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Abstract. In this paper we show that a homogeneous Siegel domain is symmetric
if and only if its Cayley transform image is convex. Moreover, this convexity
forces the parameter of the Cayley transform to be a specific one, so that the
Cayley transform coincides with the inverse of the Cayley transform introduced
by Korányi and Wolf.

1. Introduction

A homogeneous Siegel domain is a higher dimensional analogue of the right
(or upper) half plane in C, and is mapped to a bounded domain by the Cayley
transforms introduced by [17]. Among homogeneous Siegel domains, we have an
important subclass consisting of symmetric ones. In our previous paper [9], we gave
a symmetry characterization for tube domains (homogeneous Siegel domains of type
I) by convexity of the Cayley transform images, and in [7], for quasisymmetric Siegel
domains. This article is the final step of these works and establishes the same type
of symmetry characterization theorem for general homogeneous Siegel domains.

We mention here some of the works about characterizations of symmetric Siegel
domains: a characterization by a certain norm equality related to the Cayley trans-
form image [15], one by the commutativity of the Berezin transform and the Laplace-
Beltrami operator [16], and one by the harmonicity of the Poisson-Hua kernel [18].
In the latter two, the geometric backgrounds of the symmetry characterizations are
clarified through norm equalities involving the Cayley transforms. In [3], we can
find several characterizations of symmetric Siegel domains concerning the isotropy
representation and the action of the automorphism group of the domain. Differ-
ential geometric characterizations by means of the Bergman metric are given in [4]
and [2], and an algebraic one in terms of the defining data of Siegel domains in [23,
Theorem V.3.5] and [5, II, Sätze 3.3, 3.4].

Let us present the convexity of Cayley transform image of a symmetric Siegel
domain. In the case of one complex variable, the Cayley transform

w 7→ w − 1

w + 1
(w ∈ C)
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maps the right half plane to the open unit disc, which is obviously a convex set.
We have a similar situation for symmetric Siegel domains. Since a symmetric Siegel
domain is a Hermitian symmetric space of non-compact type, it has a canonical
bounded realization, namely, the Harish-Chandra realization. In [11], Korányi and
Wolf defined in a Lie-theoretic way (the inverse of) the Cayley transform which maps
a symmetric Siegel domain to its Harish-Chandra realization. It is known that the
Harish-Chandra realization coincides with the open unit ball for the spectral norm
defined for the Jordan triple system canonically associated with the domain (we refer
the reader to [12, §10], [11] and [7] for details). Thus the Cayley transform image of
a symmetric Siegel domain is a convex set. We shall show that this convexity char-
acterizes symmetric Siegel domains among homogeneous ones. Before proceeding,
we would like to mention that it is shown in [13] that the Harish-Chandra realization
of a symmetric Siegel domain is characterized essentially among bounded realiza-
tions by its convexity. In other words, the Cayley transform is essentially the only
bounded convex realizaion of a symmetric Siegel domain.

In this article we deal with the family of Cayley transforms defined by Nomura
[17]. This family is parametrized by the admissible linear forms on the normal j-
algebra associated with the Siegel domain. If the domain is quasisymmetric and
the parameter is a specific one, the corresponding Cayley transform is the same
as Dorfmeister’s one given in [6] which we used in [7], and in particular if the
domain is symmetric, our Cayley transform with the specific parameter coincides
with Korányi-Wolf’s one. Moreover, our family includes Penney’s Cayley transform
defined in [19] which is associated with Vinberg’s ∗-map of the underlying cone of
the domain, and Nomura’s one associated with the Bergman kernel (resp. the Szegö
kernel) of the domain appearing in [14], [15] and [16] (resp. [18]).

Let us fix the notation in order to present our results. Let Ω be a homogeneous
convex cone in a real vector space V . We put W := VC, the complexification of
V . Let U be another complex vector space and Q : U × U → W an Ω-positive,
Hermitian sesquilinear map. The Siegel domain D for these data is defined by

D := {(u,w) ∈ U ×W | Re w − 1
2
Q(u, u) ∈ Ω}.

In case U = {0}, the domain D is called a tube domain. We note that the tube
domain Ω+ iV is contained in D in such a way that D∩({0}×W ) = {0}×(Ω+ iV ).
We denote by Cs the Cayley transform for Ω + iV , where s is the parameter of the
family of Cayley transforms (see Section 3 for the definition). Using Cs, we introduce
the Cayley transform Cs for D. If D is a tube domain, then Cs reduces to Cs.

Our first main theorem is a refinement of [9, Theorem 1]. Let Ωs be the dual
cone of Ω. For the tube domain Ωs + iV , the Cayley transform C∗

s is defined in a
way similar to Cs. In [9, Theorem 1], we characterized symmetric tube domains by
requiring the convexity of both of Cs(Ω + iV ) and C∗

s (Ω
s + iV ). In this paper we

show that the condition concerning C∗
s can be removed:

Theorem 1.1. Cs(Ω+iV ) is a convex set if and only if Ω+iV is symmetric and the
parameter s is a specific one so that Cs coincides with the Cayley transform defined
in terms of the Jordan algebra structure associated with Ω.
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Here we note that Ω+ iV is symmetric if and only if Ω is a symmetric cone. Our
second main theorem generalizes Theorem 1.1 to the case of homogeneous Siegel
domains.

Theorem 1.2. Cs(D) is a convex set if and only if D is symmetric and the parameter
s is a specific one so that Cs coincides with Korányi-Wolf ’s Cayley transform.

Our way of proving Theorem 1.2 is as follows. First, the convexity of Cs(D)
implies the convexity of Cs(Ω + iV ). By Theorem 1.1, Ω + iV is symmetric and the
parameter s is a specific one. With this we show that D is quasisymmetric and Cs

is identical with Dorfmeister’s Cayley transform which we used in [7]. Then by [7,
Theorem 2.6] we conclude that D is symmetric.

The organization of this paper is as follows. In Section 2, we summarize the
structure theory of normal j-algebras. In Section 3.1, we introduce the pseudoinverse
maps and then in Section 3.2 the Cayley transforms of homogeneous Siegel domains.
There we present the precise statement of Theorem 1.2 as Theorem 3.1. In Section
4, assuming that the domain is quasisymmetric, we compare our Cayley transform
with Dorfmeister’s one. We collect in Section 5 some facts which hold without any
restrictions on the homogeneous Siegel domain for later use. The proof for Theorem
1.1 (the precise statement is Theorem 6.1) is given in Section 6. Theorem 1.2 is
proved in Section 7.

Thanks are due to Professor Takaaki Nomura for the encouragement and the
advices in writing this paper. The author is also grateful to Professor Hideyuki Ishi
for stimulus discussions about the contents of this paper.

2. Homogeneous Siegel domains

The structure of a homogeneous Siegel domain is described in terms of a normal
j-algebra. Our references are [20], [21] and [22]. A triple (g, J, ω) of a split solvable
real Lie algebra g, a linear operator J on g with J2 = −I and a linear form ω on g
is called a normal j-algebra if the following two conditions hold:

J([X,Y ]− [JX, JY ]) = [JX, Y ] + [X, JY ] for all X, Y ∈ g, (2.1)

〈x|y〉ω := 〈[Jx, y], w〉 defines a J-invariant inner product on g. (2.2)

Let (g, J, ω) be a normal j-algebra. We put n := [g, g] and a := n⊥, the or-
thogonal complement of n with respect to the inner product 〈·|·〉ω. Then a is a
commutative subalgebra of g such that ad a is a set of simultaneously diagonalizable
operators on g. Let g = a⊕∑

α∈∆ nα be the corresponding eigenspace decomposition
of g, where ∆ is a finite subset of a∗ \ {0}, and for α ∈ a∗, we have put

nα := {X ∈ g | [H, X] = 〈H,α〉X for all H ∈ a}.
The subspaces nα (α ∈ ∆) are orthogonal to each other relative to the inner product
〈·|·〉ω. The number r := dim a is called the rank of g. We can choose a basis
H1, . . . , Hr of a so that with Em := −JHm (m = 1, . . . , r), we have [Hj, Ek] =
δjkEk (1 ≤ j ≤ k ≤ r). Let α1, . . . , αr be the dual basis of a∗ with respect to
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H1, . . . , Hr. Then the elements of ∆ are of the following forms (not all possibilities
need to occur):

1
2
(αk − αj) (1 ≤ j < k ≤ r), 1

2
αm (1 ≤ m ≤ r),

αm (1 ≤ m ≤ r), 1
2
(αk + αj) (1 ≤ j < k ≤ r),

and we have nαm = REm (m = 1, . . . , r). We set

n(0) :=
∑

j<k

n(αk−αj)/2, g(0) := a⊕ n(0),

g(1/2) :=
r∑

m=1

nαm/2, g(1) :=
r∑

m=1

nαm ⊕
∑

j<k

n(αk+αj)/2,

and put H := H1+· · ·+Hr, E := E1+· · ·+Er. We see that the subspaces g(0), g(1/2)
and g(1) are the 0, 1/2 and 1-eigenspaces of ad H respectively. Moreover we have

[g(α), g(β)] ⊂ g(α + β), (2.3)

where if α + β > 1, then we put g(α + β) = {0}. Also we have

Jn(αk−αj)/2 = n(αk+αj)/2 (1 ≤ j < k ≤ r),

Jnαm/2 = nαm/2 (1 ≤ m ≤ r),

so that Jg(0) = g(1), Jg(1/2) = g(1/2). We note that

JT = −[T, E] (T ∈ g(0)), (2.4)

JTkj = −[Tkj, Ej] (Tkj ∈ n(αk−αj)/2). (2.5)

The subspace n(0) is a nilpotent Lie subalgebra. Let

N(0) := exp n(0), G(0) := exp g(0), A := exp a.

Then G(0) = A n N(0) and G(0) acts on V := g(1) by adjoint action. We put
Ω := G(0)E, the G(0)-orbit through E. Then we know that Ω is a regular open
convex cone in V on which G(0) acts simply transitively. Since g(1/2) is invariant
under J , we can introduce a complex structure on g(1/2) by −J . We denote by U
this complex vector space. The Lie subalgebra g(0) acts on U complex linearly by
adjoint action. We put W := VC, the complexification of V and denote by w 7→ w∗

the complex conjugation of W relative to the real form V . We define a sesquilinear
map Q : U × U → W by

Q(u, u′) := [Ju, u′]− i[u, u′] (u, u′ ∈ U). (2.6)

Then we see that this map is Hermitian and Ω-positive:

Q(u, u′) = Q(u′, u)∗ (u, u′ ∈ U),

Q(u, u) ∈ Ω \ {0} for all u ∈ U \ {0}. (2.7)

The Siegel domain corresponding to these data is defined by

D := {(u,w) ∈ U ×W | Re w − 1
2
Q(u, u) ∈ Ω}. (2.8)
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We know that the Lie group G := exp g acts on D simply transitively on D by affine
automorphisms. Every homogeneous Siegel domain is obtained from a normal j-
algebra in this way. Throughout this paper, we always assume that D is irreducible.
Hence the cone Ω is also irreducible by [10, Theorem 6.3].

Finally, we remark here that the Shilov boundary Σ of D is described as

Σ = {(u,w) ∈ U ×W | Re w − 1
2
Q(u, u) = 0}.

3. Cayley transforms

3.1. Pseudoinverse maps. A linear form ω on g satisfying (2.2) is said to be
admissible. We know the set of admissible forms. To describe it we define E∗

m ∈
g∗ (m = 1, . . . , r) by 〈Ej, E

∗
m〉 = δjm (j = 1, . . . , r) and E∗

m ≡ 0 on g(0)⊕ g(1/2)⊕
Jn(0). For s = (s1, . . . , sr) ∈ Rr, we set E∗

s :=
∑

smE∗
m and 〈v1|v2〉s := 〈v1|v2〉E∗s

for v1, v2 ∈ V . We say that s = (s1, . . . , sr) ∈ Rr is positive and write s > 0 if
s1 > 0, . . . , sr > 0. Then [17, Proposition 3.4] says that the set of admissible linear
forms on g coincides with

a∗ + {E∗
s | s > 0}.

Further we know by [17, Lemma 3.2] that the description of the structure of g in
Section 2 is independent of the choice of the admissible linear form ω.

For s = (s1, . . . , sr) ∈ Rr, we define a one-dimensional representation χs of A by

χs

(
exp

(∑
tmHm

))
:= exp

(∑
smtm

)
(tm ∈ R).

Since G(0) = A n N(0), we can extend χs to a one-dimensional representation of
G(0) by putting χs|N(0) ≡ 1. In what follows, we write hv for h ∈ G(0) and v ∈ V

instead of (Ad h)v for simplicity. Recalling that G(0) acts simply transitively on Ω
by the adjoint action, we transfer χs to a function ∆s on Ω:

∆s(hE) := χs(h) (h ∈ G(0)).

We remark that by [17, (3.15)], we have for s > 0,

〈v1|v2〉s = Dv1Dv2 log ∆−s(E) (v1, v2 ∈ V ).

Let s > 0. For x ∈ Ω, we define the pseudoinverse Is(x) of x by

〈Is(x)|y〉s = −Dy log ∆−s(x) (y ∈ V ). (3.1)

We call Is : Ω → V the pseudoinverse map. We see that Is(E) = E and Is gives a
diffeomorphism of Ω onto Ωs, where Ωs is the dual cone of Ω realized in V by means
of the inner product 〈·|·〉s:

Ωs := {x ∈ V | 〈x|y〉s > 0 for all y ∈ Ω \ {0}}.
Let G(0)C be the complexification of G(0). We extend 〈·|·〉s to W by complex bilin-
earity and denote it by the same symbol. We know that Is is analytically continued
to a rational map W → W which is G(0)C-equivariant: Is(hx) = sh−1Is(x) (h ∈
G(0)C), where for a linear operator T on W , sT stands for the transpose of T relative
to 〈·|·〉s.
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Starting with the dual cone Ωs, we get a similar map I∗s : Ωs → Ω. We see that
I∗s is analytically continued to a rational map W → W which is G(0)C-equivariant:
I∗s (sh−1x) = hI∗s (x) (h ∈ G(0)C). Thus Is is a birational map with I−1

s = I∗s .
Moreover, we see by [17, Theorem 3.19] that Is (resp. I∗s ) is holomorphic on Ω + iV
(resp. Ωs + iV ) and Is(Ω + iV ) (resp. I∗s (Ωs + iV )) is contained in the holomorphic
domain of I∗s (resp. Is).

3.2. Parametrized family of Cayley transforms. We keep to the notation in
Section 3.1 and continue to suppose that s > 0. We define a sesquilinear form (·|·)s
on U by

(u1|u2)s := 〈Q(u1, u2)|E〉s = 〈Q(u1, u2), E
∗
s 〉 (u1, u2 ∈ U). (3.2)

Then (·|·)s is a positive definite Hermitian inner product on U . The subspaces
nαm/2 (m = 1, . . . , r) are orthogonal to each other with respect to (·|·)s. For u ∈ U ,

we set ‖u‖s := (u|u)
1/2
s . Let um ∈ nαm/2. Then we see by (2.6) that Q(um, um) ∈ nαm .

Moreover we know by (3.2) that

Q(um, um) = s−1
m ‖um‖2

sEm. (3.3)

For every w ∈ W , we define a complex linear operator ϕs(w) on U by

(ϕs(w)u1|u2)s = 〈w|Q(u1, u2)〉s (u1, u2 ∈ U). (3.4)

The assignment w 7→ ϕs(w) is also complex linear and ϕs(E) = id.
We put

S := {w ∈ W | w + E ∈ Ω + iV }, S := {(u, w) ∈ U ×W | w ∈ S}.
The Cayley transform Cs : S → W for the tube domain Ω + iV is defined by

Cs(w) := E − 2Is(w + E) (w ∈ S).

Observe that the closure Ω + iV is contained in S. Using Cs, we introduce the
Cayley transform Cs : S → U ×W for D by

Cs(u,w) := (2ϕs(Is(w + E))u,Cs(w)) ((u,w) ∈ S). (3.5)

By [17, Theorem 4.17], the Cayley transform image Cs(D) of D is bounded.
Note that since the definition of the Hermitian map Q in [17] is different from

ours (2.6) by the multiplication constant 1/2, the Siegel domain dealt in [17] is
expressed as T (D), where T (u,w) := (

√
2u,w) ((u,w) ∈ U ×W ). This modification

is made so that we have Re(u1|u2)s = 〈u1|u2〉E∗s for u1, u2 ∈ U . However, the
pseudoinverse map Is, the linear map ϕs : W → EndC U and the Cayley transform
Cs are the same as those of [17].

We see that the inverse maps of Cs, Cs are given by

C−1
s (w) = 2I∗s (E − w)− E (w ∈ S∗),

C−1
s (u, w) = (ϕs(E − w)−1u,C−1

s (w)) ((u,w) ∈ S∗),
where we have put

S∗ := {w ∈ W | E − w ∈ Ωs + iV }, S∗ := {(u,w) ∈ U ×W | w ∈ S∗}.
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We would like to remark that our Cayley transform Cs for the tube domain
Ω + iV is identical with the Cayley transform given in [9]. In [9], we started with
a homogeneous convex cone Ω and a split solvable Lie group H acting simply tran-
sitively on Ω. If we take G(0) as H and E as the base point, V = g(1) becomes a
clan with the unit element E by the following product:

x4y = [Jx, y] (x, y ∈ V ).

Moreover the normal decomposition of the clan V is given by V =
∑

k≥j n(αk+αj)/2

(see also [4, Section 2]). Hence the inner product 〈·|·〉s and the pseudoinverse map
Is defined in [9] coincide with ours.

Now we are in position to state our main theorem in its precise form:

Theorem 3.1. Let D be an irreducible homogeneous Siegel domain. Suppose that
the parameter s = (s1, . . . , sr) ∈ Rr is positive. Then Cs(D) is a convex set if and
only if D is symmetric and s1 = · · · = sr.

4. Quasisymmetric Siegel domains

Let D be the homogeneous Siegel domain defined by (2.8). Since D is holomor-
phically equivalent to a bounded domain, the Bergman space of D has the repro-
ducing kernel called the Bergman kernel, which we denote by κ. By homogeneity
we have an explicit expression for κ. Let

bm := 1
2
dimR nαm/2 (m = 1, . . . , r),

nkj := dim n(αk+αj)/2 (1 ≤ j < k ≤ r),

dm := 1 + 1
2

∑
i<m

nmi + 1
2

∑
i>m

nim (m = 1, . . . , r),

b := (b1, . . . , br), d := (d1, . . . , dr).

Then by [15, 1.3], we have for zj = (uj, wj) ∈ D (j = 1, 2),

κ(z1, z2) = ∆−2d−b(w1 + w∗
2 −Q(u1, u2))

up to a positive constant multiple.
If the cone Ω is self-dual with respect to the inner product 〈·|·〉2d+b, that is,

Ω = Ω2d+b, then D is said to be quasisymmetric. We quote here the following
criterion due to D’Atri and Dotti:

Proposition 4.1 ([4, Proposition 3]). The Siegel domain D is quasisymmetric if
and only if

(1) nkj are independent of k, j,
(2) bm are independent of m.

We assume that a paramter s = (s1, . . . , sr) is positive. We introduce a non-
associative product on V by

〈xy|z〉s = −1
2
DxDyDz log ∆−s(E) (x, y, z ∈ V ). (4.1)
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Lemma 4.2. Even if s is replaced by s′ := ps (p > 0), the product defined by (4.1),
the pseudoinverse map Is, the linear map ϕs and the Cayley transform Cs all remain
the same.

Proof. By definition, we have 〈·|·〉s′ = p〈·|·〉s and ∆−s′ = ∆p
−s, so that the product

defined by (4.1) will not change under the replacement of s by s′, and Is′ = Is by
(3.1). Moreover, since (·|·)s′ = p(·|·)s, we know by (3.4) that ϕs′ = ϕs. Therefore we
have Cs′ = Cs. ¤

Let us suppose that D is quasisymmetric and s1 = · · · = sr > 0. In view of
Lemma 4.2, we simply write I, ϕ and C instead of Is, ϕs and Cs respectively in this
section. Noting that 2d1+b1 = · · · = 2dr+br by Proposition 4.1, we know by Lemma
4.2 and [6, Theorem 2.1] that the vector space V equipped with the product defined
by (4.1) is a Jordan algebra with the unit element E. This means that in addition
to the commutativity xy = yx, we have the Jordan identity x(x2y) = x2(xy) for all
x, y ∈ V . The complexification W of V is a complex Jordan algebra in a natural
way. The following proposition is due to Dorfmeister (see also [14, Section 4]).

Proposition 4.3 ([6, Theorem 2.1]). The linear map ϕ : w 7→ ϕ(w) is a ∗-
representation of the Jordan algebra W :

ϕ(w∗) = ϕ(w)∗ (w ∈ W ),

ϕ(w1w2) = 1
2
(ϕ(w1)ϕ(w2) + ϕ(w2)ϕ(w1)) (w1, w2 ∈ W ),

where for a linear operator T on U , we denote by T ∗ the adjoint operator of T
relative to (·|·)s.

Moreover since 2dj +bj are all equal for j = 1, . . . , r, we know by Lemma 4.2 and
[14, Proposition 4.4] that I(w) = w−1 for invertible w ∈ W , where the right-hand
side is the Jordan algebra inverse of w. Hence it holds that

C(u,w) = (2ϕ((w + E)−1)u, (w − E)(w + E)−1) ((u, w) ∈ S).

Here we note that ϕ((w + E)−1) = ϕ(w + E)−1 by Proposition 4.3 and ϕ(E) = id.
Thus our Cayley transform C coincides with the Cayley transform treated in [7].

5. Basic facts

We collect here some of the facts that are true without any restrictions on
the homogeneous Siegel domain D. In this section we always suppose that the
positive integers j, k, l satisfy 1 ≤ j < k < l ≤ r and wkj ∈ (n(αk+αj)/2)C, wlj ∈
(n(αl+αj)/2)C, wlk ∈ (n(αl+αk)/2)C.

We set

Slk := 1
2
([Jwlj, wkj] + [Jwkj, wlj]) ∈ (n(αl+αk)/2)C.

We put ν[w] := 〈w|w〉s (w ∈ W ), where we note that ν[iw] = −ν[w]. Since the
clan structure in V is introduced in a manner compatible with the normal j-algebra
structure as we remarked at the end of Section 3, we can quote the following two
propositions from [8], where we note that they are valid not only for real tj, tk, tl
but also for complex tj, tk, tl.
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Proposition 5.1 ([8, Proposition 4.2]). Let tj, tk, tl ∈ C. Then one has

exp (Jwlj + Jwkj) exp (Jwlk) exp (tjHj + tkHk + tlHl) E

=
∑

m6=j,k,l

Em + etjEj +
(
etk + (2sk)

−1etjν[wkj]
)
Ek

+
(
etl + (2sl)

−1etkν[wlk] + (2sl)
−1etjν[wlj]

)
El

+ etjwlj + etjwkj +
(
etjSlk + etkwlk

)
.

Proposition 5.2 ([8, Proposition 4.6]). One has

s
(
exp(Jwlj + Jwkj) exp(Jwlk) exp (tjHj + tkHk + tlHl)

)−1
E

=
∑

m6=j,k,l

Em +
(
e−tj + (2sj)

−1
(
e−tk + (2sk)

−1e−tlν[wlk]
)
ν[wkj]

+ (2sj)
−1e−tlν[wlj]− s−1

j e−tl〈Slk|wlk〉s
)
Ej

+
(
e−tk + (2sk)

−1e−tlν[wlk]
)
Ek + e−tlEl

+
(
e−tl s(ad Jwlj)wlk − (e−tk + (2sk)

−1e−tlν[wlk])wkj

)

+ e−tl (s(ad Jwkj)wlk − wlj)− e−tlwlk.

We use also the following two lemmas to compute the Cayley transforms.

Lemma 5.3. (1) For all x ∈ V , one has ϕs(x) = adU Jx + (adU Jx)∗.
(2) The linear operators ϕs(Em) (m = 1, . . . , r) are orthogonal projections onto

nαm/2.

Proof. (1) Definition (2.6) of Q and the Jacobi identity together with the fact that
ad Jx commutes with J gives

(ad Jx)Q(u, u′) = Q(u, (ad Jx)u′) + Q((ad Jx)u, u′).

Hence it follows that

〈Q(u, u′)|s(ad Jx)E〉s = ((ad Jx)∗u|u′)s + ((ad Jx)u|u′)s. (5.1)

Here we note that s(ad Jx)E = x. In fact, we get by (2.4) that for any v ∈ V ,

〈v|s(ad Jx)E〉s = 〈[J [Jx, v], E], E∗
s 〉 = 〈v|x〉s.

Therefore, the left-hand side of (5.1) is equal to (ϕ(x)u|u′)s, and the proof is com-
pleted.
(2) The linear operator 2 adU Hm is an orthogonal projection onto nαm/2, and thus
it is self-adjoint. Hence (1) yields ϕs(Em) = 2 adU Hm, and (2) follows.

¤
Lemma 5.4 ([14, Lemma 3.4]). ϕs(

s(AdV h)x) = (AdU h)sϕs(x)(AdU h) for all
h ∈ G(0) and x ∈ V .

We have some inequalities concerning the dimensions of the root spaces of g.

Lemma 5.5 ([15, Corollary 4.4]). (1) If nlk 6= 0, then one has nlj ≥ nkj.
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(2) If nkj 6= 0, then one has nlj ≥ nlk.

Proposition 5.6. For vkj ∈ n(αk+αj)/2 and uj ∈ nαj/2, one has

‖(ad Jvkj)uj‖2
s = (2sj)

−1‖vkj‖2
s‖uj‖2

s.

Proof. We have [Juj, uj] = Q(uj, uj) = s−1
j ‖uj‖2

sEj by (2.6) and (3.3). Taking the
commutator with Jvkj, we see by the Jacobi identity and (2.5) that

[[Jvkj, uj], Juj] + [[Juj, Jvkj], uj] = −s−1
j ‖uj‖2

svkj.

Taking the commutator with Jvkj once again, we obtain

[[[Jvkj, uj], Juj], Jvkj] + [[[Juj, Jvkj], uj], Jvkj] = s−1
j ‖uj‖2

s[Jvkj, vkj]. (5.2)

Since Jvkj ∈ n(αk−αj)/2 and [Jvkj, uj], [Juj, Jvkj] ∈ nαk/2, one has

[[Jvkj, uj], Jvkj] = [[Juj, Jvkj], Jvkj] = 0.

It follows from the Jacobi identity that both terms of the left-hand side of (5.2) are
equal to [[Jvkj, Juj], [Jvkj, uj]]. Since the operator adU Jvkj is complex linear, we
have [Jvkj, Juj] = J [Jvkj, uj]. Hence we see by (5.2) that

[J [Jvkj, uj], [Jvkj, uj]] = (2sj)
−1‖uj‖2

s[Jvkj, vkj].

Applying E∗
s to the both sides, we obtain the proposition by (2.6) and (3.2). ¤

If nkj 6= 0, then Lemma 5.6 says that for a non-zero vkj ∈ n(αk+αj)/2, the linear
map nαj/2 3 uj 7→ (ad Jvkj)uj ∈ nαk/2 is injective. Hence we get the following
lemma.

Lemma 5.7. If nkj 6= 0, one has bj ≤ bk.

Lemma 5.8 ([8, Lemma 7.5]). Let am ∈ R (m = 1, . . . , r) and vkj ∈ n(αk+αj)/2.
Then we have

∑
amEm + vkj ∈ Ω if and only if am > 0 (m = 1, . . . , r) and ajak −

(2sk)
−1‖vkj‖2

s > 0.

Furthermore we have

Lemma 5.9. Let am ∈ R (m = 1, . . . , r), vlj ∈ n(αl+αj)/2 and vlk ∈ n(αl+αk)/2. Then
we have

∑
amEm + vlj + vlk ∈ Ω if and only if

(i) am > 0 (m = 1, . . . , r),
(ii) ajakal − ak(2sl)

−1‖vlj‖2
s − aj(2sl)

−1‖vlk‖2
s > 0.

Remark 5.10. The conditions (i) and (ii) imply that

ajal − (2sl)
−1‖vlj‖2

s > 0, akal − (2sl)
−1‖vkj‖2

s > 0.

Proof of Lemma 5.9. For simplicity we set v1 :=
∑

amEm + vlj + vlk. Let us assume
that v1 ∈ Ω. Then it is clear that am > 0 (m = 1, . . . , r). It follows easily from (2.6)
and (3.3) that [Jwlj, vlj] = −(ajsl)

−1‖vlj‖2
sEl. Hence we have by [8, Lemma 4.1],

v2 := (exp Jwlj)v1 =
∑

m6=l

amEm +
(
al − a−1

j (2sl)
−1‖vlj‖2

s

)
El + vlk.
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Since exp Jwlj ∈ G(0), we have v2 ∈ Ω = G(0)E. Therefore we obtain (ii) by
Lemma 5.8.

Conversely we assume that (i) and (ii) hold. Then we have v2 ∈ Ω, so that
v1 = (exp Jwlj)

−1v2 ∈ Ω. ¤

6. Refinement of the previous theorem

Before proving Theorem 3.1, we would like to present here a refinement of [9,
Theorem 1].

Theorem 6.1. Let s = (s1, . . . , sr) ∈ Rr be positive. Then Cs(Ω + iV ) is a convex
set if and only if Ω is a symmetric cone and s1 = · · · = sr.

In view of [9, Theorem 1], it is enough to prove the “only if” part of Theorem
6.1. More precisely, our only task is to prove Propositions 7 and 13 of [9] under the
single assumption that Cs(Ω + iV ) is convex. Now we suppose that Cs(Ω + iV ) is
a convex set. As in the previous section, we assume that the positive integers j, k, l
satisfy 1 ≤ j < k < l ≤ r.

6.1. First step. First we show that s1 = · · · = sr.

Proposition 6.2. If nkj 6= 0, then one has sk = sj.

Proof. Since the inequality sj ≥ sk is shown by [9, Lemma 5] under the same as-
sumption as here, it suffices to show that sk ≥ sj. Let us take any non-zero δ ∈ R
and non-zero vkj ∈ n(αk+αj)/2. Let us compute the Cayley transform images Cs(z1)

and Cs(z2) of the following two points of Ω + iV :

z1 := i(δEk + vkj), z2 := −i(δEk + vkj).

We set

p := log
(
(2sk)

−1‖vkj‖2
s + 1 + iδ

)
.

If we put in Proposition 5.1

tj = tl = 0, tk = p, wlj = wlk = 0, wkj = ivkj,

then the formula in Proposition 5.1 becomes exp J(ivkj) exp(pHk)E = z1 + E. Put
η := exp J(ivkj) exp(pHk). Since Is(z1 + E) = Is(ηE) = sη−1E, we have by Propo-
sition 5.2

Cs(z1) = −
∑

m6=j,k

Em +
(
2e−p(2sj)

−1‖vkj‖2
s − 1

)
Ej + (1− 2e−p)Ek + 2ie−pvkj.

Replacement of δ by −δ and vkj by −vkj respectively gives

Cs(z2) = −
∑

m6=j,k

Em +
(
2e−p(2sj)

−1‖vkj‖2
s − 1

)
Ej + (1− 2e−p)Ek − 2ie−pvkj.

Consider ξ := 1
2
(Cs(z1) + Cs(z2)), the midpoint of Cs(z1) and Cs(z2). We have

ξ = −
∑

m6=j,k

Em +
(
2(Re e−p)(2sj)

−1‖vkj‖2
s − 1

)
Ej + (1− 2 Re e−p)Ek − 2(Im e−p)vkj.
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Since Cs(Ω + iV ) is a convex set, too, we have ξ ∈ Cs(Ω + iV ), so that C−1
s (ξ) ∈

Ω + iV .
We shall compute C−1

s (ξ). We put in Proposition 5.2

tj = − log
(
1− (

(2sk)
−1‖vkj‖2

s + 1
)−1

(2sj)
−1‖vkj‖2

s

)
,

tk = − log(Re e−p), tl = 0,

wkj = δ
(
(2sk)

−1‖vkj‖2
s + 1

)−1
vkj, wlk = wlj = 0,

(6.1)

and set η̃ := exp(Jwkj) exp(tjHj +tkHk). Here we note that the established inequal-
ity sj ≥ sk gurantees tj ∈ R and that Re e−p > 0 implies tk ∈ R. Then the formula in
Proposition 5.2 becomes sη̃−1E = 2−1(E− ξ). Since 2I∗s (E− ξ) = I∗s (sη̃−1E) = η̃E,
we have by Proposition 5.1

C−1
s (ξ) = (etj − 1)Ej +

(
etk + etj(2sk)

−1‖wkj‖2
s − 1

)
Ek + etjwkj.

Since C−1
s (ξ) ∈ Ω + iV , we know by Lemma 5.8

(
etj − 1

)(
etk + etj(2sk)

−1‖wkj‖2
s − 1

)− (2sk)
−1‖etjwkj‖2

s ≥ 0. (6.2)

Multiply the both sides by e−tj
(
(2sk)

−1‖vkj‖2
s + 1

)2
. Then (6.1) and some simplifi-

cation yield
(
(2sk)

−1‖vkj‖2
s + 1

)
(2sj)

−1‖vkj‖2
s(e

tk − 1)− δ2(2sk)
−1‖vkj‖2

s ≥ 0.

Further simplification using etk = (Re ep)−1
(
(Re ep)2+(Im ep)2

)
and ‖vkj‖s 6= 0 gives

(
(2sk)

−1‖vkj‖2
s + 1

)2 − (
(2sk)

−1‖vkj‖2
s + 1

) ≥ δ2s−1
k (sj − sk).

Since the left-hand side is independent of δ, and since sj ≥ sk, the arbitrariness of
δ forces sj = sk. ¤

We now obtain the following proposition by Asano’s theorem [1, Theorem 4]
from Proposition 6.2, as we did in [9, Proposition 9].

Proposition 6.3. The numbers sm (m = 1, . . . , r) are independent of m.

6.2. Second step. In view of Proposition 6.3, we put for simplicity s = sm (m =
1, . . . , r), independent of m.

Proposition 6.4. If nlk 6= 0, then one has nlj = nkj.

Proof. Let us assume that nlk 6= 0. By Lemma 5.5 (1) it is enough to show that
nlj ≤ nkj. Let us take any non-zero vlk ∈ n(αl+αk)/2. For every vlj ∈ n(αl+αj)/2, we
have s(ad Jvlk)vlj ∈ n(αk+αj)/2 by [8, Lemma 4.4] and [8, Lemma 7.7]. We shall prove
that the linear map n(αl+αj)/2 3 vlj 7→ s(ad Jvlk)vlj ∈ n(αk+αj)/2 is injective, which
implies nlj ≤ nkj.

Let us suppose that vlj ∈ n(αl+αj)/2 and s(ad Jvlk)vlj = 0. Let δ ∈ R and consider

the following two points of Ω + iV :

z1 := i(δEl + vlk + vlj), z2 := −i(δEl + vlk + vlj).
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We set in Proposition 5.1

tj = tk = 0, tl = log
(
1 + (2s)−1‖vlk‖2

s + (2s)−1‖vlj‖2
s + iδ

)
,

wkj = 0, wlj = ivlj, wlk = ivlk,

and η := exp Jwlj exp Jwlk exp(tlHl). Then the formula in Proposition 5.1 becomes
ηE = z1 + E. Since Is(z1 + E) = Is(ηE) = sη−1E, we know by Proposition 5.2
(note that s(ad Jvlj)vlk = s(ad Jvlk)vlj = 0 by [8, Lemma 7.7])

Cs(z1) = −
∑

m6=j,k,l

Em +
(
2q−1(2s)−1‖vlj‖2

s − 1
)
Ej

+
(
2q−1(2s)−1‖vlk‖2

s − 1
)
Ek + (1− 2q−1)El + 2iq−1vlj + 2iq−1vlk,

where we have put

q := 1 + (2s)−1‖vlk‖2
s + (2s)−1‖vlj‖2

s + iδ.

A similar argument gives

Cs(z2) = −
∑

m6=j,k,l

Em +
(
2q−1(2s)−1‖vlj‖2

s − 1
)
Ej

+
(
2q−1(2s)−1‖vlk‖2

s − 1
)
Ek + (1− 2q−1)El − 2iq−1vlj − 2iq−1vlk.

We set ξ := 1
2
(Cs(z1) + Cs(z2)), the midpoint of Cs(z1) and Cs(z2). Then

ξ = −
∑

m6=j,k,l

Em +
(
2 Re(q−1)(2s)−1‖vlj‖2

s − 1
)
Ej

+
(
2 Re(q−1)(2s)−1‖vlk‖2

s − 1
)
Ek + (1− 2 Re(q−1))El

− 2 Im(q−1)vlj − 2 Im(q−1)vlk.

By the convexity of Cs(Ω + iV ), we have ξ ∈ Cs(Ω + iV ), so that C−1
s (ξ) ∈ Ω + iV .

Let us compute C−1
s (ξ). Put in Proposition 5.2

wkj = 0, wlk = (Re q)−1(Im q)vlk, wlj = (Re q)−1(Im q)vlj,

tj = − log
(
1− (Re q)−1(2s)−1‖vlj‖2

s

)
,

tk = − log
(
1− (Re q)−1(2s)−1‖vlk‖2

s

)
, tl = − log(Re(q−1)),

(6.3)

where we note that tj, tk, tl ∈ R. We set

η̃ := exp Jwlj exp Jwlk exp(tjHj + tkHk + tlHl).

Then the formula in Proposition 5.2 becomes sη̃−1E = 2−1(E − ξ) by virtue of
s(ad Jvlk)vlj = 0 and [8, Lemma 7.7] again. Since 2I∗s (E − ξ) = I∗s (sη̃−1E) = η̃E,
we get by Proposition 5.1

C−1
s (ξ) = (etj − 1)Ej + (etk − 1)Ek

+
(
etl + etk(2s)−1‖wlk‖2

s + etj(2s)−1‖wlj‖2
s − 1

)
El + etjwlj + etkwlk.
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Since C−1
s (ξ) ∈ Ω + iV , we know by Lemma 5.9 (ii) that

(etk − 1)
{

(etj − 1)
(
etl + etk(2s)−1‖wlk‖2

s + etj(2s)−1‖wlj‖2
s − 1

)

− e2tj(2s)−1‖wlj‖2
s

}
− (etj − 1)e2tk(2s)−1‖wlk‖2

s ≥ 0.

After some simplification, we obtain

(etk − 1)
{

(etj − 1)
(
etl − 1

)− etj(2s)−1‖wlj‖2
s

}
≥ (etj − 1)etk(2s)−1‖wlk‖2

s.

Multiplying both sides by e−tje−tk , we see by using (6.3) that the above inequality
becomes, after dividing by (Re q)−3(2s)−1‖vlk‖2

s,

(Re q)(etl − 1)(2s)−1‖vlj‖2
s ≥ 2(Im q)2(2s)−1‖vlj‖2

s. (6.4)

By etl = (Re q)−1
(
(Re q)2 + (Im q)2

)
, we arrive at

(2s)−1‖vlj‖2
s(X

2 −X) ≥ δ2(2s)−1‖vlj‖2
s,

where X := 1 + (2s)−1‖vlk‖2
s + (2s)−1‖vlj‖2

s. Since δ ∈ R is arbitrary and the
left-hand side is independent of δ, we must have vlj = 0, which we had to show. ¤

Now that Propositions 7 and 13 in [9] are proven without using the convexity of
C∗s (Ωs + iV ), the proof of Theorem 6.1 is completed.

7. Proof of the main theorem

Let D be the homogeneous Siegel domain defined by (2.8). If D is symmetric
and the parameter s satisfies s1 = · · · = sr > 0, then we know by Section 4 that Cs

is identical with the Cayley transform treated in [7], so that the Cayley transform
image Cs(D) is a convex set by [7, Theorem 2.6]. We now prove the “only if” part
of Theorem 3.1.

Lemma 7.1. One has

Cs(D) ∩ ({0} ×W ) = {0} × Cs(Ω + iV ).

Proof. Since D∩ ({0}×W ) = {0}× (Ω+ iV ), we have clearly by (3.5) that Cs(D)∩
({0} ×W ) ⊃ {0} × Cs(Ω + iV ). For (u, w) ∈ D, we have w ∈ Ω + iV by (2.8) and
(2.7). Hence we have Cs(D) ∩ ({0} ×W ) ⊂ {0} × Cs(Ω + iV ). ¤
Lemma 7.2. Let 1 ≤ j < k ≤ r. For uk ∈ nαk/2 and vkj ∈ n(αk+αj)/2, one has
(ad Jvkj)

∗uk ∈ nαj/2.

Proof. If u′ ∈ (nαj/2)
⊥ =

∑
m6=j nαm/2, then we have (ad Jvkj)u

′ = 0. Hence

((ad Jvkj)
∗uk|u′)s = (uk|(ad Jvkj)u

′)s = 0.

This implies (ad Jvkj)
∗uk ∈ nαj/2. ¤

From now on, we assume that Cs(D) is a convex set. By Lemma 7.1, Cs(Ω+ iV )
is also convex, so that Ω is a symmetric cone and s1 = · · · = sr by Theorem 6.1.
Then we know by [24, Proposition 3] that nkj (1 ≤ j < k ≤ r) are independent of
j, k and they are all non-zero. We set s := sm (m = 1, . . . , r), independent of m, as
in the previous section.
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Proposition 7.3. Let 1 ≤ j < k ≤ r. For any non-zero vkj ∈ n(αk+αj)/2, the linear
map (ad Jvkj)

∗|nαk/2
: nαk/2 → nαj/2 is injective. Hence we obtain bk ≤ bj.

Proof. Let us assume that uk ∈ nαk/2 and (ad Jvkj)
∗uk = 0. Let δ > 0 be arbitrary.

We consider the following two points on the Shilov boundary of D:

z1 = (uz1 , wz1) :=
(
uk,

1
2
Q(uk, uk) + i(δEk + vkj)

)
,

z2 = (uz2 , wz2) :=
(−uk,

1
2
Q(uk, uk)− i(δEk + vkj)

)
.

We know by (3.3) that

wz1 =
(
(2s)−1‖uk‖2

s + iδ
)
Ek + ivkj, wz2 =

(
(2s)−1‖uk‖2

s − iδ
)
Ek − ivkj.

Let us compute the Cayley transforms ξ1 := Cs(z1) and ξ2 := Cs(z2) of z1, z2. In
what follows, we will write ξj = (uξj

, wξj
) (j = 1, 2). We put

p := log(1 + (2s)−1‖uk‖2
s + (2s)−1‖vkj‖2

s + iδ).

We set in Proposition 5.1,

tj = tl = 0, tk = p, wlj = wlk = 0, wkj = ivkj,

and put η := exp Jwkj exp(tkHk). Then the formula in Proposition 5.1 becomes
ηE = wz1 + E. Since Is(wz1 + E) = Is(ηE) = sη−1E, we have by Proposition 5.2,

Is(wz1 + E) =
∑

m6=j,k

Em +
(
1− (2s)−1e−p‖vkj‖2

s

)
Ej + e−pEk − ie−pvkj.

Hence we get by Lemma 5.3 and the assumption (ad Jvkj)
∗uk = 0,

uξ1 = 2e−puk,

wξ1 = −
∑

m6=j,k

Em +
(
s−1e−p‖vkj‖2

s − 1
)
Ej + (1− 2e−p)Ek + 2ie−pvkj.

Similarly, we have

uξ2 = −2e−puk,

wξ2 = −
∑

m6=j,k

Em +
(
s−1e−p‖vkj‖2

s − 1
)
Ej + (1− 2e−p)Ek − 2ie−pvkj.

We set ξ = (uξ, wξ) := 1
2
(ξ1 + ξ2), the midpoint of ξ1 and ξ2. Then

uξ = 2i(Im e−p)uk,

wξ = −
∑

m6=j,k

Em +
(
s−1(Re e−p)‖vkj‖2

s − 1
)
Ej + (1− 2(Re e−p))Ek − 2(Im e−p)vkj.

Since Cs(D) is a convex set, one has ξ ∈ Cs(D).
To compute the inverse Cayley transform C−1

s (ξ) of ξ, we put, in Proposition
5.2,

tj = − log
(
1− (2s Re ep)−1‖vkj‖2

s

)
, tk = − log(Re e−p), tl = 0,

wlj = wlk = 0, wkj = (Re ep)−1(Im ep)vkj,
(7.1)
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and set η̃ := exp Jwkj exp(tjHj + tkHk), where we note that tj, tk ∈ R. Then the
formula in Proposition 5.2 becomes sη̃−1E = 1

2
(E − wξ). Since 2I∗s (E − wξ) =

I∗s (sη̃−1E) = η̃E, we have by Proposition 5.1

C−1
s (wξ) =(etj − 1)Ej +

(
etk + (2s)−1etj‖wkj‖2

s − 1
)
Ek + etjwkj.

On the other hand, we know by Lemma 5.4 that

ϕs(E − wξ) = 2(AdU η̃−1)∗(AdU η̃−1).

Since ad Jvkj commutes with J , we also have (ad Jvkj)
∗Juk = 0. Since uξ =

2i(Im e−p)uk, it holds that

ϕs(E − wξ)
−1uξ = 1

2
AdU η̃(AdU exp(tjHj + tkHk))

∗uξ

= 1
2
etk(AdU exp Jwkj)uξ

= i(Im e−p)etkuk,

where the last equality follows from (ad Jwkj)uk = 0. Therefore we get

C−1
s (ξ) =

(
i(Im e−p)etkuk, (e

tj − 1)Ej +
(
etk + (2s)−1etj‖wkj‖2

s − 1
)
Ek + etjwkj

)
.

We put ζ = (uζ , wζ) := C−1
s (ξ). Since Cs(D) is convex, we get ζ ∈ D, so that we

know by (2.8), wζ − 1
2
Q(uζ , uζ) ∈ Ω. Hence it follows from (3.3) that

(etj − 1)Ej +
(
etk + (2s)−1etj‖wkj‖2

s − 1− (2s)−1(Im e−p)2e2tk‖uk‖2
s

)
Ek

+ etjwkj ∈ Ω.

Then by Proposition 5.8

(etj − 1)
(
etk + (2s)−1etj‖wkj‖2

s − 1− (2s)−1(Im e−p)2e2tk‖uk‖2
s

)

− (2s)−1e2tj‖wkj‖2
s ≥ 0.

A simplification gives

(etj − 1)
(
etk − 1− (2s)−1(Im e−p)2e2tk‖uk‖2

s

)− (2s)−1etj‖wkj‖2
s ≥ 0.

Multiplying both sides by e−tj , we obtain by (7.1) that

1− (Re ep)−1 − δ2(Re ep)−3‖uk‖2
s ≥ 0,

where we have divided the inequality by (2s)−1‖vkj‖2
s > 0. This must be true for

any δ ∈ R, so that we have uk = 0. Therefore the linear map (ad Jvkj)
∗|nαk/2

:

nαk/2 → nαj/2 is injective. ¤

We know by Lemma 5.7 and Proposition 7.3 that dim nαm/2 (m = 1, . . . , r) are
independent of m. Now Proposition 4.1 tells us that D is quasisymmetric. Since
s1 = · · · = sr, we see by Section 4 that Cs coincides with the Cayley transform
defined in [7]. Therefore it follows from [7, Theorem 2.6] that D is symmetric.
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