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Abstract

We give a new definition of an elementary transformation of vec-
tor bundles (resp : reflexive sheaves) on regular schemes, by using
Maximal Cohen-Macaulay sheaves (resp : torsion free sheaves) on
their divisors. This definition is a natural extension of that given by
Maruyama in [Mar] and has a connection with that given by Sumihiro
in [Su-2] and [Su-3]. On nonsingular quasi-projective varieties over an
algebraically closed field, we can construct, up to tensoring line bun-
dles, all vector bundles and reflexive sheaves from trivial bundles by
this new elementary transformation. As an application, we give a suf-
ficient condition for a coherent sheaf of rank one on a hypersurface in a
projective space to be locally free. As an example of this construction,
we can show the explicit data to construct the Tango bundle, which is
the only known indecomposable rank two bundle over P5

k (ch(k) = 2).

0 Introduction

Originally, an elementary transformation is the theory on ruled surfaces,
which enables one to construct a new ruled surface from given one. In [Mar],
Maruyama generalized this method to apply to the construction theory of
vector bundles. By using his idea and theory, we can construct a lot of
interesting vector bundles on schemes, especially those on low dimensional
projective varieties. On the other hand in [Su-2] and [Su-3], Sumihiro gave
an another definition of an elementary transformation of vector bundles on
schemes, which is related closely to the geometric characterization of the
original elementary transformation. Let us review them.

The definition of an elementary transformation given by Maruyama is
very useful to construct vector bundles and has a lot of applications and
examples. However in higher dimensional cases, there is a disadvantage that
not all vector bundles can be constructed from trivial bundles by this method.
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The definition given by Sumihiro can be applied to the vector bundle
construction on higher dimensional cases. i.e., by using this theory, we can
construct, up to tensoring line bundles, all vector bundles on any dimensional
nonsingular quasi-projective varieties over an algebraically closed field from
trivial bundles. However, this elementary transformation needs a lot of ge-
ometric data and is hard to make examples. Note that the explicit relation
between these two was not clear.

In this article, we give a new definition of an elementary transformation
of vector bundles on regular schemes by using Maximal Cohen-Macaulay
sheaves on thier divisors. This is a natural extension of Maruyama’s defini-
tion and in the special case, it can be interpretated to Sumihiro’s definition.
i.e., by this theory, we can make it clear the relation between the two defini-
tions of an elementary transformation. From this viewpoint, we can obtain
several results not only on vector bundles but also on reflexive sheaves by
using torsion free sheaves on divisors. Consequently, we can construct, up
to tensoring line bundles, all the vector bundles and reflexive sheaves from
trivial bundles on nonsingular quasi-projective varieties over an algebraically
closed field of any characteristic by this method. This is one of the main re-
sults in this article and described in Theorem 1.2. As an application of this
elementary transformation, we will consider the sufficient condition when a
given coherent sheaf is locally free. The motivation to this problem is Hor-
rocks’ famous criterion ([OSS], Theorem 2.3.1), which tells us when a given
vector bundle on Pn

k splits into the sum of line bundles. According to this
criterion, the given vector bundle E splits if and only if H i(Pn

k , E(k)) = 0
for all integers k ∈ Z and i = 1, · · · , n − 1. Then it is natural to consider
whether the same condition is sufficient for a coherent sheaf on some varieties
to split into the sum of line bundles or be locally free. By using our elemen-
tary transformation, we can show that on a hypersurface Z in Pn

k (n ≥ 5)
whose singular locus is of codimension more than or equal to 5, a rank one,
Maximal Cohen-Macaulay sheaf F generated by two global sections is locally
free if and only if it satisfies the Horrocks’ condition. This is stated in Propo-
sition 4.3. As an actual construction, we shall show explicit data to construct
the Tango bundle, which is the only known indecomposable 2-bundle on P5

k

where k is an algebraically closed field of characteristic two. This is given in
section five.

Contents of this article are as follows.
In section one, we give a new definition of an elementary transformation

by introducing the concept of ET-data (Z, F ), and investigate its basic prop-
erties. The main result is Theorem 1.2 as the above. The relation between
a definition given here and Maruyama’s one is described in Remark 1.2 and
one between ours and Sumihiro’s one in Proposition 1.5.
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In section two, we relate the new definition to the result in [Su-3], which
gives a geometric interpretation to our definition (Theorem 2.1). Explicitly,
we can construct the data for our elementary transformation from a normal
(or integral) divisor and Weil divisors on it which satisfy certain conditions.
In other words, we can characterize Maximal Cohen-Macaulay modules on
a divisor by Weil divisors on it. Moreover using our result, we can give the
answer to the problem which was raised in [Su-3] (Corollary 2.9).

In section three, we consider the condition when the elementary trans-
formation commutes with restrictions to a hyperplane or a closed subscheme
(Proposition 3.1, 3.2). These results will play an important role in the next
section.

In section four, we apply the new elementary transformation to investigate
the freeness of a given coherent sheaf. We give a sufficient condition for a
sheaf on a hypersurface Z in Pn

k , which is of rank one, reflexive and Maximal
Cohen-Macauley, genereated by two global sections to be locally free. It is
the same as Horrocks’ splitting criterion but it demands for the hypersurface
Z to have its codimension of singular locus more than or equal to five. If not,
i.e., when the codimension of singular locus is less than or equal to four, the
given condition is not sufficient. That is described in Proposition 4.3 and the
counter example on a hypersurface with higher dimensional singular locus is
also described in this section.

In section five, we show the explicit data to construct the Tango bundle,
which is the only known indecomposable rank two bundle on P5

k (ch(k) = 2).
This is a new way to construct this bundle.

Notation. In this article, the term vartiey means an integral algebraic
scheme over a field. We use the terms vector bundle and locally free sheaf
interchangeably. We often denote a locally free sheaf of rank r by r-bundle
and a reflexive sheaf of rank r by r-reflexive sheaf. We often consider the
ideal sheaf of a Weil divisor W on Z, which is a divisor of a variety X. Then
the ideal sheaf of W considered as the closed subscheme of X (resp : Z)
is denoted by I(W ) (resp : IZ(W )). Gr(n, k) represents a Grassmannian
which parametrizes k-dimensional linear subvarieties in Pn

k . By AssX(F ) for
a coherent sheaf F on a noetherian scheme X, we denote associated points
of F as an OX-module. We denote the sets of an r × r matrices with entries
in a ring A by M(r, A).

Acknowledgement. The author is grateful to Professor M. Maruyama
for a lot of advices and supports. The author also thanks to many friends
who kindly helped the author a lot of times.
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1 A new definition of an elementary trans-

formation and its properties

At first, let us give a new definition of an elementary transformation of
vector bundles on regular schemes as follows. Here, we generalize it to apply
to reflexive sheaves.

Definition 1.1
Let X be a regular scheme, E be an r (≥ 2)-bundle on X, and m be an
integer such that 1 ≤ m ≤ r − 1. We say that the triple (Z, F, ϕ) is m-
elementary-transformation-data for E (m-ET-data for E, in short) if Z is an
effective reduced divisor on X, F is an OZ-module of rank r − m, which is
Maximal Cohen-Macaulay (MCM, in short. For its definition, see the remark
below) and there is a surjection ϕ : E → F as OX -modules.

Moreover, let X and m be the same as the above, E be an r-reflexive
sheaf on X. Then we say that the triple (Z, F, ϕ) is m-weak-elementary-
transformation-data for E (m-w-ET-data for E, in short) if Z is an effective
reduced divisor on X, F is a torsion free OZ-module of rank r−m, and there
is a surjection ϕ : E → F as OX-modules.

Note that we usually denote ET-data (or w-ET-data) (Z, F, ϕ) by (Z, F )
if there is no confusing.

Definition 1.2
With the above notation, when (Z, F ) is m-ET-data (resp : w-ET-data) for
E, we say that ker(ϕ) =: elemF (E) is an elementary transformation of E by
(m-)ET-data (Z, F ) (resp : (m-)w-ET-data (Z, F )).

Remark 1.1
Let X be a Noetherian scheme and F be an OX -module. Then we say that F
is a Maximal Cohen-Macaulay OX -module if for all x ∈ X, depthOx,X

(Fx) =
dimOx,X .

In Maruyama’s definition ([Mar]), the above F is not MCM but a vector
bundle on Z. As we saw in the introduction, his definition and results are not
fully applied to the higher dimensional cases (for details, see Remark 1.2).
Here, we simply extend his definition (it is easy to see that vector bundles
on a divisor of a regular scheme are MCM) to get a stronger result on higher
dimensional cases and for reflexive sheaves.

The following lemma is easy to see from the discussion on the depth,
using Auslander-Buchsbaum formula and results in [H3].
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Lemma 1.1
If (Z, F ) is ET-data for an r-bundle E, then elemF (E) is a vector bundle on
X of rank r. If (Z, F ) is w-ET-data for an r-reflexive sheaf E, then elemF (E)
is an r-reflexive sheaf on X.

From this lemma, we can see that when given a data (Z, F ), we can
construct a new vector bundle or a new reflexive sheaf elemF (E) from the
given sheaf E. Now, let us show the main result of this article obtained by
the extended definition of an elementary transformation.

Theorem 1.2
Let X be a nonsingular quasi-projective variety over an algebraically closed
field k, OX(1) be an ample line bundle on X, and E be an r(> 1)-bundle
on X (resp : r-reflexive sheaf on X). Then there is 1-ET-data (Z, F ) (resp
: 1-w-ET-data) for Or

X such that Z is normal and elemF (Or
X) � E ⊗ L for

some line bundle L ∈ Pic(X). Moreover when dim X ≥ 2, we can take Z as
an integral divisor.

Proof. At first, we prove this theorem when E is a vector bundle. Ten-
soring OX(1) sufficiently many times, we may assume that E is very ample.
Then there are global sections s1, · · · , sr ∈ H0(X, E) such that if we denote
the divisor in P(E) defined by the section si by Di (i = 1, · · · , r), then the in-
tersection D1∩· · ·∩Dr is a smooth subscheme of pure codimension r in P(E).
Then if we put Z := Z(s1∧· · ·∧sr), Wi = Z(s1∧· · ·∧ŝi∧· · ·∧sr) (i = 1, · · · , r)
and U = Z \ B (where B = ∩r

i=1Wi), from the calculation of its Jaco-
bian we can see that Z ∩ U is a smooth divisor of U and Sing(Z) = B.
If B contains a point whose codimension is 1, then since dimπ−1(x) ≥ 1
for all x ∈ B (π : P(E) → X is a canonical projection), it holds that
dim π−1(B) ≥ dim Z, this is a contradiction. Hence all the points which be-
long to B have codimensions more than one. This implies that Z is regular
in codimension one. Moreover, since Z is Cohen-Macaulay, it satisfies Serre’s
criterion for normality. Hence Z is normal and if dimX ≥ 2, it follows that
Z ∩ U 	= φ and it is a nonempty smooth divisor in U 	= φ. So we can also
see that Z is integral in that case.

Now, let us see the exact sequence Or
X

(s1,··· ,sr)→ E → F → 0 which is
induced by the sections s1, · · · , sr. If we put e1, · · · , er as free basis of Or

x,X ,
X1, · · · , Xr as free basis of Ex (x ∈ X) and if we put si = (si1, · · · , sir) at x,
then the morphism Or

X → E can be written as the matrix tS = t(sij)
r
i,j=1.

If we denote the image of ei by Yi (i = 1, · · · , r), it can be written as Yi =
si1X1 + · · ·+ sirXr. So locally F = ⊕AXi/

∑
AYi. Then this is 0 if and only

if there exists an r× r matrix T such that TS = ST = Ir. If we consider the
adjoint matrix of S, it is easy to see that such T exists if and only if s = det S
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is a unit at that point. This is equivalent to x 	∈ Z. So Supp(F ) = Z and
easily we can see that F is an OZ-module. Next, we show that F is an MCM
sheaf on Z of rank 1. Noting that s is a local equation of Z = Z(s1∧· · ·∧sr),
this follows from the following lemma.

Lemma 1.3
Let A be a Cohen-Macaulay Noetherian local ring, r(> 1) be an integer, and
S, S ′ ∈ M(r, A) be r×r matrices such that SS ′ = S ′S = sIr for some nonzero-
divisor s ∈ A \ A×. We denote the image of a ∈ A in A/sA =: A by a and
we also assume that rank S 	= 0 and rank S ′ 	= 0. Then M := (Ar)/Im(tS) is
a Maximal Cohen-Macaulay A/sA-module.

Proof of lemma. Put dimA = n ≥ 1. Clearly, A and A are Cohen-
Macaulay local rings. Hence there is a regular sequence (s = z1, z2 · · · , zn) for
A. We shall prove that (z2, · · · , zn) is a regular sequence for M by induction
on its length. Assume that (z2, · · · , zl−1) is a regular sequence for M (where
2 ≤ l ≤ n+1). Take

∑r
i=1 aiXi ∈ M (where {Xi}r

i=1 are the free basis of Ar).
Assume that zl

∑
aiXi = 0 in M/(z2, · · · , zl−1)M . Then there are elements

bi, cki ∈ A such that zl

∑r
i=1 aiXi =

∑r
i=1 biYi +

∑r
i=1

∑l−1
k=2 ckizkXi (where

S = (sij) and Yi =
∑r

j=1 sijXj). Then for all j = 1, · · · , n, we have

zlaj =

r∑
i=1

bisij +

l−1∑
k=2

ckjzk. (1)

Let us put S ′ = (dij). Multiplying djp to the equation (1) above and taking
a sum on index j, we have

zl

r∑
j=1

ajdjp = sbp +

r∑
j=1

l−1∑
k=2

zkckjdjp (2)

for all p = 1, · · · , n. Since (z1 = s, z2, · · · , zl) is a regular sequence for A,
there are elements ej , fkj ∈ A (j = 1, · · · , r. k = 2, · · · , l − 1) such that

r∑
i=1

aidij = sej +

l−1∑
k=2

zkfkj (3)

for all j. On the other hand, we have s
∑r

i=1 aiXi =
∑r

i,j=1 aidijYj since
SS ′ = S ′S = sIr. Hence it holds that

s

r∑
i=1

aiXi = s

r∑
i=1

eiYi +

r∑
i=1

l−1∑
k=2

zkfkiYi. (4)
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Since A is local and Noetherian, the sequence (z2, · · · , zl−1, s) is also a regular
sequence for A. Hence we have

∑r
i=1 aiXi ∈

∑r
i=1 AYi +

∑l−1
k=2

∑r
i=1 A(zkXi)

and the lemma is proved.

Proof of theorem, continued.
At last, let us show elemF (E) � Or

X . Let {Ui}i∈I be an affine open cov-
ering of X on which E (resp : elemF (E)) has Gij (resp : Hij) as a transition
matrix on Ui ∩Uj . Then it is easy to see that tSi = Gij

tSj by definitions of
Gij and Si = (s1, · · · , sr)|Ui

. On the other hand from the exact sequence

0 → elemF (E) → E → F → 0,

we see that tSiHij = Gij
tSj for all i, j. This implies that Hij = Ir. Hence

we can see that elemF (E) � Or
X . Thus we can get the following diagram.

0

��

0

��
E(−Z)

��

E(−Z)

��
0 �� Or

X

��

(s1,··· ,sr) �� E

��

�� F �� 0

0 �� F ′

��

�� E|Z
��

�� F �� 0

0 0

Note that rankZ(Si) = r−1 and this implies rankZ F = 1 and rankZ F ′ =
r − 1. Then seeing the first column of this diagram, we can find the 1-ET-
data (Z, F ′) for Or

X such that elemF ′(Or
X) � E(−Z), which is what we want

in case that E is a vector bundle.
Next, we must prove the statement of the theorem when E is reflexive.

From the result of [H3], there is a non empty open set U ⊂ X such that
codimX(X \ U) ≥ 3 and E|U is locally free. Since U is nonsingular and
quasi-projective, we can apply the same discussion of the vector bundle case
to the vector bundle E|U on U . Note that by the above fact, we only have
to consider the case when dimX ≥ 3 (Otherwise E is automatically locally
free). Since all the points belonging to Z \ U are of codimension ≥ 2 in Z,
we can also use Serre’s criterion and from the fact that Z ∩U is integral and
normal, we can see that Z is also integral and normal. Now, the statement
follows immediately from the fact that if we put j : U → X as an open
immersion, then j∗(E|U) � E and that the direct image of MCM sheaves on
Z ∩ U which have a surjection from a vector bundle on U is a torsion free
OZ-module on Z. q.e.d.

7



Remark 1.2
Let us show the reason why we extended the data F from line bundles (de-
fined by Maruyama) to MCM sheaves here. i.e., if F is a line bundle, we
cannot apply the above discussion on Pn

k (n ≥ 4), hence for example, we
cannot construct the Horrocks-Mumford bundle on P4

k (Horrocks-Mumford
bundle is an indecomposable 2-bundle on P4

�
. See [HM] for the construction

of this bundle). This is shown by Sumihiro in [Su-2], and let us review here
to see the difference of two definitions.

At first, we must remember the Grothendieck-Lefschetz theorem. That
implies if Z is an effective divisor on Pn

k (where n ≥ 4 and k is an algebraically
closed field of characteristic zero), then it holds that Pic(Pn

k) � Pic(Z) �
Z · OZ(1). Now, let us take arbitrary 1-ET-data (Z, F ) for O2

Pn
k

(n ≥ 4) such

that F is locally free (i.e., F is a line bundle). Then we can see that the
elementary transformation elemF (O2

Pn
k
) =: E by these data always splits. In

fact, Grothendieck-Lefschetz theorem implies that Pic(Pn
k) � Pic(Z) in this

case. Hence we can write F � OZ(k) for some integer k ∈ Z. Consider-
ing the long exact sequence of the following exact sequence induced by our
elementary transformation

0 → E → O2
Pn

k
→ F → 0,

we can see that H i(Pn
k , E(l)) = 0 (∀l ∈ Z, i = 1, 2, · · · , n − 1). Hence by

Horrocks’ splitting criterion (for example, see Theorem 2.3.1 in [OSS]), we
can conclude that this E splits into the sum of line bundles. So if we want to
construct an indecomposable 2-bundle on the higher dimensional projective
space, we have to use MCM sheaves on divisors.

Next, let us consider the geometric characterization of this definition.
i.e., we shall show the relation between projective bundles of a given vector
bundle and its elementary transformation by using blowing up and blowing
down.

Proposition 1.4
Let X be a nonsingular quasi-projective variety over an algebraically closed
field, E be a locally free sheaf of rank r (> 1) on X, and (Z, F ) be m-w-ET-
data for E (1 ≤ m ≤ r − 1). Then for elemF (E) = E ′, we have the following
commutative diagram of exact sequences.
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0

��

0

��
E(−Z)

a′
��

E(−Z)

��
0 �� E ′

��

a �� E

��

b �� F �� 0

0 �� F ′

��

�� E|Z

��

γ �� F �� 0

0 0

Then (Z, F ′) is (r−m)-w-ET-data for E ′. Let us put P(F ) =: Y ⊂ P(E),
P(F ′) =: Y ′ ⊂ P(E ′), and u : B → P(E) (resp : u′ : B′ → P(E ′)) be a
blowing up of P(E) (resp : P(E ′)) with the center Y (resp : Y ′). Then
there is an isomorphim ϕ : B′ → B which makes the following diagram
commutative.

B′

u′
��

ϕ �� B

u
��

P(E ′)
π′

����������
P(E)

π

����
��

��
��

X

Proof. The proof is almost parallel to that in [Su-2], to which the reader
should refer. When (Z, F ) is ET-data for E, then this is just the special case
of Theorem 1.5 in [Su-2], because we can consider the statement in terms of
(2) in Proposition 1.5 we will show later.

Next, let us consider when (Z, F ) is w-ET-data. We begin with the affine
case, i.e., on Spec(A) = U ⊂ X. Then E is the sheafification of the free
module ⊕r

i=1AXi, (where {X1, . . . , Xr} is the system of coordinates) and
E ′ := elemF (E) is the sheafification of the reflexive A-module M . Now let
us fix the prime ideal P ∈ Spec(A) with ht(P ) = 1. Since the codimension
of Sing(E′) in X is more than or equal to three, MP is a free module. Let
{Y1, . . . , Yr} be the coordinate system of MP such that Yi ∈ M for 1 ≤ i ≤ r.
Let SP be the matrix such that

t(Y1, . . . , Yr) = SP
t(X1, . . . , Xr).
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By the same way as above, there exists the matrix SQ ∈ M(r, AQ) for each
Q ∈ Spec(A) with ht(Q) = 1 such that

t(Y1, . . . , Yr) = SQ
t(X1, . . . , Xr).

Since A is rexlexive, it holds that S := SP ∈ M(r, A) for all P with height
one. By the same way, we may assume that det(S) = s, where s is the
defining equation of the divisor Z on U . Then we can find the elements
F1, . . . , Fv such that {Y1, · · · , Yr, F1, · · · , Fv} is a generator of M over A. By
the choice of {Y1, . . . , Yr}, each Fj is linearly dependent over A. So there are
elements αi, βij ∈ A (i = 1, · · · , v, j = 1, · · · , r) such that

αjFj =
r∑

i=1

βjiYi (j = 1, · · · , v).

Now, recall the exact sequence of given data. It is as follows:

0

��

0

��
⊕r

i=1AXi

tS′
��

⊕r
i=1AXi

s ��
0 �� M

��

tS �� ⊕r
i=1AXi

��

�� F �� 0

0 �� F ′

��

�� ⊕r
i=1(A/sA)Xi

��

�� F �� 0

0 0

where S = (sij) is defined above and S ′ = (s′ij) is its adjoint matrix.
By the above consideration, we can write the image of Fj by tS as Fj =
(1/αj)

∑
i,k βjisikXk. Now, we can write the blowing up B of P(E) with

center Y as

B = ProjA[X1, · · · , Xr][Y1, · · · , Yr, F1, · · · , Fv]

= ∪i=1,··· ,r, j=1,··· ,r SpecA[xi1, · · · , xir][
yi1

yij
, · · · ,

yir

yij
,
fi1

yij
, · · · ,

fiv

yij
]

∪ (∪i=1,··· ,r, j=1,··· ,v SpecA[xi1, · · · , xir][
yi1

fij
, · · · ,

yir

fij
,
fi1

fij
, · · · ,

fiv

fij
]),

where xij =
Xj

Xi

, yij =
Yj

Xi

and fij =
Fj

Xi

. Next we consider the blowing up B′

of P(E ′) with center Y ′. Let {X1
′, . . . , Xr

′, F1
′, . . . , Fv

′} be the generators of
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M and {Y1
′, . . . , Yr

′} be the coordinate system of E(−Z) as we saw above.
Then we can see that

B′ = Proj A[X ′
1, · · · , X ′

r, F
′
1, · · · , F ′

v][Y
′
1 , · · · , Y ′

r ]

= ∪i,j=1,··· ,r SpecA[x′
i1, · · · , x′

ir, f
′
i1, · · · , f ′

iv][
y′

i1

y′
ij

, · · · ,
y′

ir

y′
ij

]

∪ (∪i=1,··· ,v, j=1,··· ,r SpecA[
X ′

1

F ′
i

, · · · ,
X ′

r

F ′
i

, f ′
i1, · · · , f ′

iv][
y′

i1

y′
ij

, · · · ,
y′

ir

y′
ij

],

where x′
ij =

X ′
j

X ′
i

, y′
ij =

Y ′
j

X ′
i

and f ′
ij =

F ′
j

X ′
i

. Let us put

Aij := A[xi1, · · · , xir][
yi1

yij
, · · · ,

yir

yij
,
fi1

yij
, · · · ,

fiv

yij
],

Bij := A[xi1, · · · , xir][
yi1

fij
, · · · ,

yir

fij
,
fi1

fij
, · · · ,

fiv

fij
],

A′
ij = A[x′

i1, · · · , x′
ir, f

′
i1, · · · , f ′

iv][
y′

i1

y′
ij

, · · · ,
y′

ir

y′
ij

],

B′
ij := A[

X ′
1

F ′
i

, · · · ,
X ′

r

F ′
i

, f ′
i1, · · · , f ′

iv][
y′

i1

y′
ij

, · · · ,
y′

ir

y′
ij

],

and put

SpecAij = Uij,

SpecBij = Vij,

Spec Aij
′ = Uij

′,

Spec Bij
′ = Vij

′.

Let us define the field homomorphism (as A-algebras) ϕ : Q(A[X1, · · · , Xr]) →
Q(A[X ′

1, · · · , X ′
r]) by sending Xi to Y ′

i . Since SS ′ = S ′S = sIr, this is
an isomorphism. Moreover, it is easy to see that ring homomorphisms
ϕij : Aij → A′

ji and ηij : Bij → B′
ji, which are canonically induced from

the field isomorphism ϕ, are ring isomorphisms and induce isomorphisms
Uij � U ′

ji and Vij � V ′
ji for all i, j. Hence in the affine case, we can see that

B � B′ as desired.
Next, let us check the patch of two affine open sets. Take two affine

open sets U = SpecA and V = Spec A′. On U , let us assume that Z
is defined by s ∈ A, the homogeneous coordinates of P(E) is denoted by
{X1, · · · , Xr}, Y ⊂ P(E) is defined by Y1 = Y2 = · · · = Yr = F1 =

11



· · · = Fv = 0, where Yi =
∑r

j=1 sijXj and Fj is the same as the affine
case. Simillarly on V , let us assume that Z is defined by t ∈ A′, the
homogeneous coordinates of P(E) is denoted by Z1, · · · , Zr, Y ⊂ P(E)
is defined by W1 = W2 = · · · = Wr = G1 = · · · = Gu = 0, where
Wi =

∑r
j=1 tijZj and {Gj} corresponds to {Fj} when considered on U .

We put S = (sij) and T = (tij). Now we can choose a transition matrix
C ∈ M(r, H0(U ∩ V,OX)) such that t(X1, · · · , Xr) = tC t(Z1, · · · , Zr).
Then there exists a matrix H ∈ M(r, H0(U ∩V,OX)) such that S tC = HT .
Let us denote the other coordinates of P(E) or the equations of Y ′, as the
same as the affine case, by X ′

i, Y ′
i =

∑
s′ijX

′
j, Z ′

i, W ′
i =

∑
t′ijZ

′
j, and put

tC = (cij), H = (hij), S ′ = (s′ij) and T ′ = (t′ij). Then we can see that since
S ′H = (s/t) tCT ′, it holds that

∑
k s′mkhkl = (s/t)

∑
k cmkt

′
kl. Then it holds

that for ϕU : Q(A[X1, · · · , Xr]) → Q(A[X ′
1, · · · , X ′

r]),

ϕU(xim) =
y′

jm

y′
ji

=
∑

k

s′mkX
′
k/

∑
k

sikX
′
k

=
∑

k

s′mk(
∑

l

hklZ
′
l)/

∑
k

s′ik(
∑

l

hklZ
′
l)

=
∑
k,l

cmkt
′
klZ

′
l/

∑
k,l

cikt
′
klZ

′
l

=
∑

k

cmkW
′
k/

∑
k

cikW
′
k

On the other hand on V , for ϕV : Q(A′[Z1, · · · , Zr]) → Q(A′[Z ′
1, · · · , Z ′

r]) we
have

ϕV (xim) = ϕV (
∑

k

cmkZk/
∑

k

cikZk)

=
∑

k

cmkW
′
k/

∑
k

cikW
′
k (5)

and so they are equal. Since the morphism from B to B′ is completely
determined locally by the free part of E, we can conclude that ϕU |U∩V =
ϕV |U∩V and hence the proposition is proved. q.e.d.

By the definition, we have a relation between algebraic data and geometric
one as follows. The proof is trivial by the results in [Su-2].

Proposition 1.5
Let X be a regular scheme, E be a vector bundle of rank r > 1, and m be an
integer such that 1 ≤ m ≤ r − 1. Then there is a one to one correspondence
between the following two sets.
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(1) (r − m)-ET-data (Z, F ) for E.
(2) Sumihiro’s ET-data (Z, Y ) for E. i.e., the pair (Z, Y ) where Z is a reduced
divisor on X and Y ⊂ P(E) is a closed subscheme satisfying π(Y ) = Z by
the canonical projection π : P(E) → X. Moreover they satisfy for every
x ∈ Z, there is an affine open neighborhood U = SpecA ⊂ X of x such that

1) E|U � ⊕rOU .
2) Let s ∈ A be a local equation of Z on U . Then on π−1(U) � U ×Pr−1,

Y is defined by the following linear equations

si1X1 + · · ·+ sirXr = 0 (i = 1, 2, · · · , r) (6)

where sij ∈ A and X1, · · · , Xr are homogeneous coordinates of Pr−1.
3) Put S = (sij)

r
i,j=1. Then the rank of S at every generic point of Z is

m. Moreover, there exists a matrix S ′ ∈ M(r, A) such that SS ′ = S ′S = sIr

and the rank of S ′ at every generic point of Z is r − m.

Proof. From (1) to (2), it is sufficient to put P(F ) =: Y ⊂ P(E) and
check properties by using Theorem 1.2. From (2) to (1), it is easy to see by
using the results above. q.e.d.

This proposition tells us that our new definition shows the relation be-
tween Maruyama’s one and Sumihiro’s one. Next, let us investigate some
properties of an elementary transformation.

Lemma 1.6
Let X and X ′ be regular schemes, f : X ′ → X be a morphism, E be an
r-reflexive sheaf on X, and (Z, F ) be m-w-ET-data for E. If f is flat, then
(f ∗Z, f ∗F ) is also m-w-ET-data for f ∗E and it holds that f ∗(elemF (E)) �
elemf∗F (f ∗E).

Lemma 1.7
Let X be a regular scheme, E be an r-reflexive sheaf on X, and (Z, F )
be m-w-ET-data for E. If L is a line bundle on X, then it holds that
elemF (E) ⊗ L � elemF⊗L(E ⊗ L).

Lemma 1.8
Let X be a regular scheme, E1 (resp : E2) be an r1-reflexive sheaf on X (resp
: r2-reflexive sheaf on X), and (Z, F1) (resp : (Z, F2)) be m1-w-ET-data for
E1 (resp : m2-w-ET-data for E2). Then
(1) elemF1(E1) ⊕ elemF2(E2) � elemF1⊕F2(E1 ⊕ E2).
(2) Assume that m1 = m2 = m and r1 = r2 = r. If there exists an isomor-
phisms ϕ : E1 → E2 and ϕ : F1 → F2 which makes the following diagram
commutative.
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E1
��

ϕ ��

F1

ϕ��
E2

�� F2

Then it holds that elemF1(E1) � elemF2(E2).

These lemma follow easily from usual discussions on exact sequences, so
we left the proofs to the reader.

For an application of this aspect, let us show the simplest condition when
two elementary transformation data commute.

Proposition 1.9
Let X be a regular scheme, E be a reflexive sheaf of rank r(> 1) on X,
(Z, F, ϕ1) (resp : (Z ′, F ′, ϕ2)) be m (resp : m′)-ET-data for E. Let us put
elemFi

(E) =: Ei and fi : Ei → E (i = 1, 2). If ϕ1◦f2 (or ϕ2◦f1) is surjective,
then we can define elemF1(elemF2(E)) =: E12 and elemF2(elemF1(E)) =: E21.
Moreover they are isomorphic.

Proof. We may assume that ϕ1 ◦ f2 is surjective. Then we have the
following exact sequences.

0 �� E1

ϕ2◦f1 ��

f1 �� E
ϕ2 ��

ϕ1 �� F1
γ

��

�� 0

0 �� F2
id �� F2

�� 0 �� 0

Then by the snake lemma, we have

ker(ϕ2) → ker(γ) → coker(ϕ2 ◦ f1) → 0,

this is equivalent to

E2
ϕ1◦f2→ F1 → 0.

Hence we can define E12, E21 and moreover, we have E12 � ker(ϕ1 ◦ f2) �
E2 ∩ ker(ϕ1) � E1 ∩ E2 � E1 ∩ ker(ϕ2) � ker(ϕ2 ◦ f1) � E21. q.e.d.

Remark 1.3
The geometric correspondence of this proposition in the view of Proposi-
tion 1.5 is as follows : If we put Yi := P(Fi) ⊂ P(E) (i = 1, 2), then the
assumption of this proposition corresponds to Y1 ∩ Y2 = φ. i.e., in Sumi-
hiro’s elementary transformation, elemY2(elemY1(E)) � elemY1(elemY2(E)) if
Y1 ∩ Y2 = φ.
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2 Geometric ET-data and divisors

In this section, we shall investigate the relation between our ET-data for an
r-bundle E on a nonsingular variety X and the set (Z, W1, · · · , Wr), where
Z is a normal divisor of X and each Wi is an effective Weil divisor of Z
satisfying some conditions, which are called (semi-)invertible along Z. These
data (Z, W1, · · · , Wr) and the concept ”invertible along Z” were introduced
by Sumihiro in [Su-3]. By using this concept, we can understand a geometric
characterization of our elementary transformation.

At first, let us begin with a definition of the property of sections of an
MCM sheaf, which will play an important role in this section.

Definition 2.1
Let X be a nonsingular variety over an algebraically closed field k, r(> 1)
be an integer, (Z, F ) be 1-ET-data for Or

X , and put E := elemF (Or
X). Then

we say that the data (Z, F ) is geometric ET-data if Z is normal and on any
affine open set U of X which intersect with Z, no rows of the matrix which
corresponds to the morphism E → Or

X over U vanish when restricted to Z.

Before the statement of the main theorem in this section, we review a
definition of ”invertible along Z” in [Su-3] and give an extended definition of
it.

Definition 2.2
Let X be a noetherian scheme, Z be an effective normal Cartier divisor on X
and W1, · · · , Wr (r ≥ 2) be effective Weil divisors on Z such that for all i, j =
1, · · · , r, Wi and Wj are rationally equivalent. Let us put Wi = W1 +(fi) for
fi ∈ k(Z). For each x ∈ B = ∩r

i=1Wi, m = dim((I(Wi)x/I(Z)x) ⊗ k(x)) is
independent of i. We assume that for these Weil divisors, it holds that m ≤ r.
Then we can choose elements sji ∈ Ox,X (i = 1, · · · , r. j = 1, · · · , m) such
that IZ(Wi)x = I(Wi)x/I(Z)x = (s1i, · · · , smi) and sji = fisj1 (where sji is
the image of sji by the morphism OX → OZ). We say then that W1, · · · , Wr

are invertible along Z if there is a sequence of integers {i1 < i2 < · · · <
im} ⊂ {1, 2, · · · , r} and T ∈ M(m, Ox,X) such that AT = TA = sIm, where
A = (sji)i,j=i1,··· ,im and s is a local equation of Z at x.

Moreover, let X be a noetherian scheme, Z be an effective normal Cartier
divisor on X and W1, · · · , Wr (r ≥ 2) be effective Weil divisors on Z such
that for each i, j = 1, · · · , r, Wi and Wj are rationally equivalent. Let us
put Wi = W1 + (fi) for fi ∈ k(Z). Then we say that W1, · · · , Wr are semi-
invertible along Z if for each x ∈ B = ∩r

i=1Wi, we can take the generators
(s1i, · · · , sri) of IZ(Wi)x, not necessarily minimal one, which satisfy sji =
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fisj1 (i, j = 1, · · · , r) and there exists a matrix T ∈ M(r, Ox,X) such that
ST = TS = sIr (where S = (sji)

r
i,j=1 and s is a local equation of Z at x).

We will see later that invertible along Z implies semi-invertible along
Z. Now, the next theorem shows the connection between our elementary
transformation and Sumihiro’s geometric data (Z, W1, · · · , Wr).

Theorem 2.1
Let X be a nonsingular variety over an algebraically closed field k, Z be a
normal divisor of X and r(> 1) be an integer. Then there is a one to one
correspondence between the following two sets.
(1) {(Z, F )| geometric ET-data for Or

X}/ ∼.
(2) {(Z, W1, · · · , Wr)| the set of an effective normal divisor Z of X and effec-
tive Weil divisors W1, · · · , Wr of Z such that for all i, j = 1, · · · , r, Wi and
Wj are rationally equivalent and semi-invertible along Z}/ ∼.

Where (Z, F, ϕ) ∼ (Z, F ′, ϕ′) in (1) if there are isomorphisms f : F → F ′

and u : Or
X → Or

X which make a following diagram commutative

Or
X

ϕ ��

u ��

F
f��Or

X

ϕ′
�� F ′

and (Z, W1, · · · , Wr) ∼ (Z, W ′
1, · · · , W ′

r) in (2) if there are isomorphisms
g : IZ(W1) → IZ(W ′

1) and v : Or
Z → Or

Z which make the following diagram
commutative with respect to the rational functions f1, · · · , fr, f

′
1, · · · , f ′

r ∈
k(Z) such that Wi = W1 + (fi) and W ′

i = W ′
1 + (f ′

i) (i = 1, · · · , r).

IZ(W1)
{fi} ��

g��

Or
Z

v��
IZ(W ′

1)
{f ′

i} �� Or
Z

Proof. This proof proceeds in several steps. Note that since Z is a disjoint
union of integral normal divisors, we may assume that Z is integral. At first,
let us define the sets S1 and S2 as S1 = {W1, · · · , Wr| effective Weil divisors
on Z such that for all i, j = 1, · · · , r, Wi and Wj are rationally equivalent
and semi-invertible along Z}/ ∼, and S2 = {(Z, F )|geometric ET-data for
Or

X}/ ∼, where the equivalence relations are the same as the above. The
way of our proof is to construct maps from S1 to S2 and its converse.

Step 1. Construction of the map δ : S1 → S2.
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At first, we construct the map δ : S1 → S2. This is easy to con-
struct by results in section one of this article. i.e., let us take the element
{W1, · · · , Wr} ∈ S1 and fi ∈ k(Z) as Wi = W1 + (fi) for i = 1, · · · , r.
Then from the morphism γ : IZ(W1) → Or

Z defined by (f1, · · · , fr), we can
construct the following diagram.

0

��

0

��
Or

X(−Z)

α′
��

Or
X(−Z)

��
0 �� E(−Z)

��

α �� Or
X

��

β �� F �� 0

0 �� IZ(W1)

��

γ �� Or
Z

��

�� F �� 0

0 0

The definition of being semi-invertible along Z and Lemma 1.3 imply that
F is an MCM OZ-module of rank r − 1 and (Z, F ) is 1-ET-data for Or

X . So

let us define δ({W1, · · · , Wr}) := {Or
X

β→ F → 0} in terms of the above
diagram. Note that the class δ({W1, · · · , Wr}) is independent of the choice
of rational functions {fi}r

i=1 from the defintion of the equivalence relation in
S2. The only nontrivial part is whether (Z, F ) is geometric or not. To see
that, from the above diagram and the definition of geometric ET-data, we

can understand that in the middle row of the diagram 0 → E(−Z)
α→ Or

X

β→
F → 0, the assumtion that (Z, F ) is geometric ET-data is equivalent to say
that any rows of α are not 0 on any affine open sets which intersect Z. On
the other hand, it is an easy conclusion that all elements of the i-th row of α
generate the ideal sheaf of Wi over Z. So if the i-th row of α is 0, then it is
equivalent to say that Wi ∩ U = Z ∩ U for some open set U ⊂ X such that
U ∩ Z 	= φ. Since Z is integral and Wi is a divisor on Z, this is impossible.
So (Z, F ) is geometric ET-data and δ is well defined.

Step 2. Construction of the converse map δ′ : S2 → S1.
Let us consider the converse of Step 1. i.e., from geometric ET-data

(Z, F ) ∈ S2, we want to construct {W1, · · · , Wr} ∈ S1. At first, see the
following diagram. This is canonically obtained from the geometric ET-data

{Or
X

β→ F → 0} ∈ S2 and F ′ = ker(γ : Or
Z → F ).
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0

��

0

��
Or

X(−Z)

α′
��

Or
X(−Z)

��
0 �� E(−Z)

��

α �� Or
X

��

β �� F �� 0

0 �� F ′

��

�� Or
Z

��

γ �� F �� 0

0 0

In Step 2 and Step 3, we shall use the notation in this diagram. Put
α′ = (s1, · · · , sr), where si ∈ H0(X, E). We want to construct Z and Wi (i =
1, · · · , r) by using these data. At first, let us prove the following.

Proposition 2.2
With the above notation, Z = Z(s1 ∧ · · · ∧ sr).

Proof. We may consider this locally. i.e., on an affine open set U=Spec(A)
such that U ∩ Z 	= φ. We may assume that U is integral. Put S ′ = α′|U =
(sij)

r
i,j=1 and S = α|U = (dij)

r
i,j=1. Since SS ′ = S ′S = sIr (s : a local equation

of Z on U), we have detS 	= 0. By the assumption that rankZ(F ) = r − 1,
it follows that rankS = 1. So there are elements fi = ai/b (ai, b ∈ A, b 	= 0)
such that fi(d11, · · · , d1r) = (di1, · · · , dir) for all i = 1, · · · , r (dij is the image
of dij by the morphism A → A/sA). Notice that since (Z, F ) is geometric
data, (di1, · · · , dir) 	= (0, · · · , 0) for all i. Hence br−1detS = sr−1u′ 	= 0 (u′ ∈
A). Since s is prime (if necessary, replace U by smaller one) and b 	= 0, we see
that detS = sr−1u for some u ∈ A. Combining this equation with SS ′ = sIr,
we see that u(detS ′) = s. If s|u, then detS′ is a unit in A and so detS′ is also
a unit. This contradicts the assumption that rankS′ = r − 1. Thus s|detS ′

and detS′ = su−1, hence the proposition is proved. q.e.d.

By this proposition, we may assume that on any affine open sets U ⊂ X
which intersect with Z, the matrices S ′ defined in the above proof satisfy
detS′ = s, where s is a local equation of Z on U .

Next, we prepare some facts about B = ∩r
i=1Wi and F ′.

Lemma 2.3
If we put Wi = Z(s1 ∧ · · · ∧ ŝi ∧ · · · ∧ sr) (i = 1 · · · , r) and B = ∩r

i=1Wi,
then codimZ(B) ≥ 2. Moreover, if we put V = Z \ B and j : V ↪→ Z, then
we have j∗j∗F ′ � F ′.

Proof. We use the same notation as in Proposition 2.2. Taking x1 · · · , xn

as regular coordinates at x ∈ X and using the Jacobian of S ′, it is easy to
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see that B ⊂ Sing(Z) since ∩r
i=1Wi is generated by all r−1 minors of S ′ and

since a local equation of Z is detS′ by Proposition 2.2. Then the normality
of Z implies that 2 ≤ codimZ(Sing(Z)) ≤ codimZ(B).

Next, it is obvious that F ′ is MCM. Hence it holds that depthOx,Z
Fx =

dimOx,Z . In particular, we can see that F is reflexive on Z. Thus j∗j∗F ′ � F ′

follows from the general property of reflexive sheaves. q.e.d.

Now, we are able to prove that each Wi what we have constructed is an
effective Weil divisor on Z.

Proposition 2.4
With the above notation, Wi = φ or it is an effective Weil divisor on Z for
all i. For all i, j = 1, · · · , r, Wi and Wj are linearly equivalent. Moreover,
IZ(Wi) � F ′ for all i.

Proof. At first, we prove that F ′|V is an invertible sheaf on V = Z \ B.
In the second place, we prove that F ′|V � IZ(Wi)|V for all i. So by Lemma
2.3 and the isomorphism ϕi : j∗(IZ(Wi)|V ) � IZ(Wi), we can see that they
determine effective Weil divisors on Z. The latter isomorphism ϕi follows
from the fact that Z is normal and the ideal sheaves of Weil divisors are
determined on the open set whose complement has codimension more than
or equal to 2. e.g., on V ⊂ Z.

In the previous diagram, put α′ = (s1, · · · , sr) where si ∈ H0(X, E). On
an affine open set Ua =SpecAa, put si = (sa

i1, · · · , sa
ir),

tS ′
a = t(sa

ij) = α′|Ua

and tSa = t(da
ij) = α|Ua. SaS

′
a = S ′

aSa = sIr (where s is a local equation
of Z on Ua) and rankZSa = 1 is obvious. In particular, the assumption
that (Z, F ) is geometric ET-data implies that all the rows of αUa , that is,
all the columns of Sa are not zero vectors (where α is the image of α by the
morphism OX → OZ). Hence if on Z ∩ Ua = SpecAa = Spec(Aa/sAa) we
put V a

ij = SpecAa[1/da
ij], then from the assumption we have

V a
ij 	= φ ⇐⇒ da

ij 	= 0 ⇐⇒ da
ik 	= 0 (k = 1, · · · , r)

⇐⇒ V a
ik 	= φ (k = 1, · · · , r). (7)

Hence it suffices to prove the invertibility of F ′ on each open set V a
ij since

Ua ∩ V = ∪da
ij �=0 V a

ij . To see this, since
∑r

k=1 sa
lkd

a
kj = 0 on φ 	= V a

ij , we have

sa
li = −

∑
k �=i

da
kj

da
ij

sa
lk (l = 1, · · · , r). (8)
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On the other hand on V a
im (Notice that this is not empty by (7)), we have

sa
li = −

∑
k �=i

da
km

da
im

sa
lk (l = 1, · · · , r). (9)

Using the fact that rankZS ′
a = r − 1 on V a

ij 	= φ, the equations (8) and (9)
imply that

da
km =

da
kj

da
ij

da
im (m = 1, · · · , r). (10)

As the image of F ′|Ua∩Z ↪→ ⊕rOZ |Z∩Ua, F ′ is generated by all the column
vectors of α|Ua = tSa, that is, {(da

i1, · · · , da
ir)} for i = 1, · · · , r. By (10), we

see that on V a
ij 	= φ, F ′ is generated by one element (da

i1, · · · , da
ir) and from

(7) this is not a zero vector since V a
ij 	= φ. Hence F ′|V is a line bundle and it

has the transition matrix
da

ij

da
kj

on V a
kl ∩ V a

ij .

Next, for comparing F ′ with IZ(Wp), take an another open set Ub =SpecAb

such that Ub∩Z 	= φ. Let us denote the transition matrix of E(−Z) on Ub∩Ua

by Gba. Then we see that Gba
tS ′

a = tS ′
b. Taking the cofactor and transposi-

tion of this equation, it holds that Sb = (gij)Sa, where (gij) is the transposed
cofactor of Gba. Hence on V b

kl ∩ V a
ij it holds that

db
km =

r∑
n=1

gknda
nm

= (

r∑
n=1

gkn

da
nj

da
ij

)da
im (m = 1, · · · , r). (11)

This implies that the transition matrix of F ′|V on V b
kl∩V a

ij is
da

ij∑r
n=1 gknda

nj

. On

the other hand, IZ(Wp) is generated on V a
ij by da

1p, · · · , da
rp by the definition.

Again by (10), it is generated on V a
ij 	= φ by one element da

ip and on V b
kl 	= φ

by db
kp (Notice that this is not zero since V a

ij 	= φ. This fact also implies that
Wp 	= Z for all p). Therefore IZ(Wp) is also a line bundle on V which has

da
ip

db
kp

=
da

ij∑r
n=1 gknda

nj

as the transition matrix on V b
kl ∩ V a

ij . Since this is the

same as that of F ′|V , we see that F ′|V � IZ(Wp)|V for all p and from the
first consideration in this proof, we see that all Wi are effective Weil divisors
on Z (including the case that some of {Wi}r

i=1 are empty).
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To prove that they are mutually linearly equivalent, we have to notice that
since codimZ(B) ≥ 2, it is enough to show that they are linearly equivalent
on V = Z\B. From the above proof, {Wi}r

i=1 are all effective Cartier divisors
on V . It is easy to see that OV (W1) � OV (Wi) as invertible sheaves on V for
all i. So they are linearly equivalent as effective Cartier divisors. Of course,
this means that they are linearly equivalent as (locally principal) effective
Weil divisors on V . q.e.d.

Consequently, we could have constructed W1, · · · , Wr from an element
(Z, F ) of S2. By Proposition 2.2, Lemma 2.3 and Proposition 2.4, we can
see that (Z, W1, · · · , Wr) is semi-invertible along Z and Wi and Wj are ra-
tionally equivalent for all i, j = 1, · · · , r. i.e., (W1, · · · , Wr) ∈ S1. So putting

δ′({Or
X

β→ F → 0}) := {W1, · · · , Wr} with above terms, we can define
δ′ : S2 → S1 and it is easy to see this is well defined. Now from the construc-
tion of δ, its image is determined by the inclusion F ′ � IZ(W1) ↪→ ⊕rOZ

and the next proposition implies the original data can be recovered. i.e.,
δδ′ = idS2.

Proposition 2.5
Let us fix an isomorphism IZ(W1) � F ′ the existence of which is proved in
Proposition 2.4. Then the homomorphism F ′ → ⊕rOZ coincides with the
one IZ(W1) � g �→ (gf1, · · · , gfr) ∈ ⊕rOZ (where fi ∈ k(Z) is the rational
function such that Wi = W1 + (fi)).

Proof. We can define a homomorphism ϕ : IZ(W1)
(f1,··· ,fr)−→ ⊕rOZ . Thus

we have only to check the coincidence locally, i.e., on an affine open set
U = SpecA that intersects Z. Notice that because of the following diagram,
this coincidence is enough to be checked on V = Z \ B (the two columns
are isomorphisms induced from the proof of Proposition 2.4 and from the
normality of Z).

H0(U, IZ(W1))

��

ϕ �� ⊕rH0(U, OZ)

��
H0(U ∩ V, IZ(W1)|V )

ϕ|V �� ⊕rH0(U ∩ V, OV )

In the proof of Proposition 2.4, we know that on V a
ij 	= φ, F ′ is gen-

erated by (da
i1, · · · , da

ir). Then considering the fact that (da
i1, · · · , da

ir) =
da

i1(f1, · · · , fr) (i = 1, · · · , r) and that IZ(W1) is generated by da
i1 on V a

ij ,
the proposition follows immediately. q.e.d.
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Note that the class of δδ′({Or
X → F → 0}) as the element in S2 is

independent of the choice of an isomorphism F ′ � IZ(W1) in Proposition
2.5. This follows from the definition of the equivalence relation in S1 and
from the fact that differences between the isomorphisms above are only units
since IZ(W1) and F ′ are line bundles.

Step 3. The proof of δ′δ = idS1.
At last, we shall prove that δ′δ = idS1 . Let us begin this step with the

following lemma.

Lemma 2.6
Let us define S ′

1 := {W1, · · · , Wr| effective Weil divisors on Z such that Wi

and Wj are rationally equivalent for all i, j = 1, · · · , r, and invertible along
Z}/ ∼ (where the equivalence relation is the same as that of S1). Then
S ′

1 ⊂ S1.

Proof. Take {W1, · · · , Wr} ∈ S ′
1 and fix a point x ∈ B = ∩r

i=1Wi. Let us
put m =dim(IZ(Wi)x ⊗ k(x)) ≤ r and take fi ∈ k(Z) (i = 1, · · · , r) and
sji ∈ Ox,X (i = 1, · · · , r, j = 1, · · · , m) so that IZ(Wi)x = (s1i, · · · , smi)
and fisj1 = sji (where sji is the image of sji by the morphism OX → OZ).
We may assume that there is a matrix T ∈ M(m, Ox,X) such that for A =
(sji)

m
i,j=1, AT = TA = sIm, where s is a local equation of Z at x. Let us put

for m + 1 ≤ j ≤ r,

sji = 0 (1 ≤ i ≤ m),

= sδji (m + 1 ≤ i ≤ r),

and put

S = (sji) =

(
A B
0 sIr−m

)

where B = (sji)1≤j≤m, m+1≤i≤r. Then it is obvious that IZ(Wi)x = (s1i, · · · , sri)
and fisj1 = sji for all i, j. Moreover, if we put

S ′ =

(
T −(1/s)TB
0 Ir−m

)

then this is defined as the element of M(r, Ox,X) by using the discussion in
section one of [Su-3] and SS ′ = S ′S = sIr is obvious. Hence the proposition
follows. q.e.d.

Applying the process used in the proof of Lemma 2.6, we can regard all
the elements in S ′

1 as in S1. By this lemma, we can see that ”semi-invertible
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along Z” is a natural extension of ”invertible along Z”. So we can use the
simillar way to [Su-3] for the proof of this step.

Now, we shall show δ′δ = 1S1 . To see this, we must check that whether
for {W1, · · · , Wr} ∈ S1, we can recover it from its image δ({W1, · · · , Wr})
through δ′. i.e., we must check whether the same statement of theorem in
section one in [Su-3] holds when {W1, · · · , Wr} are not invertible along Z
but semi-invertible along Z. If this is proved, then by the construction of δ
and δ′, it follows that δ′δ = 1S1 . So what we have to prove is the following.

Proposition 2.7
Let X be a Noetherian scheme and Z be a normal divisor of X. Take
W = {W1, · · · , Wr} ∈ S1 and put δ(W ) = {Or

X → F → 0}. If we put
elemF (Or

X) = E(−Z), then there are global sections s1, · · · , sr ∈ H0(X, E)
such that Z = Z(s1 ∧ · · · ∧ sr) and Wi = Z(s1 ∧ · · · ∧ ŝi ∧ · · · ∧ sr) for all i.

Proof. This can be proved by almost the same way as Theorem 1.2.3 in
[Su-3] in case that r = m. Between the proofs of Theorem 1.2.3 in [Su-3] and
this theorem, there is only one difference. That is, for each x ∈ B = ∩r

i=1Wi,
the generator of IZ(Wi)x is minimal or not. However, in Sumihiro’s proof,
this condition only works when proving that detS = sr−1u and u ∈ O×

x,X ,
where S = (sji)

r
i,j=1 are the generators of IZ(Wi)x as Definition 2.2 and s is

a local equation of Z at x ∈ B. So to finish this proof, it is sufficient to show
the following proposition and if it is proved, Proposition 2.7 can be proved
by the same way of [Su-3].

Proposition 2.8
With the above notation, det S = sr−1u and u ∈ O×

x,X .

Proof. Put fi = ai/b, b 	= 0 (where ai is the image of ai by the mor-
phism OX → OZ). Then the i(> 1)-th column of b(detS) is t(ais11 +
sh1i, · · · , aisr1 + shri) for some elements hij ∈ Ox,X . So br−1detS = sr−1u′

for some u′ ∈ Ox,X . By the assumption that SS ′ = S ′S = sIr, we have
u(detS ′) = s for some u ∈ Ox,X . If s|u, then detS′ is a unit and so rankS′ = r.
On the other hand, since S ′S = 0 and rank(S) ≥ 1 (since S 	= 0), we see that
dim(ker S ′) ≥ 1. This is a contradiction. Hence s|detS ′ and the proposition
is proved. q.e.d.

Now, let us finish the proof of Theorem 2.1. By Proposition 2.7, we
can recover the data W = {W1, · · · , Wr} ∈ S1 by using the map δ′ from
δ(W ) = {Or

X → F → 0}. Hence we can see that δ′δ = 1S1 . Therefore, the
one to one correspondence between S1 and S2 is gotton and Theorem 2.1 is
proved. q.e.d.
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Remark 2.1
It is obvious that not all ET-data {⊕rOX

β→ F → 0} (where X, Z are as the
above and F is an MCM OZ-module of rank r − 1 > 0) can be contained in
S2 but it is easy to see that if an MCM sheaf F is generated by r-sections,
we can find r-generating sections which make (Z, F ) geometric ET-data by
changing bases. Hence we can construct all the MCM sheaves which are of
rank r−1 > 0 and generated by r-sections from the data of S1. Theorem 2.1
is, in some sense, a geometric characterization of MCM sheaves on divisors.

Now, as in the remark of section one in [Su-3], when W1, · · · , Wr are
just only mutually linearly equivalent, we can construct from this data E =
E(Z, W1, · · · , Wr) : a torsion free coherent sheaf of rank r on X, which is
obtained as the kernel of the surjection Or

X → coker(IZ(W1) → Or
Z). In

[Su-3], it is proved if (W1, · · · , Wr) is invertible along Z, then E is locally
free. Let us consider the necessary and sufficient condition that E becomes
locally free in case that X is a regular algebraic scheme over a field k = k,
Z is an effective normal divisor on X and r > 1 is an integer.

It is obvious from the above discussion that E = E(Z, W1 · · · , Wr) is
locally free if and only if F is MCM of rank r − 1. Looking at the diagram
in Step 1, we see that if E is locally free, then ⊕rOX → F is geometric
ET-data. Hence we get the next conclusion.

Corollary 2.9
Let X be a nonsingular variety over an algebraically closed field and Z be
an effective normal divisor on X. Let W1, · · · , Wr (r ≥ 2) be effective Weil
divisors on Z and assume that Wi and Wj are linearly equivalent for all i, j =
1, · · · , r. Then E(Z, W1, · · · , Wr) is locally free if and only if {W1, · · · , Wr}
is semi-invertible along Z.

Proof. If {W1, · · · , Wr} ∈ S1, then E is locally free by Lemma 1.1 and
Lemma 1.3. Conversely, if E is locally free, then from the above discussion
we see that {⊕rOX → F → 0} ∈ S2 and if we send this element by δ′, the
image is obviously {W1, · · · , Wr}. Since the image of δ′ is contained in S1

(this follows from the proof of Theorem 2.1), we have the conclusion. q.e.d.

At last of this section, we shall show a way to construct MCM sheaves
on divisors from geometric data (Z, W1, · · · , Wr). The key point is that the
assumption Z is normal in Theorem 2.1 is not necessary when we do not
need geometric data.

Theorem 2.10
Let X be a noetherian scheme, Z be an effective integral Cartier divisor
which has no embedded prime cycles. Let W1, · · · , Wr (r ≥ 2) be effective
Weil divisors on Z which satisfy the following conditions.
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1) There are elements fi ∈ k(Z) (i = 1, · · · , r) which induce, by its
multiplication, an OZ-module isomorphisms fi : IZ(W1) → IZ(Wi) for each
i.

2) With respect to the isomorphisms of 1), they are (semi-)invertible along
Z.

Then the cokernel of the OZ-module morphism IZ(W1)
(1,f2,··· ,fr)−→ Or

Z is an
MCM OZ-module of rank r − 1.

Proof. This follows from Lemma 1.3. For an explicit proof, see Theorem
4.3 in [A]. q.e.d.

In [Su-3], the normality of Z and invertible along Z are assumed. Here,
we only need that Z is integral and semi-invertible along Z. This will be
used in section five to construct the Tango bundle.

3 The commutativity of a closed immersion

and an elementary transformation

In this section, let us consider when an elementary transformation and a
closed immersion commute. They are used in the next section. The main
result of this section is as follows.

Proposition 3.1
Let X be a nonsingular variety over an algebraically closed field k, E be an
r(> 1)-bundle on X, Z be an effective integral divisor, and (Z, F ) be m-
ET-data for E (1 ≤ m ≤ r − 1). Let us take a nonsingular effective divisor
D ⊂ X. Assume that Z ′ := Z ∩ D ⊂ D is an effective integral divisor of
D. Let us put E ′ := elemF (E). Then E ′|D � elemF |D(E|D) if and only if
AssX(F ) ∩ D = φ.

Proof. Let us consider the following exact sequence of the elementary

transformation 0 → E ′ f→ E → F → 0. Restricting this sequence to D, we

obtain the sequence E ′|D f |D→ E|D → F |D → 0. What we must show is that
f |D is injective precisely when AssX(F ) ∩ D = φ. This can be seen if we
prove AssX(F )∩D = φ precisely when Tor1

X(F,OD) = 0. This is easy to see
if we consider the projective resolution 0 → OX(−D) → OX → OD → 0 of
OD. Tensoring F to this resolution and considering when F (−D) → F is
injective, it is precisely when AssX(F ) ∩ D = φ. q.e.d.

The next proposition requires more conditions but contains a more general
result. i.e., we consider the restriction not only to divisors but also to closed
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subschemes of any dimension. Moreover, it has an application to the geo-
metric data. i.e., when given a closed subscheme H ⊂ X, geometric ET-data
(Z, F ) for Or

X which corresponds by Theorem 2.1 to (Z, W1, · · · , Wr) ∈ S1,
and the bundle E := elemF (Or

X) = E(Z, W1, · · · , Wr) constructed by these
data, we consider when the restrected vector bundle E|H and the bundle con-
structed by restricted data E(Z ∩ H, W1 ∩ H, · · · , Wr ∩ H) are isomorphic.

Proposition 3.2
Let X be a nonsingular variety over an algebraically closed field k of dim X =
n ≥ 1, Z be an effective integral divisor, (Z, F ) be m-ET-data for Or

X (r >
1, 1 ≤ m ≤ r − 1). Let us take a nonsingular closed subscheme H ⊂ X
of dimension l (1 ≤ l ≤ n − 1). Assume that H ∩ Z is a locally complete
intersection and Z ′ := Z ∩H is an effective integral divisor of H . Let us put
E := elemF (Or

X). Then
(1) If rank(F |H) = r − m, then it holds that E|H = elemF |H(Or

H).
(2) Assume moreover that (Z, F ) is geometric ET-data which corresponds

to (Z, W1, · · · , Wr) ∈ S1. Let us put E = E(Z, W1, · · · , Wr). If Z ′ 	⊂ Wi for
all i, then E|H � elemF |H(Or

H) � E(Z ′, W1 ∩ H, · · · , Wr ∩ H).

Proof. (1) Let us denote F |H by G. Pick and fix x ∈ Z ′. Let us rep-
resent Ox,Z ′ = Ox,X/(α1, α2, · · · , αl+1), where (α1, · · · , αl+1) is a regular se-
quence in Ox,X and generate the defining ideal of H ∩ Z at x. If we prolong
(α1, · · · , αl+1) to the maximal regular sequence (α1, · · · , αl+1, αl+2 · · · , αn),
then we can prove that (αl+2, · · · , αn) is a regular sequence for Gx by the
same way of Lemma 1.3. Hence this is MCM on Z ′. Moreover, since rank G =
r − m, we have Supp(G) = Z ′. So we have a surjection E|H → elemG(Or

H)
and this is an isomorphism since locally, they are both free modules of the
same rank over a local Noetherian ring.

(2) From the proof of Theorem 2.1, it is sufficient to show that ϕ : E|H →
Or

H is geometric ET-data. For Theorem 2.1 states that if so, there exists the
data (Z ′, W ′

1, · · · , W ′
r) ∈ S1 such that E(Z ′, W ′

1, · · · , W ′
r) � E|H and by the

construction, it is obvious that (Z ′, W ′
1, · · · , W ′

r) = (Z ′, W1∩H, · · · , Wr∩H).
Now, let us put tji as an image of sji in Ox,H , where x ∈ B = ∩Wi and
{sji}r

j=1 represent the usual generators of IZ(Wi)x (i = 1, · · · , r) as in section
two. Let us put tji as its image in OZ′ . What we must show is that no rows of
t(tji) vanish. If t1i = · · · = tri = 0 for some i, then it implies that (s1i, · · · , sri)
are contained in the defining ideal of Z ∩ H . This means that there exists
an open set U 	= φ which intersects with Z and Wi ∩ U ⊃ Z ′ ∩ U 	= φ. This
contradicts our assumption. q.e.d.
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4 The Splitting Criterion of rank one coher-

ent sheaves on a divisor in Pn
k

In this section, we shall consider all the problems on Pn
k , where n ≥ 3 or

4, and k is an algebraically closed field. In Remark 1.2, we saw that in our
elementary transformation, elemF (O2

Pn
k
) (n ≥ 4) splits if F is a line bundle.

It is natural to consider that this converse is true or not. i.e., if elemF (O2
Pn

k
)

splits, then is F locally free on Z? In this section, we consider this problem
in a certain situation and give some answer and some counter-example.

At first, let us recall the result stated in section one, which gives a splitting
condition for elemF (O2

Pn
k
).

Lemma 4.1 ([Su-2])
Let X be Pn

k (n ≥ 4), (Z, F ) be 1-ET-data for O2
X , and elemF (O2

X) =: E. If
F is a line bundle on Z, then E splits into the sum of line bundles.

Proof. See Remark 1.2. q.e.d.

Note that this lemma cannot be applied to the case of vector bundles
on the projective line, plane, and 3-fold. This follows from the result in
[Mar], i.e., all the bundles (including indecomposable bundles) on them can
be constructed by Maruyama’s elementary transformation.

Secondly, we need the following lemma, which is the splitting criterion of
2-bundles constructed by 1-ET-data (Z, F ) for O2

Pn
k

when n ≥ 3.

Lemma 4.2
Let X be Pn

k (n ≥ 3), (Z, F ) be 1-ET-data for O2
X and E := elemF (O2

X).
Let us see the following diagram of our elementary transformation.

0

��

0

��
0 �� O2

X(−Z)

��

O2
X(−Z)

��
0 �� E

��

�� O2
X

ϕ ��

��

F �� 0

0 �� F ′ ��

��

O2
Z

��

��

F �� 0

0 0

Then E splits if and only if H i(Z, F ′(k)) = 0 for all k and i = 1, · · · , n−2.
(resp : H i(Z, F (k)) = 0 for all k and i = 1, · · · , n − 2).
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Proof. If E splits, then from the exact sequence

0 → O2
X(−Z) → E → F ′ → 0,

we have the statement on F ′. Conversely if H i(Z, F ′(k)) = 0 for all k ∈ Z

and i = 1, · · · , n− 2, then the same exact sequence implies H i(X, E(k)) = 0
for all integers k and i = 1, · · · , n − 2. By Serre duality, Hn−1(X, E(k))
also vanishes for all k ∈ Z. Hence by Horrocks’ splitting criterion, E splits
into the sum of line bundles. The result for F can be gained from the exact
sequence

0 → E → O2
X → F → 0

and repeating the same discussion as in the case of F ′. q.e.d.

Note that this lemma cannot be applied to the vector bundles on the
projective plane, since Z is a one dimensional variety in this case and so
H1(Z, F ′(k)) = 0 for all k ∈ Z never happen.

Whether the converse of Lemma 4.1 hold or not is a natural question.
i.e., given 1-ET-data (Z, F ) for O2

Pn
k

and if E := elemF (O2
Pn

k
) splits, then

is the MCM sheaf F a line bundle? Or generalizing this problem from the
viewpoint of Lemma 4.2, when given a coherent sheaf F on a projective
variety X which satisfies H i(X, F (k)) = 0 (i = 1, · · · , dim X − 1), then is
the sheaf F splits into the sum of line bundles? This is of course not true in
general, and we will show a counter example in this section later. However,
in a special situation, we can prove an affarmative result to this problem by
using the elementary transformation.

Proposition 4.3
Let Z be an effective divisor of Pn

k , where k is an algebraically closed field
and n ≥ 5. Assume that codimX(Sing(Z)) ≥ 5. Let us take an MCM OZ-
module F of rank one, which is generated by two global sections. Then F
is a line bundle if and only if H i(Z, F (k)) = 0 for i = 1, · · · , n − 2 and all
k ∈ Z.

Proof. Note that in this situation, (Z, F ) is 1-ET-data for O2
P5

k
. Let us

put E := elemF (O2
P5

k
). Assume that F is a line bundle. Then by Lemma 4.1,

E splits into the sum of line bundles. So Lemma 4.2 implies H i(Z, F (k)) = 0
for i = 1, · · · , n − 2 and all k ∈ Z. Hence if part is true. Let us assume the
converse. We prove this direction by induction on n. At first, we prove when
n = 5. By Bertini’s theorem, there is a non empty open set U ′ ⊂ Gr(n, n−1)
such that for all H ∈ U ′, a divisor Z ∩ H of H � Pn−1 is smooth. Since
F is coherent, Ass(F ) consists of only finitely many points. So the set of
hyperplanes in Pn

k which contain points of Ass(F ) becomes a closed set D
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in Gr(n, n − 1). Let us put U := U ′ \ D 	= φ. Then for each H ∈ U, F |H is
an MCM OZ∩H-module of rank 1 by Proposition 3.1. Hence for all H ∈ U ,
(Z ∩U, F |H) is 1-ET-data for O2

H and it holds that E|H � elemF |H(O2
H). On

the other hand, let us put for x ∈ X, Sx = {H ∈ Gr(n, n−1) | x ∈ H}. Then
since Sx � Pn−1, we see that there are only finitely many points {xi}i∈I such
that Sxi

∩U = φ. Put V = Z\{xi}i∈I . Then for all x ∈ V , there is at least one
H ∈ U which contains x. Now, let us fix for each x ∈ V one Hx ∈ U which
contains x. Note that by the assumption, Grothendieck-Lefschetz theorem
holds on Z ∩ H . Combining this result with the above consideration, we
can see that for all x ∈ V , there is an isomorphism ϕx : OHx∩Z(k) → F |Hx

(where k is an integer and independent of x, since we take H generally and
the first chern class of F does not change. This follows immediately if we
consider the locally free resolution of F , i.e., 0 → E → O2

X → F → 0 and
by the definition of U). Let us extend the morphism ϕx to the one on Z. It
is impossible for all x ∈ {xi}i∈I , but we have already omitted these points.
So we can get the exact sequence

0 → F (k) → F (k + 1) → F |Hx(k + 1) → 0

for all x ∈ V . Now, from the assumption and the following exact sequence

0 → Hom(OZ(k − 1), F ) → Hom(OZ(k), F ) → Hom(OZ∩Hx(k), F |Hx)

→ Ext1(OZ(k − 1), F ) = H1(F (−k + 1)) = 0,

we can extend ϕx to the one on Z. Let us denote it by fx : OZ(k) → F .
What we have proved is that for each x ∈ V , there exists Hx ∈ Gr(n, n− 1)
such that x ∈ Hx and on Hx, there is an isomorphism ϕx : OZ∩Hx(k) → F |Hx

which extends to fx on Z. Fix one such point x ∈ Z and f = fx. We shall
prove that this is in fact an isomorphism. Let us restrict f to H ′ = Hy for
y ∈ V . Since Z ∩ H 	= φ, we also have Z ∩ H ∩ H ′ 	= φ. Hence f |H∩H′ 	= 0.
Since the first chern class of F |H′ is equal to k and F |H′ is a line bundle
on a smooth divisor of dimension more than three, Grothendieck-Lefschetz
Theorem implies that f |H′ is an isomorphism. Hence f is surjective on V by
Nakayama’s lemma. Since OZ(k) and F are rank one and torsion free sheaves,
we can see that f is injective. Then on V, f is an isomorphism and since F
and OZ(k) are reflexive sheaves and codimZ(Z \ V ) ≥ 2, we can extend this
isomorphism to Z. Thus we have finished the proof when n = 5. For general
n, we can apply the same discussion by using the inductive assumption. i.e.,
the general cutting of given data (Z, F ) on Pn

k satisfies the same condition
of the statement. Hence by induction, F is a line bundle when restricted to
general hyperplanes. So the same discussion on n = 5 can be applied. q.e.d.
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This proposition is not true on a divisor Z such that codimPn
k
(Sing(Z)) ≤

4. Let us make a counter example as follows.

Let us put P = Pn
k , k as above, n ≥ 4, and put X, Y, Z, W, · · · as

coordinates of P . Consider a divisor D ⊂ X defined by XY − ZW = 0
and Weil divisors W1 = (X = W = 0), W2 = (Y = Z = 0) in D. It is
easy to see that Sing(D) is a linear space of codimension three in Z. For
example when n = 4, Sing(D) = {(0 : 0 : 0 : 0 : 1)} and when n = 5,
it is a projective line. In particular, D is normal. Of course, Wi is not a
Cartier divisor. If we put f = Z/X ∈ k(D), we can see that W1 and W2 are
rationally equivalent and they are invertible along D by this rational function
f . Hence from these data, we can construct a diagram of an elementary
transformation (using Theorem 2.10) and from the easy calculation, we can
see that elemF (O2

X) � OX(−1)2. We can also see that B = W1 ∩ W2 	= φ
implies that F is not a line bundle. i.e., even if the elementary transformation
of O2

Pn
k

by the data (D, F ) is a splitting bundle, F is not always locally free.
This also gives an MCM OD-module of rank one, generated by two global
sections and H i(D, F (k)) = 0 for all k ∈ Z and i = 1, 2, · · · , n − 2, however
not a line bundle.

Remark 4.1
In the above discussion, we used the fact that F is line bundle if and only if
B = φ if and only if ∀Wi is a Cartier divisor. This is easy to show.

5 An Example

In this section, we shall show an example of a vector bundle construction by
an elementary transformation introduced in this article. What we are going
to construct is the bundle, constructed by Tango in [Ta-1], which is the only
known indecomposable rank two bundle on P5

k where k is an algebraically
closed field of characteristic two (for our convenience, let us call this bundle
Tango bundle and denote by ET ). Here, we assume that the chern polynomial
of ET is adjusted as ct(ET ) = 1−6t+12t2. Now, let us find 1-ET-data (Z, F )
for O2

P5
k

such that elemF (O2
P5

k
) � ET . This construction is as follows.

On P5
k, let us put Ui = (P5

k)Xi
and define an ideal sheaf I, J ⊂ OP 5

k
. For

that purpose, let us define the local generators of I and J on each open set
Ui as follows.

I|U0 = 1/X6
0(X

6
5 +X2

0X
2
1X2

2 +X2
3X

2
4X

2
5 +(X2

0X
2
3 +X2

2X
2
5 )x, X4

0X
2
1 +X4

5X
2
4 +

X2
5X2

0x + X4
2X2

0 + X4
4X

2
3 + X2

4X
2
2x) (where x = X0X3 + X1X4 + X2X5),
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I|U1 = 1/X6
1(X

6
1 + X6

3 , X4
1X

2
2 + X4

3X
2
5 + X2

3X2
1x),

I|U2 = 1/X6
2(X

6
2 +X2

0X
2
1X2

2 +X2
3X

2
4X

2
5 +(X2

1X
2
4 +X2

2X
2
5 )x, X4

1X
2
2 +X4

3X
2
5 +

X2
3X2

1x),

I|U3 = 1/X6
3(X

4
1X2

2 + X4
3X

2
5 + X2

3X
2
1x, X6

1 + X6
3 ),

I|U4 = 1/X6
4 (X4

0X
2
1 + X4

5X
2
4 + X2

5X
2
0x + X4

2X2
0 + X4

4X
2
3 + X2

4X
2
2x, X6

2 +
X2

0X2
1X

2
2 + X2

3X
2
4X2

5 + (X2
1X

2
4 + X2

2X
2
5 )x),

I|U5 = 1/X6
5(X

4
1X2

2 +X4
3X

2
5 +X2

3X
2
1x, X6

5 +X2
0X

2
1X

2
2 +X2

3X
2
4X

2
5 +(X2

0X
2
3 +

X2
2X2

5 )x),

J |U0 = 1/X6
0 (X4

5X
2
3 + X4

1X2
0 + X2

1X
2
5x + X4

4X
2
5 + X4

0X2
2 + X2

0X
2
4x, X6

4 +
X2

0X2
1X

2
2 + X2

3X
2
4X2

5 + (X2
0X

2
3 + X2

1X
2
4 )x),

J |U1 = 1/X6
1 (X4

3X
2
4 +X4

2X
2
1 +X2

2X
2
3x, X6

1 +X2
0X

2
1X2

2 +X2
3X

2
4X

2
5 +(X2

1X
2
4 +

X2
2X2

5 )x),

J |U2 = 1/X6
2 (X4

3X
2
4 + X4

2X
2
1 + X2

2X
2
3x, X6

2 + X6
3 )

J |U3 = 1/X6
3 (X6

2 + X6
3 , X4

3X2
4 + X4

2X
2
1 + X2

2X
2
3x),

J |U4 = 1/X6
4 (X6

4 +X2
0X

2
1X

2
2 +X2

3X
2
4X

2
5 +(X2

0X
2
3 +X2

1X
2
4 )x, X4

3X
2
4 +X4

2X
2
1 +

X2
2X2

3x),

J |U5 = 1/X6
5 (X6

1 +X2
0X

2
1X

2
2 +X2

3X
2
4X

2
5 +(X2

1X
2
4 +X2

2X
2
5 )x, X4

4X
2
5 +X4

0X
2
2 +

X2
0X2

4x + X4
5X2

3 + X4
1X

2
0 + X2

1X
2
5x).

Now, let us define Z as the zero scheme of (X6
1 + X6

2 + X6
3 + X2

0X
2
1X

2
2 +

X2
3X2

4X
2
5 +(X2

1X
2
4 +X2

2X
2
5 )x = 0), and take a rational function f = (X4

5X
2
3 +

X4
1X2

0 + X2
1X

2
5x + X4

4X
2
5 + X4

0X
2
2 + X2

0X2
4x)/(X6

5 + X2
0X

2
1X

2
2 + X2

3X
2
4X2

5 +
(X2

0X2
3 +X2

2X2
5 )x) ∈ k(Z). We have finished the preparation for constructing

our (Z, F ).
By the calculation, we can see that Z is integral (but not normal) and

that Ii|Ui∩Uj
� Ij |Ui∩Uj

, Ji|Ui∩Uj
� Jj |Ui∩Uj

for all i, j = 0, · · · , 5. Hence they
define ideal sheaves I, J ⊂ OP5

k
. Note that from this definition, the closed

subschemes defined by I and J are contained in Z. From the calculation,
we can see that f defines an isomorphism from I to J . Note that both data
cannot be patched if the characteritc of the base field is not two. In the
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above notation, let us put the generator of I (resp : J) on Ui as (ti11, t
i
21)

(resp : (ti12, t
i
22)), where the order is the same as the above one. e.g.,

t011 = 1/X6
0(X

6
5 + X2

0X
2
1X

2
2 + X2

3X
2
4X

2
5 + (X2

0X2
3 + X2

2X
2
5 )x),

t021 = 1/X6
0(X

4
0X2

1 + X4
5X

2
4 + X2

5X
2
0x + X4

2X
2
0 + X4

4X
2
3 + X2

4X
2
2x).

We can check that (fti11, fti21) = (ti12, t
i
22) for i = 0, · · · , 5 (where tji is the

image of tji by the morphism OX → OZ). Then let us define a rank one OZ-

module F as the cokernel of the morphism I
(1,f)→ O2

Z . If we denote the zero
scheme of I (resp : J) by W1 (resp : W2), it is obvious that they are rationally
equivalent and from the choice of generators, we can see that (W1, W2) are
invertible along Z with respect to the isomorphism induced by f . Here, by
using Theorem 2.10, we can see that (Z, F ) is 1-ET-data for O2

P5
k
. Let us

put E(−6) := elemF (O2
P5

k
) and we shall show that E(−6) � ET . To see

this, put Tk = (tkij)i,j=1,2. Then we can make the diagram of our elementary
transformation as follows.

0

��

0

��
O2

P5(−6)

α′
��

O2
P5(−6)

��
0 �� E(−6)

��

α �� O2
P5

��

�� F �� 0

0 �� I

��

�� O2
Z

��

�� F �� 0

0 0

Note that from the construction of I and J , the injection α is represented
on Ui by tTi. Hence if we denote the transition matrices of E(−6) on Ui∩Uj

by Nij , then we have

tTiNij = tTj (i, j = 0, · · · , 5). (12)

This follows from id ◦ α|Uj
= α|Ui

◦ Nij . Therefore we can calculate the
transition matrix of E(−6) from these data and comparing them with the
one calculated in [Ta-2], we can conclude that {Nij} is the transition matrices
of (ET (6))∗. Since (ET (6))∗ � ET , we can conclude that E(−6) � ET .

Note that since this Z is integral but not normal, we cannot replace
these ET-data by geometric ET-data. Of course, if we can find more general
sections of ET (and this is possible if tensored enough ample line bundles),
it can be possible.
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