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Abstract
We describe the Schur-Weyl duality for a polynomial representa-
tion of the quantum group and the Hecke algebra of type A from
a viewpoint of a g-analogue of the strong Lefschetz property. A g-
deformation of the Specht polynomial appears as a constituent of bases
for irreducible components.

Introduction

We investigate the Schur-Weyl duality for a representation of the quan-
tum group U,(sl;) and the Hecke algebra #g, (q) realized on the algebra
A= Clxy,...,2,]/(x% ..., 2%) by means of a g-analogue of the strong Lef-
schetz property, which is a useful tool for combinatorial studies of finite-
dimensional Gorenstein graded rings. We describe explicitly the irreducible
decomposition of A as a (U,(sl4), s, (q))-module. A g-analogue of the Specht
polynomial gives a generator of each irreducible component. In this paper,
all the vector spaces and algebras are over the field of complex numbers C.

Let V = @,-, Vi be a finite-dimensional graded vector space. Consider
linear endomorphisms E and F on V such that deg E = 1, deg F' = —1 and
the set {E, F, H := [E, F|} forms an sly-triple. Let us call V? := V; N KerF
the primitive component of degree 7. Then the part of degree ¢ decomposes
as the direct sum of the images of the primitive components:

Vi=EPEV,

>0
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This follows from the complete reducibility and the fact that every finite
dimensional representation of sl, is isomorphic to a highest weight represen-
tation with nonnegative integral highest weight. For example, if V' is the
cohomology group H*(X, C) of a compact Kéhler manifold X and if E is the
multiplication operator by the Kéhler class, then the decomposition above
is called the Lefschetz decomposition, see e.g. Griffiths and Harris [4]. The
idea of the Lefschetz decomposition is useful also for analyzing the structure
of Artinian Gorenstein rings, see e.g. Stanley [11], Watanabe [14], Harima,
Migliore, Nagel and Watanabe [6]. The notion of (strong or weak) Lefschetz
property for Artinian Gorenstein graded rings is an abstraction of the Hard
Lefschetz Theorem.

The algebra A = Clay,...,z,]/(z¢,...,28) = (Clz]/(z9))*" is an ex-
ample of Gorenstein rings with the strong Lefschetz property. In fact, it is
isomorphic to the cohomology ring of a product of the projective spaces. The
symmetric group S, acts on A via permutation of indices of x,...,x,. At
the same time, the linear group GL4(C) acts on A by regarding C[xz]/(z¢)
as the vector representation of GL4(C). Hence A admits a decomposition
as a (GLg, Sy,)-module, which is implied by the Schur-Weyl duality. Morita,
Wachi and Watanabe [10] proposed a method to give a description of the
irreducible decomposition of A from the view point of the strong Lefschetz
property of A. They explicitly constructed a basis for each irreducible compo-
nent in terms of Specht polynomials for d = 2. We will give a generalization
of their result in Section 1.

The main purpose of this paper is to understand a ¢-deformed framework
of their approach in order to study the Schur-Weyl duality proved by Jimbo
[8] for the quantum group U,(sly) and the Hecke algebra Hg, (¢). The poly-
nomial representation of the Hecke algebra appearing here is the one studied
by Martin [9] and by Duchamp, Krob, Lascoux, Leclerc, Sharf and Thibon
(DKLLST for short) [1]. We define g-deformed Specht polynomials by us-
ing the g-analogue of the skew-symmetrizer introduced by Gyoja [5]. These
polynomials are the same as those studied in Martin [9] and DKLLST [1].
We show as the main result that g-deformed Specht polynomials are part of
the basis of the primitive irreducible component of A as a (U,(sl4), Hs, (q))-
module (Theorem 4.1). In particular, they form a basis of the primitive
component for d = 2.

On the other hand, the coinvariant algebra R, of the symmetric group
Sy, is another important example of the Gorenstein ring with the strong Lef-
schetz property on which the symmetric group acts. In this case, Terasoma
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and Yamada [13] have constructed a standard polynomial basis for each ir-
reducible component as an S,-module. Note that in contrast to the case of
the algebra A, the coinvariant algebra R, does not have any S,-invariant
Lefschetz elements.
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Kirillov and Akihito Wachi for valuable comments. This work is supported
by Grant-in-Aid for Scientific Research.

1 Lefschetz decomposition and Specht poly-
nomial

Definition 1.1 A commutative Artinian graded algebra R = @2 R; is said
to have the strong Lefschetz property if there exists an element ¢ of degree
one such that ((P~2x) . R; — Rp_; is bijective. The element { satisfying
the condition above is called a Lefschetz element.

It is easy to see that the algebra A = Clzy,...,z,]/(z%, ..., 2%) has the
strong Lefschetz property with a Lefschetz element L = 1 +-- -+ x,,. Let us
define a linear endomorphism A : A — A by

n
A(zt ™) = ij(d—mj)x?“ ---:z:;nj_l ey, 0<my, .o my < d-—1.
j=1

Then the set {L, A, H := [L, A]} forms an sly-triple. Note that the operator
A is induced by the differential operator Y7 (—x;(0/0x;)*+(d—1)(d/dx;))
acting on Clzy,...,x,]. Since the Lefschetz element L is invariant under the
action of the symmetric group .S,, the Lefschetz decomposition

Ai=Pray,

>0

is a decomposition as a representation of S,,. Hence, the irreducible decompo-
sition of A as an S,-module is reduced to that of each primitive component
A,

Let 7 be a semi-standard tableau. See e.g. Fulton [3], Stanley [12] for
the definition of the (semi-)standard tableau.



Definition 1.2 The Specht polynomial for a semi-standard tableau T is de-
fined by

Ar(a) =[] M),

where T; is the set of indices contained in the i-th column of T and A(zs) =
Hi,jES, i<j(xi — ;).

Let m7 be the initial monomial of Ar(z) with respect to the lexicographic
ordering. Define the column skew-symmetrizer b7 by

by = Z e(w)w, (w):= (—l)l(w),

weC(T)

where C(T) C S, is the column group of 7, which preserves the set of indices
on each column of 7. If 7 is a standard tableau, then it is well-known that

Ar(z) = br(m7).
Proposition 1.1 For any standard tableau T, one has
A(Ar(z)) = 0.

Proof. Note that if (I, I) is a partition of {1,...,n},i.e. UL, = {1,...,n},
then
A(f(zn)g(zr)) = A(f(zn)) - 9(zr) + flan) - Ag(zr)).

Since the action of the symmetric group commutes with A,

A(A7) = br(A(mT)).

It is enough to show by (A(m7)) = 0 when the shape of T is (1,...,1), the
number of boxes of T is I, 1 <[ < n, and my(z) = 2\ '2b?---2;_;. One

has
-1

A(xlfle{Z = 'xl—l) = Z](d — ])xll ce xé_]xéljl cee Ty,

7j=1
So we can conclude that by (A(m7)) = 0.

Corollary 1.1 (1) The Specht polynomial Ay (z) is a generator of an irre-
ducible (GLg, Sy,)-component. The algebra A decomposes as a direct sum of
wrreducible G Lg-modules:

A= @GLd (CA7(2)),
=
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where T runs over all the standard tableaux of shape A\ = n with the length
I(\) <d.

(2) For each standard tableauz satisfying the condition above, the polynomials
AT(x), L- AT({L'), Caey L(dil)n72degAT . AT(x)
form a linear basis of an irreducible sly-submodule of A.

Remark 1.1 For d = 2, Morita, Wachi and Watanabe [10] have shown that
the Specht polynomials for standard tableaux consisting of two rows form a

basis of KerA. For d > 2, the Specht polynomials are only part of a basis of
KerA.

Lemma 1.1 Let B, be the set of the nonzero polynomials in A of form
LY (A7(x)) with deg(L'(A7(z))) = m. Then By, is linearly independent for
m < [(d—1)n/2].

Proof. Since L is the Lefschetz element, this follows from the fact that
each element of By, belongs to different irreducible (sly, S,,)-component from
others. W

Here we show a procedure to produce polynomials generating irreducible
(sly, Sp)-components other than the Specht polynomials. We identify the Lie
algebra gl; with the matrix algebra Mat,(C) consisting of (d x d)-matrices
Z = (Zab)z,zio- Under this identification, the matrix elements E,; (a,b =
0,...,d—1) acts on the algebra C[z]/(z?) by E, 4" = 0 ;2". The coproduct
of the universal enveloping algebra U(gl;) determines the natural action of
E,, on A. The action of E,; on A is given by the formula

n
mi m _ § mi a m
Ea,b('xl xnn)_ 6b’mj.x1 :L']:L'n"
j=1

The following proposition shows an inductive way to find polynomials that
generate irreducible S,-submodules and belong to the primitive part KerA.

Proposition 1.2 (1) Let ¢ be an element of U(gl,) and T a standard tableau.
If the polynomial A (o(A1(x))) is not equal to zero in the algebra A, it gener-
ates an irreducible S,-submodule i.somorphic to the irreducible representation
corresponding to .

(2) Let p € U(gl,) be a monomial in the matriz elements of Maty(C). Assume
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that ¢ increases the degree of A7 by i. If M (o(Ar(z))) = ZSfOAT+i_j L"y,,
Y, € (H 4+ v)(KerA), for some j > 0, then
deg AT+i=j yq1 "

A (A
(A7) + o1

€ KerA,
v=0

where 3!, is an element in KerA such that (H 4+ v)y), = y,.

Proof. The first statement (1) follows from the commutativity of the action
of U(gl,) with that of S,.
In order to prove (2), we use the commutation relation

(LT Al = (v+ 1)L (H +v).

Since y,, € KerA, we get

. deg Ar+i—j LV+1 ) y, ‘ deg Agr+i—j
(v esn TS ) < iean TS s
v=0 v=0

This completes the proof. B

Let f* be the number of the standard tableaux with shape ), which
can be computed by means of the Frame-Robinson-Thrall formula (Frame,
Robinson and Thrall [2]):

fA — ﬂ
h(A)’
where || is the weight of A and h()) is the product of all the hook lengths.
On the other hand, since the Hilbert polynomial of A is

1—t\"
Hilb(A;t) = < : _tt ) :

it is easy to see the following from the Schur-Weyl duality and the Weyl
character formula.

Proposition 1.3 For a partition A = (A, Ay, ...), we set n(A) := > .(i —
1)A;. Then we have

1 — ti—i 1—t ) °

Arn, L(A)<d 1<i<j<n




Remark 1.2 As for the sum of the numbers f*, the following interesting
formula is known, see e.g. Stanley [12, 7.13.9]:

2
Z f = Coefficient of " in exp(z + %)
AFn

Example 1.1 Let us consider the case d = 3 and n = 4. The Hilbert poly-
nomial of A is

Hilb(A;#) = 1 + 4t + 10> 4+ 16£> + 19" + 16> + 10¢° + 4+ + 1%
The set of the partitions A F 4 with [()\) < 3 is
{(4,0,0,0), (3,1,0,0), (2,2,0,0), (2,1,1,0)}.

The following is the list of the Specht polynomials in this case.

deg =0 1
deg =1 Ty — T2, Ty — X3, Ty — X4
deg =2 (1‘1 — 1‘2)(.’.53 — 1‘4), (1‘1 — 1‘3)(.’.52 — 1‘4)

deg =3 | (x1 — z9) (21 — w3) (12 — 13), (1 — 23) (21 — 24) (T3 — 74),
(71 — o) (1 — w4) (w2 — 74)

Let us find the basis of KerA by using Proposition 1.2. Take the standard
tableau 7 = 1 2 3 4 which corresponds to the trivial representation and
Ar(z) = 1. We can obtain the polynomials of higher degree that generate
the trival representations of S, by applying the operators (E1)* € U(gly),
k =1,2,3,4. Here, we take the product of the operator E o not in Mat,(C),
but in U(gl,). In fact, we obtain the elementary symmetric polynomials in
this case:

EI,U(AT) = 61(351;332;333,354), (E1,0)2(AT) = 262(351;352;353,354),

(E1,0)3(AT) = 663(351,352;353,354), (E1,0)4(AT) = 2464(351;352,353,354);

where e; is the i-th elementary symmetric polynomial. The polynomial
(F10)*Ar(z) = 24z 797374 18 a generator of a copy of the trivial repre-
sentation in A4. However, it does not belong to KerA. We have

A(€4) - 263($1,1‘2,$3,$4), A2(€4) - 862($1,1‘2,$3,$4),



A3(ey) = 48e1 (21, 19, 3, 74) = 48LAT,

Hence, we have the following polynomials generating the trivial S,,-submodules
in AY and AY :

Ag 762 - 3L2,

A% 15e, — 5L%ey + 211
Now let us take the standard tableau

1 3 4
T = 9 .
Then the corresponding Specht polynomial is Ay (z) = x; — 5. The poly-
nomial Fy (A7) = 23 — 2 also generates the irreducible S,-module of type
A=(3,1,0,0). Since
A(L(z1 — ) = 621 — 629, A(2] — 23) = 221 — 219,

the polynomial 3(z? — x3) — L(x; — x2) belongs to KerA. We can find the rest

of the basis of KerA in a similar way. The list of the basis of each primitive
component is as follows.

AT A=(4,0,0,0) 1
AV A= (3,1,0,0) T — T, T1 — T3, T1 — T4
AT =(4,0,0,0) Tea(r) — 317
A= (3,1,0,0) 3(x? — 22) — Lz, — 19), 3(2? — 23) — L(z, — x3),
(21 — @) — L(w1 — 24)
A=(2,2,0,0) (z1 — @) (23 — x4), (11 — 23) (T2 — T4)
AT A =(3,1,0,0)

(10ey(z) — 3L%)(xy — x2) — HL(x} — 13),
(10ey(x) — 3L%)(xy — x3) — HL(2? — 23)
(10e9(z) — 3L%)(x1 — z4) — HL(22 — 22

Y

)
A=1(2,1,1,0) | (x; — z9)(x1 — 23) (22 — 23), (1 — x2) (21 — x4) (29 — T4),
(351 - xz)(ﬁh — T4 (Iz - $4)

~—

—~

0,0,0) 15e4(z) — 5L%ey(x) + 2L*
2,0,0) 3(x7 — x2) (23 — x7) — L* (w1 — x9) (w3 — 14),
3(af — a3) (23 — 23) — L* (21 — x3) (22 — 74)

—

—~

2 Spin (d — 1)/2 representation of U,(sl;) and
g-analogue of Lefschetz element

In this section, we construct a g-analogue of the Lefschetz element L € A.
Let us realize the spin (d — 1)/2 representation on the algebra C[z]/(z%).
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Take the standard generators X*, K*! of U,(sly). They satisfy the relations:
K—-K!
KK =1, KX*K' =¢”X*, [X* X | = —.

q—q

Define their action on C[z]/(z?) by

X~ (a") = [i][d — i]a"",
K(xz) _ q2ifd+1xi.
Here, the g-integer [4] is defined by the formula [i] := (¢’ — ¢ )/(¢ — ¢ ).
The action of X* on C[z]/(z¢) is the multiplication operator by z. One has
the action of X on A via successive application of the coproduct of U,(sly).
The action of X+ on A obtained in this way can be regarded as a g-analogue

of the Lefschetz element L, which we denote by L,. More explicitly, L, is the
operator that acts on monomials as

n
mi, ., Mn) — Ni(mi,.omn) m1 | omitl o ma
Lg(x} Ty )—E q I Z; Tp"s
i=1

where
Ni(my,...,my) = t{j <ilm; = m;} — £{j < i|m; = m; +1}.

Similarly, one has a g-analogue of the operator A given by

n
Ngfaf - ay = 32 g g [d = mila -2
=1

where
Nj(my,...,my) = t{j >ilm; = m;} — ¢{j > i|lm; = m; — 1}.
Now we restate the Lefschetz decomposition of A under this situation.

Proposition 2.1 Suppose that q is neither zero nor root of the unity. Then
the component of degree i decomposes as

— i A0
A4 =LA,
320

where AY := Ker(A,) N A;.



Remark 2.1 (1) Let &,...,&, be operators on A defined by

(oemi1 Mmn\ o Ni(mi,.ome) m1 om0 ma
&i(z) ") =q Ty ;" Ty

If we define the operators &;; for 7 < j by

2 ,.Mm1 Mn 4 —
g xy"t e x, if m; = m;,
.. ml T m’n_ f— _1 ml - s mn 1 P— . P —
i (7] zp") =4 g T zpr, i lmy —myl =1,
e xln otherwise,

then the operators s;; commute each other. In the algebra A, generated by

the operators &,...,&, and /ﬁfjl, 1 <1 < j < n, we have relations

gl==¢1=0, & = ky&& (0 < ).

We can consider the operator L, = & + ---+ &, as a "Lefschetz element” in
the noncommutative algebra A,.
(2) More generally, the algebra

Awy,ndny = Clz1, - .. ,xn]/(x'fl, . ,xd")

has the Lefschetz property with the Lefschetz element L = 21+ - -+x,,. Since
Aay,....d, is considered as the tensor product of spin (d; —1)/2 representations
of U,(sly), we can also construct the g-analogue of L in the same manner as
the construction of L, for A. However, the symmetric group S,, does not act
on A, 4, any longer unless d; = --- = d,,.

3 Schur-Weyl duality

The algebra C[z]/(z¢) can be regarded as a vector representation of U,(sly).
The action of the standard generators X;°, K;*', i = 1,...,d, of U,(sl;) on
the monomial 27 is given by

X;“(xj) = (5i’j+1xj+1, Xzf(xj) = (5i,jxj71, Kz-(xj) - qéi,rfﬁi,jﬂxj_

Let us remind of the action of the Hecke algebra H = Hg, (¢) on (C[z]/(x9))*"
to state the Schur-Weyl duality between U,(sl;) and H. The Hecke algebra
‘H is a C-algebra defined by the following data:

e Generators Ti,....T),
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e Relations

(T, —q)(T,+q ") =0, i=1,...,n,
LTinT =TipnTiTiya, t=1,...,n—1L

Define the action of H on A by

mi m 3 —
qry T, if m; =mjy,
— mi mi+1,,m; m 1 mi m . ] ‘
- Ty Z; "L.Hfl l‘n"+(q—q )Il ERRRM if m; < My,
mi mi41 _m; m .
i R I if m; > m; 1.

Denote by S, the image of the algebra homomorphism # — Endc(A) in-
duced by the action defined above. We also denote by G, the image of the
homomorphism U,(sl;) — Endc(A) obtained by regarding A as the tensor
product of the vector representation of U, (sly).

Proposition 3.1 (Schur-Weyl duality)(Jimbo [8]) Let g be generic. The
subalgebras S, and G, are mutually commutants in Ende(A).

Since the g-analogue of the Lefschetz element L, belongs to G,, it commutes
with the action of 4. Hence, the Lefschetz decomposition in Proposition 2.1
is a decomposition as a representation of .

4 g-deformation of Specht polynomial

Now we define a g-deformation of the Specht polynomial by using the ¢-skew
symmetrizer introduced by Gyoja [5].

Let Y be a Young diagram. Assume that its j-th column has length
l;. Define the standard tableau Y° on Y so that the (i, j)-entry of Y is
i+ (I +-+-+1;_1). For example,

10 12
11

Ot = W N~

11



is the tableau Y° corresponding to Y = (4,3,2,2,1). When a standard
tableau 7 has shape Y, the corresponding tableau Y° is also denoted by
TO.

For an element w € S, one can define the element 7T,, in H by T, :=
T;, -+ T;, if w has a reduced decomposition w = s; ---s;. Then the g-
analogue of the skew-column symmetrizer corresponding to a tableau of form
70 is defined as an element in H by

blo = Z e(w)g '™T,,.
weC(TO9)

The element b7, € H is denoted by e_ in Gyoja [5]. For general standard
tableaux 7', the g-skew symmetrizer b7 is defined as b%- := Ty(7) - b7 -Tuj(lT),
where w(7) is the permutation which transforms 7° to 7.

Definition 4.1 We define the q-Specht polynomial for a standard tableau T
by
AT (z) = by (m7),

where my is the initial monomial of A+ with respect to the lexicographic
ordering.

Remark 4.1 The polynomials AZ are essentially same as those introduced
by Martin [9] and by DKLLST [1] (in different notation). See the following
Proposition 4.1.

Lemma 4.1 Let T be a standard tableau. Then, there exists a sequence of
simple transpositions S;,, . . ., ;. such that all the images T (a) := s;, + - 54, (T)
a = 1,...,m, are standard tableauz, T(m) = T° and l(w(T (i + 1))) =
Hw(T (7)) — 1.

Proof. Here we use a variant of a term "northwest” from Fulton [3], Section
4.2. Let us say a box B’ on a Young tableau is northeast of B, if the row of
B’ is strictly above that of B, and the column of B’ is strictly right to that
of B.

For the given standard tableau 7, repeatedly apply the following opera-
tion starting with the initial condition ¢ = 0 and 7(0) := 7.
At each i-th step, apply the procedure P;(j) from j =1 to j = |T].
Procedure P;(j)
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e If the box j is northeast of the box j + 1, then apply the transposition
s; to the tableau 7 (i, ) and put 7 (4,5 + 1) := s;7 (4, 7).
e Otherwise, just put 7 (4,5 + 1) := T (4, 7).

After finishing P;(1),..., P;(|T|), we get a standard tableau 7 (i, |7T| + 1).
Then, put 7(i+1) = T(i+1,1) :== T(4,|T| + 1) and go to the (i + 1)-st
step.

One can reach the standard tableau 7° from an arbitrary standard tableau
T within finite steps.

Moreover, if the box j is northeast of the box j+1 in a standard tableau T,
then w(7)1(i) > w(T) (i+1). Hence l(w(s;T)) = l(s;w(T)) = l(w(T))—1.

Proposition 4.1 One has

AL(z) = Tymblo(mp) =Tury [ [T T[] (@i—a'zi) ],

k i5eT?, i<y
where T is the k-th column of T°.

Proof. For a standard tableau T, choose the sequence of simple reflections
Siys ey i a8 in Lemma 4.1, Then Ty = T, -+ T;,, and T, - - T,y (mr) =
m7(q)- This shows the first equality.

The second equality is a consequence of the identity

() b =TJC DY elw)g™™T,),
k wes(T?)

where S(72) is the permutation group on the set of indices in the k-th column

of T7°.
Theorem 4.1 For any standard tableau T, one has
Ag(A%(z)) = 0.

Proof. The proof can be done in a similar manner to that of Proposition 1.1
after replacing A and by by A, and b%-. However, a more detailed analysis for
cancellation is needed.

Since A, commutes with the action of H, one has

Ng(A%(z)) = Tow() b0 (Agmo).
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For a partition (I, I5) of {1,...,n} such that ¢ < j for all i € I} and j € I,
the operator A, satisfies

(ex) Ag(f(21)9(21,)) = 0" Ag(f (21,))9(w1,) + [ (21,) Ag g (21,))

for some integer N, if f and g are monomials. If we denote by [; the length
of the i-th column of 77, the initial monomial m;o can be expressed as
=1, -1 lo—1, lo—2
mry ::(xf $£ '"xh—4)(xﬁ+1xﬁ+2'"xh+b—1)"“
From () and (%), we can see that it is enough to show b%,(Agmyo) =
0 when 77 consists of only one column. So we consider the case myo =

ay tas - m, . We will show that A,(mso) = 0. In this case, one has

a—1
Aglmr) = g7 o = illd — o+ ifad ™"t
i=1

In the following we compute the image of the monomials M:

M(l) — 1“11_1 P x?_i_lx?;f_l e xa—la
by the skew-symmetrizer quo for the permutation group S, on the set {1,...,a}.
Denote by C; the set of the minimal (right) coset representatives (cf. Humphreys
[7]) for the parabolic subgroup S := Sq,...i} X Sfit1,..ap - Then, quO can be
factorized as follows:

o = (3 (~0) " L)Y (~0)"T).

ueS @ veC;

Let us decompose C; into the disjoint of the two subsets Df := {v €
C; | l(vs;) = l(v) £ 1}. From the Exchange Condition in Humphreys [7,
Chapter 1, 1.7], each element in D; has a reduced decomposition ending
in s;. For v € D;, there exists a unique v € C; such that vs; € S@y! . If
we take ¢t € S such that vs; = v/, then [(v') > I(t~'u) — 1. Since v and
v' are the unique elements of minimal length in their right cosets respec-
tively, I[(v') > I(u) — 1, and so v’ = us. Therefore, we have D, s; = D;. For
t=1,...,1 — 1, we obtain



= ()T (M) + Y ()T, (M)

veD} vED]
= > COTILMe) + Y (—a) T T T(M)
veD] v'ED] s;
= > (=) 'IT, (M) + Y —(—q) " ITy (M) = 0.
'UGD?' 'U’GD?'

This completes the proof.

Corollary 4.1 Let g be generic.
(1) The g-Specht polynomial A%(z) is a generator of an irreducible (Uy(sly), H)-
component. The algebra A decomposes as a direct sum of irreducible Uy(sly)-

modules:
A=PU,(sl) - Al (),
T

where T runs over all the standard tableaux of shape X\ = n with the length
I(\) <d.
(2) For each standard tableauz satisfying the condition above, the elements

(d—1)n—2deg A

A%(z), Ly AL(z),...,Lq T AL(x)

form a linear basis of an irreducible U, (sly)-submodule of A. In particular, the
q-Specht polynomials form a linear basis of the primitive part A for d = 2.

Hence, Clzy,...,z,]/(2%,...,22) has a decomposition

Clzy,...,m,)/ (2%, ... 22) = @ @ C- (LIAL(x)),
ioUT)<2

where [(T) is the number of rows of T.

Example 4.1 We consider the case d = 3 and n = 4 again. Take the
standard tableau 7 = 1 2 3 4. The corresponding ¢-Specht polynomial is
A%(x) = 1. The polynomials

X{(AT) = x1 + qug + 3+ ¢*xy = Ly(1),

(Xfr)Z(AqT) = [2](z122 + qri23 + 1174 + 213 + ¢ Pxozy + q4x3x4),

(Xfr)S(AqT) = [2][3](z12225 + g 12024 + 113324 + q3$2$3$4)a
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(X)HAY) = [213][4]z1 292574

give the ¢-deformation of the elementary symmetric polynomials. So, we
define the polynomials € (x1, o, x3,24), i = 1,2, 3,4, as follows:

q _ 2 3
€l($1,1'2,1'3,$4) _$1+q$2+q 1‘3+q Tyg,
q _ 2 2 3 4
€3 (1, Tg, T3, T4) = T1To + qT1T3 + ¢ T 104 + ¢ ToT3 + ¢ Toxy + ¢ 3Ty,
q _ 2 3
e3(w1, Ta, T3, T4) = T1T2T3 + qT1T2Ty + ¢ X1 T3T4 + ¢ ToT3 Ty,

q _
64($1, Tg, T3, £E4) = T1T2T3%4.

Then we have A,(el) = [2]el, A, (el) = [2)%€d, A,(ed) = [2][3]ef. We can
find the polynomials that generate the irreducibe H-module corresponding
to A = (4,0,0,0) in AS and A as follows:

A3 (1+[2][3])e5 — [ L5(1),
AY [203)(12103] — 1)ed — [21([3] + 2) Lel + ([3] + 1) Ly(1).

For the standard tableau

122, Then we can see that

we have AL =z — ¢ 'zy and X (A}) =2 — ¢~
Ag(L+ [2)(a2F — ¢7"a3) — Lol — ¢ 'a2)) = 0

by direct computation. Similarly, the ¢-deformed version of the basis of the
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primitive part KerA listed in Example 1.1 can be computed as follows.

Ag )\:(4,0,0,0) 1
AV A=(3,1,0,0) Ty — q T, quy — q_1$3, ’x1 —q 'ay
Ag A=(4,0,0,0) (1+ [2”3]) [3}[43(1)
A=(3,1,0,0) (1+2))(af - q_le%) Ly(xy — ¢~ "g),
(1+[2])(q2? — ¢7'23) — Ly(gz1 — ¢ 'w3),
(1+ 2)(¢*2f — g 'a]) — Ly(q®w1 — ¢ 'a4)
A=1(2,2,0,0) (1 —q 1.’EQ>(1‘3 —q tay),
To(x1 — q 'as) (23 — ¢ ‘o)
A3 1A= (3,1,0,0) ((2[3] = D(X7)? = [B]L7) (21 — ¢ 'wo)
+([2]+ [3]) L q(fff—q tas),
To{((23] = 1)(X])? = [3]L3) (21 — g "a)
+([2] + [38]) Ly (aF — Q’lmg)},
T3To{((2[3] = )(X])? — [B]L2) (21 — ¢~ "2
+([2] + [B]) Ly(2F — g 'x3)},
A=(2,1,1,0) (21 — ¢ 'mo) (21 — ¢ "w3) (w2 — ¢ '3),
Ts(x1 — ¢ '@o) (@1 — ¢ ) (22 — ¢ 'ag),
TyT3(w1 — g~ "wo) (21 — q_1273)($2 — ¢ 'z3)
AT A= (0,0,0,0) | B - el — 23+ 922 + (3 DI,
= (2200 CENCE R IC R
—Lj(z1 — q_1$3)($2 —q'm),
B{(E]'s ) — g-ad)(ad — g 'a)
—Lj(z1 — g 'ws) (w2 — ¢ '74)}

Problem 4.1 (1) The algebra A is isomorphic to the cohomology ring of
the product of n copies of the projective space P!, The Lefschetz element
L corresponds to the multiplication by the class of a hyperplane section.
Is it possible to construct the g-analogue of the Lefschetz decomposition
geometrically?
(2) What happens if ¢ is a root of the unity?
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