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Abstract

We introduce an algorithm which transforms a discrete group G into another
one GΨ which has some particular properties. For example when G is a non-
amenable group, then GΨ does not satisfy an algebraic version of the zero-in-the-
spectrum conjecture. Moreover when G is a finitely generated free group, then
GΨ is also finitely presented and the p-th group homology of GΨ have infinite
rank for all p ≥ 3.

1 Introduction

In this paper we study some geometric properties of finitely presented groups. Here
we will give an algorithm Ψ which transforms a discrete group G into another one GΨ.
GΨ is given by successive procedures: taking infinite sums of G, a semi-direct product
with Z and an HNN-extension (Section 2). We show that when G is a finitely presented
group, then GΨ is also the same. In the case when G satisfies some conditions, then
GΨ shows particular phenomena in the so-called zero-in-the-spectrum conjecture by
Gromov ([3]), the Baum-Connes conjecture and the group homology.

Firstly we will give an application to the zero-in-the-spectrum conjecture. The
conjecture claims that for a closed, aspherical and connected Riemannian manifold
M there always exists some p ≥ 0, such that zero belongs to the spectrum of the
Laplace-Beltrami operator ∆p acting on square integrable p-forms on the universal

covering M̃ of M . Let Hp (G;N (G)) be the homology of G with coefficients in a group
von Neumann algebra N (G). It is known that if BG is a closed manifold, then the
conjecture is equivalent to an algebraic condition that for some p ≥ 0, Hp (G;N (G)) 6=
0 holds ([4, p.438]). Naturally we can generalize it to an algebraic version of the
zero-in-the-spectrum conjecture.

Conjecture 1.1.
Let G be a discrete group. Then for some p ≥ 0, Hp (G;N (G)) 6= 0 holds.

Several counterexamples are known for finitely generated groups, but they are in-
finitely presented. In this paper we show that many GΨ are finitely presented groups
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which do not satisfy Conjecture 1.1. Actually, the following theorem is proved in
Section 3.

Theorem 1.2.
Suppose that G is a non-amenable group, then GΨ satisfies H∗ (GΨ;N (GΨ)) = 0.
In particular when G is a finitely presented and non-amenable group, then GΨ is a

finitely presented group which does not satisfy the algebraic version of the zero-in-the-
spectrum conjecture.

Next we study the relation of GΨ to the Baum-Connes conjecture. The conjecture
identifies G-equivariant K-homology with G-compact supports of the classifying space
EG for proper actions of G and the K-theory of the reduced C∗-algebra C∗

r (G) ([6]).
The following theorem is proved in Section 3.

Theorem 1.3.
Suppose that G has Haagerup property, then GΨ satisfies the Baum-Connes conjec-

ture.

It is known that the Baum-Connes conjecture implies the zero-in-the-spectrum
conjecture in the case when BG are closed manifolds ([6, p.61]). On the other hand
the situation is completely different when BG are far from being manifolds. Let G
be finitely presented, non-amenable and has Haagerup property. For example, a free
group of rank m ≥ 2. Then GΨ satisfies the Baum-Connes conjecture, but does not
satisfy the conjecture 1.1. Therefore,

Corollary 1.4.
The Baum-Connes conjecture does not imply the algebraic version of the zero-in-

the-spectrum conjecture for finitely presented groups.

Finally we will calculate the group homology of GΨ coming from free groups in
Section 4. Let Hp (G;Z) be the group homology of G.

Theorem 1.5.
Suppose that G is a free group of rank m ≥ 1, then GΨ satisfies the following.

Hp(GΨ;Z) has infinite rank (∀p ≥ 3),

H2(GΨ;Z) ∼= Z2m+m2

,

H1(GΨ;Z) ∼= Zm+1,

H0(GΨ;Z) ∼= Z.

In particular GΨ is a finitely presented group of infinite type and its rational coho-
mological dimension is infinite.

Moreover Ψ is injective on the class of free groups.

The auther would like to express his gratitude to my adviser Tsuyoshi Kato for
numerous suggestions and stimulating discussions. The auther would like to express
his gratitude to Professor Kenji Fukaya for conversations on some topics discussed
herein.
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2 Construction of the algorithm Ψ

Definition 2.1.
Let n be a non-negative integer or n = ∞. Define Fn to be the class of groups

for which BG are CW-complexes which have a finite number of p-dimensional cells for
p ≤ n.

Example 2.2.

G ∈ F0 ⇔ G : a discrete group,

G ∈ F1 ⇔ G : a finitely generated group,

G ∈ F2 ⇔ G : a finitely presented group,

G ∈ F∞ ⇔ G : a group of finite type.

Also we will use [g, h] := g−1h−1gh, gh := h−1gh (g, h ∈ G).

We will construct the algorithm

Ψ : F0 → F0; G 7→ GΨ

passing through three steps.

Construction of the algorithm Ψ.
Let G(k) (k ∈ Z) be infinite copies of G. We identify G(0) with G. Let us put

G0 :=
⊕

k∈Z
G(k), H0 :=

⊕

l∈Z
G(2l) ⊕G(2l+1), K0 :=

⊕

l∈Z
G(3l) ⊕G(3l+1).

G1 := G0 o Z is an HNN-extension of G0 =
⊕

k∈Z
G(k) by the isomorphism

G0
∼→ G0; g

(k) 7→ g(k+1).

H1 := H0 o Z is an HNN-extension of H0 =
⊕

l∈Z
G(2l) ⊕G(2l+1) by the isomorphism

H0
∼→ H0; g

(k) 7→ g(k+2).

K1 := K0 o Z is an HNN-extension of K0 =
⊕

l∈Z
G(3l) ⊕G(3l+1) by the isomorphism

K0
∼→ K0; g

(k) 7→ g(k+3).

Then we have presentations as:

G1 = 〈G, a | [G,Gak

](0 6= k ∈ Z)〉,

H1 =

〈
G(0), G(1), b

∣∣∣∣
[G(0), (G(1))bk

](k ∈ Z),

[G(0), (G(0))bk
], [G(1), (G(1))bk

](0 6= k ∈ Z)

〉
,

K1 =

〈
G(0), G(1), c

∣∣∣∣
[G(0), (G(1))ck

](k ∈ Z),

[G(0), (G(0))ck
], [G(1), (G(1))ck

](0 6= k ∈ Z)

〉
.
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Let us regard H1 and K1 as subgroups of G1 by

H1 ↪→ G1; g
(0), g(1), b 7→ g, ga, a2,

K1 ↪→ G1; g
(0), g(1), c 7→ g, ga, a3.

Definition 2.3.
GΨ is an HNN-extension of G1 by the isomorphism

H1
∼→ K1; g

(0), g(1), b 7→ g(0), g(1), c.

Then we have a presentation as:

GΨ =

〈
G, a, t

∣∣∣∣
[G,Gak

](0 6= k ∈ Z),
gt = g, (ga)t = ga(g ∈ G), (a2)t = a3

〉
.

¤

Here we claim the following.

Claim 2.4.
When

gt = g, (ga)t = ga(g ∈ G), (a2)t = a3, 1 = [G,Ga],

then
1 = [G,Gak

](0 6= k ∈ Z).

Proof. We have

1 = [G,Ga]ata−1

= [Ga, Ga2

]ta
−1

= [Ga, Ga3

]a
−1

= [G,Ga2

]

and
1 = [G,Ga2

]t = [G,Ga3

].

Suppose 1 = [G,Gak
] for 1 ≤ k ≤ 3N (N ≥ 1). Then since 2N + 1 ≤ 3N ,

1 = [G,Ga2N+1

]t = [G,Ga3N+1

],

1 = [G,Ga2N+1

]ata−1

= [Ga, Ga2(N+1)

]ta
−1

= [Ga, Ga3(N+1)

]a
−1

= [G,Ga3N+2

].

Then since 2(N + 1) ≤ 3N + 1,

1 = [G,Ga2(N+1)

]t = [G,Ga3(N+1)

].

Hence 1 = [G,Gak
] for 1 ≤ k ≤ 3(N + 1) (N ≥ 1). Consequently 1 = [G,Gak

] for
k ≥ 1. Moreover

1 = ([G,Gak

]a
−k

)−1 = [Ga−k

, G]−1 = [G,Ga−k

]

for k ≥ 1. Thus 1 = [G,Gak
] for 0 6= k ∈ Z.

4



Corollary 2.5.
Let

G = 〈si(1 ≤ i ≤ m) | ri(1 ≤ i ≤ n)〉
be a presentation. Then,

GΨ =

〈
si(1 ≤ i ≤ m), a, t

∣∣∣∣
ri(1 ≤ i ≤ n), [si, s

a
j ](1 ≤ i, j ≤ m),

st
i = si, (s

a
i )

t = sa
i (1 ≤ i ≤ m), (a2)t = a3

〉
.

In particular when G is finitely presented or generated, GΨ has the same property
respectively.

Remark 2.6.
We can modify the algorithm. We fix an integer q ≥ 2. Let us put

H
′
0 :=

⊕

l∈Z
G(ql) ⊕G(ql+1) ⊕ · · · ⊕G(ql+q−1),

K
′
0 :=

⊕

l∈Z
G((q+1)l) ⊕G((q+1)l+1) ⊕ · · · ⊕G((q+1)l+q−1).

H
′
1 := H

′
0 o Z is an HNN-extension of H

′
0 by the isomorphism

H
′
0
∼→ H0; g

(k) 7→ g(k+q).

K
′
1 := K

′
0 o Z is an HNN-extension of K

′
0 by the isomorphism

K
′
0
∼→ K0; g

(k) 7→ g(k+q+1).

G
′
Ψ is an HNN-extension of G1 by the isomorphism

H
′
1
∼→ K

′
1; g

(0), g(1), . . . , g(q−1), b
′ 7→ g(0), g(1), . . . , g(q−1), c

′
.

Then,

G
′
Ψ =

〈
si(1 ≤ i ≤ m), a, t

∣∣∣∣
ri(1 ≤ i ≤ n), [si, s

ak

j ](1 ≤ k ≤ q − 1, 1 ≤ i, j ≤ m),

(sak

i )t = sak

i (0 ≤ k ≤ q − 1, 1 ≤ i ≤ m), (aq)t = aq+1

〉
.

However for simplicity we will deal with the only case of q = 2.

If G is a finitely generated free group of rank m ≥ 1, then

H1(GΨ;Z) ∼= GΨ/[GΨ, GΨ] = 〈si(1 ≤ i ≤ m), t〉 ∼= Zm+1.

Accordingly,

Corollary 2.7.
Ψ is injective on the class of free groups.

Here we will collect the groups appearing in the construction of the algorithm Ψ.
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Notation 2.8.

G = 〈si(1 ≤ i ≤ m) | ri(1 ≤ i ≤ n)〉,
G0 =

⊕

k∈Z
G(k)

=

〈
s
(k)
i (1 ≤ i ≤ m, k ∈ Z)

∣∣∣∣∣
r
(k)
i (1 ≤ i ≤ n, k ∈ Z),

[s
(k)
i , s

(l)
j ](1 ≤ i, j ≤ m, k 6= l ∈ Z)

〉
,

H0 =
⊕

l∈Z
G(2l) ⊕G(2l+1) = G0,

K0 =
⊕

l∈Z
G(3l) ⊕G(3l+1),

G1 = G0 o Z
= 〈si(1 ≤ i ≤ m), a | ri(1 ≤ i ≤ n), [si, s

ak

j ](1 ≤ i, j ≤ m, 0 6= k ∈ Z)〉,
H1 = H0 o Z

=

〈
s
(0)
i , s

(1)
i (1 ≤ i ≤ m), b

∣∣∣∣∣
r
(0)
i , r

(1)
i (1 ≤ i ≤ n), [s

(0)
i , (s

(1)
j )bk

](1 ≤ i, j ≤ m, k ∈ Z),

[s
(0)
i , (s

(0)
j )bk

], [s
(1)
i , (s

(1)
j )bk

](1 ≤ i, j ≤ m, 0 6= k ∈ Z)

〉
,

K1 = K0 o Z

=

〈
s
(0)
i , s

(1)
i (1 ≤ i ≤ m), c

∣∣∣∣∣
r
(0)
i , r

(1)
i (1 ≤ i ≤ n), [s

(0)
i , (s

(1)
j )ck

](1 ≤ i, j ≤ m, k ∈ Z),

[s
(0)
i , (s

(0)
j )ck

], [s
(1)
i , (s

(1)
j )ck

](1 ≤ i, j ≤ m, 0 6= k ∈ Z)

〉
,

GΨ =

〈
si(1 ≤ i ≤ m), a, t

∣∣∣∣
ri(1 ≤ i ≤ n), [si, s

a
j ](1 ≤ i, j ≤ m),

st
i = si, (s

a
i )

t = sa
i (1 ≤ i ≤ m), (a2)t = a3

〉
.

Proposition 2.9.
GΨ is torsion-free if and only if G is torsion-free.

Proof. GΨ is an HNN-extension of G1 and G1 is an HNN-extension of G0. Thus this
proposition is clear by the torsion theorem for HNN-extensions ([5, p.185]).

Proposition 2.10.
The cohomological dimension of GΨ is infinite if and only if G is not trivial.

Proof. G has a torsion element if and only if GΨ has a torsion element by Proposition
2.9. Then the cohomological dimension of each is infinite. If G is torsion-free and not

trivial, then G ⊃ Z. Thus GΨ ⊃
⊕

k∈Z
Z. Consequently the cohomological dimension of

GΨ is infinite. If G is trivial, then GΨ = 〈a, t | (a2)t = a3〉. Hence GΨ is a one-relator
group. Therefore the cohomological dimension of GΨ is two.

3 Counterexamples to the algebraic version of the

zero-in-the-spectrum conjecture

We will get counterexamples to the algebraic version of the zero-in-the-spectrum
conjecture for finitely presented groups.
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Definition 3.1.
Let d be a non-negative integer or ∞. Define Zd to be the class of groups for which

Hp (G;N (G)) = 0 hold for p ≤ d.

Lemma 3.2.
Let d, e be a non-negative integer or ∞. Then

(1) Let G be the directed union
⋃
i∈I

Gi of subgroups Gi ⊂ G. Suppose that Gi ∈ Zd for

each i ∈ I. Then G ∈ Zd.
(2) If G contains a normal subgroup H ⊂ G with H ∈ Zd, then G ∈ Zd.
(3) If G ∈ Zd and H ∈ Ze, then G×H ∈ Zd+e+1.
(4) Z0 is the class of non-amenable groups.
(5) Let G = G1 ∗A G2 where A ↪→ G1 and A ↪→ G2. Suppose that G1, G2 ∈ Zd and
A ∈ Zd−1. Then G ∈ Zd.
(6) Let G = H∗A = 〈H, t | θ(a) = at〉 where A ⊂ H and θ : A ↪→ H. Suppose that
H ∈ Zd and A ∈ Zd−1. Then G ∈ Zd.

Proof. (1) ∼ (4) are proved in [4, p.448]. (5), (6) are clear by Mayer-Vietoris sequences
([1, p.178]).

Proof of Theorem 1.2.
When G is non-amenable, then G0, H0 ∈ Z∞ by Lemma 3.2 (1), (3), (4). Moreover

G1, H1 ∈ Z∞ by Lemma 3.2 (2) or (6). Accordingly GΨ ∈ Z∞ by Lemma 3.2 (6).
In particular when G is finitely presented and non-amenable, GΨ is a counterexam-

ple to the algebraic version of the zero-in-the-spectrum conjecture for finitely presented
groups by Corollary 2.5.

¤

Proof of Theorem 1.3.
If G has Haagerup property, then

⊕

−K≤k≤K

G(k) has Haagerup property, too. So

⊕

−K≤k≤K

G(k) satisfies the Baum-Connes conjecture ([6, p.43]). G0 and H0 satisfy the

Baum-Connes conjecture because G0 and H0 are directed unions of
⊕

−K≤k≤K

G(k) for

all K ∈ Z ([6, p.38]). G1 and H1 satisfy the Baum-Connes conjecture because G1 and
H1 are HNN-extensions of G0 and H0 respectively ([6, p.40]). Therefore GΨ satisfies
the Baum-Connes conjecture because GΨ is an HNN-extension of G1 on H1 ([6, p.40]).

¤

Remark 3.3.
Unfortunately any GΨ can not be a counterexample to the zero-in-the-spectrum

conjecture in the case when BG are closed manifolds because if G is not trivial, then
the cohomological dimension of GΨ is infinite and if G is trivial, GΨ satisfies the
Baum-Connes conjecture.
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4 The group homology of GΨ coming from a free

group

In this section, we calculate the group homology of GΨ coming from a free group
G. Let the generaters of G be si(1 ≤ i ≤ m).

Proof of Theorem 1.5.
We will follow five steps.
Firstly we can decide the group homology of G0, H0 and K0 by

Hn(G;Z) ∼= 0 (n ≥ 2),

H1(G;Z) = 〈si(1 ≤ i ≤ m)〉,
H0(G;Z) ∼= Z.

and Künneth formula. In fact

Hn(G0 = H0;Z) =

〈
s
(k1)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

(1 ≤ i1, i2, . . . , in ≤ m, k1 < k2 < · · · < kn)

〉
(n ≥ 1),

H0(G0 = H0;Z) ∼= Z.

Hn(K0;Z) =

〈
s
(k1)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

(1 ≤ i1, i2, . . . , in ≤ m,
k1 < k2 < · · · < kn, kj ≡ 0, 1 mod 3)

〉
(n ≥ 1),

H0(K0;Z) ∼= Z.

Secondly we will decide the group homology of G1. G1 = G0 o Z is an HNN-

extension of G0 =
⊕

k∈Z

G(k) by the isomorphism

θ : G0
∼→ G0; s

(k)
i 7→ s

(k+1)
i .

Thus we can use a Mayer-Vietoris sequence

· · · → Hn(G0;Z)
αn→ Hn(G0;Z) → Hn(G1;Z) → Hn−1(G0;Z) → · · ·

where α∗ := θ∗ − id∗.

Claim 4.1. αn is injective for n ≥ 1.

Proof. Let us put k := (k1, k2, . . . , kn),1 := (1, 1, . . . , 1), i := (i1, i2, . . . , in) and sk
i :=

s
(k1)
i1

× s
(k2)
i2

× · · · × s
(kn)
in

.

Now αn(sk
i ) = sk+1

i − sk
i . If αn(

∑
λi

ks
k
i ) = 0, then

∑
(λi

k-1 − λi
k)s

k
i ) = 0. Hence

λi
k = λi

k-1. Because Hn(G0;Z) is finitely generated, λi
k = 0 (∀i,∀ k).

8



Because αn(sk
i ) = sk+1

i − sk
i and

Hn(G1;Z) ∼= Hn(G0;Z)/αn(Hn(G0;Z))

for n ≥ 2,

Hn(G1;Z) ∼=
〈

[s
(0)
i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
(1 ≤ i1, i2, . . . , in ≤ m, 0 < k2 < · · · < kn)

〉
(n ≥ 2),

H1(G1;Z) ∼= G1/[G1, G1] = 〈si(1 ≤ i ≤ m), a〉,
H0(G1;Z) ∼= Z,

where [s
(0)
i1
× s

(k2)
i2

× · · · × s
(kn)
in

] denotes the equivalence class of s
(0)
i1
× s

(k2)
i2

× · · · × s
(kn)
in

in Hn(G0;Z)/αn(Hn(G0;Z)).

Thirdly we will decide the group homology of H1. H1 := H0 o Z is an HNN-

extension of H0 =
⊕

l∈Z
G(2l) ⊕G(2l+1) by the isomorphism

θ
′
: H0

∼→ H0; s
(k)
i 7→ s

(k+2)
i .

Thus we can use a Mayer-Vietoris sequence

· · · → Hn(H0;Z)
α
′
n→ Hn(H0;Z) → Hn(H1;Z) → Hn−1(H0;Z) → · · ·

where α
′
∗ := θ

′
∗− id∗. We have the following by the same argument as that in the proof

of Claim 4.1.

Claim 4.2. α
′
n is injective for n ≥ 1.

Because α
′
n(sk

i ) = sk+2
i − sk

i and

Hn(H1;Z) ∼= Hn(H0;Z)/α
′
n(Hn(H0;Z))

for n ≥ 2,

Hn(H1;Z) ∼=
〈 [s

(0)
i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
′

(1 ≤ i1, i2, . . . , in ≤ m, 0 < k2 < · · · < kn)

[s
(1)
i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
′

(1 ≤ i1, i2, . . . , in ≤ m, 1 < k2 < · · · < kn)

〉
(n ≥ 2),

H1(H1;Z) ∼= H1/[H1, H1] = 〈s(0)
i , s

(1)
i (1 ≤ i ≤ m), b〉,

H0(H1;Z) ∼= Z,

where [s
(0)
i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
′
and [s

(1)
i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
′
denote the equivalence

classes of s
(0)
i1
×s

(k2)
i2
×· · ·×s

(kn)
in

and s
(1)
i1
×s

(k2)
i2
×· · ·×s

(kn)
in

in Hn(H0;Z)/α
′
n(Hn(H0;Z))
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respectively.

Fourthly we will decide the group homology of K1. K1 := K0 o Z is an HNN-

extension of K0 =
⊕

l∈Z
G(3l) ⊕G(3l+1) by the isomorphism

θ
′′

: K0
∼→ K0; s

(k)
i 7→ s

(k+3)
i .

Thus we can use a Mayer-Vietoris sequence

· · · → Hn(K0;Z)
α
′′
n→ Hn(K0;Z) → Hn(K1;Z) → Hn−1(K0;Z) → · · ·

where α
′′
∗ := θ

′′
n − id∗. We have the following by the same argument as that in the

proof of Claim 4.1.

Claim 4.3. α
′′
n is injective for n ≥ 1.

Because α
′′
n(sk

i ) = sk+3
i − sk

i (k1 < k2 < · · · < kn, kj ≡ 0, 1 mod 3) and

Hn(K1;Z) ∼= Hn(K0;Z)/α
′′
n(Hn(K0;Z))

for n ≥ 2,

Hn(K1;Z) ∼=
〈 [s

(0)
i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
′′
(1 ≤ i1, i2, . . . , in ≤ m,

0 < k2 < · · · < kn, kj ≡ 0, 1 mod 3)

[s
(1)
i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
′′
(1 ≤ i1, i2, . . . , in ≤ m,

1 < k2 < · · · < kn, kj ≡ 0, 1 mod 3)

〉
(n ≥ 2),

H1(K1;Z) ∼= K1/[K1, K1] = 〈s(0)
i , s

(1)
i (1 ≤ i ≤ m), c〉,

H0(K1;Z) ∼= Z,

where [s
(0)
i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
′′

and [s
(1)
i1
× s

(k2)
i2

× · · · × s
(kn)
in

]
′′

denote the equivalence

classes of s
(0)
i1
×s

(k2)
i2
×· · ·×s

(kn)
in

and s
(1)
i1
×s

(k2)
i2
×· · ·×s

(kn)
in

in Hn(K0;Z)/α
′′
n(Hn(K0;Z))

respectively.

Finally we will calculate the group homology of G2. GΨ is an HNN-extension of
G1 by the isomorphism

φ : H1
∼→ K1; s

(0)
i , s

(1)
i , b 7→ s

(0)
i , s

(1)
i , c.

Thus we can use a Mayer-Vietoris sequence

· · · → Hn(H1;Z)
βn→ Hn(GΨ;Z) → Hn(GΨ;Z) → Hn−1(H1;Z) → · · ·

where β∗ := φ∗ − i∗. We use l := (0, l2, . . . , ln),q := (q1, q2, . . . , qn), (q1, q2, . . . , qn =
0, 1, q1 < 2l2 + q2 < . . . < 2ln + qn). Since βn([s2l+q

i ]
′
) = [s3l+q

i ]− [s2l+q
i ], βn([s2l

i ]
′
) =

10



βn([s2l+1
i ]

′
). Thus Ker βn ⊃ 〈[s2l+1

i ]
′ − [s2l

i ]
′
(0 < 2l2 < . . . < 2ln)〉. Hence Ker βn

has infinite rank for n ≥ 2. Thus Hn+1(GΨ;Z) has infinite rank, too. Also since

Ker β1 = 〈s(0)
i , s

(1)
i 〉 ∼= Z2m and H2(G1;Z)/β2(H2(H1;Z)) ∼= 〈[s(0)

i1
× s

(1)
i2

]〉 ∼= Zm2
,

H2(GΨ;Z) ∼= Z2m+m2
. Hence

Hn(GΨ;Z) has infinite rank (∀n ≥ 3),

H2(GΨ;Z) ∼= Z2m+m2

,

H1(GΨ;Z) ∼= GΨ/[GΨ, GΨ] = 〈si(1 ≤ i ≤ m), t〉,
H0(GΨ;Z) ∼= Z.

¤
Let G2 be GΨ. In this section, we proved that for n = 0, 1, 2, Gn coming from a

free group of rank m ≥ 1 is in Fn and the p-th group homology of Gn has infinite rank
for any p ≥ n + 1. It is known when n is a non-negative integer, then Fn ) Fn+1 ([2]).
Here we will formulate the following conjecture.

Conjecture 4.4.
When n is a non-negative integer, then there is G ∈ Fn of which the p-th group

homology has infinite rank for any p ≥ n + 1.

The author does not know whether this is true or not except for the case n = 0, 1, 2.
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