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Abstract

We investigate the topology of a complete Riemannian manifold whose radial
curvature at the base point is bounded from below by that of a von Mangoldt surface
of revolution. Sphere theorem is generalized to a wide class of metrics, and it is
proven that such a manifold of a noncompact type has finitely many ends.

1 Introduction

The notion of radial curvature is first introduced by Klingenberg [Kl] to investigate com-
pact Riemannian manifolds whose radial curvatures are pinched in between (1/4, 1]. Here
the standard sphere is employed as a reference space in comparison theorems. After the
works of Berger [B] and Klingenberg [Kl] for the classical sphere theorem initiated by
Rauch [R], Grove and Shiohama have proved the following.

Theorem 1.1 (Diameter sphere theorem, [GS]) Let X be a compact Riemannian n-
manifold whose sectional curvature is bounded from below by 1. If the diameter is larger
than π/2, then X is homeomorphic to the sphere Sn.
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Here the reference space is the standard sphere again.

One purpose of this article is to extend the sphere theorem to a wider class of met-
rics than those described in [GS]. Before stating our results, we mention the history of
comparison theorems for radial curvature to clarify the validity of our theorems. Elerath
first discusses in [E] a reference space which does not have constant sectional curvature.

There a von Mangoldt surface of revolution Ỹ ⊂ R3 with nonnegative Gaussian curvature
is employed as a reference space. He has proved the generalized Toponogov comparison
theorem (abbreviated to GTCT ) for complete open Riemannian manifolds whose radial

curvatures are bounded from below by that of Ỹ .
The notion of radial curvature is then employed by Greene and Wu [GW] to investigate

a function theoretic approach of complete open Riemannian manifolds. The Hessian
comparison theorem is the key tool for their investigations. Gap theorems and other
important results have been obtained by using special reference surfaces, called models,
whose underlying manifolds are R2 and whose metrics are expressed in terms of the
geodesic polar coordinates dr̃2 = dt2 + g(t)2dθ2, (t, θ) ∈ (0,∞) × S1

õ, around a fixed base

point õ ∈ Ỹ . Here g : [0,∞) −→ [0,∞) is a nonnegative smooth function satisfying the
Jacobi equation g′′ + Gg = 0 with g(0) = 0 and g′(0) = 1. Further restriction is imposed
on G as follows

G < 0, G′ ≥ 0,

∫ ∞

0

−tG(t) dt < ∞. (1.1)

Thus, the model surface (Ỹ , õ) is an Hadamard surface with finite total curvature.
Abresch [A] has proved the GTCT for complete open Riemannian manifolds whose

radial curvatures are bounded from below by G with (1.1), so-called asymptotically non-
negatively curved manifolds. On the other hand, Machigashira [Ma2] has also proved the
GTCT for complete open Riemannian manifolds whose radial curvatures are bounded
from below by G without (1.1) of an Hadamard surface with finite total curvature. Re-
cently, the GTCT is extended by Itokawa, Machigashira, and Shiohama [IMS] to more
general class of models and also von Mangoldt surfaces (see Section 2 in this article). Our
investigation is based upon this fact, for the Toponogov comparison theorem plays an
important role in the study of curvature and topology of Riemannian manifolds.

Let (M, p) be a complete Riemannian n-manifold with a base point p ∈ M . We say
that (M, p) has radial curvature bounded from below by K : [0, `) −→ R if, along every
unit speed minimal geodesic γ : [0, a) −→ M with γ(0) = p, its sectional curvature KM

satisfies

KM(γ′(t), X) ≥ K(t)

for all t ∈ [0, a) and X ∈ Tγ(t)M with X ⊥ γ′(t). Here 0 < ` ≤ ∞ and 0 < a ≤ ∞
are constant. The function K is called the radial curvature function of a model surface
(M̃, p̃) such that its metric ds̃2 is expressed by, in terms of the geodesic polar coordinates

around a base point p̃ ∈ M̃ ,

ds̃2 = dt2 + f(t)2dθ2, (t, θ) ∈ (0, `)× S1
p̃.
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Here f : (0, `) −→ R is a positive smooth function satisfying the Jacobi equation

f ′′ + Kf = 0, f(0) = 0, f ′(0) = 1.

Throughout this article, let (M̃, p̃) be a von Mangoldt surface of revolution (cf. [SST,

Chapter 7]). Namely, the radial curvature function K : [0, `) −→ R of (M̃, p̃) is assumed
to be monotone non-increasing on (0, `), instead of (1.1). A round sphere is the only
compact ‘smooth’ (i.e., limt→` f ′(t) = −1) von Mangoldt surface of revolution. If a von

Mangoldt surface of revolution (M̃, p̃) has the property ` < ∞ and if it is not a round

sphere, then limt→` f(t) = 0 and limt→` f ′(t) > −1. Therefore (M̃, p̃) has a singular point,

say q̃ ∈ M̃ , at the maximal distance from p̃ ∈ M̃ such that d(p̃, q̃) = `. Its shape can be
understood as a ‘balloon’. Define

radp := sup
x∈M

d(p, x)

and, from now on, fix a point p∗ ∈ M satisfying d(p, p∗) = radp. (We will prove that
such a point is unique, see Proposition 3.3.) We denote by vol(M) the volume of M . Our
results are the following.

Theorem A Let (M, p) be a compact Riemannian n-manifold whose radial curvature is
bounded from below by K : [0, `) −→ R for ` < ∞, and let ρ ∈ (0, `) be the zero of f ′ on
(0, `). If radp > ρ and if p is a critical point for some point z ∈ M \ Bρ(p), then M is
homeomorphic to a sphere Sn.

Theorem A provides a sphere theorem for a new class of metrics, for the radial cur-
vature may change signs. Furthermore, it containes Theorem 1.1 as a special case, that
is, p and p∗ = z are points satisfying d(p, p∗) = diam M , f(t) = sin t, ρ = π/2, and,
moreover, all sectional curvatures are bounded. Related results have been obtained in
[Ma1] (1/4 < K ≤ 1) and [MM].

Theorem B Let (M, p) be a compact Riemannian n-manifold whose radial curvature is
bounded from below by K : [0, `) −→ R for ` < ∞, and let ρ ∈ (0, `) be the zero of f ′. If
we have

vol(M) >
1

2

{
vol

(
Bn

ρ (p̃)
)

+ vol(M̃n)
}
,

then (M, p) is homeomorphic to a sphere Sn. Here M̃n is an n-model of a Mangoldt type,

and Bn
ρ (p̃) ⊂ M̃n is the distance ρ-ball around the base point p̃ ∈ M̃n.

Theorem B also provides a sphere theorem for a new class of metrics. Related results
have been proved in [MaS] and [Mh]. Our last theorem concerns the case of ` = ∞.

Theorem C Let (M, p) be a complete, noncompact Riemannian n-manifold whose radial

curvature is bounded from below by K : [0,∞) −→ R, and denote by c(M̃) the total

curvature of M̃ .

(C-i) If c(M̃) > 0, then (M, p) has exactly one end;
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(C-ii) If c(M̃) ≤ 0, then (M, p) has at most N ends, where we set

N = N (
n, c(M̃)

)
:= 2

(
1− c(M̃)

2π

)n−1

.

In most of the previous investigations, (M, p) is assumed to have asymptotically non-
negative curvature, that is, (1.1) is imposed on K (see [A], [Ka], [O], [Z], and [Ma2]).

Theorem A is proved jointly by both authors, and Theorems B and C are proved by
the first author. The article contains a part of the first author’s dissertation [Ko].

Acknowledgements. The first author would like to thank Professor Katsuhiro Shiohama
for many discussions proved very helpful in completing this work. He would like to thank
also Professors Minoru Tanaka, Yoshiroh Machigashira, and Yukio Otsu for their valuable
comments upon Theorem A.

2 Preliminaries

The basic tool used in this article is the Alexandrov-Toponogov comparison theorem for
geodesic triangles of the form 4(pxy) ⊂ M whose reference surface is a von Mangoldt
surface of revolution. Elerath [E] first discusses such a type of the Toponogov comparison
theorem for a von Mangoldt surface of revolution in R3 which is a flat cone with a convex
cap near the vertex. Tanaka [T] proves that the cut locus Cut(z̃) to each point z̃ ∈ M̃ \{p̃}
of a von Mangoldt surface of revolution is either an empty set, or a geodesic ray, or a
segment properly contained in the meridian θ−1(θ(z̃)+π) laying opposite to z̃, and that the
end point of Cut(z̃) is the first conjugate point to z̃ along the unique minimizing geodesic
from z̃ sitting in θ−1(θ(z̃)) ∪ θ−1(θ(z̃) + π). This special property makes it possible to

find a corresponding geodesic triangle 4̃(pxy) := 4(p̃x̃ỹ) ⊂ M̃ to an arbitrarily given
geodesic triangle 4(pxy) ⊂ M . This property is automatically satisfied if the model is
an Hadamard surface of revolution (see [Ma2]) as well as the one satisfing (1.1).

Theorem 2.1 (GTCT-II, [IMS, Theorem 1.3]) Let (M, p) be a complete Riemannian n-
manifold whose radial curvature is bounded from below by K : [0, `) −→ R. Then, for every

geodesic triangle 4(pxy) ⊂ M , there exists a geodesic triangle 4̃(pxy) = 4(p̃x̃ỹ) ⊂ M̃
such that

d(p̃, x̃) = d(p, x), d(p̃, ỹ) = d(p, y), d(x̃, ỹ) = d(x, y)

and that

∠(pxy) ≥ ∠(p̃x̃ỹ), ∠(pyx) ≥ ∠(p̃ỹx̃), ∠(xpy) ≥ ∠(x̃p̃ỹ).

Here we denote by ∠(pxy) the angle between the geodesics from x to p and y forming
the triangle 4(pxy).

Theorem 2.2 (ACT-II, [IMS, Remark 2]) Under the same assumption as in Theorem

2.1, let γ : [0, a] −→ M and γ̃ : [0, a] −→ M̃ be the edges of 4(pxy) and 4̃(pxy) from x
and x̃ to y and ỹ, respectively. Then we have, for all s ∈ [0, a],

d
(
p, γ(s)

) ≥ d
(
p̃, γ̃(s)

)
.
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3 Proof of Theorem A

We first prove a lemma on a von Mangoldt surface of revolution (M̃, p̃). Let K : [0, `) −→
R and f : [0, `) −→ R be as in Section 1 with ` < ∞, and let ρ ∈ (0, `) be the zero of f ′.

Lemma 3.1 The set M̃ \ Bρ′(p̃) is strictly convex for all ρ′ ∈ (ρ, `). Namely, for any

distinct two points x, y ∈ ∂Bρ′(p̃) and minimal geodesic η̃ : [0, 1] −→ M̃ between them, we
have

η̃
(
(0, 1)

) ⊂ M̃ \Bρ′(p̃).

Proof. Fix ρ′ ∈ (ρ, `) and x̃ ∈ ∂Bρ′(p̃), and let γ̃ : [0, ρ′] −→ M̃ be a minimal geodesic

from p̃ to x̃. If we denote by J̃ a Jacobi field along γ̃ with

J̃(0) = 0, ‖J̃ ′(0)‖ = 1, J̃(t) ⊥ γ̃′(t)

for all t ∈ [0, ρ′], then it can be represented by J̃ = fẼ for some unit parallel vector field

Ẽ along γ̃ which is perpendicular to γ̃′. As (M̃, p̃) is a von Mangoldt surface of revolution,
we know that f ′ < 0 holds on (ρ, `). It yields

Iγ̃(J̃ , J̃) =

∫ ρ′

0

{〈J̃ ′, J̃ ′〉 − 〈R(γ̃′, J̃)γ̃′, J̃〉} dt

=

∫ ρ′

0

{〈J̃ ′, J̃ ′〉+ 〈J̃ ′′, J̃〉} dt

=

∫ ρ′

0

d

dt
〈J̃ ′, J̃〉 dt = 〈J̃ ′(ρ′), J̃(ρ′)〉 − 〈J̃ ′(0), J̃(0)〉

= f ′(ρ′)f(ρ′) < 0,

where Iγ̃ denotes the index form of γ̃. Define the variation ν : (−ε, ε)× [0, ρ′] −→ M̃ by

ν(s, t) := θs‖ eJ(t)‖(γ̃(t)), where we denote by θs‖ eJ(t)‖ the rotation with the length s‖J̃(t)‖
to the direction J̃(t). By the second variation formula, we have

0 =
d2

ds2

∣∣∣
s=0

∫ ρ′

0

∥∥∥∥
∂ν

∂t

∥∥∥∥ dt

= Iγ̃(J̃ , J̃) +
〈
∇d/ds

∂ν

∂s

∣∣∣
s=0

, γ̃′
〉∣∣∣∣

ρ′

0

= f ′(ρ′)f(ρ′) +
〈
II

(
J̃(ρ′), J̃(ρ′)

)
, γ̃′(ρ′)〉,

where II stands for the second fundamental form of ∂Bρ′(p̃) at x̃. Therefore we find

〈
II

(
J̃(ρ′), J̃(ρ′)

)
, γ̃′(ρ′)

〉
= −f ′(ρ′)f(ρ′) > 0.

Thus we see that M \Bρ′(p̃) is strictly convex. 2

5



By a similar discussion, we see that M̃ \ Bρ(p̃) is convex. Let (M, p) be a compact
Riemannian manifold whose radial curvature is bounded from below by K, and suppose
radp > ρ. Combining the convexity of M̃ \ Bρ(p̃) with Theorem 2.2, we immediately
obtain the following.

Lemma 3.2 The set M \Bρ(p) is convex.

Proposition 3.3 The function d(p, ·) attains its maximum at a unique point p∗ ∈ M . In
particular, M \Bρ(p) is a topological disk.

Proof. We can assume radp < `. Suppose that there exist two distinct points x, y ∈
∂Bradp(p). Take a comparison triangle 4̃(pxy) ⊂ M̃ corresponding to the triangle4(pxy),

and let η̃ : [0, 1] −→ M̃ and η : [0, 1] −→ M be minimal geodesics joining x̃ and ỹ, x and
y, respectively. By Theorem 2.2 and Lemma 3.1, for every s ∈ (0, 1), we have

d
(
p, η(s)

) ≥ d
(
p̃, η̃(s)

)
> radp .

This contradicts to the definition of radp, so that d(p, ·) attains its maximun at a unique
point. The second assertion follows from the first one as M \Bρ(p) is convex. 2

Recall that, for a fixed point q ∈ M , a point x ∈ M \ {q} is called a critical point for
q if, for every nonzero tangent vector v ∈ TxM , we find a minimal geodesic γ from x to
q satisfying ∠(v, γ′(0)) ≤ π/2 (see [Gv]). By the isotopy lemma ([Gv], see also [GS]), if
there are no critical points for q in Br(q) \ {q}, then Br(q) is a topological disk.

Proposition 3.4 Assume that p is a critical point for some point z ∈ M \ Bρ(p). Then

there are no critical point for p in Bρ(p) \ {p}, in particular, Bρ(p) is a topological disk.

Proof. Note that no point in ∂Bρ(p) is critical for p since M \ Bρ(p) is convex (Lemma
3.2). We suppose that there exists a critical point x ∈ Bρ(p)\{p}. Fix a minimal geodesic
τ : [0, 1] −→ M from z to x. As x is a critical point for p, we find a minimal geodesic
γ : [0, 1] −→ M from p to x for which ∠(τ ′(1), γ′(1)) ≤ π/2 holds. Furthermore, since
p is a critical point for z, there also exists a minimal geodesic σ : [0, 1] −→ M from

p to z satisfying ∠(σ′(0), γ′(0)) ≤ π/2. Consider a comparison triangle 4̃(pzx) ⊂ M̃
corresponding to the triangle 4(pzx) consisting of γ, τ , and σ, and denote by γ̃, τ̃ , and
σ̃ the edges corresponding to γ, τ , and σ, respectively. Then it follows from Theorem 2.1
that

∠
(
τ̃ ′(1), γ̃′(1)

) ≤ ∠
(
τ ′(1), γ′(1)

) ≤ π

2
, (3.1)

∠
(
σ̃′(0), γ̃′(0)

) ≤ ∠
(
σ′(0), γ′(0)

) ≤ π

2
. (3.2)

By the assumption d(z, p) > ρ, we can take s− ∈ (0, 1) with τ̃(s−) ∈ ∂Bρ(p̃). The
inequality (3.1) implies that we have ∠(p̃τ̃(s0)z̃) = π/2 for some s0 ∈ (s−, 1]. Note that,
if we extend τ̃ , then τ̃(s+) ∈ ∂Bρ(p̃), where we set s+ := 2s0 − s−. It follows from (3.2)
that ∠(τ̃(s−)p̃τ̃(s+)) < 2∠(z̃p̃x̃) ≤ π, and hence τ̃ is minimal on [s−, s+]. However, since
f ′(ρ) = 0, there is an another minimal geodesic between τ̃(s−) and τ̃(s+) contained in
∂Bρ(p̃), and hence τ̃(s+) ∈ Cut(τ̃(s−)). This contradicts to the structure of the cut locus
Cut(τ̃(s−)) (see Section 2). 2
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Therefore, by Propositions 3.3 and 3.4, M is homeomorphic to a sphere Sn.

4 Proof of Theorem B

We again start with a lemma on a von Mangoldt surface of revolution (M̃, p̃). Let K :
[0, `) −→ R and f : [0, `) −→ R be as in Section 1 with ` < ∞, and let ρ ∈ (0, `) be the
zero of f ′.

Lemma 4.1 It holds that 2ρ ≤ `.

Proof. Fix a meridian γ̃ : [0, `] −→ M̃ emanating from p̃ to q̃. Let J̃(t) = f(t)Ẽ(t) be a

Jacobi field along γ̃, where Ẽ is a unit parallel vector field along γ̃ such that Ẽ(t) ⊥ γ̃′(t)
holds for all t ∈ [0, `). As f ′(ρ) = 0, we know J̃ ′(ρ) = 0. Let γ̃1 : [0, ` − ρ] −→
M̃ be a subarc of γ̃ given by γ̃1(t) := γ̃(t + ρ), and let J̃1(t) be a Jacobi field along

γ̃1 such that J̃1

′′
(t) + K(t + ρ)J̃1(t) = 0 with ‖J̃1(0)‖ = f(ρ) and J̃1

′
(0) = 0. Note

that ‖J̃1(` − ρ)‖ = f(`) = 0. Similarly, let γ̃2 : [0, ρ] −→ M̃ be the converse of a

subarc of γ̃ given by γ̃2(t) := γ̃(ρ − t), and let J̃2(t) be a Jacobi field along γ̃2 such

that J̃2

′′
(t) + K(ρ − t)J̃2(t) = 0 with ‖J̃2(0)‖ = f(ρ) and J̃2

′
(0) = 0. Note also that

‖J̃2(ρ)‖ = f(0) = 0. Since K(ρ − t) ≥ K(ρ + t), the Berger-Rauch comparison theorem

implies that ‖J̃2‖ ≤ ‖J̃1‖ holds on [0, ρ] ∩ [0, ` − ρ]. Therefore we obtain ρ ≤ ` − ρ, and
hence 2ρ ≤ `. 2

As in the hypothesis in Theorem B, we assume that

vol(M) >
1

2

{
vol

(
Bn

ρ (p̃)
)

+ vol(M̃n)
}

(4.1)

holds.

Proposition 4.2 The set M \Bρ(p) is not an empty set, and is a topological disk.

Proof. It follows from Lemma 4.1 and (4.1) that

vol(M) >
1

2
vol(M̃n) ≥ 1

2
vol

(
Bn

2ρ(p̃)
)

> vol
(
Bn

ρ (p̃)
) ≥ vol

(
Bρ(p)

)
,

which implies that M \ Bρ(p) is not empty. In particular, we have radp > ρ, and hence
M \Bρ(p) is a topological disk by Proposition 3.3. 2

For q ∈ M , we denote by SqM ⊂ TqM the unit tangent sphere at q, and set

D(p) := {tv | v ∈ SqM, t ≥ 0, expq([0, t]v) ∩ Cut(q) = ∅}.

Define the map Π : TpM \ {0} −→ SpM by Π(v) := v/‖v‖. Now we see the following and
it completes the proof of Theorem B.

Proposition 4.3 The closed ball Bρ(p) is a topological disk.
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Proof. Suppose there exists a critical point x ∈ Bρ(p) for p. For each r > 0, we put

Ωr := Π
(
exp−1

p [M \Br(p)] ∩D(p)
) ⊂ SpM.

By the hypothesis (4.1), we find

vol(M) >
1

2
vol(M̃) +

1

2
vol(Bρ

(
p̃)

)
=

1

2
vol

(
M̃ \Bρ(p̃)

)
+ vol

(
Bρ(p̃)

)

≥ 1

2
vol

(
M̃ \Bρ(p̃)

)
+ vol

(
Bρ(p)

)
,

and hence

vol
(
M \Bρ(p)

)
>

1

2
vol

(
M̃ \Bρ(p̃)

)
.

This implies that we can choose ε > 0 and r > ρ such that Ωr is (π/2 − ε)-dense in
(SpM, ∠), where we denote by ∠ the angle distance on SpM .

Let γ1 be a minimizing geodesic emanating from p to the critical point x. By the
denseness of Ωr ⊂ SpM , there exist a point y ∈ M \ Br(p) and a minimizing geodesic σ
emanating from p to y such that

∠
(
σ′(0), γ′1(0)

) ≤ π

2
− ε.

Let τ be a minimizing geodesic emanating from y to x. Since x is a critical point for p,
there exists a minimizing geodesic γ2 emanating from p for x such that

∠
(
γ′2(1), τ ′(1)

) ≤ π

2
.

For i = 1, 2, consider a comparison triangle 4̃i(pyx) ⊂ M̃ (with the common vertices for
i = 1, 2) corresponding to the triangle 4i(pyx) ⊂ M constructed by γi, σ, and τ , and
denote by γ̃, σ̃i, and τ̃i the edges corresponding to them, respectively. By Theorem 2.1,
we have

∠
(
γ̃′(1), τ̃ ′2(1)

) ≤ ∠
(
γ′2(1), τ ′(1)

) ≤ π

2
, (4.2)

∠
(
γ̃′(0), σ̃′1(0)

) ≤ ∠
(
γ′1(0), σ′(0)

) ≤ π

2
− ε. (4.3)

Using these instead of inequalities (3.1) and (3.2), we see that no point in Bρ(p) is a
critical point for p just as in the proof of Proposition 3.4. Note also that no point in
∂Bρ(p) is critical for p, for M \Bρ(p) is convex. Therefore Bρ(p) is a topological disk. 2

5 Proof of Theorem C

Let (M, p) be a complete, noncompact Riemannian n-manifold whose radial curvature

at p ∈ M is bounded from below by K : [0,∞) −→ R, and denote by c(M̃) the total

curvature of M̃ .
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We assume that M has at least two ends. Take two rays γ, σ : [0,∞) −→ M emanating
from p ∈ M to distinct ends of M . For s, t > 0, let ηs,t be a minimizing geodesic from
γ(s) to σ(t). By the definition of the end, there exists a compact set Z ⊂ M such that
ηs,t passes Z for all s, t > 0. Thus, as s and t diverge to the infinity, ηs,t converges to
some geodesic line η : (−∞, +∞) −→ M . Set d0 := d(p, η). Without loss of generality,
we may suppose d(p, η(0)) = d0. We define ηr : [−r, r] −→ M as the restriction of η on
[−r, r]. Let µ+r and µ−r be minimizing geodesics joining p to η(r) and to η(−r), and
let µ±∞ : [0,∞) −→ M be their limits as r → ∞, respectively. Consider a comparison

triangle 4̃(η(−r)pη(r)) ⊂ M̃ corresponding to the triangle 4(η(−r)pη(r)) consisting of
ηr and µ±r, and denote by η̃r and µ̃±r the corresponding edges. Then Theorem 2.2 implies
that

d
(
p̃, η̃r(0)

) ≤ d
(
p, η(0)

)
= d0

holds for all r > 0. This means that, for some sequence {ri}∞i=1 diverging to the infinity,

the sequence {η̃ri
}∞i=1 converges to some line η̄ : (−∞, +∞) −→ M̃ as i → ∞ such that

d(p̃, η̄(0)) ≤ d0. Let µ̃±∞ be the limits of µ̃±ri
as i →∞, respectively.

In this situation, we set

αp := ∠
(
µ′−∞(0), µ′+∞(0)

)
, α̃p̃ := ∠

(
µ̃′−∞(0), µ̃′+∞(0)

)
.

Let Ṽ ⊂ M̃ be the domain bounded by µ̃±∞([0,∞)) and containing η̄. Furthermore, let

H̃ ⊂ Ṽ be the half plane bounded by the geodesic line η̄, and set D̃ := Ṽ \ H̃. On one

hand, by the Gauss-Bonnet theorem, we observe c(D̃) = α̃p̃ − π. Recall that c(D̃) stands

for the total curvature of D̃. On the other hand, it follows from Cohn-Vossen’s theorem
(cf. [SST, Chapter 2]) that c(H̃) ≤ 0 holds. Therefore we have

c(M̃) =
2π

α̃p̃

c(Ṽ ) =
2π

α̃p̃

{
c(D̃) + c(H̃)

} ≤ 2π

α̃p̃

(
α̃p̃ − π

)
. (5.1)

If c(M̃) > 0, then it follows from (5.1) that αp > π, this is a contradiction. So that

M has exactly one end, and this completes the proof of (C-i). If c(M̃) ≤ 0, then the
inequality (5.1) together with Theorem 2.1 yields that

αp ≥ α̃p̃ ≥ 2π2

2π − c(M̃)
. (5.2)

Now let Ω be the set of ends of M and, for each E ∈ Ω, choose a unit vector vE ∈ SpM
such that the ray γvE emanating from p with γ′vE (0) = vE is contained in E . Set a :=

(π2)/(2π − c(M̃)). Let Ba(vE) be the ball in the unit sphere SpM with respect to the
angle distance. By (5.2), balls in {Ba(vE)}E∈Ω are mutually disjoint in SpM . By the
well-known Packing Lemma, the number of these balls does not exceed

N (
n, c(M̃)

)
:= 2

(
π

2a

)n−1

= 2

(
1− c(M̃)

2π

)n−1

,

which completes the proof of (C-ii).
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