CANONICAL HEIGHT FUNCTIONS DEFINED ON THE AFFINE
PLANE ASSOCIATED WITH REGULAR POLYNOMIAL
AUTOMORPHISMS

SHU KAWAGUCHI

ABSTRACT. Let f : A2 — A? be a regular polynomial automorphism (e.g., a Hénon map)
defined over a number field K. We construct canonical height functions defined on A% (K)
associated with f. These functions satisfy the Northcott finiteness property, and an K-
valued point on A?(K) is f-periodic if and only if its height is zero. As an application of
canonical height functions, we give a refined estimate on the number of points with bounded
height in an infinite f-orbit.

INTRODUCTION AND THE STATEMENT OF THE MAIN RESULTS

One of the basic tools in Diophantine geometry is the theory of height functions. On
Abelian varieties defined over a number field, Néron and Tate developed the theory of canon-
ical height functions that behave well relative to the [n]-th map (cf. [8, Chap. 5]). On certain
K3 surfaces with two involutions, Silverman [12] developed the theory of canonical height
functions that behave well relative to the two involutions. For the theory of canonical height
functions on some other projective varieties, see for example [1], [14], [6]. In this paper, we
construct canonical height functions defined on the affine plane, which behave well relative
to regular polynomial automorphisms, and in particular Hénon maps.

A Hénon map (also called a generalized Hénon map) is a polynomial automorphism f :
A% — A? of the form

o 1(2) = ()

where a # 0 and p is a polynomial of degree d > 2. Hénon maps are basic objects in
polynomial automorphisms of A? in the sense that every polynomial automorphism of A% of
degree d > 2 over C is conjugate to either an elementary map, or a composite of Hénon maps
(Friedland-Milnor [3]). A regular polynomial automorphism f : A> — A? is by definition a
polynomial automorphism of A? of degree greater than or equal to 2 such that the unique
point of indeterminacy of f is different from the the unique point of indeterminacy of f—T,
where the birational map f : P?--- — P2 (resp. fL : P?... — P?) is the extension
of f (resp. f~'). Hénon maps are examples of regular polynomial automorphisms. For
more details, see the survey of Sibony [10] and the references therein. Over a number field,
Silverman [13] studied arithmetic properties of quadratic Hénon maps, and then Denis [2]
studied arithmetic properties of Hénon maps and some classes of polynomial automorphisms.
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Marcello [9] studied arithmetic properties of some other classes of polynomial automorphisms
of the affine spaces, including regular polynomial automorphisms.

Our first result shows the existence of height functions that behave well relative to regular
polynomial automorphisms of A2.

Theorem A. Let f : A2 — A% be a reqular polynomial automorphism of degree d > 2
defined over a number field K. Then there exists a function h : A*>(K) — R with the
following properties:

(1) hpy > h on A2 (K) (Here hy, is the logarithmic naive height function, and hy,, >< h
means that there are positive constants a,, as and constants by, by such that a1hy, +b; <
h< aghnv +by) ;

(i) hof+hof'=(d+1)h,

Moreover, h enjoys the following uniqueness property: if/f\bl is another function satisfying (i)
and (ii) such that h' =T+ O(1), then ' = h. We call a function h satisfying (i) and (i) a
canonical height function associated with the regular polynomial automorphism of f.

It follows from (i) that T satisfies the Northcott finiteness property. Namely, for any
positive number M and positive integer D, the set {z € A2(K) | [K(z) : K] < D, h(z) < M}
is finite. This leads to the following corollary, which shows that the set of K-valued f-periodic
points is not only the set of bounded height but also characterized as the set of height zero
with respect to a canonical height function associated with f.

Corollary B. Let b A2 (K) — R be a canonical height function associated with a regular
polynomial automorphism f defined over a number field K. Then
(1) h(z) > 0 for all v € A2(K).
(2) h(z) = 0 if and only if x is f-periodic. (Here, x € A?(K) is said to be f-periodic if
f™(x) = x for some positive integer m.)

As an application of canonical height functions, we obtain an estimate on the number of

points with bounded height in an infinite f-orbit. First we introduce some notation and
terminology. For a canonical height function h associated with f, we set

W0 = 5 (A@) - 6 e = 7 () - ).

Then h* > 0 and h~ > 0, and /f;*'( ) = 0 if and only if fh- (x) = 0 if and only if z is f-periodic
(cf. Lemma 5.1). For a point x € A%2(K), let Of(z) := {f'(z) | | € Z} denote the f-orbit of
x. For a non f-periodic point » € A?(K), we set

WOy (x)) = og, (A*(n)h~ (v))

for any y € O(z). Then E(Of(a:)) is well-defined, i.e. h,(Of(x)) is independent of the choice
of y € O(x). Moreover, as a function of z, we have h(Of( )) >< minyeo, (2 log, h(y) on
A%(K) \ {f-periodic points} (cf. Lemma 5.2).
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1, where z € A*(K) is not an f-periodic point ([13, Theorem C], [2, Théoréme 2], and [9,
Théoreme Al). The next theorem gives its refinement.

For regular polynomial automorphisms of degree d, it is known that limy_,

Theorem C. Let f : A> — A? be a regular polynomial automorphism of degree d > 2
defined over a number field K, and h a canonical height function associated with f. Suppose
r € A*(K) is not an f-periodic point. Then,

(0.2) #{y € O4(x) | hno(y) < T} =log, T> — h(O4(z)) + O(1) as T — oo,
where the O(1) constant depends only on f and the choice of/f\z.

We can construct a canonical height function To starting from h,,, and considering iteration
by f and f~' (cf. Theorem 4.1 and its proof). Thus, if we take h, for h in Theorem C, then
the O(1) constant in (0.2) depends only on f.

The contents of this paper is as follows. In §1 we briefly review the properties of height
functions. In §2 and in §3 we show that if f is a regular polynomial automorphism of degree
d > 2 then there is a constant ¢ such that

(0.3) oo (f (2)) + P (f H(2)) > (d + é) P () — €

for all + € A?2(K). To show (0.3) when f is a Hénon map in §2, we use the results of
Hubbard, Papadopol and Veselow [4, §2], which gives an explicit description of blow-ups of
P? such that f : P?2-.. — P? extends to a morphism ¢ : W — P2, where W is the surface
obtained from these blow-ups. To show (0.3) in general in §3, we give a similar explicit
description of blow-ups for regular polynomial automorphisms, using the results of §2 and
the classical results of Jung [5] and van der Kulk [7] about polynomial automorphisms of
the affine plane. In §4 we prove Theorem A and Corollary B in a more general setting of
polynomial automorphisms of A" that satisfy an inequality similar to (0.3). In §5 we prove
Theorem C in this more general setting. On certain K3 surfaces, Silverman counted the
number of points with bounded height in a given infinite chain ([12, §3]). Our method of
proof of Theorem C is inspired by his method.

1. QUICK REVIEW ON HEIGHT THEORY

In this section, we briefly review the properties of height functions that we will use in this
paper.

Let K be a number field and O its ring of integers. For z = (x¢ : --- : x,) € P"(K), the
logarithmic naive height of x is defined by

1
ha(2) = 5 > max{—ordp(z)}log#(Ox/P) + Y max{log|o(w:)[}
PeSpec(Ok)\{0} a:K—C

This definition naturally extends to all points x € P*(Q) as to give the logarithmic naive

height function h,, : P"(Q) — R.
We begin by the following two basic properties of height functions.
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Theorem 1.1 (Northcott’s finiteness theorem, [11] Corollary 3.4). For any positive num-
ber M and positive integer D, the set

{r € P" (@ | [Qx) : Q) < D, hyy(w) < M}
s finite.

Theorem 1.2 ([11] Theorem 3.3, [8] Chap. 4, Prop. 5.2). (1) (Height machine) For any
projective variety defined over Q, there exists a unique map

{real-valued functions on X(Q)}
{real-valued bounded functions on X(Q)}’

with the following properties:
(i) hx,rem = hxr + hxm + O(1) for any L, M € Pic(X);
(ii) If X =P and L = Opn(1), then hpn o) = hno + O(1);
(iii) If f : X — Y is a morphism of projective varieties and L is a line bundle on X,
then hX,f*L = hy,L o f + 0(1)
(2) (Positivity of height) Let X be projective variety defined over Q and L a line bundle
on X. We set B = Supp(Coker(H®(X,L) ® Ox — L)). Then there exists a constant
c1 such that hx (x) > ¢ for all v € (X \ B)(Q).

A rational map f = [Fo: Fy: -1 Fy] : P" -+« — P" defined over Q is said to be of degree
d if the F}’s are homogeneous polynomials of degree d over Q, with no common factors. Let

Iy C P*(Q) denote the locus of indeterminacy.

Theorem 1.3 ([8] Chap. 4, Lemma 1.6). Let f : P"--- — P"™ be rational map of degree d
defined over Q. Then there exists a constant co such that

P (f(2)) < d by () + 2

hx : Pic(X) —

L+— hX,L

for all z € P*(Q) \ 1.

2. GEOMETRIC PROPERTIES OF HENON MAPS

In this section, we will show (0.3) for Hénon maps. The results of this section are gener-
alized in §3 for regular polynomial automorphisms.

Consider the Hénon map
z\ _ (p(x) —ay
()= (),

where a # 0 and p is a polynomial of degree d > 2. Then f extends to the birational map
f:P?... — P? given in homogeneous coordinates as

[x Z9(X/Z) — aY 24
(2.1) Fly| = X741
Z 74

Let H be the line at infinity on P?2. Then f has the unique point of indeterminacy p =
t0,1,0], and f maps H \ {p} to a point q = '[1, 0, 0].
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To show (0.3), as Silverman [13, §2] did for quadratic Hénon maps, we need an explicit de-
scription of blow-ups at (infinitely near) points on P? that resolve the point of indeterminacy
of f. This was carried out by Hubbard-Papadopol-Veselov [4, §2] in their compactification
of Hénon maps in C? as dynamical systems. Let us put together their results in the following
theorem. (Note that, for the next theorem, the field of definition of f can be any field, and
p(z) need not be monic.)

Theorem 2.1 ([4], §2). (1) The Hénon map (2.1) becomes well-defined after a sequence of
2d — 1 blow-ups. Explicitly, blow-ups are described as follows:
(i) First blow-up at p;

(ii) Next blow up at the unique point of indeterminacy, which is given by the intersection
of the exceptional divisor and the proper transform of H;

(iii) For the next d — 2 times after (ii), blow-up at the unique point of indeterminacy,
which is given by the intersection of the last exceptional divisor and the proper
transform of the first exceptional divisor;

(iv) For the next d — 1 times after (iii), blow-up at the unique point of indeterminacy,
which lies on the last exceptional divisor but not on the proper transform of the
other exceptional divisors.

(2) Let fog_1 : W — P? be the extension of the Hénon map after the sequence of 2d—1 blow-
ups. Let E; denote the proper transform of i-th exceptional divisor (i =1,---,2d —1).
Then foq 1 maps E; (i = 1,---,2d — 2) to q, while Ey; , is mapped to H by an
1somorphism.

B)E’=—d, E’=-2(i=2,---,2d—2), and Ey,_," = —1.

The inverse f—1 of the Hénon map f is given by

S P ConN
Y| =\ pv/2)2¢ - X747 |,
Z T |

which has the unique point of indeterminacy q. Let my : W — P? be the blow-ups of P? given
in Theorem 2.1. We will make blow-ups so that the birational map f~Lomy : W--. — P?
lifts to a morphism. Noting that 7y induces an isomorphism 7y (P2 \ {p}) — P?\ {p}, we
take ' € W with my(q') = q. In a parallel way as for p, f~Lomy : W -+ — P? extends to
a morphism after 2d — 1 blow-ups starting at q'.

To summarize, let V' be the projective surface obtained by successive 2d — 1 blow-ups of
P? at p as in Theorem 2.1 and then successive 2d — 1 blow-ups at q in a parallel way as in
Theorem 2.1. Let 7 : V — P? denote the morphism of blow-ups. Then f o7 extends to a
morphism ¢ : V' — P2, and f~' o 7 extends to a morphism ¢ : V — P2,

v
/ ‘/W\
e ., TP

Let E; (1 <i < 2d— 1) be the proper transform of i-th exceptional divisor on V' on the
side of p, and Fj (1 < j < 2d — 1) be the proper transform of j-th exceptional divisor on V'
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Eb+1 Pb+1
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FIGURE 1. The configuration after blow-ups. The line H# has the self-
intersection number —3. The lines F; and F} have the self-intersection num-
bers —d. The lines Fy, E3,---, Foq_o and Fy, F3,---, F54 5 have the self-
intersection numbers —2. The lines Fy;_; and F,;_; have the self-intersection
numbers —1.

on the side of q. Let H# be the proper transform of H. The configuration of H#, E; and
F} is illustrated in Figure 1.

Proposition 2.2. Let f : A2 — A? be a Hénon map of degree d > 2. Let the notation be as
abowve.

(1) As divisors on 'V, we have

2d—1 2d—1
™ H = H#+ZZE+ZdE+ZJF+Zd
i=d+1 ]d+l
2d—1 2d—1
o H = dH#+E1+ZdE+Z 2d—zE+Zde+Zd2 "
1=2 i=d+1 7j=1 j=d+1
2d—1 2d—1
W H = dH#+szE+Zd2E+F1 ZdFJrZ (2d — j)F
i=d+1 j=d+1

(2) As a Q-divisor on V', we have

1
O H+ o H = <d+ 8) T H + D,



CANONICAL HEIGHT FUNCTIONS 7

where D is the Q-effective divisor given by

2d—1
p-?® 1H#JFEEDLZ (2d — i — 1)E;
d d i=d+1
1 d 2d—1
F1+Z jF+22d j—1)F
j=d+1

Proof. We will show the expression for ¢*H. Since ¢ maps H*, E; (1 <i < 2d —2) and
F; (1 <j<2d—1) to the point q, we have

©'H-H*=0, ¢*H-E;=0, ¢*H-F;=0
for1<1<2d—2and 1 <j<2d-—1. Since p maps Fy; 1 to H isomorphically, we have
©*H - Eyq1 = 1.

Noting that the Picard group of V is generated by H#, F;, F; (1 < i,j < 2d — 1), we set
o H = aH# + 320 "By + Z?dll ¢;Fj. From the above information and the information
of the configuration after blow-ups (cf. Figure 1), we have the system of linear equations

( —dby + by =0 ( —dcy+¢c4=0

a—2by+b3 =0 a—2¢c+c3 =0

—3a+by +cy =0, bi—1 — 2b; +bip1 =0 ¢j1—2¢+¢j11=0
by +bg—1 — 2bg + bgs1 =0 1+ cgo1 —2¢4+c4e1 =0

L bag—2 — bag—1 =1, L Cod—2 — C2g-1 = 0,

where 1 =3,--- ,d—1,d+1,---,2d—2and j=3,--- ,d—1,d+1,---,2d — 2. By solving
this system, we obtain the expression for ¢*H. Similarly we obtain the formula for ¢*H.
The formula for 7*H follows from the construction of V. (We can also show this by using
™H-H* =1, 7*H-FE; =0and 7*H - F; = 0 for all i and j.) The assertion (2) follows from
(1). O

Theorem 2.3. Let f : A2 — A? be a Hénon map of degree d > 2 defined over a number
field K. Then, there exists a constant ¢ such that

i (F(2)) + e (7 (1)) 2 (d+ é) () — ¢

for all v € A>(K).

Proof. We can prove Theorem 2.3 as in [13, Theorem 2.1]. Indeed, take » € A?(K).
Since 7 : V — P? gives an isomorphism Tlp1gpey 7 1(A?) — A?, there is a unique point
z € V with 7(z) = x. By Proposition 2.2, we have

~ ~ 1
hv,0p (o= 1) (T) + hyv,0y (1) (T) = <d+ 8) hv,0p (x=my (T) + hyv,0,(p)(T) + O(1).
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~—

It follows from Theorem 1.2(1) that hv,o, (o= 1) (%) = hp2.0y () (0(2))+O(1) = hp2. 0y () (f(2))+
O(].) We Similarly have h‘/,OV(’l/}*H)(g) = h[P”,Oy(H)(fil(x)) + O(].) and h’V,Ov(Tr*H)(%)

hp2,0, () (®) + O(1). On the other hand, since 7 & Supp(D), we know from Theorem 1.2(
that there is a constant c, independent of z such that hy,o, (p) (Z) > cy. Hence we get t

assertion.

Oz

3. GEOMETRIC PROPERTIES OF REGULAR POLYNOMIAL AUTOMORPHISMS

In this section, we show (0.3) for regular polynomial automorphisms of A?. First we
recall the definition of regular polynomial automorphisms of A%2. Consider a polynomial
automorphism of degree d > 2 of the form

()= ()

where p(x,y) and ¢(x, y) are polynomials in two variables, and d is the maximum of the degree
of p and the degree of ¢. Let f : P*.-. — P? be the extension of f given in homogeneous
coordinates as
X Z499(X/2,Y]2Z)
F\Y| = |2%(X/2,Y/Z)
Z Z1

As in §2, let H denote the line at infinity. Then f has a unique point of indeterminacy
on H, denoted by p. Let f~!': A2 — A2 be the inverse of f, and f~1 : P?-.. — P? be its
extension. Then f—! has a unique point of indeterminacy on H, denoted by q. A polynomial
automorphism of A? is said to be reqular if p # q. Note that Hénon maps are regular, since
p="0,1,0] and q = *[1,0, 0] for Hénon maps.

Let f : A> — A% be a polynomial automorphism (f need not be a regular polynomial
automorphism for the moment). We will give an explicit description of blow-ups of P? that
resolve the (infinitely near) points of indeterminacy of f. To this end, we use the classical
results of Jung [5] and van der Kulk [7] as follows. For a field K, let

_ . A2 2 (T ar + by + s a,b,c,d,s,t € K,
A_{f'A_}A’<y>'_><cx+dy+t) ad — be £ 0
be the group of affine automorphisms, and let

E= {f P A7 — A% (g) > (axb;fgy)>

be the group of elementary automorphisms (also called triangular automorphisms, or de
Jonqueres automorphisms).

a,bEKX,cEK}
P(y) € K[Y]

Theorem 3.1 (Jung, van der Kulk, cf. [3], §2). Let f: A> — A? be a polynomial automor-
phism of degree d > 2.

(1) There exist an integer | > 1, aq,--+ ,aqp, 1 € A, and eq,--+ ,6; € E such that e; ¢ A
for1<i<lando; & E for2 <i<I and that

f=aq1o0g 0000 - 0g100.
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(2) If f = a’m+1 oc, oa, o---0&,0a, is another such decomposition, then m = [ and there
exist By, , B, A\, -, N\ € AN E such that
a;:)\loal, a;:AioaioB;1 (2 <i<l),

/ -1 4 -1 ;
v = o B, g, =Dip1ogi0oN (1<i<l).

In other words, the group of polynomial automorphism of A? is the amalgamated product
of A and E over ANE.

If we set d; = dege; (1 < i <), then d; > 2. It follows from Theorem 3.1(2) that the
[-tuple of integers (di,--- ,d;) is independent of the choice of decompositions of f. We call
(dy,---,d;) the polydegree of f. (We note that the polydegree of f defined here is different
from the one given in [3, §2], where the polydegree of f is defined as (d;,--- ,d;). However,
for our purpose, the order (di,--- ,d;) is convenient.) It follows from [3, Theorem 2.1] that

(3.1) d=d - -d,.

Now we give an explicit description of blow-ups of P? that resolve the points of indeter-
minacy of f.

Theorem 3.2. Let A> — A? be a polynomial automorphism of degree d > 2, of polydegree
(dy,---,d;). Let f :P?--- — P? be the extension of f. Then f becomes well-defined after
(2dy — 1)+ - -+ (2d; — 1) blow-ups. Explicitly, blow-ups are described as follows:

(1) (i) First blow-up at the unique point of indeterminacy p of f;

(ii) Next blow up at the unique point of indeterminacy, which is given by the intersection
of the exceptional divisor and the proper transform of H;

(iii) For the next dy —2 times after (ii), blow-up at the unique point of indeterminacy, which
s given by the intersection of the last exceptional divisor and the proper transform of
the first exceptional divisor;

(iv) For the next dy — 1 times after (iii), blow-up at the unique point of indeterminacy,
which lies on the last exceptional divisor but not on the proper transform of the other
exceptional divisors.

(2) Let fog,—1 : Wi+ — P? be the extension of f after the sequence of 2d; — 1 blow-ups.
Let Ei(l)’ denote the proper transform of i-th exceptional divisor on Wy (i = 1,---,2d; — 1).
Let py be the unique point of indeterminacy of foq, 1. Then py € Eé}i)ll_l but po & Ei(ly for
1=1,---,2d;.

(3) (iv) Next blow-up at pe: This produces 2d,-th exceptional divisor;

(v) Next blow up at the unique point of indeterminacy, which is given by the intersection of
the 2d,-th exceptional divisor and the proper transform of the (2d; — 1)-th exceptional
divisor;

(vi) For the next dy —2 times after (ii), blow-up at the unique point of indeterminacy, which
is given by the intersection of the last exceptional divisor and the proper transform of
the 2d,-th exceptional divisor;

(vii) For the next dy — 1 times after (iii), blow-up at the unique point of indeterminacy,
which lies on the last exceptional divisor but not on the proper transform of the other
exceptional divisors.
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(4) Let foa,—1)+@ds—1) : Wa--+ — P? be the composite of 2dy — 1 blow-ups after fog,_1 :
Wy — P2 Let Ei@y denote the proper transform of ((2dy — 1) + i)-th exceptional
divisor on Wy (i = 1,---,2dy — 1). Let p3 be the unique point of indeterminacy of
J@di-1)+@2ds—1).- Then p3 € Eé?rl but not on the proper transform of the other excep-
tional divisors.

(5) We repeat this procedure for ds, - -+ ,d;. Then after the sequence of (2d;—1)+- - -+ (2d;—
1) blow-ups, we obtain the morphism fod, —1)-t(2d4,—1) : Wi — P2, which extends f. By
slight abuse of notation, we also denote by Ei(s) (s=1,---,L;i=1,---,2ds — 1) the
proper transform of ((2d,—1) - - -+(2ds_y —1)+1i)-th exceptional divisor on W,. Then, via

f(2di 1) 4(2d1- 1) Egi),—l is mapped isomorphically to H, while EZ-(S) ((s,1) # (1,2d,— 1))

and the proper transform of H on W, are mapped to q.

Proof. First we show the uniqueness of the point of indeterminacy in each step. Suppose
W is a non-singular rational surface and f, : W .- — P? is a birational map that extends
f:A?> — A%, Then, if f, is not a morphism, then f, has the unique point of indeterminacy.
Indeed, if p, is a point of indeterminacy of f,, then there is a line L on P? such that L is
contracted to p, by ﬁfl. Since f, extends to f, L must be equal to H. Hence p, = ﬁfl(L)
and is unique.

Let f = 108000 --0e10ay be a decomposition of f in Theorem 3.1(1). We set

gr=¢&1001, -+, (g—1=€E-1001_1, (g = Q410 00.

Then f = ggog_10---0g¢g; and each ¢g; : A2 — A? is a polynomial automorphism of
degree d; > 2. Let g; : P?--. — P? be the extension of g;. Let p;- be the unique point of
indeterminacy of g;. Let q; be the unique point of indeterminacy of ;—'. The following

claim is a key observation.
Claim 3.2.1. p,.; #q; for 1 <i<[—1.

Obviously, deg(gi+1 © g;) < deg(g;+1) deg(g;). Moreover, deg(gi+1 0 g;) = deg(g;) deg(gi+1)
if and only if 7;(H \ p;) # P;1 (cf. [10, Proposition 1.4.3)). Since g;(H \ p;) = q;, this means
deg(g2 0 g1) = deg(g1) deg(go) if and only if q; # p;,;. On the other hand, by (3.1) we have
deg(go---0g1) =deg(g)---deg(g1). Thus we get the claim.

Claim 3.2.2. p| = p.

Suppose p; # p. Then g7 is defined at p € H, and gi(p) = q; € H. It follows from
Claim 3.2.1 that g is defined at q’l, and ﬁ(q’l) = q’2 € H. We can repeat this procedure to
find that f =g, 0--- 07y is defined at p. This is a contradiction.

Let us prove (1). Since g; = €, o ay, there are affine automorphisms «;, and a; such that
h := o g1, becomes a Hénon map. Since the extensions a) : P2 — P? and a) : P? — P2
are linear, the configuration of blow-ups of P? that resolves the points of indeterminacy of
71 is the same as that of h, where h : P?-.. — P? is the extension of h. Then it follows from
Theorem 2.1 that after the (2d; — 1) times successive blow-ups of the (infinitely near) points
of indeterminacy, g; becomes well-defined. Let 7 : Wl' — P? be the successive (2d; — 1)
times blow-ups of P2.
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Claim 3.2.3. The (2d; — 1) times blow-ups that resolves the points of indeterminacy of g1
coincide with the blow-ups in (1). In particular Wy = W7.

The first step is to show p; = p, but this is just Claim 3.2.3. Let p, (resp. p') be the
unique point of indeterminacy of the composite of gy (resp. f) and the first blow-up. We
denote this composite by ﬁ (resp. f). The second step is to show p’ll = p'. To lead a
contradiction, suppose p; # p’. Then g7 is defined at p’ and gi(p’) = q, by Theorem 2.1(2).
Then as in the proof of Claim 3.2.2, we find that f = gjo---0gz 0 gy is defined at p’. This
a contradiction. We can repeat this argument to obtain Claim 3.2.3.

Next we prove (2). We set ¢, = grom; : W, — P2, Then we have foq, | = gjo---0Ga0¢; :
Wy -+ — P2, Tt follows from Theorem 2.1(2) that by ¢, EZ-(I), (1 <i < 2d;—2) is contracted
to the point q;. On the other hand, gjo --- o g3 is defined at q;. Thus fuq,_; is defined at
every point on Ei(l)’ (1 <i < 2d; —2). Hence, the unique point of indeterminacy py of foq, _1
lies on the last exceptional divisor Eé?lfl but not on Ei(l)’ (1 <i < 2dy —2). This shows (2).

1

Wy
lﬂl\
P? LN P? LI P? LB

Claim 3.2.4. ¢,(py) = py.

Indeed, suppose ¢;(p2) # Py. Then 75 is defined at ¢ (ps), and then fog, _; = Gjo- - -0gz0¢;
is defined at p,. This is a contradiction.

We prove (3). Let H' on W, be the proper transform of H by m;. By Theorem 2.1(2), via
1, H and Ei(l) (1 < i < 2d, —2) are mapped to g, while Eétli)lq is mapped isomorphically
to H. This shows that

2d; —2
901|W1\(H’UU,2f11_2 E(l)l) . W1 \ (HI U U Ei(l) ) — ]P)Q \ {ql}
- i=1
is an isomorphism. On the other hand, it follows from Theorem 2.1 that the (infinitely near)
points of indeterminacy of g are resolved after (2ds—1) times blow-ups, starting at the blow-

up at p,. Since ¢;(ps) = py by Claim 3.2.4, 901|W1\(H’UU311172E51)') is an isomorphism, and

a, 7 Py, we find that gz o ¢y : Wy -+ — P? is well-defined after (2dy — 1) blow-ups starting
at pg, and the configuration of blow-ups for g3 o ¢; is the same that for g3. Moreover, as in
Claim 3.2.3, the (2ds — 1) times blow-ups that resolves the points of indeterminacy of g3 0 ¢,
coincide with the blow-ups in (3).

We repeat these arguments to obtain (4) and (5). O

In what follows, we assume f is a regular polynomial automorphism. Let 7y, : W, — P? be
the blow-ups of P? given in Theorem 3.2. We will make blow-ups so that the birational map
fTomy, : W, -+ — P2 lifts to a morphism. Note that f~! is of polydegree (d, - - - , d;). Since
Ty, induces an isomorphism 7! (P? \ {p}) — P*\ {p}, we take q' € W, with 7w, (q') = q.

l



12 SHU KAWAGUCHI

In a parallel way as for p, f~!o mw, : Wp- -+ — P? extends to a morphism after (2d; — 1) +
+ (2d; — 1) blow-ups starting at q'.

Let V' be the projective surface obtained by (2d; — 1) + -+-+ (2d; — 1) blow-ups of P?
starting at p as in Theorem 3.2 and then (2d; — 1) + --- + (2d; — 1) blow-ups starting at
q in a parallel way as in Theorem 3.2. Let 7 : V — P? denote the morphism of blow-ups,
¢ : V — P? the composite f o, and ¥ : V — P? the composite f—1 o 7.

Let El( *) (s=1,---,l;i =1,---,2d; — 1) be the proper transform of ((2d; — 1) +--- +
(2ds; 1 — 1) + i)-th exceptional divisor on V' on the side of p, and F}(t) (t=1,---,l;j =
1,---,2d; — 1) the proper transform of ((2d; — 1) + - -- + (2d;42—+ — 1) + j)-th exceptional
divisor on V on the side of q. Let H# on V be the proper transform of H.

We find from Theorem 3.2 the configuration of H#, Ei(s) and Fj(t).

Proposition 3.3. (1) We have

H#? = -3,

(—d, (1<s<li=1)
EW:{_Q (1<s<l;2<i<2d,—2)
‘ —3 (1<s<l—1;i=2d,—1)

-1 (s=1i=2d,— 1),

(e (1<t <Lj=1)
F.(t)2:%_2 (1<t<h2<j< 21— 2)
J -3 (1<t<l—1;5=2d1 1 ,—1)

-1 (t=1;j=2d —1).

(2) The lines H*, Ei(s) and P}(t) intersect as follows.

(i) The line H* intersects with E ) and F

(ii) The line E( *) intersects with E for1 < s <. The line E *) intersects with Eé;:i)l
and E( 9 (resp H# and E ) for 2<s<lI (resp s =1). The line Ei(s) intersects
wzthE “ cmclEJr1 forl <s<landi=3,---,ds—1,ds+1,---,2ds—2. The line
E((ij) intersects with E1 9 E(gj)_l and E L, Jor 1< s <I. The line Eéfi) | intersects
with Eéz) _, and BSY (resp. only E2d ,) for1 < s <1—1 (resp. s =1).

(iii) The same holds if we replace respectively s, i, ds, E by t, 7, diy1_y, F-(t) in (ii).
Let us illustrate Proposition 3.3 when f is of polydegree (2, 3).

Example 3.4. Let f : A> — A? be the polynomial automorphism of degree 6 of the form

6)-(22)
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EéZ) F2(2)
F?EQ) ]
2|
@ F
Hi (1) FY
E? Ey
E{
2)
B ES PO
EW_
ol
EY H# F

FIGURE 2. The configuration after blow-ups when f is of polydegree (2, 3).
The line H# has the self-intersection number —3. The lines E:gl), EF), Fl(l) and

Fél) have the self-intersection numbers —3. The lines EE()Q) and F?,(Q) have the
self-intersection numbers —1. The other lines have self-intersection numbers
—2.

2 _
Since f is the composite of two Hénon maps of the form <°§> — <x . y) and (Z) —

x
Figure 2.

3 _
(x y), f is of polydegree (2,3). The configuration after blow-ups on V is illustrated in

Proposition 3.5. Let f: A2 — A% be a regqular polynomial automorphism of degree d > 2,
of polydegree (dy,dy,--- ,d;). Let the notation be as above.

(1) As divisors on V', we have

l 2ds—1
W*H:H#+Zd1d2- (ZZE + Z d, B )

s=1 i=ds+1
l di—t41 2d; 411
+ Z di—trodi—ty3-- - dy Z ]F](t) + Z dl7t+1F1j(t) ;
t=1 i=dj 141
! 2ds—1
' H=dH* + dyrdsr---d ( +ZdE + ) (2d,—i)E )
s=1 i=ds+1
di—ty1 2d; 411

!
+dzdl—t+2dl—t+3"'dl Z]F + Z dl_t+1Fj(t) :

t=1 t=dj_¢y1+1



14 SHU KAWAGUCHI

l 2ds—1
YH =dH* +dY didy---d (ZZE + Y dE" )

s=1 i=ds+1
l di 41 2d;_¢q1—1
+ Z didy - -dj—¢ RS Z d— t+1F( ) 4 Z (2dj—441 — j)F}(t)
t=1 1=d;_gp1+1

Here we set didy---d; =1 if i =0, and didjyq---dy =1 if i =1+ 1.
(2) As a Q-divisor on V', we have

1
O H+ o H = <d+ 8) T H + D,

where D is the Q-effective divisor given by

l
1 1
D=(d--)H* dyoidyry-dj— ——— ) E®
( d) +;{< e dsdsﬂ---dz) :
ds i 2ds—1 1
+Z (dsdsﬂ"'dl—m) + Z <s+1ds+2"'dl(2ds_i)_d—dl) E'(S)

i=ds+1 s+1ds+2 Tt

di—t41 .
1 J t
dyd - )\ FW didoood s ——J ) p®
+Z{< e ! d1d2"'dlt+1) et ]z; < e e d1d2...dlt+1) j

2d; 4411

_ 1
+ 0y <d1d2 s dig(2di_gg — ) — m) FO

1=d;_¢y1+1

Proof. We will show the expression for o* H. Since ¢ maps H#, E\* (V(s, i) # (I, 2d,—1))
and Fj(t) (V(t,7)) to q, we have

* #_ * (s) _ * (t) _
(3.2) ©'H-H" =0, ©'H-E” =0, ©'H-F;’ =0

for every (s,i) # (I,2d; — 1) and every (¢, 7). Since ¢ maps Eéii)l_l to H isomorphically, we
have

(3.3) P H-E5) =1

Since the Picard group of V' is generated by H7#, Ei(s), Fj(t) (1<s,t<1<i<2d,—1,1<
j < 2d; — 1), the expression for ¢*H follows from (3.2), (3.3) and Proposition 3.3. We
leave the details for straightforward yet a little long calculation to the reader. Keeping in
mind that f~! is of polydegree (d;,--- ,d;), we obtain the expression for ¢* H similarly. The
expression for 7*H follows from the construction of V. (We can also show this by using
mH-H* =1, 7H-E* =0 and 7°H - Fj(t) = 0 for all (s,4) and (¢,).) The assertion (2)
follows from (1). O

As in Theorem 2.3, we have the following theorem.
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Theorem 3.6. Let f : A> — A? be a regular polynomial automorphism of degree d > 2
defined over a number field K. Then, there exists a constant ¢ such that

bl F0)) 4 han(£0) 2 (5 3) o)

for all v € A>(K).

4. CANONICAL HEIGHT FUNCTIONS

In this section, we will prove Theorem A and Corollary B by showing Theorem 4.1. We
first fix some notation and terminology. We refer to the survey [10] for more details about
the dynamics of polynomial automorphisms.

Let f: A" — A™ be a polynomial automorphism over a number field K of degree d. We
use the notation f to denote the birational extension of f to P*. Let f~!: A" — A" denote
the inverse of f, and we use the notation f=! to denote the birational extension of f~! to P".
Let d_ be the degree of f~L. Note that d and d_ may not be the same (cf. [10, Chapitre 2]).

Let S be a set and T a subset of S. Two real-valued functions A and A on S are said
to be equivalent on T if there exist positive constants a;, a; and constants by, by such that
arN(x) +b < N(z) < ag\(x) + by for all z € T. We use the notation A >< X' to denote this
equivalence. (Note that our notation >< is different from that in [8, Chap. 4, §1] where
b1 - b2 - 0 )

Theorem 4.1. Let f: A" — A" a polynomial automorphism of degree d > 2 defined over a
number field K. Let d_ denote the degree of f~'. We assume that there exists a constant c
such that

1

(4.1) ahm(f(x)) + dihm(fl(x)) <1 + dcll ) how () — €

for allz € A"(K). Then there ezists a function h : A"(K) — R with the following properties:
(i) Py >< h on A"(E):;
(i) tho f+thof = (1+7)h

Moreover, h enjoys the followmg umqueness property: if ' is another function satisfying (i)

and (1i) such that I ="nh+O(1), then W' = h. Furthermore, h(x c) > 0 for all x € A"(K),

and h,( ) = 0 if and only if x is f-periodic. We call a function h satisfying (i) and (ii) a
canonical height function associated with f.

Proof of Theorem A and Corollary B. It follows from Theorem 3.6 that regular poly-
nomial automorphisms of the affine plane satisfy (4.1). Then Theorem A and Corollary B
follows from Theorem 4.1. O

Proof of Theorem 4.1.  For x € A"(K), we define

R (2) = limsupha(F1(2), o (2) = limsup —-hou (£ (@),

l—o00 d' l—o00 d’
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a prioriin RU {co}, but we will show in the next claim that this value is finite. We define

~

ho(x) = ht (x) + hy (z).

Note that this definition of /l;,oi has some similarity to the definition of Green currents on
A™(C) associated with f (cf. [10, Définition 2.2.5]), and to Silverman’s definition of canonical

heights on certain K3 surfaces [12, §3]. Let us show h, satisfies the properties (i) and (ii).

Claim 4.1.1. There exist constants ¢t such that h(z) < huo(z) + ¢t for all z € A™(K).

Proof. By Theorem 1.3, there exists a constant ¢, such that 2h,,(f(z)) < hy(z) + 2

for all z € A" (K). We show

by the induction on . Indeed, since hu,(f"(x)) < hny(f'(2)) + %, we have

1 L 1 l e iy
ot P (7 (2)) < pho (F(@)) + i < o (2) + > il
=1

By putting ¢t = ¢, Y, & = -2, we obtain ht(z) = lim sup,_, . Thno (fH(2)) < hno(a)+cT.
The estimate for /f;; is shown similarly. (Note that it follows from d > 2 that d_ >2.) O

Claim 4.1.2. We have

~ dd_
ho > hn'u -
for all v € A"(K), where c is the constant given in (4.1).
Proof. We set h' = hy, — (d—ll)il(iid_,—l)c‘ Then we have for all x € A" (K)
(4.2 W @) + @) 2 (14 - ) W)
' d d_ - dd_ '

Then we have Lh'(f2(z)) + - H(x) > (1 n dd%) L(f(x)) and 70 (x) + B (f2(2)) >
<1 + dd%) R (f*(x)). Adding these two inequalities and using (4.2) again, we obtain

1, T, . 1 ,
ﬁh (f*(z)) + Eh (f *(z)) > <1 + (dd_)2> h'(z).
Inductively, we obtain

1
a2

1

W @) + =

W (@) > <1 + W) W (z).
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(Though not necessary for the proof, one can also show —=h'(f™(z)) + %_nh’(f*m(x)) >

<1 + (ddi_)m) h'(x) for every m € Z.) By letting [ — oo, it follows that

(4.3) limsup—h,'(f ‘(z )) + lim sup —; ! W (% (z))

1
=00 d? l—00 —

Since

R () = timsup o (/7 (1)

m— o0

—timsup o () + e 2 mswp (2 o)

and similarly h; (z) > limsup,_, ol Ln'(f 2 (x)), the left-hand-side of (4.3) is less than or

equal to /ﬁo(x), while the right-hand-side is hy,(x) — %c. Thus we get the desired

inequality. O
The property (i) follows from Claim 4.1.1 and Claim 4.1.2. Indeed we have

dd_
(d—Dd_—1)°

B () — < () < 2l (2) +ct + ¢

The property (ii) is checked by the following equations:

hi(f(@) = dhi(2), I (f7 (@) = <hi(@);
B2 (@) = @), B (@) = d ).

Thus h, : A" (K) — R satisfies the properties (i) and (ii). This shows the existence of a
canonical height function.

Next we will show some uniqueness property of h. In what follows, let h denote a function
with the properties (i) and (ii), not necessarily being equal to Tho.

Suppose ' is another function with the properties (i) and (i) such that v := &' — h is
bounded on A" (K). Set M 1= SUP,cpn () [7(2)]- Then

1 1
1+ —) M= (1 + —) sup |y(x)]

= sup
zeAn (K)

Since1+M%—é—d%:%7d:_l)>O,WehaveM:0,henceh:h’.
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To show h > 0, we assume the contrary, so that there exists zy € A" (K) with /ﬁ(xg) =
a < 0. Then {ﬁ(f(xo)) + d%/f;(f_l(l"o)) = <1 + dé,) h(xg) = (1 + ) a. Thus we have

1+dd_ ~ 1+dd_

or h(f ) < o —a

h(f(w0)) < ———=a

1+dd_
d+d—

below and h,, ><K /f\L this is a contradiction.

Finally we will show that z € A?(K) is f-periodic if and only if h( ) =0.

Suppose h(zy) = 0. Then by (4.1) and the non-negativity of &, we have h(f(z1)) = 0
and h,(f Hx 1)) = 0. Take an extension field L of K such that z; is defined over L. Since
h>< P, } satisfies the Northcott finiteness property. Thus the set

(@) 1€z} (C{rean(r)|h(=)=0})

is finite. Hence z; is f-periodic.
On the other hand, suppose h(zy) =: b > 0. Then it follows from (ii) that

~ 1+dd_ ~ 1+ dd_
h(f(%)) > b.

> ra boor M) 2 e

This shows that the set {f'(x3) | I € Z} is not a set of bounded height. Thus x5 cannot be
f-periodic. O

Since > 1, this shows that % is not bounded from below. Since hney 18 bounded from

In the remainder of this section, we would like to discuss the condition (4.1) in Theorem 4.1.
The next proposition shows that the constant (1 + ——) in (4.1) is the largest number one
can hope for.

Proposition 4.2. Let f : A» — A" a polynomial automorphism of degree d > 2 over a
number field K. Let d_ denote the degree of f~'. Let a € R. Suppose there exists a constant
¢ such that

1
ghnv(f(x)) +

for all z € A*(K). Then a < 1+dd%

ihm( F2)) > ahn(z) — ¢

Proof. To lead a contradiction, we assume that a > 1+ dd%. Noting a > 1+dd% > é—i— dL,

-1
we set ¢ = (a - = — d%) cand h' :== h,, — . Then R’ satisfies

-

(1.4 SH(F@) + K @) > al (2)

for all z € A"(K). Then we have —h'(f%(z)) + z—h'(z) > 4K (f(z)) and ——h'(z) +
%h’(f’z(x)) > R (f'(z)). Adding these two inequalities and using (4.4) agaln, we get

!/ ! 2 2 !
TP )+ ) > (0= 2 ) e
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Weset a1 = a*> — 2. Since a; — 1—(dd1) —aZ—%—l—m > 1+ )2 - —
1— (dd )2 =0, we have a; > 1+ e Thus, if we define a sequence {a;}°, by ap = a and
a1 = al — then we get inductively

(dd,)Zl’

ﬁh'(f (@ ))+ﬁh'(f (@) > @l (x).

On the other hand, it follows from Theorem 1.3 and the argument in Claim 4.1.1 that there
is a constant ¢ independent of [ € Z such that for all z € A?(K),

2H(x) + ¢ 2 b (@) + el (7 (a)).

Thus 2h" + " > a;h'. Since h' = hy,, — ¢ and lim;_, o a; = 0o follows from Lemma 4.3(1),
this is a contradiction. O

Lemma 4.3. Let D > 4. Let {a;}3°, be a sequence defined by ag = a and a;y, = a} —2D~2,
(1) Ifa>1+ %, then lim;_ . a; = 00.
(2) Ifa=1+ %, then limy_,oo a; = 1.
B) Ifl<a<l1+ %, then lim;_,o a; = 0.

Proof. We show (1). Set &, = a; — 1 — D=2, In particular g = a — 1 — D~! > 0. Since
1 = gy — 1 — 2D 2" = 25/(1 4+ D) + ¢2, we get .41 > 26, > +-- > 21g;. Hence
lim;_, o, £, = oo and thus lim;_,, a; = c©

We show (2). In this case, we have a; = 1 + D2, Thus lim_ a; = 1.

Finally we show (3). On one hand, we get by induction a; > 2D~2"" for [ > 1, and
in particular a; > 0 for [ > 1. On the other hand, we claim for sufficiently large [ that
a; < 1. Indeed, we assume the contrary and suppose a; > 1 for all I. It follows from (2)
that @ < 14+ D2, Weset \y = 1+ D2 —q, andso 0 < \, < D72, Then ar4 =
a2 —2D2 =(1+D? - \N)2-2D% =14+D " —2)(1+ D ?) + A2 Hence we get
A1 = 20(1 4+ D %) — A2 > 2)\;, which says that lim;_,o A, = oo. This is a contradiction.
Hence there is an [y with a;, < 1. Since (0 <) ajy4r < alzok, we get limy_,o, a; = 0. O

Let ag,p denote the supremum of a € R that satisfies the inequality in Proposition 4.2. It
follows from Theorem 3.6 that, if f is a regular polynomial automorphism of A? of degree
d > 2, then d = d_ and agy, = 1 + 5. We remark that Marcello [9, Théoréme 3.1] showed
that, if f is regular polynomial automorphism of A" (this means the set of indeterminacy
I7 and = are disjoint, cf. [10, Définition 2.2.1]), then ag,, > 1. It would be interesting to
know what polynomial automorphisms on A™ satisfy (4.1).

5. THE NUMBER OF POINTS WITH BOUNDED HEIGHT IN AN f—ORBIT

In this section, we will prove Theorem C. As in §4 we will show Theorem C in a more
general setting. The arguments below are inspired by those of Silverman on certain K3
surfaces [12, §3].
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Throughout this section, let f : A» — A" be a polynomial automorphism of degree d > 2
over a number field K satisfying (4.1). By Theorem 4.1, there exists a canonical height
function h : A" (K) — R associated with f. Throughout this section, we also fix h.

We define functions h* : A (K) — R to be

W) = g (4 RU@) - R @)
~ dd_

) = g (07 @) - 30 )
for z € A™(K).

Lemma 5.1. (1) h = /f\ﬁ—i-/l;f

()h+of dh+,andh of l=d_ h-.

(3) ht >0 and h™ > 0.

(4) For x € A*(K), h*( ) =0 if and only if h~ (x) =0 if and only if h(x) =0 if and only

if x 1s f-periodic.

Proof. By the property (ii) in Theorem 4.1, we readily see (1). Let us see (2). By
the property (i), we have d_h(f2(z)) + dh(z) = (1 + dd_)h(f(z)) and (d% +d) W) =
h(f(z)) + di_/f\z(f_l(x)) Taking the difference, we have

LR @) = ) = d (R @) - R0 @)

x). Next let us see
!

This shows h+(f( )) = d h*(z). Similarly we have h*(f~ (x) =d_h-
) = h(f'(z)) = 0 for any

(
(3). Since > 0 by Theorem 4.1, we have h*(f'(z)) + h~ (f'(z)) = h(
| € Z and x € A"(K). This is equ1valent to

+ -
i) 2~ @)
By letting | — oo, we have /i;f’( ) > 0. Similarly we have h- (z) > 0.

Next we will show (4). The assertion that “h( ) = 0if and only if z is f-periodic” is shown
in Theorem 4.1. Since h* > 0 and h~ > 0, 0 = h( ) = ht(z) + b (z) implies h*(z) = 0
and b~ (z) = 0. We will see that h*(z) = 0 implies 2(z) = 0. A key observation here is that
h satisfies Northcott’s finiteness property, which is a consequence of the property (i) of hin

Theorem 4.1. Suppose h*t(z) = 0. Then
h(f! (@) = BH(f'(2) + B (f'(2) = d'B* (a )+dTh () = o ().

Let L be a finite extension of K over which z is defined. Then

-~

~

{fl@)e A" () [1>0} < {yeA"(K)|h(y) <h (v)}
is finite. Hence z is f-periodic. Similarly we see that h~ (z) = 0 implies /ﬁ(x) = 0. O
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For x € A"(K), we define the f-orbit of x to be

Of(z) = {f'(x) |l € Z}.
Note that Of(x) is a finite set if and only if x is f-periodic.
For an f-orbit O(x), we define the canonical height of Os(z) to be
_ logh*(y) | logh™(y)

h(Of(x)) = ogd T Tlogd. eRU{—o0}

for any y € Oy(x).

~ -~

Lemma 5.2. (1) h(Oy(z)) is well-defined, i.e., h(O(x)) is independent of the choice of

y € Of(x). Moreover, /H(Of(x)) = —oo if and only if Of(x) is a finite set.
(2) Assume #0¢(x) = co. Then we have

~ 1 1 ~ ~
h(O < in logh(y) < h(O
Osta)) 4 < (o + ot ) min, 08T0) < F05(0) +

where the constants €, and €5 are given by

1 log d 1 logd
= | 1 1 1
“ logd 0g< +10gd>+logd og( * logd)’

1 1
€2 = € + <10gd + logd) log max{d, d_}.

Proof. (1) follows from Lemma 5.1. To prove (2), set

logd logd_
b +10gd, anc 4 * logd
Then p>1,q > 1, and;}+$:1. Then we have
—~ ~ ~ 1/ 1~ NP 1/ 1~ _1\1¢
W) = @)+ 7 () = (5 w)7) + - (a5 (0)7)

1

> prqih* (y)rh (y)s
1 1 oo ht oo h— 7 ;
Hence, S logp + o logq+ ;logh™(y) + ;logh™ (y) < logh(y). Since

L )ﬁwf(x)),

log d + logd_

1 - 1 -
“logh™(y) + = logh~ :<
, log (y) .08 (y)

we obtain E(Of(fl?)) +6 < (@ + logﬁ) Minyco; (2) log ().
On the other hand, we have /f\z(fl(x)) = dl/f;Jr(x) + d:l/ﬂ_(x) for I € Z. We set g(t) =
N N 1
d'h*(z) + d_'h~ () for t € R. Noting that dr = d”, we have
g(t) = d'B*(2) + d-"h" (2)
1 1ot~ 1\ P 1 1 =t~ 1\ 7
= - (pﬁdifﬁ(x)f?) + - <q4dq h(x)q)

b q
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. . . Lot \pr-1 1 =t 1
where the equality holds if and only if (pp drh™* (a:)p) =qad* h™(z)7. We set

log(h~(z)logd_) — log(h*(z) log d) .

to =
0 logd +logd_

-~

h=(x ) Consequently as a function
| + 1, where [to] denotes the largest

Then g takes its minimum at ¢, with g(to) = prqiht (:L‘)I_l’
of [ € Z, h(f!(x)) takes its minimum at [ = [to] or [ = [t,
integer less than or equal to 5. Then we get

h(fl()) = dlolp* (z) + d"h= (2) = d~to~ oD gt () 4 @~ g0 R ()
< max{d,d_} (dtoﬁ+ (@) +d "R (:v)) = max{d,d_}prqih*(z)rh (z)1.
Similarly we get
Rl () = @)t gyt (1) 4 @ (ol =to) g —tofy = ()
< max{d,d_}prqh*(z)7h~(z)7.

This shows (@ + logld_) MiNyeo (z) log h(y) < E(Of(x)) + €. O

Theorem 5.3. Let f : A — A" be_a polynomial automorphism of degree d > 2 over a
number field K satisfying (4.1), and h : A" (K) — R a canonical height function associated
with f. Let x be an element of A" (K) such that #O¢(x) = oo. Then we have the following.

(1) 1f (ks + i ) 108 T > h(Oy(x), then

1

0 € 05(0) 1) < T) = (o + o ) 18T +30(0) <

log 2 n log 2
~ logd logd_

Note that if (1Ogd Ton - ) log T < h(Of(x)), it follows from Lemma 5.2(2) that #{y €
Oy(x) | hly) < T} =0. 1
(2) #4y € Os(@) | huuly) < T} = (h)g i

where the O(1) constant depends only on f and the choice of h.

) log T —B(Of(x)) +0(1) as T — oo,

Proof. Since #0;(z) = oo, the map Z > | — f'(x) € A"(K) is one-to-one. Then
#{y € 0y(w) | h(y) < T} = #{l € Z| h(f'(x)) < T}
—#{leZ|dnt(z)+d'h(z) < T}.

Then it follows from Lemma 5.4 that

log T

2h+( ) 08 g

-1
+ log d log d_

L < #{y € Os(a) | h(y) <T} <1+

logd_ log d

for T > /}\L+(x)logd+logd_ - (z) e~ or equivalently (loéd + logd ) logT > h(Of( ))-
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On the other hand, we have

log g7 log 772 log2  log2 1 1 N
_1 2h+(z) 2h=(x) _ 1_ g2 log o T — B0
T Tlogd | logd- logd logd_ " \logd ' logd_) (O5(=)),
log ~L log ~L— 1 ]
ht (z) h—(x) ~
1 =1 — ) log T — ,
* logd logd_ + <10gd T log d_> 0g (Of(x))

Thus we obtain (1). Next, we will show (2). Since h,, >< h by the property (i) of

Theorem A, there exist a positive constant as and a constant by such that h < ash,, + bs.
Then we have

#{y € Os(z) | hno(y) < T}
< #{y € Oy(x) | h(y) < asT + bz}
log2  log?2

1 1 ~
< ( + log(asT + by) — h(Op(x)) + 1+

logd  logd-_ logd * logd_

1 1 ~
< log T — 1 7 .
- (logd * logd_> ogT — h(Of(x)) +O(1)  asT — o0

Using ayhyy + by < 7 for some positive constant a; and constant by, we have #{y € O(z) |
hao(y) < TV > (kg + o ) log T = A(O4(2)) + O(1) as T — ox. 0

logd_ logd

Lemma 5.4. Let A, B, T > 0 be positive numbers. If T > Alesdtlosd_ Blogd+logd_ = then e
have

log £
—1+ 5%

log% log% <

log L
leZ|dA+d'B<TY<1 A
logd logd_ #{l €] +dZB<Th<1+4 +

logd = logd_"
Proof. If | € Z satisfies d'A + d~'B < T, then d'A < T and d~'B < T. Note that

log B log T . . logd_ logd logd_ logd
o =< 1og3 is equivalent to T > Alegdtloed— Rlogdtlosd—  Then, for T > Aleedtloed Blogdtlogd

we have

#{leZ|dlA+leB§T}§#{leZ

B T T T
log Z Slﬁlogz §1+logz+log§.
logd_ logd logd  logd-_

On the other hand, if | € Z satisfies d'A < T and d”'B < L, then d'A + d~'B < T. Thus,

#{leZ|dlA+d:lB§T}2#{l€Z

log%élélog% 2_1+10g%+log%.
logd_ log d logd  logd_
O

Proof of Theorem C. It follows from Theorem 3.6 that regular polynomial automor-
phisms of the affine plane satisfy (4.1). Then Theorem C follows from Theorem 5.3. O
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