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Abstract. We demonstrate that, for any n > 0, there exists a compact con-

nected Lie group G such that the self homtopy group [G, G] has the nilpotency
class greater than n, where [G, G] is a nilpotent group for a compact connected
Lie group G.

1. Introduction

Let G be a path connected topological group and X a finite complex. The
homotopy set [X,G] becomes a group by the point-wise multiplication and, in
fact, it is a nilpotent group with nilpotency of class ≤ catX, where catX is the
normalized Lusternik-Schnirelmann category of X ([11]). For a compact connected
Lie group G, we call a group of the self homotopy set [G,G] the self homotopy group.
The nilpotency class of the self homotopy groups is studied by various authors ([1],
[5], [6], [8], [10]), but they show the nilpotency class of the self homotopy groups is
greater than 4 at most.

The purpose of this paper is to demonstrate that there exists a compact con-
nected Lie group such that the self homotopy group has large nilpotency class and
we obtain:

Theorem 1.1. Let p be an odd prime, then

nil [PU(p), PU(p)]( 1
2 ) > p − 3,

where, for a nilpotent group H, nilH and H( 1
2 ) denote the nilpotency class of H

and the localization of H at all primes but 2 respectively.

Corollary 1.1. For any n > 0, there exists a compact connected Lie group such
that the self homotopy group has nilpotency class greater than n.

In §2 we decompose PU(n)( 1
2 ) into two factors and the proof of Theorem 1.1 is

given in §3 by using the decomposition in §2.

2. Decomposition of PU(n)

Let c : SU(n) → SU(n) be the complex conjugation, then we have

(2.1) c∗(e2i−1) = (−1)ie2i−1,

where H∗(SU(n);Z) =
∧

(e3, e5, . . . , e2n−1) and e2i−1 is primitive. We denote by
X+ and X− the infinite telescopes

SU(n) c+1−−→ SU(n) c+1−−→ SU(n) c+1−−→ · · ·
and

SU(n) c−1−−→ SU(n) c−1−−→ SU(n) c−1−−→ · · · .

Then, by (2.1), it is easily seen that the natural map SU(n) → X+ × X− induces
an isomorphism

H∗(SU(n);Z[12 ]) ∼= H∗(X+ × X−;Z[ 12 ]).
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By the J.H.C. Whitehead theorem, we obtain

SU(n)( 1
2 ) ' X+( 1

2 ) × X−( 1
2 ).

Remark 2.1. Similar decompositions of SU(n) at an odd prime are obtained by
several authors ([7], [9], [12]).

The complex conjugation c : SU(n) → SU(n) induces the map c′ : PU(n) →
PU(n) and we have the infinite telescopes

PU(n) c′+1−−−→ PU(n) c′+1−−−→ PU(n) c′+1−−−→ · · ·
and

PU(n) c′−1−−−→ PU(n) c′−1−−−→ PU(n) c′−1−−−→ · · ·
denoted by Y+ and Y− respectively. The commutative diagram

SU(n) //

²²

X+ × X−

²²
PU(n) // Y+ × Y−

yields that
πi(PU(n)( 1

2 )) ∼= πi(Y+( 1
2 ) × Y−( 1

2 )) for i ≥ 2.

The direct calculation shows that

c′ = −1 : π1(PU(n)) → π1(PU(n)).

Then we have
π1(PU(n)( 1

2 )) ∼= π1(Y+( 1
2 ) × Y−( 1

2 ))

and, in particular, π1(Y+) = 0, hence

(2.2) X+ ' Y+.

By the J.H.C. Whitehead theorem, we obtain

PU(n)( 1
2 ) ' Y+( 1

2 ) × Y−( 1
2 ).

Let n = prm, where p is an odd prime and (p,m) = 1. In Baum-Browder [2], it is
shown that

H∗(PU(n);Z/p) = Z/p[y]/(ypr

) ⊗
∧

(x1, x2, . . . , x̂pr , . . . , xn),

where |y| = 2, |xi| = 2i − 1. Then, by (2.2), we have

H∗(Y+( 1
2 );Z/p) =

∧
(x2, x4, . . .)

and
H∗(Y−( 1

2 );Z/p) = Z/p[y]/(ypr

) ⊗
∧

(x1, x3, . . . , x̂pr , . . .).

We summarize the results above as:

Proposition 2.1. Let n = prm, where p is an odd prime and (p,m) = 1. Then
there exist spaces Y+ and Y− with

H∗(Y+;Z/p) =
∧

(x2, x4, . . .)

and
H∗(Y−;Z/p) = Z/p[y]/(ypr

) ⊗
∧

(x1, x3, . . . , x̂pr , . . .)

such that
PU(n)( 1

2 ) ' Y+ × Y−,

where |y| = 2, |xi| = 2i − 1.
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Remark 2.2. A similar decomposition of PU(n) at an odd prime is obtained in
Broto-Møller [4] by using the theory of the homotopy fixed point and the complex
conjugation which is considered as the unstable Adams operation of degree −1.

3. Proof of Theorem 1.1

Let p be an odd prime. We consider the commutator map

γ : PU(p) × PU(p) → PU(p)

on the mod p cohomology.
As is seen above, in Baum-Browder [2], it is shown that

H∗(PU(n);Z/p) = Z/p[y]/(ypr

) ⊗
∧

(x1, x2, . . . , x̂pr , . . . , xn)

and

φ̄(y) = 0, φ̄(xi) = x1 ⊗ yi−1 +
i−1∑
j=2

(
i − 1
j − 1

)
xj ⊗ yi−j ,

where |y| = 2, |xi| = 2i − 1 and φ̄ is the reduced co-multiplication. We denote
the multiplication of PU(p), the inverse map of PU(p), the diagonal map and the
alternating map by µ, ι, ∆ and T respectively. Put

H = H∗(PU(p);Z/p) and Ik = H̃∗(PU(p)k;Z/p).

Then we have:

xi
µ∗ - xi ⊗ 1 + 1 ⊗ xi + (i − 1)xi−1 ⊗ y mod (I2)3

(µ×µ)∗- (i − 1)(xi−1 ⊗ y ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ xi−1 ⊗ y

+ xi−1 ⊗ 1 ⊗ 1 ⊗ y + 1 ⊗ xi−1 ⊗ y ⊗ 1)

mod (H ⊗ 1 ⊗ H ⊗ 1) + (1 ⊗ H ⊗ 1 ⊗ H) + (I4)3

(1×1×ι×ι)∗- (i − 1)(xi−1 ⊗ y ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ xi−1 ⊗ y

− xi−1 ⊗ 1 ⊗ 1 ⊗ y − 1 ⊗ xi−1 ⊗ y ⊗ 1)

mod (H ⊗ 1 ⊗ H ⊗ 1) + (1 ⊗ H ⊗ 1 ⊗ H) + (I4)3

(1×T×1)∗- (i − 1)(xi−1 ⊗ 1 ⊗ y ⊗ 1 + 1 ⊗ xi−1 ⊗ 1 ⊗ y

− xi−1 ⊗ 1 ⊗ 1 ⊗ y − 1 ⊗ y ⊗ xi−1 ⊗ 1)

mod (H ⊗ H ⊗ 1 ⊗ 1) + (1 ⊗ 1 ⊗ H ⊗ H) + (I4)3

(∆×∆)∗- (i − 1)(xi−1 ⊗ y − y ⊗ xi−1) mod (H ⊗ 1) + (1 ⊗ H) + (I2)3.

Since γ passes through PU(p) ∧ PU(p), we obtain:

Proposition 3.1. For xi ∈ H2i−1(PU(p);Z/p),

γ∗(xi) ≡ (i − 1)(xi−1 ⊗ y − y ⊗ xi−1) mod (I2)3.

Since γ∗(y) = 0, we have:

Corollary 3.1. Let γn be the n-fold iterated commutator map

γ(γ × 1) · · · (γ × 1 × · · · × 1) : PU(p)n+1 → PU(p).

Then

γ∗
i−2(xi) = (i − 1)!(x2 ⊗ y ⊗ · · · ⊗ y − y ⊗ x2 ⊗ y ⊗ · · · ⊗ y) mod (Ii−1)i.
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Let f : PU(p)( 1
2 ) → PU(p)( 1

2 ) be the composition

PU(p)( 1
2 ) ' Y+ × Y−

π−→ Y+ ⊂ Y+ × Y− ' PU(p)( 1
2 ),

where Y+, Y− are as in Proposition 2.1 and π denotes the first projection. By
Proposition 2.1 and Corollary 3.1, we have

l∆∗(f × 1 × · · · × 1)∗γp−3
∗
( 1
2 )(xp−1) ≡ (p − 2)!x2y

p−3 6≡ 0 mod (I1)p−1.

Since, by [3],
[PU(p), PU(p)]( 1

2 ) = [PU(p)( 1
2 ), PU(p)( 1

2 )],
this proves Theorem 1.1.
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[8] A. Kono and H. Ōshima, Commutativity of the group of self-homotopy classes of Lie groups,
Bull. London Math. Soc. 36 (2004), 37-52.

[9] M. Mimura, G. Nishida and H. Toda, Mod p decomposition of compact Lie groups, Publ.
Res. Inst. Math Sci 13 (1977/78), 627-680.
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