
ON THE GEOMETRY OF WIMAN’S SEXTIC

NAOKI INOUE AND FUMIHARU KATO

Abstract. We give a new version of W.L. Edge’s construction of the linear system of
plane sextics containing Wiman’s sextic, by means of configuration space of 5 points on
projective line. This construction reveals out more of the inner beauty of the hidden
geometry of Wiman’s sextic. Furthermore, it allows one to give a friendly proof for the
fact that the linear system is actually a pencil, the fact that is important in both Edge’s
and our constructions.

1. Introduction

Consider the action of the symmetric group S5 of five letters on the projective 5-space
P5 defined over an algebraically closed field K of characteristic not equal to 2, 3, 5, induced
from the 6-dimensional irreducible representation. Calculating the symmetric square of the
representation, one sees that there exists a quadratic form in H0(P5,OP5(2)), unique up
to scalar, that is invariant by any element of S5. This gives rise to the unique quadratic
hypersurface in P5, which is stable under the action of S5.

There is, on the other hand, the famous surface embedded in P5, the Del Pezzo quintic
surface, on which the group S5 acts equivariantly with the action on P5 as above. The
intersection of the hypersurface with the Del Pezzo quintic surface defines a curve, denoted
by W̃ . By the 4-point blow-up map, it is mapped to a certain curve on P2, which is stable
under the S5-action by Cremona transformations. This curve is actually an irreducible 4-
nodal sextic, which we denote by W . The actual equation for W with respect to a suitably
chosen homogeneous coordinate is given as follows:

x6 + y6 + z6 + (x2 + y2 + z2)(x4 + y4 + z4)− 12x2y2z2 = 0.

The curve W is first discovered by Wiman in the end of 19th century [5]. This curve
is, needless to say, interesting in its own light, for it has a lot of symmetries; the nor-
malization of W is actually isomorphic to W̃ as above, which is, therefore, a non-singular
projective curve of genus 6 having the automorphism group isomorphic to S5. But more
attractive is the inner beauty of the rich geometry hidden behind the curve W . In his
1981 papers [2][3] W.L. Edge, unsatisfied with Wiman’s original description of the curve,
gave projective geometric characterization of the Wiman’s sextic, which reveals out rich
geometric background and several nice properties. In the first work Edge constructed in
a purely projective geometric manner a pencil L of plane sextics on which the group S5

acts by Cremona transformations. As the non-trivial action of S5 on projective line is only
possible by the signature action, there are precisely two members in L that are stable under
the action. One of them is a union of 6 lines, and the other is the Wiman’s sextic. Notice
that, in order to find the Wiman’s sextic in L, it was important to know that his linear
system L is actually a pencil.

In this note we are going to recast Edge’s construction in a slightly different manner.
The main points of our method are that we regard the Del Pezzo quintic surface as the
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configuration space of 5 points on P1, and that we consider the so-called pentagonal coor-
dinates (studied by M. Yoshida [1]) on the surface, which has 6 variables X, Y, Z, U, V, W
together with 6 dummy ones X∗, Y ∗, Z∗, U∗, V ∗,W ∗, and gives the anti-canonical embed-
ding into P5. There are several benefits arising from these points. First, by means of the
configuration space of 5 points, the natural S5-action becomes visible; moreover, the action
can be quite explicitly described in terms of the pentagonal coordinates. This allows one
to understand the construction more transparently. Secondly, our method allows to give a
friendly proof of the fact that the linear system L is a pencil, the fact for which Edge only
gives a short explanation. Finally, as the reader will find soon, the pentagonal coordinates
turns out to be the most optimal coordinate system in the sense that, in terms of it, the
Wiman’s sextic has the very beautiful and simple defining equation; indeed, it is

X2 + X∗2 + Y 2 + Y ∗2 + Z2 + Z∗2 + U2 + U∗2 + V 2 + V ∗2 + W 2 + W ∗2 = 0

(cf. 3.19 below). Note that our coordinate system is different from Edge’s one in [3].
The composition of this note is as follows: In the next section, we will briefly recall

Edge’s construction of the linear system L and the Wiman’s sextic W . In Section 3 we will
perform our way of the construction. In the last section (Section 4) we give the proof of
the fact that the linear system is a pencil.

2. Review of Edge’s construction

In this section we will briefly review Edge’s construction of Wiman’s sextic [2].

General Convention.

2.1. Throughout this paper, K denotes an algebraically closed field with char(K) 6= 2, 3, 5.
By V = Kn+1 we denote the vector space consisting of all column vectors t(a0, . . . , an) of
height n + 1. Set Pn = Proj SymK V ∗. The set of K-rational points Pn(K) thus consists
of homothecy classes of column vectors; such a point will be written as t(a0 : · · · : an), or
more simply, (a0 : · · · : an), if there is no danger of confusion. The group PGLn+1(K)
naturally acts on Pn from the left. On K-rational points, the action is described as follows:
For A = (aij) and x = (x0 : · · · : xn), we have Ax = (y0 : · · · : yn), where t(y0, · · · , yn) =
A · t(x0, · · · , xn).

2.2. In the sequel, simply by a point of a K-scheme we always mean a K-rational point.
Accordingly, for a K-scheme X, writing x ∈ X means that x is a K-rational point of X,
that is, x ∈ X(K).

2.3. We will be concerned with some elementary projective plane geometry. For two distinct
points p0, p1 ∈ P2, we denote by p0 ∗p1, the so-called join, the line spanned by these points.
For two different lines `0, `1 on P2, we likewise denote by `0 ∗ `1 the join, that is, the unique
intersection point of them.

Cremona transformation.

2.4. Recall that a Cremona transformation on Pn is a rational selfmap of Pn that has the
rational inverse. They evidently form a group by composition, which contains Aut(Pn) =
PGLn+1(K) as a subgroup. The Cremona transformations of the following kind will be
of particular importance: Let p0, p1, p2, q ∈ P2 be four points in general position (i.e., no
three of them sit on a line), and Q the blow-up of P2 at the three points p0, p1, p2. Let Ei

(i = 0, 1, 2) be the resulting exceptional line over pi, and Ci the strict transform of the line
pj ∗ pk, where {i, j, k} = {0, 1, 2}. Blow-down the (−1)-curves C0, C1, C2, and coordinate
the resulting P2 in such a way that the image of Ci is pi and that q is mapped to q. Thus
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we get a Cremona tramsformation, which we denote by J{p0,p1,p2},q. Note that J{p0,p1,p2},q
is involutive, i.e., (J{p0,p1,p2},q)

2 = id. The following proposition is easy to verify, and the
proof is left to the reader:

Proposition 2.5. The Cremona transformation J{p0,p1,p2},q maps the pencil of all lines
passing through pi linearly isomorphically onto itself for each i = 0, 1, 2, and maps the
pencil of all lines passing through q linearly isomorphically onto the pencil of all conics
passing through p0, p1, p2, q and vise versa.

Hessian duad and Hessian pair.

2.6. Consider a set of three distinct points {p0, p1, p2} of P1. The Hessian duad of the
set {p0, p1, p2} is the set of two points {q+, q−} of P1 characterized by one of the following
equivalent conditions:

(1) The points q+ and q− are the fixed points of the linear transformation of P1 induced
from a cyclic permutation of {p0, p1, p2}.

(2) q = q+ and q = q− are the solutions for the equation cr(p0, p1, p2, q) = −ω,−ω2,
where ω is the primitive cubic root of unity.

(3) If we choose ϕ ∈ Aut(P1) such that ϕ({p0, p1, p2}) = {1, ω, ω2}, then ϕ({q+, q−}) =
{0,∞}.

Here, cr(p0, p1, p2, q) denotes the cross ratio defined by

cr(p0, p1, p2, q) =
q − p1

q − p2
· p0 − p2

p0 − p1
,

where, now, the points are displayed in terms of inhomogeneous coordinate.
Note that the definition of Hessian duad depends only on the set {p0, p1, p2}. One can

similarly define Hessian duad of three distinct points on a line in P2. In duality, one defines
likewise the notion of Hessian pair of the set of three distinct lines sitting in a pencil. The
following proposition is easy to see, and the proof is left to the reader:

Proposition 2.7. Let p be a point of P2, and {`0, `1, `2} a set of distinct three lines passing
through p. Let ` be a line that does not contain p, and set qi = `i ∗ ` for i = 0, 1, 2. Then
the following conditions for two lines `± passing through p are equivalent:

(1) {`+, `−} is the Hessian pair of {`0, `1, `2}.
(2) {`+ ∗ `, `− ∗ `} is the Hessian duad of {q0, q1, q2} on the line `.

The line configuration (Π + H).

2.8. Now we begin the construction. The first step of the construction is to give a certain
line configuration, which we denote symbolically by (Π+H), on P2 that is determined by a
set of 4 points in general position; since the construction is entirely linear, change of the set
of the points only gives rise to the linear change of the configuration, and hence, (Π + H)
is unique up to linear transformation.

Let {p1, p2, p3, p4} be a set of 4 points of P2 in general position. This set gives rise
to the so-called quadrangle on P2, which is the line configuration consisting of 6 lines
Lij = Lji = pk ∗ pl for {i, j, k, l} = {1, 2, 3, 4}. It has the points pi’s as its vertices, and the
3 diagonal points pij = pkl = Lij ∗ Lkl for {i, j, k, l} = {1, 2, 3, 4}. Note that, on the line
Lij , there are 3 distinguished points pk, pl, pkl ({i, j, k, l} = {1, 2, 3, 4}), where the first two
are triple points, and the last one is a double point. We denote by Π the line configuration
consisting of the 6 lines Lij .
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2.9. Let {i, j, k, l} = {1, 2, 3, 4}. The 3 lines Lkl, Ljl, Ljk pass through the vertex pi, and
one can consider the Hessian pair {H+

i ,H−
i } of them. We have in total 8 lines of the form

H±
i , which we call the Hessian lines of the quadrangle. The line configuration consisting

of the 8 lines H±
i is denoted by H.

On the line Lij , one can consider the Hessian duad {q+
ij , q

−
ij} of {pk, pl, pkl}. By 2.7, it

coincides with the pair {H+
i ∗Lij ,H

−
i ∗Lij}, and furthermore, with the pair {H+

j ∗Lij ,H
−
j ∗

Lij}. In this way, we get 12 points of the form q±ij . We call them the Hessian points of the
quadrangle Π.

Definition 2.10. The line configuration (Π + H) is the collection of 6 lines Lij (edges of
the quadrangle) and the 8 lines H±

i (hessian lines), hence in total 14 lines. It has in total
the 19 distinguished points, viz., 4 vertices pi, 3 diagonal points pij , and 12 Hessian points
q+
ij .

Cremona action by S5 on P2.

2.11. Let H be the group of the linear transformations induced by permutations of four
points p1, p2, p3, p4. Thus, H is a subgroup of Aut(P2) isomorphic to S4. Moreover, it is
obvious that the line configuration (Π + H) is stable under the action by H.

To understand the symmetry more in detail, let us introduce the following 5 pencils:
• α0: the pencil of conics passing through p1, p2, p3, p4.
• αi (i = 1, 2, 3, 4): the pencil of lines passing through pi.

The group H acts on the set {α0, α1, α2, α3, α4} as the permutations of the last four ele-
ments.

Set Ji = J{pj ,pk,pl},pi
for {i, j, k, l} = {1, 2, 3, 4}. By 2.5, we readily see the following:

Proposition 2.12. The Cremona transformation Ji gives rise to the transposition (α0αi)
on the set {α0, α1, α2, α3, α4}.
2.13. Now set G = 〈H, J1〉 as a subgroup of the group of all Cremona transformations.
Since G acts on the set {α0, α1, α2, α3, α4}, there exists a map G → S5. As the image
contains all transpositions, this map is surjective; one can check, moreover, without so
much pain that it is injective, and thus that the group G is isomorphic to S5. Hence we
get the Cremona action of S5 on P2. Note that the group G contains all Ji (i = 1, 2, 3, 4)
as conjugates of J1 by suitable elements in H. By the construction of Ji’s (as in 2.4), we
see the following:

Proposition 2.14. The line configuration (Π + H) is stable under the action of G.

The linear system L.

Definition 2.15. Define L to be the linear system of curves on P2 spanned by general
4-nodal sextics C having the nodes at the vertices p1, p2, p3, p4 such that the following
conditions are satisfied:

(1) For each i = 1, 2, 3, 4, the nodal tangents at pi coincide with H±
i .

(2) For each i, j = 1, 2, 3, 4 (i 6= j), C passes through the points q±ij .
Note that, due to 2.14, the linear system L is acted on by the group G ∼= S5.

Wiman’s sextic W .

2.16. Edge claims in [2], with a short explanation, that the linear system L is a pencil. We
will give an algebro-geometric proof for this fact in Section 4. Assuming this fact, as well
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as that the action of G on L is not the trivial one, one can characterize the Wiman’s sextic
curve W as the unique irreducible member of L that is stable under the action of the whole
group G. In fact, since the action of G on L is non-trivial, G acts on L ∼= P1 via the map

G ∼= S5 −→ S5/A5
∼= {±1},

namely;
(1) general member of L is stable under the action of A5;
(2) there exist exactly 2 members (corresponding to the fixed point in P1 of the action

z 7→ −z) which are stable under the whole group G = S5.
As we will see in the next section that, in fact, one of the members as in (2) is Π, and the
other one is an irreducible one, which is nothing but Wiman’s sextic.

3. Construction by configuration space

Configuration space.

3.1. We denote by X(2, n) the K-scheme representing the set of all configurations of n
rational points on the projective line P1, that is,

X(2, n) = PGL2 \[(P1)n −∆],

where ∆ is the locus of coincidence of at least two points. Here, (P1)n is acted on by PGL2

diagonally, and hence, the natural Sn-action that permutes the factors descends to that on
X(2, n). It is known that X(2, n) is an (n − 3)-dimensional non-singular quasi-projective
scheme on K. This space comes more visible when one describes it in terms of coordinates:
Let Mat2,n be the affine scheme of all 2×n matrices. It has the n-tuples of column vectors
of the form t(xi, yi) (i = 0, . . . , n − 1) as the coordinate system. Let D(ij) denotes the
determinant of the (i, j)-minor:

D(ij) = xiyj − xjyi.

Then we have
X(2, n) ∼= PGL2 \[Mat2,n−∆̃]/(Gm)n,

where ∆̃ is the closed subscheme defined by
∏

i<j D(ij), and (Gm)n acts on Mat2,n−∆̃
columnwise. The Sn-action is simply given by the permutation of indices {0, 1, . . . , n− 1}.
3.2. The space X(2, n) has the nice projective compactification X(2, n), which is the K-
scheme classifying all stable configurations; see [4, Def. 3.7/Prop. 3.4] for the definition
of stable configuration. Denote the open subscheme of (P1)n of stable configurations by
(P1)n

stable. Then the scheme X(2, n) is given by

X(2, n) = PGL2 \(P1)n
stable.

It is well-known that X(2, n) is a non-singular projective K-scheme of dimension n − 3,
which contains X(2, n) as a dense open subscheme.

Examples 3.3. We will be only concerned with the configuration spaces X(2, n) with
n = 4 and n = 5.

(1) If n = 4, then X(2, 4) is the projective line deprived of three points. Given a
rational point of X(2, 4), or what amounts to the same, a 4-tuple (p0, p1, p2, p3) of rational
points of P1 (displayed in terms of inhomogeneous coordinate), one considers the cross ratio
cr(p0, p1, p2, p3), which gives rise to the open immersion X(2, 4) ↪→ P1. The compactification
X(2, 4) is simply a projective line that fills in the three missing points of X(2, 4).
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Another realization is given by the immersion X(2, 4) ↪→ P2 by the map

p 7−→ (D(01)(p)D(23)(p) : D(02)(p)D(13)(p) : D(03)(p)D(12)(p)).

It maps X(2, 4) isomorphically onto the locally closed subset consisting of points (x : y : z)
such that none of x, y, z vanishes and that the Plücker relation

x− y + z = 0

is satisfied.
(2) If n = 5, it is known that X(2, 5) is the Del Pezzo quintic surface. A configuration of

5 points (p0, p1, p2, p3, p4) is stable if and only if there exists no subset I ⊂ {0, 1, 2, 3, 4} with
|I| = 3 such that pi = pj = pk. This allows one to describe the boundary X(2, 5)−X(2, 5).
In fact, the boundary consists of 10 lines `ij defined by the equation D(ij) = 0. The
line `ij is, therefore, the locus of the points representing the configurations of 5 points
(p0, p1, p2, p3, p4) with pi = pj ; it is thus isomorphic to X(2, 4), hence to P1 (3.3 (1)). Each
`ij intersects exactly 3 other such lines transversally; indeed, the lines `ij and `kl intersect
if and only if {i, j} ∩ {k, l} = ∅.
The linear system L̃.

3.4. We are going to define a linear system L̃ on the non-singular projective surface S =
X(2, 5). Consider the natural S5-action on X(2, 5) introduced in 3.1. By σ ∈ S, the line
`ij is mapped linearly to `σ(i)σ(j). Hence, in particular, the divisor

Π̃ =
∑

i<j `ij

is stable under the S5-action.

3.5. Let {i, j, k, l, m} = {0, 1, 2, 3, 4}. Then the line `ij intersects `kl, `lm, and `mk, and
these intersection points gives rise to the Hessian duad {q̃+

ij , q̃
−
ij} (2.6). We have 20 such

points on Π̃ in total. Since the divisor Π̃ is stable under the action by S5, so is the set of
all those points q̃±ij .

Definition 3.6. Define the linear system L̃ on X(2, 5) by

L̃ =
∣∣Π̃−∑

i<j(q̃
+
ij + q̃−ij)

∣∣

=
{

effective divisors linearly equivalent to Π̃
which pass through all the points q̃±ij

}
.

As the divisor Π̃ and the set {q̃+
ij , q̃

−
ij}i<j are stable under the action by S5, the linear

system L̃ is acted on by S5.

Pentagonal coordinates.

3.7. We are going to study the linear system L̃ in more detail. To do this, we are to
introduce a useful coordinates on the surface X(2, 5) following [1].

Given an ordered set (a, b, c, d, e) of indices such that {a, b, c, d, e} = {0, 1, 2, 3, 4}, we put

〈abcde〉 = D(ab)D(bc)D(cd)D(de)D(ea).

Clearly, we have 〈abcde〉 = 〈bcdea〉 and 〈abcde〉 = −〈edcba〉. One 〈abcde〉 is, therefore, fixed
up to sign by the subgroup of S5 isomorphic to D5, and hence, there exist precisely 12 such
symbols.
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3.8. There are several relations among 〈abcde〉’s. We first find linear ones as follows: Con-
sider the Kleinian subgroup K4 = {1, (ab), (cd), (ab)(cd)} in S4 acting on the set {a, b, c, d}.
Then we have

(L)
∑

σ∈K4
〈abcde〉σ = 〈abcde〉+ 〈bacde〉+ 〈abdce〉+ 〈badce〉 = 0,

which follows from Plücker’s identity D(ab)D(cd)−D(ac)D(bd) + D(ad)D(bc) = 0. There
are precisely 6 linearly independent such relations.

3.9. For a given 〈abcde〉, its dual is defined to be 〈acebd〉, that is, the unique one such that
any couple of adjacent indices in the former are not adjacent in the latter. We denote it
by 〈abcde〉∗. Observe that we have (〈abcde〉∗)∗ = −〈abcde〉, hence, despite the name, the
formation of taking dual is involutive only up to sign. Note that the product 〈abcde〉〈abcde〉∗
is the product of all 10 D(ij)’s up to sign, and hence, they are all equal up to sign; checking
the sign, we easily see

(Q) 〈abcde〉〈abcde〉∗ + 〈abced〉〈abced〉∗ = 0.

This gives rise to 5 linearly independent quadratic relations.

3.10. There is yet another series of relations, which is actually given by cubics of 〈abcde〉’s.
They are generated, by the S5-action, by the one that looks like

(C) 〈abcde〉〈abecd〉〈abdec〉 − 〈abdce〉〈abedc〉〈abced〉 = 0.

We have, thus, 10 such cubic relations.

Definition 3.11. We set

X∗ = 〈01234〉, X = 〈03142〉,
Y ∗ = 〈01423〉, Y = 〈02134〉,
Z∗ = 〈01342〉, Z = 〈04123〉,
U∗ = 〈10234〉, U = 〈13042〉,
V ∗ = 〈10423〉, V = 〈12034〉,
W ∗ = 〈10342〉, W = 〈14023〉.

These gives rise to a homogeneous coordinate (X : Y : Z : U : V : W ) on X(2, 5). In
terms of this, the relations (L), (Q), and (C) are now read off as follows:

(L)





X∗ = −U − Y − Z
Y ∗ = −V − Z −X
Z∗ = −W −X − Y
U∗ = −X − V −W
V ∗ = −Y −W − U
W ∗ = −Z − U − V ,

(Q) XX∗ = Y Y ∗ = ZZ∗ = −UU∗ = −V V ∗ = −WW ∗,

(C)





X∗Y ∗Z∗ = −U∗V ∗W ∗, XY V ∗ = −Z∗UW ,
XY U∗ = Z∗V W , Y ∗V W = −XZU∗,
Y ∗UV = −XZW ∗, X∗Y ∗W = ZU∗V ∗,
Y ZV ∗ = −X∗UW , XV ∗W ∗ = Y ∗Z∗U ,
X∗UV = −Y ZW ∗, X∗Z∗V = Y U∗W ∗.



8 NAOKI INOUE AND FUMIHARU KATO

Theorem 3.12. (1) The homogeneous coordinate (X : Y : Z : U : V : W ) on S = X(2, 5)
gives rise to a closed immersion Φ: S = X(2, 5) ↪→ P5 onto the closed subvariety defined by
the relations (L), (Q), and (C), which is nothing but the embedding by the anti-canonical
class −KS.

(2) Consider the homogeneous coordinate (x′ : y′ : z′) given by

x′ = D(12)D(03)D(04),
y′ = D(13)D(04)D(02),
z′ = D(14)D(02)D(03).

Then it gives rise to the proper birational morphism Ψ: S = X(2, 5) → P2 that blows down
the 4 lines `0i (i = 1, 2, 3, 4).

Proof. We first show (2). Due to the definition of the stable configuration (as in 3.3 (2)),
one sees immediately that the values x′, y′, z′ cannot be all zero at the same time. Hence it
gives the morphism Ψ as above. To understand it, we may limit ourselves to the locus of
p = (p0, p1, p2, p3, p4) with z′(p) 6= 0.

If D(01)(p) 6= 0 and D(04)(p) 6= 0, then one can normalize p as p = (∞, 0, u, v, 1), where
(u, v) 6= (1, 1), (0, 0). Then the map Ψ on this locus looks like Ψ(p) = (u : v : 1), hence
is one-to-one. In particular, it is a birational morphism. Since S is proper, Φ is a proper
mapping.

If in turn D(04)(p) = 0 (the case D(01)(p) = 0 is similar), then p can be normalized as
p = (∞, 0, u, 1,∞), by which we get Ψ(p) = (0 : 0 : 1). The inverse image of (0 : 0 : 1) on
this locus us an affine line. Actually, this gives one affine patch in the blow-up at (0 : 0 : 1);
indeed, by the affine coordinate (x′/z′, y′/z′) on P2, one gets (x′/z′) = u(y′/z′). By this,
one easily deduces (2).

For (1), we refer to [1] for the proof that the rational map Φ actually gives a closed
immersion onto the prescribed closed subvariety. To show that the other statement of (1),
one calculates (due to (2)) KS ∼ Ψ∗KP2 +

∑4
i=1 `0i, whence deducing that −KS is the

divisor of
D(12)D(13)D(14)D(02)2D(03)2D(04)2

D(01)D(02)D(03)D(04)
(where the numerator stands for x′y′z′), that is, in view of Plücker relation (cf. 3.3 (1)),
equal to ZW/(Z + W ). Hence we see that −KS ∼ OS(1) as desired. ¤
3.13. Since the surface S = X(2, 5) is acted on by the group S5, it is to be checked whether
the action is equivalent, through the mapping Φ, to the Cremona action on P2 as in 2.13.
Set p1 = (1 : 1 : 1), p2 = (1 : 0 : 0), p3 = (0 : 1 : 0), p4 = (0 : 0 : 1). Then the map Ψ in
3.12 (2) maps the line `0i (i = 1, 2, 3, 4) to the point pi and the line `ij (i, j 6= 0) linearly
onto the line Lij .

Proposition 3.14. The natural S5-action on S = X(2, 5) is, through the map Ψ, equivalent
to the Cremona S5-action on P2; that is, for any σ ∈ S5, we have Ψ ◦ σ = σ ◦Ψ.

Proof. The desired equality Ψ ◦ σ = σ ◦ Ψ are to be checked for the transpositions (01),
(12), (23), and (34), which suffices to show the proposition. Let us first check the case σ =
(01). In this case, Ψ ◦ σ(p) = (D(02)D(13)D(14) : D(03)D(14)D(12) : D(04)D(12)D(13)).
Dividing out the entries by D(12)D(03)D(04)D(02)D(13)D(14), one gets Φ ◦ σ(p) = ( 1

x′ :
1
y′ : 1

z′ ), which is nothing but J1(x′ : y′ : z′) as in 2.11. In case σ = (12), one calculates
Ψ ◦ σ(p) = (−x′ : y′ − x′ : z′ − x′); as the linear transformation (x′ : y′ : z′) 7→ (−x′ :
y′ − x′ : z′ − x′) is the unique one that exchanges p1 and p2 and fixes the other two, we get
the desired equality in this case. The other cases are similar. ¤
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The linear system L̃ as conic section.

Proposition 3.15. The divisor Π̃ is a conic-cut in P5 with respect to the embedding Φ;
i.e., there exists a quadratic hypersurface C in P5 such that Φ(Π̃) = C ·Φ(S). In particular,
we have Π̃ ∼ OS(2).

Proof. It suffices to invoke the fact that Π̃ is the zero set of XX∗ = −X(U + Y + Z). ¤

3.16. It is, therefore, natural to ask whether all members of L̃ could be obtained in this
way. To check this, we look at the exact sequence

0 −→ IS(2) −→ OP5(2) −→ OS(2) −→ 0,

where IS is the defining ideal of Φ(S). The associated cohomology exact sequence begins
with

(∗) 0 −→ H0(P5,IS(2)) −→ H0(P5,OP5(2)) −→ H0(S, OS(2)).

Since OS(2) ∼= OS(Π), what to prove is the following

Proposition 3.17. The map H0(P5,OP5(2)) → H0(S, OS(2)) is surjective. Hence, in par-
ticular, every member of L̃ is a conic-cut in P5.

Proof. In the exact sequence (∗) in 3.16, the cohomology group in the middle is the space of
all quadratic forms, whence having dimension 21, while the first one is the subspace of the
quadratic forms whose zero sets contain Φ(S). Such a quadratic form should belong to IS ,
and hence is a linear combination of the known quadratic relations in (Q) in 3.11. As there
are exactly 5 linearly independent such quadratic relations, we have dimH0(P5,IS(2)) = 5.
Therefore, it suffices to show that the dimension of H0(S, OS(2)) is 16. Since OS(2) ∼ −2KS ,
we deduce by Riemann-Roch Theorem

χ(OS(2)) = 1
2(−2KS · (−3KS)) + ξ(OS)

= 1
2 · 30 + 1 = 16.

On the other hand, since −KS is ample, we have dim H2(S, OS(2)) = dim H0(S, 3KS) =
0. Moreover, by Kodaira-Deligne-Illusie vanishing theorem, we have dim H1(S, OS(2)) =
dimH1(S, 3KS) = 0 (for, when K is of positive characteristic, S is liftable to the Witt ring
of K). Hence dim H0(S, OS(2)) = 16 as desired. ¤
3.18. Consider the subspace V of the quadratic forms in H0(P5,OP5(2)) defined as follows:

V =
{

quadratic forms Q such that the conic
Q = 0 passes through the 20 points q̃±ij

}
⊂ H0(P5,OP5(2)).

Clearly, V contains H0(P5,IS(2)) as the 5-dimensional subspace. The following theorem
completely determines the structure of V :

Theorem 3.19. Set

F = X2 + Y 2 + Z2 + U2 + V 2 + W 2

+X∗2 + Y ∗2 + Z∗2 + U∗2 + V ∗2 + W ∗2,
G = XX∗ + Y Y ∗ + ZZ∗ − UU∗ − V V ∗ −WW ∗.

Then F and G sit in V , spanning an S5-stable 2-dimensional subspace V0 such that V =
V0 ⊕H0(P5,IS(2)).

The proof of the theorem will be done in the next section.
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Corollary 3.20. (1) The birational morphism Ψ (as in 3.12 (2)) gives rise to the linear
isomorphism L̃

∼→ L of linear systems, where L is the linear system defined in 2.15 with
{p1, p2, p3, p4} = {(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 1)}.

(2) The linear system L̃ (and hence L also) is a pencil. Moreover, it is spanned by the
two members Π̃ = {G = 0} and W̃ = {F = 0}.

(3) General members of L̃ are stable under the action of A5, while only Π̃ and W̃ are the
members that are stable under the action of the whole S5.

Proof. In view of 3.17, we see that L̃ is isomorphic to P(V0), and hence is a pencil. Moreover,
it is spanned by Π̃ and W̃ . By the birational morphism Ψ, the divisor Π̃ is obviously mapped
to the union Π of the 6 lines of the quadrangle spanned by the 4 points {p1, p2, p3, p4} =
{(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 1)}. By 3.12 (2) and the S5 action, we see that
each line `ij is a (−1)-curve. Hence one calculates the self-intersection number

Π̃2 = 10 · (−1) + 10 · 3 = 20,

which is exactly the number of the points q̃±ij . Hence, in particular, these points are the
only base points for the general members of the linear system L̃. As it is easily checked
that W̃ does not contain any of the lines `ij , one deduces that all intersections of general
members of L̃ with Π̃ are transversal. Hence they are mapped by Ψ to curves having nodes
at the 4 points pi (i = 1, 2, 3, 4). Moreover, their degree is 2 · 5 − 4 = 6, and hence, they
are sextics. By the definition of L̃, these curves satisfy the conditions (1) (2) in 2.15, and
hence belong to L. Thus we get a linear map L̃ → L. One can construct (by taking the
strict transforms) the inverse mapping L → L̃. This proves (1) and (2).

To show (3), it suffices to observe that F and G are invariant up to sign under the S5-
action and that the action on the pencil L̃ is non-trivial (cf. 2.16). But these assertions are
clear, for, while F is fixed by any element of S5, G is fixed only by even permutations and
mapped to −G by transpositions. ¤

Wiman’s sextic: Conclusion.

3.21. As in 3.20 we have two particular members Π̃ and W̃ of the linear system L̃, now
known to be a pencil. By the linear isomorphism L̃

∼→ L, Π̃ is mapped to the union of 6
lines Π. It then follows that the image W of W̃ must be the Wiman’s sextic.

It is an easy but tedious job to recover the defining equation of the curve W . Let
(x′ : y′ : z′) be the homogeneous coordinate of P2 defined as in 3.12, and then consider the
linear change

x = −x′ − y′ + z′, y = x′ − y′ + z′, z = −x′ + y′ + z′

of coordinates (so that the set {p1, p2, p3, p4} coincides with the set of points (±1 : ±1 : ±1).
Then we see that the polynomial F is transformed into the following one:

2[x6 + y6 + z6 + (x2 + y2 + z2)(x4 + y4 + z4)− 12x2y2z2].

3.22. One sees easily, by means of the coordinates X, Y, . . . , W , that the 6-dimensional
representaion H0(P5,OP5(1)) of S5 is the unique irreducible one. The induced action on
the space of quadratic forms H0(P5,OP5(2)) is isomorphic to the second symmetric product
of the first one, and hence the irreducible decomposition can be easily calculated:

H0(P5,OP5(2)) = (triv)⊕ (sgn)⊕ (4+)⊕ (5+)2 ⊕ (5−),
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where ((triv) (resp. (sgn)) is the trivial (resp. signature) representation, and (n+) denotes
the n-dimensional irreducible representation such that the signature of the trace of trans-
positions is ±. By a slightly more calculation one sees that the component (5−) is the sub-
space H0(P5,IS(2)) (having the basis XX∗−Y Y ∗, Y Y ∗−ZZ∗, ZZ∗+UU∗, UU∗−V V ∗,
V V ∗−WW ∗). The subspace V0 is the direct sum of the first two components; F is a basis
of the trivial part, and G of the signature part.

4. Proof of Theorem 3.19

In this section, we prove Theorem 3.19. The proof is divided into several steps.

4.1. First we write the equation in P5 of lines, which can be easily done by the fact
`ij = {D(ij) = 0}. For the later use, we divide these equations into 3 types:

(1)





`04 : Y = Z = U = W = 0,
`13 : X = Y = U = W = 0,
`02 : X = Y = V = W = 0,
`14 : X = Z = V = W = 0,
`03 : X = Z = U = V = 0,
`12 : Y = Z = U = V = 0.

(2)





`24 : X = U = Y + W = Z + V = 0,
`34 : Y = V = X + W = Z + U = 0,
`23 : Z = W = X + V = Y + U = 0.

(3) `01 : X − U = Y − V = Z −W = X + Y + Z = 0.

Let Q be a quadratic polynomial in H0(P5,OP5(2)). For a monomial, say XY , we denote
the coefficient of XY in Q by qXY , etc.

4.2. We look at the condition that Q = 0 passes through the points q̃±04. By the first row in
(1) in 4.1 the line `04 has the homogeneous coordinate (X : V ). This line has the intersection
points with `12, `23, and `13, which are easily calculated to be (1 : 0), (−1 : 1), and (0 : 1),
respectively. By this one calculates the Hessian duad q̃±04 to be {(ω : 1), (ω2 : 1)}, that is,
the zeros of X2 + XV + V 2. Hence the condition in question is

qX2 = qXV = qV 2 .

We do the same for all the line listed in (1) in 4.1. Consequently, we get 12 equalities among
the coefficients that stand cyclically

qX2 = qXV = qV 2 = · · · = qW 2 = qWX = qX2

with respect to the ordering

X Ã V Ã Z Ã U Ã Y Ã W Ã X.

We get, therefore, precisely 11 linearly independent relations among coefficients.

4.3. Next, we consider the points q̃±ij on the 3 lines in (2) in 4.1. The line `23, for example,
has the homogeneous coordinate (X : Y ), and, in terms of it, the intersections with `01,
`14, and `40 are (−1 : 1), (0 : 1), and (1 : 0), respectively. Hence the situation is parallel to
the previous one. The condition is

Q(X, Y, 0,−Y,−X, 0) = λ(X2 + XY + Y 2)
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for some λ ∈ K. Since the coefficients of X2 and Y 2 in the left-hand side are, as we say
in the previous step, equal to each other, we have precisely one relation that gives qXY .
Similar observation on q̃±24 and q̃±34 gives relations involving qY Z and qZX , and hence, we
have so far 11 + 3 = 14 linearly independent conditions on the coefficients.

4.4. Finally, we look at `01 characterized by (3) in 4.1. By an argument similar to that in
the previous steps, we deduce that the condition is

Q(X, Y,−X − Y, X, Y,−X − Y ) = λ(X2 + XY + Y 2)

for some λ ∈ K. Now the coefficients of X2 in the left-hand side is

qX2 + qZ2 − qXZ + qU2 + qW 2 − qUW + qXU − qXW − qZU + qZW = 2qX2 ;

similarly, the coefficient of Y 2 is equal to 2qX2 , while that of XY is

qXY − qXZ + qXV − qXW − qY Z + qY U − qY W + 2qZ2

−qZU − qZV + 2qZW + qUV − qUW − qV W + 2qW 2 = 2qX2 .

Hence the condition in question is already satisfied, and is superfluous. We conclude,
therefore, that the condition of passing through the 20 points q̃±ij is exactly of rank 14, and
hence that dim V = 21− 14 = 7.

4.5. Since Π̃ = {G = 0}, we have G ∈ V . Moreover, it is clear that G 6∈ H0(P5,IS(2)),
since it cuts out the divisor Π̃ on S. To prove that F ∈ V , it is enough to show that F = 0
contains q̃±01, for F is clearly S5-invariant. This follows from

F |D(01)=0 = F (X, Y,−X − Y, X, Y,−X − Y ) = 4(X2 + XY + Y 2)

due to (3) in 4.1. Since G is not invariant under the S5-action, F is not proportional to G.
Since the quadratics XX∗, Y Y ∗, . . . , WW ∗ do not contain the monomials X2, Y 2, . . . , W 2,
G does not either, while one sees easily that F contains them. Since

XX∗ − Y Y ∗, Y Y ∗ − ZZ∗, ZZ∗ + UU∗, UU∗ − V V ∗, V V ∗ −WW ∗

give a basis of H0(P5,IS(2)), every element in H0(P5,IS(2)) does not contain the mono-
mials X2, Y 2, . . . , W 2. Hence F 6∈ H0(P5,IS(2)). Since G 6∈ H0(P5,IS(2)), any linear
combination of F and G but 0 does not belong to H0(P5,IS(2)), and hence, we have
V0 ∩ H0(P5,IS(2)) = {0}. Counting the dimension, we get V = V0 ⊕ H0(P5,IS(2)), as
desired.
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