
Lefshetz property, Shur-Weyl duality and aq-deformation of Speht polynomialToshiaki Maeno
AbstratWe desribe the Shur-Weyl duality for a polynomial representa-tion of the quantum group and the Heke algebra of type A froma viewpoint of a q-analogue of the strong Lefshetz property. A q-deformation of the Speht polynomial appears as a onstituent of basesfor irreduible omponents.IntrodutionWe investigate the Shur-Weyl duality for a representation of the quan-tum group Uq(sld) and the Heke algebra HSn(q) realized on the algebraA = C[x1; : : : ; xn℄=(xd1; : : : ; xdn) by means of a q-analogue of the strong Lef-shetz property, whih is a useful tool for ombinatorial studies of �nite-dimensional Gorenstein graded rings. We desribe expliitly the irreduibledeomposition ofA as a (Uq(sld);HSn(q))-module. A q-analogue of the Spehtpolynomial gives a generator of eah irreduible omponent. In this paper,all the vetor spaes and algebras are over the �eld of omplex numbers C:Let V = Li�0 Vi be a �nite-dimensional graded vetor spae. Considerlinear endomorphisms E and F on V suh that degE = 1; degF = �1 andthe set fE; F;H := [E; F ℄g forms an sl2-triple. Let us all V 0i := Vi \ KerFthe primitive omponent of degree i: Then the part of degree i deomposesas the diret sum of the images of the primitive omponents:Vi =Mj�0 EjV 0i�j:Revised on Marh 3, 2006. 1



This follows from the omplete reduibility and the fat that every �nitedimensional representation of sl2 is isomorphi to a highest weight represen-tation with nonnegative integral highest weight. For example, if V is theohomology group H�(X;C) of a ompat K�ahler manifold X and if E is themultipliation operator by the K�ahler lass, then the deomposition aboveis alled the Lefshetz deomposition, see e.g. GriÆths and Harris [4℄. Theidea of the Lefshetz deomposition is useful also for analyzing the strutureof Artinian Gorenstein rings, see e.g. Stanley [11℄, Watanabe [14℄, Harima,Migliore, Nagel and Watanabe [6℄. The notion of (strong or weak) Lefshetzproperty for Artinian Gorenstein graded rings is an abstration of the HardLefshetz Theorem.The algebra A = C[x1; : : : ; xn℄=(xd1; : : : ; xdn) = (C[x℄=(xd))
n is an ex-ample of Gorenstein rings with the strong Lefshetz property. In fat, it isisomorphi to the ohomology ring of a produt of the projetive spaes. Thesymmetri group Sn ats on A via permutation of indies of x1; : : : ; xn: Atthe same time, the linear group GLd(C) ats on A by regarding C[x℄=(xd)as the vetor representation of GLd(C): Hene A admits a deompositionas a (GLd; Sn)-module, whih is implied by the Shur-Weyl duality. Morita,Wahi and Watanabe [10℄ proposed a method to give a desription of theirreduible deomposition of A from the view point of the strong Lefshetzproperty of A: They expliitly onstruted a basis for eah irreduible ompo-nent in terms of Speht polynomials for d = 2: We will give a generalizationof their result in Setion 1.The main purpose of this paper is to understand a q-deformed frameworkof their approah in order to study the Shur-Weyl duality proved by Jimbo[8℄ for the quantum group Uq(sld) and the Heke algebra HSn(q): The poly-nomial representation of the Heke algebra appearing here is the one studiedby Martin [9℄ and by Duhamp, Krob, Lasoux, Leler, Sharf and Thibon(DKLLST for short) [1℄. We de�ne q-deformed Speht polynomials by us-ing the q-analogue of the skew-symmetrizer introdued by Gyoja [5℄. Thesepolynomials are the same as those studied in Martin [9℄ and DKLLST [1℄.We show as the main result that q-deformed Speht polynomials are part ofthe basis of the primitive irreduible omponent of A as a (Uq(sld);HSn(q))-module (Theorem 4.1). In partiular, they form a basis of the primitiveomponent for d = 2:On the other hand, the oinvariant algebra Rn of the symmetri groupSn is another important example of the Gorenstein ring with the strong Lef-shetz property on whih the symmetri group ats. In this ase, Terasoma2



and Yamada [13℄ have onstruted a standard polynomial basis for eah ir-reduible omponent as an Sn-module. Note that in ontrast to the ase ofthe algebra A; the oinvariant algebra Rn does not have any Sn-invariantLefshetz elements.Aknowledgements. The author would like to thank Hideaki Morita andJunzo Watanabe for illuminating disussions. He is also grateful to Anatol N.Kirillov and Akihito Wahi for valuable omments. This work is supportedby Grant-in-Aid for Sienti� Researh.1 Lefshetz deomposition and Speht poly-nomialDe�nition 1.1 A ommutative Artinian graded algebra R = �Di=0Ri is saidto have the strong Lefshetz property if there exists an element ` of degreeone suh that (`D�2i�) : Ri ! RD�i is bijetive. The element ` satisfyingthe ondition above is alled a Lefshetz element.It is easy to see that the algebra A = C[x1; : : : ; xn℄=(xd1; : : : ; xdn) has thestrong Lefshetz property with a Lefshetz element L = x1+ � � �+xn: Let usde�ne a linear endomorphism � : A! A by�(xm11 � � �xmnn ) = nXj=1 mj(d�mj)xm11 � � �xmj�1j � � �xmnn ; 0 � m1; : : : ; mn � d�1:Then the set fL;�; H := [L;�℄g forms an sl2-triple. Note that the operator� is indued by the di�erential operatorPnj=1(�xj(�=�xj)2+(d�1)(�=�xj))ating on C[x1; : : : ; xn℄: Sine the Lefshetz element L is invariant under theation of the symmetri group Sn; the Lefshetz deompositionAi =Mj�0 LjA0i�jis a deomposition as a representation of Sn: Hene, the irreduible deompo-sition of A as an Sn-module is redued to that of eah primitive omponentA0i :Let T be a semi-standard tableau. See e.g. Fulton [3℄, Stanley [12℄ forthe de�nition of the (semi-)standard tableau.3



De�nition 1.2 The Speht polynomial for a semi-standard tableau T is de-�ned by �T (x) :=Yi �(xTi);where Ti is the set of indies ontained in the i-th olumn of T and �(xS) =Qi;j2S; i<j(xi � xj):Let mT be the initial monomial of �T (x) with respet to the lexiographiordering. De�ne the olumn skew-symmetrizer bT bybT := Xw2C(T ) "(w)w; "(w) := (�1)l(w);where C(T ) � Sn is the olumn group of T ; whih preserves the set of indieson eah olumn of T : If T is a standard tableau, then it is well-known that�T (x) = bT (mT ):Proposition 1.1 For any standard tableau T ; one has�(�T (x)) = 0:Proof. Note that if (I1; I2) is a partition of f1; : : : ; ng; i.e. I1tI2 = f1; : : : ; ng;then �(f(xI1)g(xI2)) = �(f(xI1)) � g(xI2) + f(xI1) � �(g(xI2)):Sine the ation of the symmetri group ommutes with �;�(�T ) = bT (�(mT )):It is enough to show bT (�(mT )) = 0 when the shape of T is (1; : : : ; 1); thenumber of boxes of T is l; 1 � l � n; and mT (x) = xl�11 xl�22 � � �xl�1: Onehas �(xl�11 xl�22 � � �xl�1) = l�1Xj=1 j(d� j)xl1 � � �xl�jj xl�jj+1 � � �xl�1:So we an onlude that bT (�(mT )) = 0:Corollary 1.1 (1) The Speht polynomial �T (x) is a generator of an irre-duible (GLd; Sn)-omponent. The algebra A deomposes as a diret sum ofirreduible GLd-modules:A =MT GLd � (C�T (x));4



where T runs over all the standard tableaux of shape � ` n with the lengthl(�) � d:(2) For eah standard tableaux satisfying the ondition above, the polynomials�T (x); L ��T (x); : : : ; L(d�1)n�2 deg�T ��T (x)form a linear basis of an irreduible sl2-submodule of A:Remark 1.1 For d = 2; Morita, Wahi and Watanabe [10℄ have shown thatthe Speht polynomials for standard tableaux onsisting of two rows form abasis of Ker�: For d > 2; the Speht polynomials are only part of a basis ofKer�:Lemma 1.1 Let Bm be the set of the nonzero polynomials in A of formLi(�T (x)) with deg(Li(�T (x))) = m: Then Bm is linearly independent form � [(d� 1)n=2℄:Proof. Sine L is the Lefshetz element, this follows from the fat thateah element of Bm belongs to di�erent irreduible (sl2; Sn)-omponent fromothers.Here we show a proedure to produe polynomials generating irreduible(sl2; Sn)-omponents other than the Speht polynomials. We identify the Liealgebra gld with the matrix algebra Matd(C) onsisting of (d � d)-matriesZ = (Zab)d�1a;b=0: Under this identi�ation, the matrix elements Ea;b (a; b =0; : : : ; d� 1) ats on the algebra C[x℄=(xd) by Ea;bxi = Æb;ixa: The oprodutof the universal enveloping algebra U(gld) determines the natural ation ofEa;b on A: The ation of Ea;b on A is given by the formulaEa;b(xm11 � � �xmnn ) = nXj=1 Æb;mj � xm11 � � �xaj � � �xmnn :The following proposition shows an indutive way to �nd polynomials thatgenerate irreduible Sn-submodules and belong to the primitive part Ker�:Proposition 1.2 (1) Let ' be an element of U(gld) and T a standard tableau.If the polynomial �j('(�T (x))) is not equal to zero in the algebra A; it gener-ates an irreduible Sn-submodule isomorphi to the irreduible representationorresponding to �:(2) Let ' 2 U(gld) be a monomial in the matrix elements ofMatd(C): Assume5



that ' inreases the degree of �T by i: If �j('(�T (x))) =Pdeg�T +i�j�=0 L�y�;y� 2 (H + �)(Ker�); for some j > 0; then�j�1('�T ) + deg�T +i�jX�=0 L�+1 � y0�� + 1 2 Ker�;where y0� is an element in Ker� suh that (H + �)y0� = y�:Proof. The �rst statement (1) follows from the ommutativity of the ationof U(gld) with that of Sn:In order to prove (2), we use the ommutation relation[L�+1;�℄ = (� + 1)L�(H + �):Sine y0� 2 Ker�; we get� �j�1('�T ) + deg�T +i�jX�=0 L�+1 � y0�� + 1 ! = �j('�T )� deg�T +i�jX�=0 L�y� = 0:This ompletes the proof.Let f� be the number of the standard tableaux with shape �; whihan be omputed by means of the Frame-Robinson-Thrall formula (Frame,Robinson and Thrall [2℄): f� = j�j!h(�) ;where j�j is the weight of � and h(�) is the produt of all the hook lengths.On the other hand, sine the Hilbert polynomial of A isHilb(A; t) = �1� td1� t �n ;it is easy to see the following from the Shur-Weyl duality and the Weylharater formula.Proposition 1.3 For a partition � = (�1; �2; : : :); we set n(�) := Pi(i �1)�i: Then we haveX�`n; l(�)�d f�tn(�) Y1�i<j�n�1� t�i��j+j�i1� tj�i � = �1� td1� t �n :6



Remark 1.2 As for the sum of the numbers f�; the following interestingformula is known, see e.g. Stanley [12, 7.13.9℄:X�`n f� = CoeÆient of xn in exp(x+ x22 ):Example 1.1 Let us onsider the ase d = 3 and n = 4: The Hilbert poly-nomial of A isHilb(A; t) = 1 + 4t+ 10t2 + 16t3 + 19t4 + 16t5 + 10t6 + 4t7 + t8:The set of the partitions � ` 4 with l(�) � 3 isf(4; 0; 0; 0); (3; 1; 0; 0); (2; 2; 0; 0); (2; 1; 1; 0)g:The following is the list of the Speht polynomials in this ase.deg = 0 1deg = 1 x1 � x2; x1 � x3; x1 � x4deg = 2 (x1 � x2)(x3 � x4); (x1 � x3)(x2 � x4)deg = 3 (x1 � x2)(x1 � x3)(x2 � x3); (x1 � x3)(x1 � x4)(x3 � x4);(x1 � x2)(x1 � x4)(x2 � x4)Let us �nd the basis of Ker� by using Proposition 1.2. Take the standardtableau T = 1 2 3 4 whih orresponds to the trivial representation and�T (x) = 1: We an obtain the polynomials of higher degree that generatethe trival representations of Sn by applying the operators (E1;0)k 2 U(gld);k = 1; 2; 3; 4: Here, we take the produt of the operator E1;0 not in Matd(C);but in U(gld): In fat, we obtain the elementary symmetri polynomials inthis ase:E1;0(�T ) = e1(x1; x2; x3; x4); (E1;0)2(�T ) = 2e2(x1; x2; x3; x4);(E1;0)3(�T ) = 6e3(x1; x2; x3; x4); (E1;0)4(�T ) = 24e4(x1; x2; x3; x4);where ei is the i-th elementary symmetri polynomial. The polynomial(E1;0)4�T (x) = 24x1x2x3x4 is a generator of a opy of the trivial repre-sentation in A4: However, it does not belong to Ker�: We have�(e4) = 2e3(x1; x2; x3; x4); �2(e4) = 8e2(x1; x2; x3; x4);7



�3(e4) = 48e1(x1; x2; x3; x4) = 48L�T ;Hene, we have the following polynomials generating the trivial Sn-submodulesin A02 and A04 : A02 7e2 � 3L2;A04 15e4 � 5L2e2 + 2L4:Now let us take the standard tableauT = 1 3 42 :Then the orresponding Speht polynomial is �T (x) = x1 � x2: The poly-nomial E2;1(�T ) = x21 � x22 also generates the irreduible Sn-module of type� = (3; 1; 0; 0): Sine�(L(x1 � x2)) = 6x1 � 6x2; �(x21 � x22) = 2x1 � 2x2;the polynomial 3(x21�x22)�L(x1�x2) belongs to Ker�: We an �nd the restof the basis of Ker� in a similar way. The list of the basis of eah primitiveomponent is as follows.A00 � = (4; 0; 0; 0) 1A01 � = (3; 1; 0; 0) x1 � x2; x1 � x3; x1 � x4A02 � = (4; 0; 0; 0) 7e2(x)� 3L2� = (3; 1; 0; 0) 3(x21 � x22)� L(x1 � x2); 3(x21 � x23)� L(x1 � x3);3(x21 � x24)� L(x1 � x4)� = (2; 2; 0; 0) (x1 � x2)(x3 � x4); (x1 � x3)(x2 � x4)A03 � = (3; 1; 0; 0) (10e2(x)� 3L2)(x1 � x2)� 5L(x21 � x22);(10e2(x)� 3L2)(x1 � x3)� 5L(x21 � x23);(10e2(x)� 3L2)(x1 � x4)� 5L(x21 � x24)� = (2; 1; 1; 0) (x1 � x2)(x1 � x3)(x2 � x3); (x1 � x2)(x1 � x4)(x2 � x4);(x1 � x3)(x1 � x4)(x3 � x4)A04 � = (4; 0; 0; 0) 15e4(x)� 5L2e2(x) + 2L4� = (2; 2; 0; 0) 3(x21 � x22)(x23 � x24)� L2(x1 � x2)(x3 � x4);3(x21 � x23)(x22 � x24)� L2(x1 � x3)(x2 � x4)2 Spin (d � 1)=2 representation of Uq(sl2) andq-analogue of Lefshetz elementIn this setion, we onstrut a q-analogue of the Lefshetz element L 2 A:Let us realize the spin (d � 1)=2 representation on the algebra C[x℄=(xd):8



Take the standard generators X�; K�1 of Uq(sl2): They satisfy the relations:KK�1 = 1; KX�K�1 = q�2X�; [X+; X�℄ = K �K�1q � q�1 :De�ne their ation on C[x℄=(xd) byX+(xi) = � xi+1; i = 0; : : : ; d� 2;0; i = d� 1;X�(xi) = [i℄[d� i℄xi�1;K(xi) = q2i�d+1xi:Here, the q-integer [i℄ is de�ned by the formula [i℄ := (qi � q�i)=(q � q�1):The ation of X+ on C[x℄=(xd) is the multipliation operator by x: One hasthe ation of X+ on A via suessive appliation of the oprodut of Uq(sl2):The ation of X+ on A obtained in this way an be regarded as a q-analogueof the Lefshetz element L; whih we denote by Lq: More expliitly, Lq is theoperator that ats on monomials asLq(xm11 � � �xmnn ) = nXi=1 qNi(m1;:::;mn)xm11 � � �xmi+1i � � �xmnn ;where Ni(m1; : : : ; mn) := ℄fj < ijmj = mig � ℄fj < ijmj = mi + 1g:Similarly, one has a q-analogue of the operator � given by�q(xm11 � � �xmnn ) = nXi=1 qN 0i(m1;:::;mn)[mi℄[d�mi℄xm11 � � �xmi�1i � � �xmnn ;where N 0i(m1; : : : ; mn) := ℄fj > ijmj = mig � ℄fj > ijmj = mi � 1g:Now we restate the Lefshetz deomposition of A under this situation.Proposition 2.1 Suppose that q is neither zero nor root of the unity. Thenthe omponent of degree i deomposes asAi =Mj�0 LjqA0i�j;where A0i := Ker(�q) \ Ai: 9



Remark 2.1 (1) Let �1; : : : ; �n be operators on A de�ned by�i(xm11 � � �xmnn ) = qNi(m1;:::;mn)xm11 � � �xmi+1i � � �xmnn :If we de�ne the operators �ij for i < j by�ij(xm11 � � �xmnn ) = 8<: q2xm11 � � �xmnn ; if mi = mj;q�1xm11 � � �xmnn ; if jmi �mjj = 1;xm11 � � �xmnn ; otherwise,then the operators �ij ommute eah other. In the algebra Aq generated bythe operators �1; : : : ; �n and ��1ij ; 1 � i < j � n; we have relations�d1 = � � � = �dn = 0; �i�j = �ij�j�i (i < j):We an onsider the operator Lq = �1 + � � �+ �n as a "Lefshetz element" inthe nonommutative algebra Aq:(2) More generally, the algebraA(d1;:::;dn) = C[x1; : : : ; xn℄=(xd11 ; : : : ; xdnn )has the Lefshetz property with the Lefshetz element L = x1+� � �+xn: SineA(d1;:::;dn) is onsidered as the tensor produt of spin (di�1)=2 representationsof Uq(sl2); we an also onstrut the q-analogue of L in the same manner asthe onstrution of Lq for A: However, the symmetri group Sn does not aton A(d1;:::;dn) any longer unless d1 = � � � = dn:3 Shur-Weyl dualityThe algebra C[x℄=(xd) an be regarded as a vetor representation of Uq(sld):The ation of the standard generators X�i ; K�1i ; i = 1; : : : ; d; of Uq(sld) onthe monomial xj is given byX+i (xj) = Æi;j+1xj+1; X�i (xj) = Æi;jxj�1; Ki(xj) = qÆi;j�Æi;j+1xj:Let us remind of the ation of the Heke algebraH = HSn(q) on (C[x℄=(xd))
nto state the Shur-Weyl duality between Uq(sld) and H: The Heke algebraH is a C-algebra de�ned by the following data:� Generators T1; : : : ; Tn 10



� Relations (Ti � q)(Ti + q�1) = 0; i = 1; : : : ; n;TiTj = TjTi; ji� jj > 1;TiTi+1Ti = Ti+1TiTi+1; i = 1; : : : ; n� 1:De�ne the ation of H on A byTi(xm11 � � �xmnn )= 8<: qxm11 � � �xmnn ; if mi = mi+1;xm11 � � �xmi+1i xmii+1 � � �xmnn + (q � q�1)xm11 � � �xmnn ; if mi < mi+1;xm11 � � �xmi+1i xmii+1 � � �xmnn ; if mi > mi+1:Denote by Sq the image of the algebra homomorphism H ! EndC(A) in-dued by the ation de�ned above. We also denote by Gq the image of thehomomorphism Uq(sld) ! EndC(A) obtained by regarding A as the tensorprodut of the vetor representation of Uq(sld):Proposition 3.1 (Shur-Weyl duality)(Jimbo [8℄) Let q be generi. Thesubalgebras Sq and Gq are mutually ommutants in EndC(A):Sine the q-analogue of the Lefshetz element Lq belongs to Gq; it ommuteswith the ation of H: Hene, the Lefshetz deomposition in Proposition 2.1is a deomposition as a representation of H:4 q-deformation of Speht polynomialNow we de�ne a q-deformation of the Speht polynomial by using the q-skewsymmetrizer introdued by Gyoja [5℄.Let Y be a Young diagram. Assume that its j-th olumn has lengthlj: De�ne the standard tableau Y 0 on Y so that the (i; j)-entry of Y 0 isi+ (l1 + � � �+ lj�1): For example,1 6 10 122 7 113 84 95 11



is the tableau Y 0 orresponding to Y = (4; 3; 2; 2; 1): When a standardtableau T has shape Y; the orresponding tableau Y 0 is also denoted byT 0:For an element w 2 Sn; one an de�ne the element Tw in H by Tw :=Ti1 � � �Til if w has a redued deomposition w = si1 � � � sil: Then the q-analogue of the skew-olumn symmetrizer orresponding to a tableau of formT 0 is de�ned as an element in H bybqT 0 := Xw2C(T 0) "(w)q�l(w)Tw:The element bqT 0 2 H is denoted by e� in Gyoja [5℄. For general standardtableaux T ; the q-skew symmetrizer bqT is de�ned as bqT := Tw(T ) � bqT 0 �T�1w(T );where w(T ) is the permutation whih transforms T 0 to T :De�nition 4.1 We de�ne the q-Speht polynomial for a standard tableau Tby �qT (x) := bqT (mT );where mT is the initial monomial of �T with respet to the lexiographiordering.Remark 4.1 The polynomials �qT are essentially same as those introduedby Martin [9℄ and by DKLLST [1℄ (in di�erent notation). See the followingProposition 4.1.Lemma 4.1 Let T be a standard tableau. Then, there exists a sequene ofsimple transpositions si1; : : : ; sim suh that all the images T (a) := sia � � � si1(T )a = 1; : : : ; m; are standard tableaux, T (m) = T 0 and l(w(T (i + 1))) =l(w(T (i)))� 1:Proof. Here we use a variant of a term "northwest" from Fulton [3℄, Setion4.2. Let us say a box B0 on a Young tableau is northeast of B; if the row ofB0 is stritly above that of B; and the olumn of B0 is stritly right to thatof B:For the given standard tableau T ; repeatedly apply the following opera-tion starting with the initial ondition i = 0 and T (0) := T :At eah i-th step, apply the proedure Pi(j) from j = 1 to j = jT j:Proedure Pi(j) 12



� If the box j is northeast of the box j +1; then apply the transpositionsj to the tableau T (i; j) and put T (i; j + 1) := sjT (i; j):� Otherwise, just put T (i; j + 1) := T (i; j):After �nishing Pi(1); : : : ; Pi(jT j); we get a standard tableau T (i; jT j + 1):Then, put T (i + 1) = T (i + 1; 1) := T (i; jT j + 1) and go to the (i + 1)-ststep.One an reah the standard tableau T 0 from an arbitrary standard tableauT within �nite steps.Moreover, if the box j is northeast of the box j+1 in a standard tableau T ;then w(T )�1(i) > w(T )�1(i+1): Hene l(w(siT )) = l(siw(T )) = l(w(T ))�1:Proposition 4.1 One has�qT (x) = Tw(T )bqT 0(mT 0) = Tw(T )0�Yk Yi;j2T 0k ; i<j(xi � q�1xj)1A ;where T 0k is the k-th olumn of T 0:Proof. For a standard tableau T ; hoose the sequene of simple reetionssi1 ; : : : ; sim as in Lemma 4.1. Then T�1w(T ) = Ti1 � � �Tim and Tia � � �Ti1(mT ) =mT (a): This shows the �rst equality.The seond equality is a onsequene of the identity(�) bqT 0 =Yk ( Xw2S(T 0k ) "(w)q�l(w)Tw);where S(T 0k ) is the permutation group on the set of indies in the k-th olumnof T 0:Theorem 4.1 For any standard tableau T ; one has�q(�qT (x)) = 0:Proof. The proof an be done in a similar manner to that of Proposition 1.1after replaing � and bT by �q and bqT : However, a more detailed analysis foranellation is needed.Sine �q ommutes with the ation of H; one has�q(�qT (x)) = Tw(T )bqT 0(�qmT 0):13



For a partition (I1; I2) of f1; : : : ; ng suh that i < j for all i 2 I1 and j 2 I2;the operator �q satis�es(��) �q(f(xI1)g(xI2)) = qN�q(f(xI1))g(xI2) + f(xI1)�q(g(xI2))for some integer N; if f and g are monomials. If we denote by li the lengthof the i-th olumn of T 0; the initial monomial mT 0 an be expressed asmT0 = (xl1�11 xl1�12 � � �xl1�1)(xl2�1l1+1xl2�2l1+2 � � �xl1+l2�1) � � � :From (�) and (��); we an see that it is enough to show bqT 0(�qmT 0) =0 when T 0 onsists of only one olumn. So we onsider the ase mT 0 =xa�11 xa�22 � � �xa�1: We will show that �q(mT 0) = 0: In this ase, one has�q(mT 0) = a�1Xi=1 q�1[a� i℄[d� a+ i℄xa�11 � � �xa�i�1i xa�i�1i+1 � � �xa�1;In the following we ompute the image of the monomials M(i):M(i) := xa�11 � � �xa�i�1i xa�i�1i+1 � � �xa�1;by the skew-symmetrizer bqT 0 for the permutation group Sa on the set f1; : : : ; ag:Denote by Ci the set of the minimal (right) oset representatives (f. Humphreys[7℄) for the paraboli subgroup S(i) := Sf1;:::;ig�Sfi+1;:::;ag . Then, bqT 0 an befatorized as follows:bqT 0 = (Xu2S(i)(�q)�l(u)Tu)(Xv2Ci(�q)�l(v)Tv):Let us deompose Ci into the disjoint of the two subsets D�i := fv 2Ci j l(vsi) = l(v) � 1g: From the Exhange Condition in Humphreys [7,Chapter 1, 1.7℄, eah element in D�i has a redued deomposition endingin si: For v 2 D�i ; there exists a unique v0 2 Ci suh that vsi 2 S(i)v0: Ifwe take t 2 S(i) suh that vsi = tv0; then l(v0) � l(t�1u) � 1: Sine v andv0 are the unique elements of minimal length in their right osets respe-tively, l(v0) � l(u)� 1; and so v0 = us: Therefore, we have D�i si = D+i : Fori = 1; : : : ; l � 1; we obtain Xv2Ci(�q)�l(v)Tv(M(i))14



= Xv2D+i (�q)�l(v)Tv(M(i)) + Xv2D�i (�q)�l(v)Tv(M(i))= Xv2D+i (�q)�l(v)Tv(M(i)) + Xv02D�i si(�q)�l(v0)�1Tv0Ti(M(i))= Xv2D+i (�q)�l(v)Tv(M(i)) + Xv02D+i �(�q)�l(v0)Tv0(M(i)) = 0:This ompletes the proof.Corollary 4.1 Let q be generi.(1) The q-Speht polynomial�qT (x) is a generator of an irreduible (Uq(sld);H)-omponent. The algebra A deomposes as a diret sum of irreduible Uq(sld)-modules: A =MT Uq(sld) ��qT (x);where T runs over all the standard tableaux of shape � ` n with the lengthl(�) � d:(2) For eah standard tableaux satisfying the ondition above, the elements�qT (x); Lq ��qT (x); : : : ; L(d�1)n�2 deg�qTq ��qT (x)form a linear basis of an irreduible Uq(sl2)-submodule of A: In partiular, theq-Speht polynomials form a linear basis of the primitive part A0i for d = 2:Hene, C[x1; : : : ; xn℄=(x21; : : : ; x2n) has a deompositionC[x1; : : : ; xn℄=(x21; : : : ; x2n) =Mj Ml(T )�2C � (Ljq�qT (x));where l(T ) is the number of rows of T :Example 4.1 We onsider the ase d = 3 and n = 4 again. Take thestandard tableau T = 1 2 3 4: The orresponding q-Speht polynomial is�qT (x) = 1: The polynomialsX+1 (�qT ) = x1 + qx2 + q2x3 + q3x4 = Lq(1);(X+1 )2(�qT ) = [2℄(x1x2 + qx1x3 + q2x1x4 + q2x2x3 + q3x2x4 + q4x3x4);(X+1 )3(�qT ) = [2℄[3℄(x1x2x3 + qx1x2x4 + q2x1x3x4 + q3x2x3x4);15



(X+1 )4(�qT ) = [2℄[3℄[4℄x1x2x3x4give the q-deformation of the elementary symmetri polynomials. So, wede�ne the polynomials eqi (x1; x2; x3; x4); i = 1; 2; 3; 4; as follows:eq1(x1; x2; x3; x4) = x1 + qx2 + q2x3 + q3x4;eq2(x1; x2; x3; x4) = x1x2 + qx1x3 + q2x1x4 + q2x2x3 + q3x2x4 + q4x3x4;eq3(x1; x2; x3; x4) = x1x2x3 + qx1x2x4 + q2x1x3x4 + q3x2x3x4;eq4(x1; x2; x3; x4) = x1x2x3x4:Then we have �q(eq4) = [2℄eq3; �q(eq3) = [2℄2eq2; �q(eq2) = [2℄[3℄eq1: We an�nd the polynomials that generate the irreduibe H-module orrespondingto � = (4; 0; 0; 0) in A02 and A04 as follows:A02 (1 + [2℄[3℄)eq2 � [3℄L2q(1);A04 [2℄[3℄([2℄[3℄� 1)eq4 � [2℄([3℄ + 2)L2qeq2 + ([3℄ + 1)L4q(1):For the standard tableau T = 1 3 42 ;we have �qT = x1 � q�1x2 and X+2 (�qT ) = x21 � q�1x22: Then we an see that�q((1 + [2℄)(x21 � q�1x22)� Lq(x1 � q�1x2)) = 0by diret omputation. Similarly, the q-deformed version of the basis of the
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primitive part Ker� listed in Example 1.1 an be omputed as follows.A00 � = (4; 0; 0; 0) 1A01 � = (3; 1; 0; 0) x1 � q�1x2; qx1 � q�1x3; q2x1 � q�1x4A02 � = (4; 0; 0; 0) (1 + [2℄[3℄)eq2 � [3℄L2q(1)� = (3; 1; 0; 0) (1 + [2℄)(x21 � q�1x22)� Lq(x1 � q�1x2);(1 + [2℄)(qx21 � q�1x23)� Lq(qx1 � q�1x3);(1 + [2℄)(q2x21 � q�1x24)� Lq(q2x1 � q�1x4)� = (2; 2; 0; 0) (x1 � q�1x2)(x3 � q�1x4);T2(x1 � q�1x2)(x3 � q�1x4)A03 � = (3; 1; 0; 0) ((2[3℄� 1)(X+1 )2 � [3℄L2q)(x1 � q�1x2)+([2℄ + [3℄)Lq(x21 � q�1x22);T2f((2[3℄� 1)(X+1 )2 � [3℄L2q)(x1 � q�1x2)+([2℄ + [3℄)Lq(x21 � q�1x22)g;T3T2f((2[3℄� 1)(X+1 )2 � [3℄L2q)(x1 � q�1x2)+([2℄ + [3℄)Lq(x21 � q�1x22)g;� = (2; 1; 1; 0) (x1 � q�1x2)(x1 � q�1x3)(x2 � q�1x3);T3(x1 � q�1x2)(x1 � q�1x3)(x2 � q�1x3);T2T3(x1 � q�1x2)(x1 � q�1x3)(x2 � q�1x3)A04 � = (4; 0; 0; 0) [2℄[3℄([2℄[3℄� 1)eq4 � [2℄([3℄ + 2)L2qeq2 + ([3℄ + 1)L4q(1);� = (2; 2; 0; 0) ([2℄ + 1)(x21 � q�1x23)(x22 � q�1x24)�L2q(x1 � q�1x3)(x2 � q�1x4);T2f([2℄ + 1)(x21 � q�1x23)(x22 � q�1x24)�L2q(x1 � q�1x3)(x2 � q�1x4)gProblem 4.1 (1) The algebra A is isomorphi to the ohomology ring ofthe produt of n opies of the projetive spae Pd�1: The Lefshetz elementL orresponds to the multipliation by the lass of a hyperplane setion.Is it possible to onstrut the q-analogue of the Lefshetz deompositiongeometrially?(2) What happens if q is a root of the unity?Referenes[1℄ Duhamp, G., Krob, D., Lasoux, A., Leler, B., Sharf, T., Thibon, J.-Y. (1995). Euler-Poinar�e harateristi and polynomial representationsof Iwahori-Heke algebras. Publ. of RIMS. 31:179-201.17
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