In [6], symmetry relations (Ch. VI, (6.6)) and special values (Ch. VI, (6,11')) of Macdonald symmetric polynomials have been given. By a combinatorial argument similar to the one employed in their paper, we see that for any (k,r,n)-admissible partition λ , the multiplicity of the factor $(1-t^{k+1}q^{r-1})$ in r.h.s. of (6,11') is $\left[\frac{n}{k+1}\right]$. Moreover, for $\mu \in \pi_{\eta,N}$ or $\pi'_{\eta,N}$, the same results as Lemma 3.12 follow as well. Hence from symmetry relations, through the same argument as Theorem 3.13, we conclude that the Macdonald symmetric polynomial is well-defined and satisfies the wheel conditions if λ is (k,r,n)-admissible.

References

- [1] Jan F. van Diejen, Self-dual Koornwinder-Macdonald polynomials, Invent. Math. 126 (1996), no. 2, 319–339.
- [2] B.Feigin, M.Jimbo, T.Miwa, E.Mukhin, Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials, Int. Math. Res. Not. 2003, no. 18, 1015– 1034.
- [3] B.Feigin, A. V. Stoyanovsky, Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, hep-th/9308079, RIMS 942; Functional models for the representations of current algebras and the semi-infinite Schubert cells, Funct. Anal. Appl. 28 (1994), 55–72.
- [4] T. H. Koornwinder, Askey-Wilson polynomials for root systems of type BC, Contemp. Math. vol. 138 (1992), 189–204.
- [5] M.Kasatani, T.Miwa, A.Sergeev, A.Veselov, Coincident root loci and Jack and Macdonald polynomials for special values of the parameters, in preparation.
- [6] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford University Press, 1995.

Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: kasatani@math.kyoto-u.ac.jp

monomial symmetric polynomials are linearly independent, it follows that

$$\sum_{\mu\in\pi_{k+1,d}(m(\lambda))}c_{\lambda,\mu}e_{\mu}=0$$

in $R_{M,k+1}^{(d)}/(R_{M,k+1}^{(d+1)}+\sum_p \mathbb{C}r_d^p)$. Note that $\mathcal{J}_{M,k+1}=\sum_{d=0}^{M^{k+1}}\sum_p \mathbb{C}r_d^p$. Therefore in $R_{M,k+1}/\mathcal{J}_{M,k+1}$, we have

$$\sum_{\mu \in \pi_{k+1,d}(m(\lambda))} c_{\lambda,\mu} e_{\mu} = \sum_{\mu \in \pi_{k+1}, |\mu| \geq d+1, \mu_1 \leq M} c_{\mu} e_{\mu}.$$

For any (k, r, k+1)-non-admissible partition $\lambda \in \pi_{k+1}$ such that $\lambda_1 \leq M$, there exists some d and m so that $\lambda \in \pi_{k+1,d}(m)$. Moreover, the set $\pi_{k+1,d}(m)$ contains at most one (k, r, k+1)-non-admissible partition λ , and for all $\mu \in \pi_{k+1,d}(m)$ such that $\mu \neq \lambda$, we have $\mu \succ \lambda$. Therefore e_{λ} can be written in $R_{M,k+1}/\mathcal{J}_{M,k+1}$ as follows:

$$e_{\lambda} = \sum_{\mu \succ \lambda, \mu_1 < M} c'_{\mu} e_{\mu}.$$

Let $\lambda \in \pi_n$ be a (k, r, n)-non-admissible partition such that $\lambda_1 \leq M$. Then there exists i such that $\lambda_i - \lambda_{i+k} < r$. We set $\mu := (\lambda_i, \dots, \lambda_{i+k}) \in \pi_{k+1}$ and $\nu := (\lambda_1, \dots, \lambda_{i-1}, \lambda_{i+k+1}, \dots, \lambda_n)$. Since μ is (k, r, k+1)-non-admissible, from the above argument, we can rewrite μ as a linear combination of greater monomials $\{e_{\mu'}; \mu' \succ \mu\}$ in $R_{M,k+1}/\mathcal{J}_{M,k+1}$. Hence e_{λ} can be rewritten in $R_{M,n}/\mathcal{J}_{M,n}$ as follows:

$$egin{array}{lcl} e_{\lambda} &=& e_{\mu}e_{
u} \ &=& \left(\displaystyle\sum_{\mu'\succ\mu,\mu'_{1}\leq M}c_{\mu'}e_{\mu'}
ight)e_{
u} \ &=& \displaystyle\sum_{\lambda'\succ\lambda,\lambda'_{1}\leq M}c_{\lambda'}e_{\lambda'}. \end{array}$$

Here, in the last =, we set $\lambda' := \mu' \cup \nu$.

If $e_{\lambda'}$ is still (k, r, n)-non-admissible for some λ' , we further rewrite $e_{\lambda'}$ as a linear combination of greater monomials. Since $\{\lambda \in \pi_n; \lambda_1 \leq M\}$ is a finite set, this procedure stops in finite times.

Corollary 4.2. dim $J_M^{(k,r)} \le \sharp \{\lambda \in \pi_n; \lambda \text{ is } (k,r,n)\text{-admissible and } \lambda_1 \le M\}$.

By Corollary 3.14 and Corollary 4.2, we complete the proof of Theorem 3.6.

5. Application to MacDonald symmetric polynomials

We can apply the method in Section 3 to a proof of Theorem 1.1.

In this space,

$$0 = r_d^p = \sum_{\substack{i_1 + \dots + i_{k+1} = d \\ i_j \ge 0}} \prod_{j=1}^{k+1} e_{i_j} \tau^{p_j i_j}$$

$$= \sum_{\substack{\nu \in \mathbb{Z}_{\ge 0}^{k+1} \\ \nu_j \le r - 2}} \tau^{p_1 \nu_1 + \dots + p_{k+1} \nu_{k+1}} \left(\sum_{\substack{\mu \in \mathbb{Z}_{\ge 0}^{k+1}, \sum_j \mu_j = d \\ \mu_j = \nu_j + (r-1)\kappa_j, \kappa_j \in \mathbb{Z}_{\ge 0}}} \prod_j e_{\mu_j} \right)$$

$$= \sum_{\substack{\lambda \in \pi_{k+1} \\ \lambda_1 \le r - 2}} \left(\sum_{\nu \in \mathfrak{S}_{k+1} \lambda} \tau^{p_1 \nu_1 + \dots + p_{k+1} \nu_{k+1}} \right) \left(\sum_{\substack{\mu \in \mathbb{Z}_{\ge 0}^{k+1}, \sum_j \mu_j = d \\ \mu_j = \lambda_j + (r-1)\kappa_j, \kappa_j \in \mathbb{Z}_{\ge 0}}} \prod_j e_{\mu_j} \right)$$

We set $\pi_{k+1,d} := \{\lambda \in \pi_{k+1}; |\lambda| = d\}$. For a sequence of nonnegative integers $m := (m_0, \dots, m_{r-2})$ such that $\sum m_i = k+1$, we define a subset $\pi_{k+1,d}(m)$ by

$$\pi_{k+1,d}(m) := \{ \mu \in \pi_{k+1,d} \; ; \; \sharp \{i; \mu_i \equiv a \; mod \; (r-1) \} = m_a \; \text{for every} \; 0 \le a \le r-2 \}.$$

We denote by $m_i^{(\lambda)}$ the multiplicity of i in λ . Define $m(\lambda) := (m_0^{(\lambda)}, \dots, m_{r-2}^{(\lambda)})$. Then,

$$r_d^p = \sum_{\substack{\lambda \in \pi_{k+1} \\ \lambda_1 \le r-2}} \left(\sum_{\mu \in \pi_{k+1,d}(m(\lambda))} c_{\lambda,\mu} e_{\mu} \right) \left(\sum_{\nu \in \mathfrak{S}_{k+1} \lambda} \tau^{p_1 \nu_1 + \dots + p_{k+1} \nu_{k+1}} \right).$$

$$= \sum_{\substack{\lambda \in \pi_{k+1} \\ \lambda_1 \le r-2}} \left(\sum_{\mu \in \pi_{k+1,d}(m(\lambda))} c_{\lambda,\mu} e_{\mu} \right) m_{\lambda} (\tau^{p_1}, \dots, \tau^{p_{k+1}}).$$

Here, $c_{\lambda,\mu} = \prod_i m_i^{(\lambda)}! / \prod_i m_i^{(\mu)}!$ and m_{λ} is the monomial \mathfrak{S}_{k+1} -symmetric polynomial (not Laurent).

Since $\lambda_1 \leq r - 2$, the degree of

(23)
$$\sum_{\substack{\lambda \in \pi_{k+1} \\ \lambda_1 \le r-2}} \left(\sum_{\mu \in \pi_{k+1,d}(m(\lambda))} c_{\lambda,\mu} e_{\mu} \right) m_{\lambda}(x_1, \cdots, x_{k+1})$$

in each variable x_i is less than r-2. On the other hand, we can choose the values of x_i from $\tau^0, \tau^1, \dots, \tau^{r-2}$ independently. Hence the expression (23) is identically zero in the quotient space $R_{M,k+1}^{(d)}/(R_{M,k+1}^{(d+1)} + \sum_p \mathbb{C} r_d^p)$. Since

is the orthogonal complement of $\bar{J}_M^{(k,r)}$ with respect to the coupling \langle,\rangle . For $p=(p_1,\cdots,p_{k+1})\in\mathbb{Z}^{k+1}$, let r_d^p be the coefficient of z^d in

$$e(\tau^{p_1}z)\cdots e(\tau^{p_{k+1}}z) = \sum_d r_d^p z^d.$$

By the symmetry of exchanging $z \leftrightarrow z^{-1}$ in the current e(z), we have $r_d^p =$ r_{-d}^p . We denote by \mathcal{J}_M the ideal of R_M generated by the elements r_d^p . Set $\mathcal{J}_{M,n} := \mathcal{J}_M \cap R_{M,n}$. Then the space (22) coincides with $\mathcal{J}_{M,n}$. Since $\dim R_{M,n}/\mathcal{J}_{M,n}=\dim \bar{J}_{M}^{(k,r)}$, the condition (20) is equivalent to the relations in the quotient space

$$r_d^p = 0$$
 for all $p = (p_1, \dots, p_{k+1}) \in \mathbb{Z}^{k+1}$ and $d \ge 0$.

Proposition 4.1. The image of the set $\{e_{\lambda}; \lambda \in \pi_n \text{ is } (k, r, n) \text{-admissible}, \lambda_1 \leq n\}$ M} spans the quotient space $R_{M,n}/\mathcal{J}_{M,n}$.

Proof. We introduce a total ordering for partitions and monomials. For two partitions λ and μ such that $|\lambda| > |\mu|$, we define $\lambda > \mu$. For two partitions λ and μ such that $|\lambda| = |\mu|$, we define $\lambda > \mu$ if $\lambda_1 > \mu_1$ or $\lambda_1 = \mu_1, \lambda_2 > \mu_2$ or $\lambda_1 = \mu_1, \lambda_2 = \mu_2, \lambda_3 > \mu_3$ or \cdots . We define for the corresponding monomials e_{λ} and e_{μ} , $e_{\lambda} \succ e_{\mu}$. Let us calculate r_d^p .

$$\begin{split} e(\tau^{p_1}z)\cdots e(\tau^{p_{k+1}}z) &= \prod_{j=1}^{k+1} \sum_{i_j=-M}^{M} e_{|i_j|} (\tau^{p_j}z)^{i_j} \\ &= \sum_{d \in \mathbb{Z}} z^d \left(\sum_{\substack{i_1+\dots+i_{k+1}=|d|\\i_j \geq 0}} \prod_{j=1}^{k+1} e_{i_j} \tau^{p_j i_j} + \sum_{\substack{\lambda \in \pi_{k+1}\\|\lambda| > |d|}} c_{\lambda,|d|} e_{\lambda} \right). \end{split}$$

Hence, for any nonnegative integer d,

$$r_d^p = \sum_{\substack{i_1+\dots+i_{k+1}=d\\i_j\geq 0}} \prod_{j=1}^{k+1} e_{i_j} \tau^{p_j i_j} + \sum_{\substack{\lambda\in\pi_{k+1}\\|\lambda|>d}} c_{\lambda,d} e_{\lambda}.$$

We define $R_{M,k+1}^{(d)}$ by

$$R_{M,k+1}^{(d)} := igoplus_{\lambda \in \pi_{k+1}, |\lambda| \geq d, \lambda_1 \leq M} \mathbb{C} e_{\lambda},$$

and we consider a quotient space

$$R_{M,k+1}^{(d)}/(R_{M,k+1}^{(d+1)} + \sum_{p \in \mathbb{Z}^{k+1}} \mathbb{C} r_d^p).$$

We have shown $u_{\mu}(P_{\lambda}) = 0$ at the specialization (16) for all $\mu \in \pi'_{n,N}$. Hence from Remark 3.3 and Remark 3.10, we conclude that $\varphi(P_{\lambda})$ satisfies the wheel condition (17).

Corollary 3.14. The space $I^{(k,r)}$ and $I_M^{(k,r)}$ are well-defined for any positive integer M, and we have $J_M^{(k,r)} \supseteq I_M^{(k,r)}$.

4. ESTIMATE OF dim $J_M^{(k,r)}$

We have already constructed the polynomials satisfying the zero conditions. In this section, we show that $J_M^{(k,r)} = I_M^{(k,r)}$ by giving an upper estimate of the dimension of $J_M^{(k,r)}$.

Fix g_0' , g_1' , g_2' , $g_3' \gg 1$ such that $g_0' = g_1' + g_2' + g_3'$. We take the limit $t \to 1$, $q \to \tau$, $a \to \tau^{g_0'}$, $b \to -\tau^{g_1'}$, $c \to \tau^{g_2'+1/2}$, $d \to -\tau^{g_3'+1/2}$, where τ is a primitive (r-1)-th root of unity. In this limit the wheel condition (17) reduces to

(20)
$$f = 0$$
 if $x_i = \tau^{p_i} x_0$ $(1 \le i \le k+1)$

for all $p_1, \dots, p_{k+1} \in \mathbb{Z}$ and $x_0 \in \mathbb{C}$. We denote by $\bar{J}^{(k,r)} \subseteq \bar{\Lambda}_n$ the space of $(BC)_n$ -symmetric polynomials satisfying (20). We define

$$\bar{J}_M^{(k,r)} = \{ f \in \bar{J}^{(k,r)}; \deg_{x_1} f \le M \}.$$

Note that $\dim_{\mathbb{C}(u,b,c,d)} J_M^{(k,r)} \leq \dim_{\mathbb{C}} \bar{J}_M^{(k,r)}$. We consider the commutative ring $R_M := \mathbb{C}[e_0,e_1,e_2,\cdots,e_M]$ for indeterminates $\{e_i\}$. We count the weight of e_i as 1 and the degree of e_i as i. We set $e_{\lambda} := \prod_{i=1}^{n} e_{\lambda_i}$ for $\lambda \in \pi_n$. We denote by $R_{M,n} \subseteq R_M$ the space spanned by the monomials e_{λ} such that $\lambda \in \pi_n$ and $\lambda_1 \leq M$.

We use the dual language (see [2]). There is a nondegenerate coupling:

(21)
$$R_{M,n} \times \bar{\Lambda}_{n,M} \to \mathbb{C};$$

$$\langle e_{\lambda}, \widehat{m}_{\mu} \rangle = \delta_{\lambda,\mu}.$$

We introduce an abelian current

$$e(z) := \sum_{i=1}^{M} e_i(z^i + z^{-i}) + e_0.$$

It satisfies

$$\langle e(z_1)e(z_2)\cdots e(z_n), f\rangle = f(z_1, z_2, \cdots, z_n) \quad \text{for } f \in \bar{\Lambda}_{n,M}.$$

Then for any $f \in \bar{J}_M^{(k,r)}$, we have

$$\langle e(\tau^{p_1}z)\cdots e(\tau^{p_{k+1}}z)e(z_{k+2})\cdots e(z_n), f\rangle = 0$$
 for all $(p_1,\cdots,p_{k+1})\in\mathbb{Z}^{k+1}$.

Hence the space

(22)
$$\operatorname{span}_{\mathbb{C}}\left\{e(\tau^{p_1}z)\cdots e(\tau^{p_{k+1}}z)e(z_{k+2})\cdots e(z_n)\right. \\ ; z, z_{k+2}, \cdots, z_n \in \mathbb{C}, p_1, \cdots, p_{k+1} \in \mathbb{Z}\right\}$$

- (i) for each i, $\sharp(\varphi(C_i)) \geq N$ in $\mathbb{C}(u, b, c, d)$;
- (ii) for all choices of $c_i \in C_i$, $Z(g(c_1, \dots, c_n)) > 0$ (resp. ≥ 0).

Motivated by the observation above, we define certain sets of partitions.

Definition 3.11. A partition η is called thick if $\eta_i \gg \eta_{i+1} \gg 0$ for all i. For a thick partition $\eta \in \pi_n$, a set of N^n partitions is defined by $\pi_{\eta,N} := \{\mu \in \pi_n; \mu_i = \eta_i + d_i \text{ for all } i \text{ where } 0 \leq d_i \leq N-1\}.$

For a thick partition $\eta \in \pi_{n-k}$, we define $\pi'_{\eta,N} := \{ \mu \in \pi_n; \mu_1 - \mu_{k+1} < r, \mu_i = \eta_{i-k} + d_{i-k} \text{ for } k+1 \le i \le n \text{ where } 0 \le d_i \le N-1 \}.$

When we use these sets $\pi_{\eta,N}$ and $\pi'_{\eta,N}$, we choose a sufficiently large N such that $N\gg M$ and any thick partition η such that $\eta_i-\eta_{i+1}\gg \max(M,2[\frac{n}{k+1}](r-1))$, $\eta_i\gg \max(M,2[\frac{n}{k+1}](r-1))$. We do not specify N and η in the below.

Lemma 3.12. For $\mu \in \pi_{\eta,N}$ or $\mu \in \pi'_{\eta,N}$, P_{μ} has no pole at the specialization (16). Moreover

$$Z(u_0(P_\mu)) = \begin{cases} \left[\frac{n}{k+1}\right] & \text{if } \mu \in \pi_{\eta,N} \ (\eta \in \pi_n), \\ \left[\frac{n}{k+1}\right] - 1 & \text{if } \mu \in \pi'_{\eta,N} \ (\eta \in \pi_{n-k}). \end{cases}$$

Proof. If μ is an element of $\pi_{\eta,N}$ or $\pi'_{\eta,N}$, then $\mu_i \gg \mu_{i+k+1}$ for $1 \leq i \leq n-k-1$. Hence from Lemma 3.4, we see P_{μ} has no pole at (16).

n-k-1. Hence from Lemma 3.4, we see P_{μ} has no pole at (16). If $\mu \in \pi_{\eta,N}$, then for each $1 \leq l \leq \left[\frac{n}{k+1}\right]$, $\mu_i \gg \mu_{i+(k+1)l-1}$ $(1 \leq i \leq n-(k+1)l+1)$ and $\mu_i \gg \mu_{i+(k+1)l}$ $(1 \leq i \leq n-(k+1)l)$. Hence from Proposition 3.8, $Z(u_0(P_{\mu})) = \left[\frac{n}{k+1}\right]$.

If $\mu \in \pi'_{\eta,N}$, then $\mu_1 - \mu_{k+1} \leq r - 1$. Hence from Proposition 3.8, (i,l) = (1,1) is the only different situation from the case $\mu \in \pi_{\eta,N}$. Therefore $Z(u_0(P_\mu)) = \left\lfloor \frac{n}{k+1} \right\rfloor - 1$.

Now we are ready to prove a part of Theorem 3.6.

Theorem 3.13. For any (k, r, n)-admissible λ , Koornwinder-Macdonald polynomial P_{λ} has no pole at the specialization (16) and $\varphi(P_{\lambda})$ satisfies the wheel condition (17).

Proof. Since λ is (k, r, n)-admissible, $Z(u_0(P_\lambda)) = \left[\frac{n}{k+1}\right]$ from Corollary 3.9. Let $N \gg |\lambda|$ and let $\mu \in \pi_{\eta,N}$ where $\eta \in \pi_n$. Then from Lemma 3.12, P_μ has no pole at the specialization (16) and $Z(u_0(P_\mu)) = \left[\frac{n}{k+1}\right]$. From the duality relation (12),

$$u_{\mu}(P_{\lambda}) = \frac{u_{\lambda}(P_{\mu})}{u_0(P_{\mu})} u_0(P_{\lambda}).$$

Therefore, $Z(u_{\mu}(P_{\lambda})) \geq 0$.

Since this holds for all $\mu \in \pi_{\eta,N}$, from Remark 3.10, we see that P_{λ} has no pole at the specialization (16).

Let $\mu \in \pi'_{\eta,N}$ $(\eta \in \pi_{n-k})$. Then from Lemma 3.12, P_{μ} has no pole at the specialization (16) and $Z(u_0(P_{\mu})) = \left[\frac{n}{k+1}\right] - 1$. From the duality relation (12), through the same argument as the above, $Z(u_{\mu}(P_{\lambda})) \geq 1$.

Here, we define a subspace $I^{(k,r)}$ of Λ'_n

$$I^{(k,r)} := \operatorname{span}_{\mathbb{C}(u,b,c,d)} \{ \varphi(P_{\lambda}); \lambda \text{ is } (k,r,n) \text{-}admissible } \},$$

and we set

$$I_{M}^{(k,r)}:=\mathrm{span}_{\mathbb{C}(u,b,c,d)}\{\varphi(P_{\lambda});\lambda\ is\ (k,r,n)\text{-}admissible\ and\ \lambda_{1}\leq M\,\}.$$

First, we prepare some propositions and lemmas.

Definition 3.7. For $p \in \mathbb{C}(t, q, b, c, d)$, we denote by $Z(p) \in \mathbb{Z}$ the multiplicity of $(t^{(k+1)/m}q^{(r-1)/m} - \omega)$ in p. That is,

$$p = (t^{k+1}q^{r-1} - 1)^{Z(p)}p',$$

where the factor $p' \in \mathbb{C}(t, q, b, c, d)$ has neither pole nor zero at (16).

Proposition 3.8. For any partition $\lambda \in \pi_n$, we have

$$Z(u_0(P_{\lambda})) = \sharp \{(i,l) \in \mathbb{Z}^2_{>0}; \lambda_i - \lambda_{i+(k+1)l-1} \ge (r-1)l+1\}$$
$$-\sharp \{(i,l) \in \mathbb{Z}^2_{>0}; \lambda_i - \lambda_{i+(k+1)l} \ge (r-1)l+1\}.$$

Proof. Recall Remark 2.4. The factor P_{λ}^{diff} has the factors of the form $(1 - t^x q^y)$ $(x, y \in \mathbb{Z}_{\geq 0})$.

If j-i+1=(k+1)l and $\lambda_i-\lambda_j\geq (r-1)l+1$, then $u_0(P_\lambda)$ has the factor $(1-t^{(k+1)l}q^{(r-1)l})$ in the numerator of P_λ^{diff} . If j-i=(k+1)l and $\lambda_i-\lambda_j\geq (r-1)l+1$, then $u_0(P_\lambda)$ has the factor $(1-t^{(k+1)l}q^{(r-1)l})$ in the denominator of P_λ^{diff} . Otherwise, there does not exist the factor $(1-t^{(k+1)l}q^{(r-1)l})$ in P_λ^{diff} .

On the other hand, P_{λ}^{sum} and P_{λ}^{single} have neither pole nor zero at the specialization (16).

Corollary 3.9. For any (k, r, n)-admissible λ , we have $Z(u_0(P_{\lambda})) = [\frac{n}{k+1}]$.

Proof. Since $\lambda_i - \lambda_{i+k} \geq r$,

$$Z(u_0(P_{\lambda})) = \sharp\{(i,l) \in \mathbb{Z}_{>0}^2; i + (k+1)l - 1 \le n\}$$

$$-\sharp\{(i,l) \in \mathbb{Z}_{>0}^2; i + (k+1)l \le n\}$$

$$= \sum_{l \ge 1} \max\{(n - (k+1)l + 1), 1\} - \sum_{l \ge 1} \max\{(n - (k+1)l), 1\}$$

$$= \left\lceil \frac{n}{k+1} \right\rceil$$

Remark 3.10. For $g \in \Lambda_n$, we take an integer N such that the degree of g in each variable x_i is less than N/2. Then to prove that g = 0 (respectively, g has no pole) at the specialization (16), it is sufficient to show that there exist n subsets $C_1, \dots, C_n \subseteq \mathbb{C}(b, c, d)[q^{\pm 1}, t^{\pm 1}]$, which satisfy the following two conditions:

Lemma 3.4. If $\lambda \in \pi_n$ satisfies

$$\lambda_i - \lambda_{i+k+1} > 2 \left[\frac{n}{k+1} \right] (r-1) \quad \text{for } 1 \le i \le n-k-1,$$

then P_{λ} has no pole at the specialization (16).

Proof. Suppose that there exists μ such that $\varphi(E_{\mu}(X)) = \varphi(E_{\lambda}(X))$, that is

$$\{ \varphi(t^{n-i}q^{\mu_i}a + t^{-n+i}q^{-\mu_i}a^{-1}); 1 \le i \le n \}$$

$$= \{ \varphi(t^{n-i}q^{\lambda_i}a + t^{-n+i}q^{-\lambda_i}a^{-1}); 1 \le i \le n \}.$$

Since u and $a = bcdq^{-1}$ are generic, it must be satisfied that

$$\begin{aligned} & \{ \varphi(t^{n-(k+1)l-i}q^{\mu_{(k+1)l+i}}) \; ; \; l \in \mathbb{Z}_{\geq 0} \text{ and } 1 \leq (k+1)l+i \leq n \} \\ & = \{ \varphi(t^{n-(k+1)l-i}q^{\lambda_{(k+1)l+i}}) \; ; \; l \in \mathbb{Z}_{\geq 0} \text{ and } 1 \leq (k+1)l+i \leq n \} \end{aligned}$$

for $1 \le i \le k+1$. Hence

$$\{(r-1)l + \mu_{(k+1)l+i} ; l \in \mathbb{Z}_{\geq 0} \text{ and } 1 \leq (k+1)l + i \leq n\}$$

= \{(r-1)l + \lambda_{(k+1)l+i} ; l \in \mathbb{Z}_{\geq 0} \text{ and } 1 \leq (k+1)l + i \leq n\}

for $1 \le i \le k + 1$.

Then for any $1 \leq i \leq k+1$, there exists $l_i \geq 0$ such that $(r-1)l_i + \mu_{(k+1)l_i+i} = \lambda_i$ and there exists $l_i' \geq 0$ such that $(r-1)l_i' + \lambda_{(k+1)l_i'+i} = \mu_i$. If $l_i' \neq 0$, then by the hypothesis,

$$\begin{array}{rcl} \mu_{i} - \mu_{(k+1)l_{i}+i} & = & (r-1)l'_{i} + \lambda_{(k+1)l'_{i}+i} - \lambda_{i} + (r-1)l_{i} \\ \\ & < & (r-1)(l'_{i} + l_{i}) - 2\left[\frac{n}{k+1}\right](r-1)l'_{i} \\ \\ & \leq & 2\left[\frac{n}{k+1}\right](r-1)(1-l'_{i}) \\ \\ \leq & 0. \end{array}$$

Hence l_i' must be equal to 0, namely $\lambda_i = \mu_i$. Inductively, we have $\lambda_{(k+1)l+i} = \mu_{(k+1)l+i}$ for all $l \geq 0$. It follows that $\lambda = \mu$. Therefore from Lemma 2.1, P_{μ} has no pole at the specialization (16).

We are going to construct a basis of $J_M^{(k,r)}$.

Definition 3.5. $\lambda \in \pi_n$ is called (k, r, n)-admissible if

(19)
$$\lambda_i - \lambda_{i+k} \ge r \qquad (1 \le \forall i \le n - k).$$

Our main result is

Theorem 3.6. For any (k, r, n)-admissible λ , Koornwinder-Macdonald polynomial P_{λ} has no pole at the specialization (16). Moreover, for any positive integer M, we have

$$I_M^{(k,r)} = J_M^{(k,r)}.$$

Remark 2.4. Note that in (14), there appear only factors of the form (1 t^xq^y , $x, y \in \mathbb{Z}_{>0}$. In (13), there appear only factors of the form $(1-t^xq^ya^2)$, $x,y \in \mathbb{Z}_{>0}$. In (15), there appear only factors of the form $(1-t^xq^ya^2)$, $(1-t^xq^y\overline{ab}), (1-t^xq^yac), (1-t^xq^yad), x,y \in \mathbb{Z}_{>0}.$

3. The space
$$I_M^{(k,r)}$$
 and $J_M^{(k,r)}$

3. The space $I_M^{(k,r)}$ and $J_M^{(k,r)}$ In this section, we describe zero conditions and construct symmetric Laurent polynomials satisfying the zero conditions.

First, we describe a specialization of the parameters. Let k, r be integers such that $1 \le k \le n-1$ and $r \ge 2$. Let m be the greatest common divisor of (k+1) and (r-1). Let ω be a primitive m-th root of unity. Let $\omega_1 \in \mathbb{C}$ be such that $\omega_1^{(r-1)/m} = \omega$.

Definition 3.1. For an indeterminate u, we consider the specialization of t and q:

(16)
$$t = u^{(r-1)/m}, q = \omega_1 u^{-(k+1)/m}.$$

Then for integers $x, y \in \mathbb{Z}$, $t^x q^y = 1$ if and only if x = (k+1)l, y = (r-1)lfor some $l \in \mathbb{Z}$. Moreover, the multiplicity of $(t^{(k+1)/m}q^{(r-1)/m} - \omega)$ in $(t^{(k+1)l}q^{(r-1)l}-1)$ is 1.

We define the subject of our study. We denote by Λ'_n the corresponding space $\Lambda'_n := \bar{\Lambda}_n \otimes \mathbb{C}(u, b, c, d)$.

Definition 3.2. A sequence (s_1, \dots, s_{k+1}) $(s_1, \dots, s_{k+1} \in \mathbb{Z}_{>0})$ is called a wheel sequence if $s_1 + \cdots + s_{k+1} = r - 1$. For $f \in \Lambda'_n$, we consider the following wheel condition:

(17)
$$f = 0, \quad \text{if } x_{i+1} = tq^{s_i}x_i \quad (1 \le i \le k)$$
 for all wheel sequences (s_1, \dots, s_{k+1}) .

We consider the subspace $J^{(k,r)} \subseteq \Lambda'_n$

(18)
$$J^{(k,r)} := \{ f \in \Lambda'_n; f \text{ satisfies (17)} \}.$$

We denote by $\Lambda'_{n,M}$ the subspace consisting of $f \in \Lambda'_n$ such that the degree of f in each x_i is less than M. We set $J_M^{(k,r)} := J^{(k,r)} \cap \Lambda'_{n-M}$.

Remark 3.3. For any partition $\mu \in \pi_n$, $u_{\mu}(x_1)/u_{\mu}(x_{k+1}) = t^k q^{\mu_1 - \mu_{k+1}}$. Hence the condition $\mu_1 - \mu_{k+1} \leq r - 1$ corresponds to the existence of the wheel sequence: $s_{k+1} = r - 1 - (\mu_1 - \mu_{k+1}) \ge 0$. The wheel conditions for $f(x) \in \Lambda'_n$ correspond to $u_{\mu}(f) = 0$ at the specialization (16) for any partition $\mu \in \pi_n$ such that $\mu_1 - \mu_{k+1} \le r - 1$.

For $f(t, q, b, c, d) \in \mathbb{C}[t, q, b, c, d]$, we use a specialization mapping φ

$$\varphi: \mathbb{C}[t,q,b,c,d] \longrightarrow \mathbb{C}(u,b,c,d)$$
$$f(t,q,b,c,d) \mapsto f(u^{(r-1)/m},\omega_1 u^{-(k+1)/m},b,c,d),$$

and we extend φ to those elements of the field $\mathbb{C}(t,q,b,c,d)$ for which the specialized denominator does not vanish.

Then the eigenvalue $E_{\lambda}(X)$ of the operator D(X) is given by

$$\begin{array}{rcl} D(X)P_{\lambda} & = & E_{\lambda}(X)P_{\lambda} \\ & E_{\lambda}(X) & := & \prod_{i=1}^{n}(X+t^{n-i}q^{\lambda_{i}}(abcdq^{-1})^{1/2}+t^{-n+i}q^{-\lambda_{i}}(abcdq^{-1})^{-1/2}). \end{array}$$

We use the dominance ordering $\lambda > \mu$ for partitions λ and μ . We have

Lemma 2.1. Let $c_{\lambda\mu}$ be

$$P_{\lambda} =: \widehat{m}_{\lambda} + \sum_{\mu < \lambda} c_{\lambda \mu} \widehat{m}_{\mu}.$$

If there does not exist $\nu < \lambda$ such that $E_{\lambda}(X) = E_{\nu}(X)$ at a certain specialization of parameters, then for any $\mu < \lambda$, $c_{\lambda\mu}$ has no pole at the same specialization.

Proof. It is clear from the defining equality of P_{λ}

$$P_{\lambda} := \left(\prod_{\mu < \lambda} \frac{D(X) - E_{\mu}(X)}{E_{\lambda}(X) - E_{\mu}(X)} \right) m_{\lambda}.$$

In the rest of paper, we always assume

$$(11) a = bcdq^{-1}.$$

From Lemma 2.1, we see that P_{λ} has no pole at (11). The condition (11) is called the self-duality condition. We set $\Lambda_n := \overline{\Lambda}_n \otimes_{\mathbb{C}} \mathbb{C}(t, q, b, c, d)$.

From [1], we have the following propositions:

Proposition 2.2 (duality). For all $\lambda, \mu \in \pi_n$, Koornwinder-Macdonald polynomials P_{λ} and $P_{\mu} \in \Lambda_n$ satisfy the following duality relation:

(12)
$$\frac{u_{\mu}(P_{\lambda})}{u_0(P_{\lambda})} = \frac{u_{\lambda}(P_{\mu})}{u_0(P_{\mu})}.$$

Here, the definition of u_{μ} is the one in (6).

Proposition 2.3.

(13)
$$u_0(P_{\lambda}) = P_{\lambda}^{sum} \times P_{\lambda}^{diff} \times P_{\lambda}^{single},$$
$$P_{\lambda}^{sum} := \prod_{i < i} t^{-(\lambda_i + \lambda_j)/2} \frac{(t^{2n+1-i-j}a^2; q)_{\lambda_i + \lambda_j}}{(t^{2n-i-j}a^2; q)_{\lambda_i + \lambda_j}},$$

(14)
$$P_{\lambda}^{diff} := \prod_{i < j} t^{-(\lambda_i - \lambda_j)/2} \frac{(t^{j-i+1}; q)_{\lambda_i - \lambda_j}}{(t^{j-i}; q)_{\lambda_i - \lambda_j}},$$

$$(15) P_{\lambda}^{single} := \prod_{i} a^{-\lambda_{i}} \frac{(t^{n-i}a^{2}, t^{n-i}ab, t^{n-i}ac, t^{n-i}ad; q)_{\lambda_{i}}}{(t^{n-i}a, -t^{n-i}a, t^{n-i}aq^{1/2}, -t^{n-i}aq^{1/2}; q)_{\lambda_{i}}}.$$

Here,
$$(a;q)_l := \prod_{i=0}^{l-1} (1-aq^i)$$
 and $(a_1, a_2, \dots, a_p; q)_l := (a_1; q)_l (a_2; q)_l \dots (a_p; q)_l$.

To be precise,

$$D_r := \sum_{\substack{J\subset \{1,\cdots,n\},0\leq |J|\leq r\ \epsilon_i=\pm 1,j\in J}} U_{J^c,r-|J|}(x) V_{\epsilon J,J^c}(x) T_{\epsilon J,q}$$

$$\begin{split} V_{\epsilon J,K}(x) &:= \prod_{j \in J} a_* \frac{1 - a x_j^{\epsilon_j}}{1 - x_j^{\epsilon_j}} \frac{1 - b x_j^{\epsilon_j}}{1 + x_j^{\epsilon_j}} \frac{1 - c x_j^{\epsilon_j}}{1 - q^{1/2} x_j^{\epsilon_j}} \frac{1 - d x_j^{\epsilon_j}}{1 + q^{1/2} x_j^{\epsilon_j}} \\ &\times \prod_{j,j' \in J,j < j'} t^{-1} \frac{1 - t x_j^{\epsilon_j} x_j^{\epsilon_{j'}}}{1 - x_j^{\epsilon_j} x_j^{\epsilon_{j'}}} \frac{1 - t q x_j^{\epsilon_j} x_j^{\epsilon_{j'}}}{1 - q x_j^{\epsilon_j} x_j^{\epsilon_{j'}}} \\ &\times \prod_{j \in J,k \in K} t^{-1} \frac{1 - t x_j^{\epsilon_j} x_k}{1 - x_j^{\epsilon_j} x_k} \frac{1 - t x_j^{\epsilon_j} x_k^{-1}}{1 - x_j^{\epsilon_j} x_k^{-1}} \\ &U_{K,p}(x) &:= (-1)^p \sum_{\substack{L \subset K, |L| = p \\ \epsilon_l = \pm 1, l \in L}} \prod_{l \in L} a_* \frac{1 - a x_l^{\epsilon_l}}{1 - x_l^{\epsilon_l}} \frac{1 - b x_l^{\epsilon_l}}{1 + x_l^{\epsilon_l}} \frac{1 - c x_l^{\epsilon_l}}{1 - q^{1/2} x_l^{\epsilon_l}} \frac{1 - d x_l^{\epsilon_l}}{1 + q^{1/2} x_l^{\epsilon_l}} \\ &\times \prod_{l,l' \in L, l < l'} t^{-1} \frac{1 - t x_l^{\epsilon_l} x_{l'}^{\epsilon_{l'}}}{1 - x_l^{\epsilon_l} x_{l'}^{\epsilon_{l'}}} \frac{1 - t q^{-1} x_l^{-\epsilon_l} x_{l'}^{-\epsilon_{l'}}}{1 - q^{-1} x_l^{-\epsilon_{l'}} x_{l'}^{-\epsilon_{l'}}} \\ &\times \prod_{l \in L, k \in K \setminus L} t^{-1} \frac{1 - t x_l^{\epsilon_l} x_k}{1 - x_l^{\epsilon_l} x_k} \frac{1 - t x_l^{\epsilon_l} x_k^{-1}}{1 - x_l^{\epsilon_l} x_k^{-1}} \\ \end{split}$$

and

$$a_{r,s} := (-1)^{r-s} \sum_{\substack{r < l_1 < \dots < l_{r-s} < n}} (t^{n-l_1} a_* + t^{-n+l_1} a_*^{-1}) \cdots (t^{n-l_{r-s}} a_* + t^{-n+l_{r-s}} a_*^{-1}),$$

where $a_*:=(abcdq^{-1})^{1/2}$, $T_{\epsilon J,q}:=\prod_{j\in J}T_{\epsilon_jj,q}$, and

$$(T_{\pm j,q}f)(x_1,\cdots,x_n):=f(x_1,\cdots,x_{j-1},q^{\pm 1}x_j,x_{j+1},\cdots,x_n).$$

For an indeterminate X, by taking the linear combination of $\{D_r\}$, we can define the operator D(X)

$$D(X) := \sum_{i=0}^{n} D'_{i} X^{n-i},$$

where $\{D_i'; 0 \le i \le n\}$ are defined inductively as follows

$$D'_0 = 1$$

 $D'_i = D_i - \sum_{j < i} a_{i,j} D'_j.$

assuming that the former is already proved. The details of the proofs are given in the main body of the paper.

In order to study the values of P_{λ} on the submanifold (4), we use (7) by choosing $\mu = (\mu_1, \dots, \mu_n)$ in such a way that

(8)
$$\mu_i - \mu_{i+1} = s_i \quad \text{for } i = 1, \dots, k,$$

(9)
$$\mu_i - \mu_{i+1} > 2\left[\frac{n}{k+1}\right](r-1) \quad \text{for } i = k+1, \dots, n-1.$$

From the definition of the Koornwinder-Macdonald polynomial P_{μ} , it has no pole at the specialization (2) if (9) is valid. Without specialization (2) we have an explicit formula for $u_0(P_{\lambda})$ and $u_0(P_{\mu})$, and we can easily count the order of zeros (or poles) for them. Using (7), we can prove that $u_{\mu}(P_{\lambda})$ vanishes at (2). Since there exist enough μ 's satisfying the conditions (8) and (9), the Laurent polynomial P_{λ} itself should vanish at (4).

This much is the proof of the first half of Theorem 1.2. Let $J^{(k,r)}$ be the space of symmetric Laurent polynomials P of type $(BC)_n$ satisfying the wheel conditions, and for a positive integer M, let $J_M^{(k,r)}$ be its subspace consisting of P such that the degree of P in each variable x_i is less than M. Because of the invariance for $x_i \leftrightarrow x_i^{-1}$, the dimension of this subspace is finite. From the first half of the proof, we have a lower estimate of the dimension of $J_M^{(k,r)}$. We give an upper estimate of the dimension of the same space by considering its dual space. This is a standard technique originated in the paper by Feigin and Stoyanovsky [3]. Showing that these two estimates are equal, we finish the proof of Theorem 1.2.

2. Properties of the Koornwinder-Macdonald polynomials

Let n be the number of variables. We denote by W_n the group generated by permutations and sign flips $(W_n \cong \mathfrak{S}_n \ltimes (\mathbb{Z}_2)^n)$. We consider a W_{n-1} -symmetric Laurent polynomial ring

(10)
$$\bar{\Lambda}_n = \mathbb{C}[x_1^{\pm 1}, \cdots, x_n^{\pm 1}]^{W_n}.$$

We denote by π_n the set of partitions of length n, $\lambda = (\lambda_1, \dots, \lambda_n)$. We denote by \widehat{m}_{λ} a monomial W_n -symmetric Laurent polynomial:

$$\widehat{m}_{\lambda}(x) := \sum_{
u \in W_n \lambda} \prod_i x_i^{
u_i}.$$

The Koornwinder-Macdonald polynomial $P_{\lambda}(x)$ corresponding to λ is a simultaneous eigenfunction of the difference operators $\{D_r; 1 \leq r \leq n\}$ (see [1]). The corresponding eigenvalues $E_{\lambda}^{(r)}$ are of the form

$$E_{\lambda}^{(r)} := \widehat{m}_{1^r}(x_{\lambda}) + \sum_{0 \le s \le r} a_{r,s} \widehat{m}_{1^s}(x_{\lambda})$$

where $x_{\lambda} = (t^{n-1}q^{\lambda_1}(abcdq^{-1})^{1/2}, t^{n-2}q^{\lambda_2}(abcdq^{-1})^{1/2}, \cdots, t^0q^{\lambda_n}(abcdq^{-1})^{1/2})$ and $a_{r,s} \in \mathbb{C}[t^{\pm 1}, q^{\pm 1}, a^{\pm 1}, b^{\pm 1}, c^{\pm 1}, d^{\pm 1}, (abcdq^{-1})^{\pm 1/2}].$ The condition that a polynomial vanishes on the submanifold (4) is called the wheel condition corresponding to the submanifold (4) and a partition λ satisfying the condition (3) is called a (k,r,n)-admissible partition. Note that if we set $s_{k+1}=r-1-\sum_{i=1}^k s_i$, it follows that $x_{k+1}/x_1=tq^{s_{k+1}}$ from (4) and (1).

In this paper, we obtain a similar result in the case of n-variable symmetric Laurent polynomials of type $(BC)_n$. Here we say a Laurent polynomial in the variables x_1, \ldots, x_n is of type $(BC)_n$ if and only if it is symmetric and invariant for the change of the variable x_1 to x_1^{-1} . The original case in [2] corresponds to A_n . We use the self-dual Koornwinder-Macdonald polynomials P_{λ} of type $(BC)_n$ [4, 1] in order to characterize the space of symmetric Laurent polynomials of type $(BC)_n$ satisfying the wheel conditions. The Koornwinder-Macdonald polynomials depend on six parameters t, q, a, b, c, d. The self-duality requires

$$(5) a = q^{-1}bcd.$$

We set $W_n := \mathfrak{S}_n \ltimes (\mathbb{Z}_2)^n$. Our main result is

Theorem 1.2. Let $\lambda = (\lambda_1, \dots, \lambda_n)$ be a (k, r, n)-admissible partition. Then, the self-dual Koornwinder-Macdonald polynomial $P_{\lambda} \in \mathbb{C}(t, q, b, c, d)[x_1^{\pm 1}, \dots, x_n^{\pm 1}]^{W_n}$ has no pole at (2), and when it is specialized at (2), it satisfies the wheel conditions corresponding to (4). Conversely, the space of symmetric Laurent polynomials of type $(BC)_n$ in $\mathbb{C}(u, b, c, d)[x_1^{\pm 1}, \dots, x_n^{\pm 1}]^{W_n}$ satisfying the wheel conditions is spanned by the self-dual Koornwinder-Macdonald polynomials P_{λ} specialized at (2) where λ are (k, r, n)-admissible partitions.

Although the statement of Theorem 1.2 is quite analogous to that of Theorem 1.1, our proof of Theorem 1.2 is different from that of Theorem 1.1 given in [2]. In fact, our method gives an alternative proof simpler than the one given in [2] for the A_n case. We use the duality relation for the self-dual Koornwinder-Macdonald polynomials P_{λ} . In [5], we obtain a further result by an application of the method used in this paper.

Let us explain the duality relation and the method of our proof. Let $\mu = (\mu_1, \ldots, \mu_n)$ be a partition. For $f \in \mathbb{C}(t, q, b, c, d)[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$, we define a specialization $u_{\mu}(f)$ of f by

(6)
$$u_{\mu}(f) := f(t^{n-1}q^{\mu_1}a, t^{n-2}q^{\mu_2}a, \cdots, q^{\mu_n}a).$$

Here, a is given by (5). In particular, we have

$$u_0(f) = f(t^{n-1}a, t^{n-2}a, \dots, a).$$

The duality relations reads as

(7)
$$\frac{u_{\mu}(P_{\lambda})}{u_0(P_{\lambda})} = \frac{u_{\lambda}(P_{\mu})}{u_0(P_{\mu})}.$$

To prove the two statements, (i) P_{λ} has no pole at (2), and (ii) P_{λ} specialized at (2) satisfies the wheel conditions corresponding to (4), we use the duality relation with special choices of μ . Here, we explain only the latter

ZEROS OF SYMMETRIC LAURENT POLYNOMIALS OF TYPE $(BC)_n$ AND SELF-DUAL KOORNWINDER-MACDONALD POLYNOMIALS SPECIALIZED AT $t^{k+1}a^{r-1}=1$

MASAHIRO KASATANI

ABSTRACT. A characterization of the space of symmetric Laurent polynomials of type $(BC)_n$ which vanish on a certain set of submanifolds is given by using the self-dual Koornwinder-Macdonald polynomials. A similar characterization was given previously for symmetric polynomials of type A_n by using the Macdonald polynomials. We use a new method which exploits the duality relation. The method simplifies a part of the proof in the A_n case.

1. Introduction

Let k, r, n be positive integers. We assume that $n \ge k + 1$ and $r \ge 2$. In [2], n-variable symmetric polynomials satisfying certain zero conditions are characterized by using the Macdonald polynomials [6] specialized at

$$(1) t^{k+1}q^{r-1} = 1.$$

To be precise, the paper [2] works in the following setting. Denote by m the greatest common divisor of k+1 and r-1. Let ω be an m-th primitive root of unity. Then, the variety given by $t^{\frac{k+1}{m}}q^{\frac{r-1}{m}}=\omega$ is an irreducible component of (1). It is uniformized as follows. Let $\omega_1 \in \mathbb{C}$ be such that $\omega_1^{(r-1)/m}=\omega$. We consider the specialization of t,q in terms of the uniformization parameter u,

(2)
$$t = u^{(r-1)/m}, q = \omega_1 u^{-(k+1)/m}.$$

The following result was obtained in [2].

Theorem 1.1. For a partition $\lambda = (\lambda_1, \dots, \lambda_n)$ satisfying

(3)
$$\lambda_i - \lambda_{i+k} \ge r \quad (1 \le i \le n - k),$$

the Macdonald polynomial $P_{\lambda} \in \mathbb{C}(t,q)[x_1,\ldots,x_n]^{\mathfrak{S}_n}$ has no pole at (2), and when it is specialized at (2), it vanishes on the submanifold given by

$$(4) x_i/x_{i+1} = tq^{s_i} for 1 \le i \le k$$

for each choice of non-negative integers s_i such that $\sum_{i=1}^k s_i \leq r-1$. Conversely, the space of symmetric polynomials $P \in \mathbb{C}(u)[x_1,\ldots,x_n]^{\mathfrak{S}_n}$ satisfying the above condition is spanned by the Macdonald polynomials P_{λ} specialized at (2) where λ satisfies (3).