U) as i — oo. Therefore we have

1 1 1 1
§|gm|LP + §|gn|LP S Ep(u>1/p + 2n_1 S '_gm + ~3n + Qn_l.

Lp

2 2

For each n > 1, take i(n) large enough to satisfy |gn i) — gn|zr < n~'. Then we see

m n n
g Lp 9 Lp

’ 1

S1mmlis + 3 loniolir <
92 9mi(m)|Lr 9 Gnji(n)|LP >

+3n7!
Lp

1
< |Z —
< 29m+29n

<! 1 +4n~!
>~ 29m,z(m) 29n,z(n) n .

Lr

Since LP(U) is uniformly convex and |g,|7, > E,(u) > 0 for all n > 1, it implies that
{Gn.itm) 32, is a Cauchy sequence in LP(U), and hence it converges to a minimal generalized
upper gradient for u. The uniqueness also follows from the uniform convexity of LP(U).
O
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For a continuous function f : U — R and a point z € U, we define

Lip f(z) := lir% sup My
=Y weB(z,r)\{z} |Z — w’Z

and we put Lip f(z) := 0 if z is an isolated point. See §8 more on this function. Along
the discussions in [O1, §3], we obtain the following.

Lemma 7.4 Let uy,us : U — X be maps and ¢ : U — [0,1] be a function. For any
upper gradients gy, g2, and gz for uy, us, and ¢, respectively, and for any ® as in Lemma
7.1, the function

9= g3 (lur —us|x + P)
{1 =+ @)g1 + (¢ + P)g2 {1 + Li(Jus — ua|x A Lo) + ®}

is an upper gradient for the map v := (1 — ¢)uy + P us.
Let, in addition, ¢ be Lipschitz continuous and 1 < p < oo. Then, for any generalized
upper gradients gy, go € LP(U) for ui,uy € H"P(U; X), respectively, the function

g = (Lip @) ur — ua|x + {(1 = ®)g1 + ¢g2 {1 + Li(Jur — ua|x A Lo)}
1s a generalized upper gradient for v.

Proof. The proof is same as that of [O1, Lemma 3.3] by using Lemma 7.1 instead of [O1,
Lemma 3.1]. O

Proposition 7.5 Let 1 < p < oo, W C U be an open set, and v € H'"?(U; X). If g
and gw are generalized upper gradients for u|y and ulw, respectively, then the function g
defined by g :== gy on U\ W and g := gw on W is a generalized upper gradient for u. In
particular, if 1 < p < oo, then we have g, = g(u|y,) a.e. on W.

Proof. See [O1, Proposition 3.4]. 0

Corollary 7.6 Let 1 < p < .

(i) If g € LP(U) is a generalized upper gradient for v € H*?(U; X), then g, < g holds
a.e. on U.

(ii) For u,v € H"(U; X), if u = v a.e. on an open set W C U, then we have g, = g,
a.e. on W.

Proof. See [O1, Corollaries 3.5, 3.6]. O
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8 Minimality of Lipu

For a continuous map u : U — X and a point z € U, we define

Lipu(z) :=lim  sup u(z) = u(w)|X’
r=0 ez} 17— Wz

and we put Lipu(z) := 0 if z is an isolated point. Note that Lipu is Borel measurable
and, if u is Lipschitz continuous, then it does not exceed the Lipschitz constant of u. It
is easy to show that, for a locally Lipschitz map u, Lip u is an upper gradient for u ([O1,
Proposition 5.2]). The first variation formula on a Cy- and Cp-domain (Theorem 5.2)
allows us to obtain the minimality of Lip u for maps into a locally (k)-convex and locally
(L)-convex metric space, and it generalizes [O1, Theorem 5.9].

Lemma 8.1 Let (X,dx) be a locally compact, locally geodesics extendable, locally (k)-
convez, and locally (L)-conver metric space, and let u : U — X be a locally Lipschitz
map. Then, for every z € U and € > 0, there ezists a point x € X \ {u(z)} in a Cy- and
Cr-domain containing u(z) such that

Lip |u — z|x(z) > Lipu(z) —e.
Moreover, for such x and each y € X near x, we have
Lip |u — y|x(2) > Lipu(2) — € + 0pu2) (|2 — ylx)-

Proof. 'We may assume Lipu(z) > 0. Take a sequence {z;}3°, C U \ {z} which tends to
z and satisfies

lim [u(z) = u(z)lx = Lipu(z).

For a sufficiently small § > 0, by the local geodesics extendability, we find a point
z; € S(u(z),6%) = {w e X ||u(z) —w|x = 6%}

satisfying u(z;) = Yu(z)z (|u(z) — u(z;)|x/6?) for each large i. As S(u(z),d?) is compact,
we can extract a subsequence {z;} of {z;} which tends to a point 2/ € S(u(z),d?), and
we take x € S(u(z),d) with ' = v,(.).(6). By Theorem 5.2, we have

(=) = alx = Ju(z;) = alx = [u(z) = u(z)|x cos (lim Zeu(=) (o, (1))

+ Opu(a) ([u(z) — u(z)[%)-
It follows from the k-convexity that
o 0% 4 t%0% — |z — Vu(z)x; (t)‘,QX

coS Z:z:u(z)fyu(z)rj (t) = 5150
1 k
> _ - 2 254 1 — 2 a2 2(1 — 4

Y- B VR P S SR AN et )
—253(5 + 6" — |z — z4)%) (1 5 5

= cos Zzu(z)z; — (1 - E) (1=#)9,

2
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Therefore we obtain

[u(2) — o|x — [u(z;) — z[x

|z — 2i]z
_ Ju(2) — u(z;)|x .~
= oo (1 Zeu(e i, ) + Orai (1) - )
lu(2) — u(z;)|x ~ k\ o
> / (1= =)= .
S cos Zxu(z)w; 5 )30t Ouu(x)(|2 — 2j|2)

o (- 5) b

as j — 00. This completes the proof of the first part.
Recall that 6 = |x — u(z)|x. For y € B(x,d), j > 1, and for t € (0,1), Lemma 5.1
yields

oS Zyu(z)%(z)xj (t) > cos Zyu(z)z; — (1

k) (1 —1t)5?

- 2) 20y — u(z)|x
- kYo
> cos Zyu(z)x; — | 1 — 5)3t 0s(|lz — ylx).

We remark that the term 05(|x — y|x) does not depend on j. Therefore we have

lu(z) —ylx — |u(z;) —ylx

lim inf

j=o0 |2 — zjlz
[ u(z) —u(z)]x o

= liminf cos(hmé W(2) Y 2) . t)
mint § =2 cos (i Zgu i, 1)

0y (fu(z) — u(zj>|x>}

> {cos Zeu(z)y — (1 . g) g}LiPU(Z) +05(]z — ylx)

- {1 - <1 - g) g}Lipu(z) + Oy (|7 — ylx)-

O

Now we can prove the minimality of Lipu just as in the proof of [O3, Theorem 5.9].
Before stating the theorem, we need to recall two notions.

Definition 8.2 A metric measure space (Z, dz, 11) is said to satisfy the doubling condition
if there exist constants Rp > 0 and C'p > 1 such that pu(B(z,7)) < Cp u(B(z,r/2)) holds
for all z € Z and r € (0, Rp].

It follows from this condition that any ball with radius Rp, say B(z, Rp), is totally
bounded. Hence, if (Z,dz) is complete, then any closed ball B(z,r) with r € (0, Rp) is
compact, so that u is a Radon measure on B(z,r).
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Definition 8.3 A metric measure space (Z,dz, p) is said to satisfy the weak Poincaré
inequality of type (1,p) if there exist constants Rp > 0, Cp > 1, and A > 1 such that we

have
1/p
][ f—][ fdu’duéCpr(][ gpdu)
B(z,r) B(z,r) B(z,Ar)

for all z € Z, r € (0, Rp|, f € LP(B(z,Ar)), and for all upper gradient g : B(z, Ar) —
[0, 00] for f. Here, as usual, we define f, o fdp = u(B(z, 1) [ o fdp.

Theorem 8.4 Let (Z,dz, p) be a complete metric measure space satisfying the doubling
condition and the weak Poincaré inequlity of type (1,p) for some 1 < p < oo, and let
(X,dx) be a locally compact, locally geodesics extendable, locally (k)-convez, and locally
(L)-convex metric space. Then, for any locally Lipschitz map u € H'?(U; X), the function
Lipw is a minimal upper gradient for u, i.e.,

E,(u) = /U(Lip w)? dp.

If, in addition, (X, dx) is L-convez, then g, = Lipu holds a.e. on U.

Proof. The proof is similar to that of [O1, Theorem 5.9] by virtue of Proposition 7.5,
Corollary 7.6(i), and Lemma 8.1. We remark that the lower semi-continuity of E, has
been used only for functions. O

The theorem above contains [O1, Theorem 5.9] by Corollary 3.2.

9 Dirichlet problem

In this section, let (Z,dz, 1) be a complete metric measure space satisfying the doubling
condition and the weak Poincaré inequlity of type (1,2), and let (X,dx) be a proper,
L-convex metric space. Then L?*(U; X) is complete. In addition, we suppose diam U <
(diam Z)/3. This condition implies that there exists a constant C' = C'(Cp, Cp,diam U) >
0 such that, for any f € Hy*(U), it holds that

(/U!deu)l/z < O(/[]|gf|2dﬂ)l/2 (0.1)

(see [Bj, Proposition 3.1]).
Define the distance dy1,2 on HY?(U; X) by, for u,v € HY*(U; X),

dpr2(u,v) == |u—v|p2 + gy — gulr2-

(We do not use the notation |u — v|g12 in order to avoid the confusion with the Sobolev
norm of the function |u — v|x.) For v € H"(U; X), we define

HA (U3 X) = {u € HY*(U; X) | supplu —vlx € U}
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and denote by H2(U:; X) its dyr2-closure. Note that H2(U; X) is a convex subset in
H“2(U; X) and that

inf{Fy(u) |u € H**(U; X),supp |u —v|x CU} = inf  Ey(u).

ueHy 2 (U;X)
Definition 9.1 A map v € H"?(U; X) is said to be harmonic if it satisfies

Ey(v) = inf  Ey(u).
u€Hy?(U;X)
If OU = 0, then H!*(U; X) = H“?(U; X) and hence any constant map is harmonic.
In the remainder of this section, we assume OU # () and fix a map v € HY*(U; X).
We first recall that the canonical embedding H"?(U; X) < L?(U; X) is compact in
the sense that every sequence {u;}2, in H"?(U; X) such that {|u; — zo|z2 + Fa(u;)}$2, is
uniformly bounded has a subsequence which is convergent in L?(U; X).

Lemma 9.2 The embedding H"*(U; X) — L*(U; X) is compact.

Proof. 1t is well-known that the weak Poincaré inequality of type (1,2) together with the
doubling condition implies the compactness of the embedding H"*(U) < L*(U). Then
the lemma follows from the proof of [KS, Theorem 1.13] since X is assumed to be proper.
O

We next consider the Dirichlet problem. The properness of X allows us to simplify
the discussions in [J, §3.1] and [O1, §4]. We emphasize that we can take, as the target
space X, a CAT(1)-space whose diameter is less than 7 by Proposition 3.1.

Theorem 9.3 (Dirichlet problem) Let (Z,dz, 1) be a complete metric measure space sat-
isfying the doubling condition and the weak Poincaré inequlity of type (1,2), let (X, dx)
be a proper, L-conver metric space, and suppose diamU < (diam Z)/3. Then, for any
v € HY(U; X), there exists a harmonic map in HY*(U; X).

Proof. Take a sequence {u;}32, C HY2(U: X) satisfying lim;_o Fo(u;) = inf 2 .y Bo.
Since g,, + g, is a generalized upper gradient for the function |u; — v|x, by (9.1) and
Corollary 7.6(i), we have

2+ [golr2)
= C(Bsy(w)'? + Ex(v)'/?).

i = v]L2 < Clgpu;—vix |22 < C(|gu

Hence {|u; — v|z2}$2, is uniformly bounded, so that it follows from Lemma 9.2 that a
subsequence of {u;}°; converges to a map u € L*(U; X) in L*(U; X). We again denote
this subsequence by {u;}2,. As in the proof of Theorem 7.3, by

1 1
_gui + _ng

1 1
lim <§|gui|L2 + §|9UJ|L2) = inf E;/2 < lim inf B 9

i,j—00 HY(U:X) i,j—00

12

together with the uniform convexity of L?*(U), we obtain that {g,,}32, is a Cauchy se-
quence, so that it converges to some g € L*(U). In particular, g is a generalized upper
gradient for u, and hence u € H"*(U; X).
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By a similar discussion to the latter half of the proof of [O1, Lemma 4.2] using Lemma
7.4 instead of [O1, Lemma 3.3], we see that g = g,. Therefore u; tends to u with respect
to dpi2 as i — 00, so that u € HY?(U; X). O

Remark 9.4 Tt is easily observed that a harmonic map in H}»?(U; X) is not necessarily
unique. In fact, since Fs(u) cares only the most stretching direction of u (see Theorem
8.4), we can deform u in a less stretching direction without changing the energy.
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