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ABsTrACT. Existence of complex codimension-one transverse structure is studied
using the complex dilatation. As an application, a version of quasiconformal surgeries
of foliations are considered.

1. INTRODUCTION

In the study of foliations of codimension greater than one, it is natural to restrict
oneself to foliations which admit transverse geometric structures. In the present
paper, we consider transversely holomorphic foliations of complex codimension one,
namely, foliations whose holonomy pseudogroups are generated by biholomorphic
local diffeomorphisms of C. One might consider that the situation is very restric-
tive, however, there are many interesting examples. For example, if a holomorphic
vector field on C? with Poincaré type singularities is given, then one can construct
naturally a transversely holomorphic foliation of S3. Although transversely holo-
morphic foliations of closed 3-manifolds are classified by Brunella [5], Ghys [7] and
Carriere [6], it seems difficult to tell if a given flow admits transverse holomorphic
structures. In addition, if the ambient manifold is of dimension greater than three,
there are very complicated examples [8] so that it seems very hard to classify such
foliations. Thus it is important to find good criteria for foliations admitting trans-

verse holomorphic structures as well as to find methods to construct such foliations.
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On open manifolds, a homotopy theoretic approach can be found for example in
a work of Haefliger [9]. In this paper, we introduce the notion of quasiconformal
foliations, and show such foliations are in fact transversely holomorphic. Quasi-
conformal foliations are foliation version of quasiconformal groups. Indeed, the
construction of holomorphic structure is an application of Tukia’s method found
in [12]. A version of quasiconformal surgeries of foliations are also considered.
This is almost equivalent to the extention problem of given transverse holomorphic
structures on the boundary. Under an additional but natural condition, such an
extention is possible if the foliation is quasiconformal. The surgery considered here
is closely related to the Julia sets for complex codimension one foliations given by
Ghys, Gomez-Mont and Saludes [8], and also to characteristic classes of foliations.

This paper is organized as follows. In the section 2, relevant definitions are
given. In the section 3, the main theorem is proved. As a corollary, it is shown that
under a natural condition, two transversely holomorphic foliations can be glued
possibly after changing the transverse structure on one piece. The relevant tools
are complex dilatations and the measurable Riemann mapping theorem (see [1] for

details). Finally, some examples are presented in the section 4.

2. DEFINITIONS

Let F be a transversely oriented, real codimension two foliation of a manifold
M. 1If the boundary of M is nonempty, then assume that F is transversal to the
boundary. Although we are interested in smooth foliations, we only assume that
F is transversely quasiconformal. Roughly speaking, F is said to be transversely
quasiconformal if the holonomy pseudogroup is generated by quasiconformal local
homeomorphisms of C. A more precise definition will be given soon later.

Let {U;} be a locally finite foliation chart so that each U; is homeomorphic to
V; x D;, where V; is an open set of RU™M=2 and D; is an open disc in R? (if F is
not smooth, we assume that such a chart exists). Let ¢;; be the transition function
from U; to Uy, then every ¢;; is of the form (vj;,7;;), where «;; is a function defined
on an open subset of D;. Fix now for each ¢ an identification of D; with an open
disc in C, then each «;; is a local homeomorphism of C. Let T be the disjoint
union of D;’s, then T" can be considered as an open subset of C and also as a subset
of M. We call this T' a complete transversal. When we need a measure class of T,
we consider the restriction of the Lebesgue measure of C to T. We may assume
that this measure class coincides with the natural one induced from M if every v;;

preserves the Lebesgue measure class. This is indeed the case if F is smooth or
2



every 7;; is a quasiconformal homeomorphism.

Definition 2.1. Let 7' = II D; be a complete transversal and consider it as an open
subset of C. Set Iy = {v;i}, where v;; is as above. We denote by I" the holonomy
pseudogroup associated with 7', namely, let I' be the pseudogroup generated by
I'y. If we denote by I, the set of local homeomorphisms of C obtained as the
composition of at most n elements of I, then I" = | JI},. For an element v of I,

the domain of « is denoted by dom~ and the range of v is denoted by range ~.

A foliation is said to be transversely quasiconformal if every «;; is a quasiconfor-
mal local homeomorphism (see [1] for the definition of quasiconformal homeomor-

phisms). To be more precise, recall the notion of complex dilatation.

Definition 2.2. For an orientation preserving quasiconformal local homeomor-
phism f of C, we denote by p¢(z) the complex dilatation (Beltrami coefficient) of

f, namely, we set

f2(2)
/,&f(Z) = fz(z)7
_9f _of N .
where f; = 27 and f, = 95 Such an f is said to be K-quasiconformal for K > 1
Z z

if ||pg]] < 1;_7, where ||11f]| denotes the essential supremum of |p¢| on the domain

of f.

It is known that the partial derivatives are well-defined almost everywhere for
quasiconformal local homeomorphisms. A quasiconformal local homeomorphism f
is biholomorphic if and only if it is 1-quasiconformal, or equivalently, |pu¢(2)] =0

a.e. z.

Definition 2.3. Let F be a real codimension two foliation of a manifold M. If
OM # ¢, assume that F is transversal to M. Let T be a complete transversal for
F and let I' be the holonomy pseudogroup associated with T'. Then, F is said to

be K-quasiconformal with respect to T if every element of I" is K-quasiconformal.

Since the foliation is assumed to be transversely oriented, 1 > |pu,(z)| > 0 for
yel.

Remark 2.4. The notion of K-quasiconformality depends on the choice of complete
transversals. However, provided that M is compact and F is smooth, if F is K-
quasiconformal for some choice, then F is K'-quasiconformal for other choices with
some K' > 1.



The notion of transversely quasiconformal foliations is a foliation version of qua-
siconformal groups. Let G be a group of quasiconformal self-homeomorphisms of
an open subset U of CP! and assume that the action is orientation preserving.
The group G is said to be a quasiconformal group if there is a constant £ < 1 such
that |pg(2)| < k for any g € G and a.e. z. A theorem of Tukia [12] shows then that
there is a K-quasiconformal homeomorphism f : U — C P! such that the action of
foGo f~ton f(U) is holomorphic. The main theorem in this paper is a foliation

version of his theorem.

Definition 2.5. Let F be a transversely quasiconformal foliation of a manifold M
which is transversely orientable and of real codimension two. Let {V; xD;, (i, ;i) }
be a foliation chart as above. Set T = I D; and consider T as an open subset of
C, and let I' be the holonomy pseudogroup associated with 7. Let f be a K-
quasiconformal homeomorphism from 7T to its image, then one can form a new
foliation F’ whose foliation chart is given by {V; x f(D;), (¢ji, fovjio f~1)}. The
foliation F’ is called a K-quasiconformal conjugate of F. The complex dilatation

ps of fis called the transverse complex dilatation of the conjugacy.

Definition 2.5 is reduced to a more natural form for transversely holomorphic

foliations.

Definition 2.6. Let F be a transversely holomorphic foliation of M, of complex
codimension one. The transverse complex dilatation u? of a foliation preserving
diffeomorphism f of M into itself is defined to be the complex dilatation of f in

the transverse direction with respect to the transverse holomorphic structure of F.

K-1
If ||p,;ch||Oo < 1 f is said to be transversely K-quasiconformal.

Finally, we introduce the complex dilatation for germs of elements of I'.

Definition 2.7. Let I' be a topological groupoid acting on an open subset T of
C. Suppose that I' is generated by orientation preserving quasiconformal local
homeomorphisms of T. We denote by [y], the germ of element v of I' at x if
z € dom~, and set I, = {[v]z|v € I x € dom~}. For an element [y], in [},
we choose its representative v’ and set juy), () = gy (x). By abuse of notation,

[[y). () is denoted again by 1 (z).

Note that ju(z) is well-defined for a.e.  and any . An important property of
Iy is that I'; acts on Iy, from the left, indeed, Iz [v]e = {[VV]z |7 € Iy} = I
if v € I';. In what follows, we denote [7y], simply by 7, because only the germ of

elements of I is relevant.



3. PROOF OF THEOREM

The proof presented here is almost identical to Tukia’s one in [12] for group
actions. Here we make adaptations for foliations and formulate a boundary rela-
tive version, which is needed for surgeries. Before proving the main theorem, we

introduce the following:

Definition 3.1. Let D be the Poincaré disc and let X be a subset of D bounded in
the Poincaré metric. Let P(X) be the center of the unique hyperbolic ball D(z,r)
with the properties that 1) D(z,r) D X and 2) if D(y,r’) D X and y # z, then
r" > r, where D(z,r) denotes the hyperbolic ball centered at z and of radius r. We
call P(X) the hyperbolic mean of X.

The existence of such a D(x,r) is shown in [12].

We need one more definition before proving the main theorem.

Definition 3.2. Let F be a transversely orientable, real codimension two foliation
of a manifold M. Let W be a codimension zero submanifold of M and suppose
that OW is transversal to F. Denote by Ty a complete transversal for F|y,, and
denote by 'y the holonomy pseudogroup of F|y associated with Ty. Choose a
complete transversal T' of F such that T' contains Ty and that T\ Ty is a complete
transversal for 7|y w. Let I'" be the holonomy pseudogroup associated with T'.
Set then Iy = {y € I'|dom~ C Ty ,rangey C T }.

Elements of fW represent holonomies along leaf paths connecting points of W
but not necessarily contained in W.

The main theorem is as follows.

Theorem 3.3.
1) Let F be a real codimension two foliation of a manifold M. If OM # ¢,

then assume that F s transversal to OM. If F is K-quasiconformal with
respect to a complete transversal T, then F admits a transverse holomorphic
structure after taking a transverse K -quasiconformal conjugate of F.

2) Let W be a codimension zero submanifold of M and assume that OW is
transversal to F. Assume that F is K-quasiconformal and that a trans-
verse holomorphic structure is given to F|w. Define Tw, T, I'w and fW
as in Definition 3.2. Suppose now that fW 1s an extention of I'y by bi-
holomorphic local diffeomorphisms of Tw, then the transverse holomorphic

structure of F|w extends to a transverse holomorphic structure of F on M
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after taking a transverse K -quasiconformal conjugate of F which is trans-

versely holomorphic on W.

Before giving a proof, we explain the condition assumed in 2). Suppose that
the given transverse holomorphic structure of F|y extends to the whole manifold
by modifying T' by a quasiconformal homeomorphism f which is biholomorphic on
Tw. Then, f oI o f~! is generated by biholomorphic local diffeomorphisms. Let
v be an element of I' which corresponds to a leaf path connecting points of W
but not necessarily contained in W. Then f o~ o f~! is biholomorphic. Since f is
biholomorphic when restricted to W, the mapping + itself should be biholomorphic.
Hence the assumption in 2) is indispensable. See Example 4.8 for an easy coun-
terexample when this compatibility condition is dropped. The easiest case where
the compatibility condition is satisfied is that F is in fact a flow and that each orbit

meets the boundary at most once.

Proof. First we show 1). This part is essentially due to Tukia. We repeat his proof
with necessary adaptations, basically following the notations in [12].
Denote by D C C the Poincaré disc. For ¢z € T and v € I}, define a Mobius

transformation of D by the formula

~ (@) +7a(2)2
Tyte)(=) = V2 (@) +75(2) 2

where z € D. If 4" € I'y; is a quasiconformal homeomorphism with the complex
dilatation i, then T, (x)(py (yx)) = pyo(x), where v € I,. For x € T, set
M, = {py(z)|v € I';}, then we have

Ty (2)(Myz) = {Ty(2)(1y (7)) |7 € Tyo}
= {tyy(2) |7 € I'yo}
= {lyy(z) | (v'y) € T}
= M,.

For z € T, we set u(z) = P(M,) if M, is bounded, where P(M,,) is the hyperbolic
mean of M, and p(z) = 0 either M,, is unbounded or z ¢ T. Although foliations
are considered, p is still measurable. To see this, recall that I' is generated by I7,
which is countable. We give an order to elements of Iy and denote by ; the i-th
element. Set G; = {v1,72,-..,7} and let I} be the subset of I}, which consists of

the composition of elements of G,,. Then clearly I, is countable and |JI7, = I
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Let M, be the subset of D obtained by collecting ju,/ (), where 4" € I}, NI,. We set
pn () = P(M.), where P(¢) is set to be 0. An elementary argument shows that the
sequence {jy,(x)} converges to p(z) if M, is bounded. As p,(z) is the unique point
determined in a measurable way as in Definition 3.1, p,, is a measurable function.
Hence p is also a measurable function.

Finally let f be the quasiconformal mapping with pf(z) = p(x) a.e. z given by

the measurable Riemann mapping theorem, then

pg(x) = P(My)
= P(Ty()(Myz))
=Ty (2)(P(Myz))
= Ty()(ns(v))
= ppy ()
for a.e. x € T and every « € I,. This implies that f o I'o f~! acts as holomorphic
transformations on f(7'). The dilatation of f can be estimated exactly as in [12].
The second part is shown as follows. Let W be the saturation of W in M and let
T be the corresponding subset of T', then T is open subset of 7" invariant under

the action of I'. We define a measurable function p’ on T instead of p as follows.
For x € Ty, set My, = {py(x)|v € Iy, yx € Tw}. If v € I, then we have

Ty (2)(M3,) = {Ty (%) (o (v2)) |V € Tyieyv'v2 € T }
= {/1"7"7('71 |’Yl € F’ym77/7$ € TW}

= {piy(@) | (¥'y) € Ty, v vz € T }
- M.

)
)

The compatibility condition on I'y and Iy implies that M/ = {0} if € Tyy. Set

now N .
W () = { P(M,) if x € Ty and M, is bounded,

P(M,) if x ¢ Ty and M, is bounded.
As in the case 1), ¢/ () is essentially bounded, measurable and invariant under the
action of I'. Since p'(z) = 0 for € Ty, the conjugacy is transversely holomorphic

on W. This completes the proof. [

Remark 3.4. Sullivan also made a similar construction in [11] involving the barycen-

ter of M, instead of the hyperbolic mean.

Remark 3.5. Even if the foliation is not transversely orientable, one can find an in-

variant transverse conformal structure under the same condition. After conjugation,
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the holonomy pseudogroup is generated by biholomorphic and bi-antiholomorphic
local differomorphisms of C'.

A version of quasiconformal surgery is formulated as follows. Consider the fol-
lowing situation: let M; and My be manifolds with boundaries OM; and 0Ms.
Let F; be a transversely holomorphic foliation of M; transvesal to the boundary
(1 = 1,2). Let N1 and Ny be the union of several components of dM; and dMa,
repectively. Assume that there is a foliation preserving, transversely quasiconformal
homeomorphism ¢ from (Ny, Fi|n,) to (N2, Fa|n,). If one tries to glue M and My
by ¢, a situation as in the part 2) of Theorem 3.3 occurs. Pulling back the structure
by ¢, F1 is given a transverse holomorphic structure on a collar neighborhood W
of N1, because Fj is transversal to the boundary. The problem is if this structure
can be extended to the whole M. Let Ty, I'w and fW as in Definition 3.2. The
latter should be an extention of I'yy by biholomorphic local diffeomorphisms of Ty .

This is sufficient if one more condition is fulfilled.

Corollary 3.6. Suppose that fW is an extention of I'y by biholomorphic local
diffeomorphisms of Tw and that ¢ is transversely K -quasiconformal. Then My U,
My admits a transversely holomorphic foliation which is the same as Fo on Ms and

which is transversely K?2-quasiconformal conjugate to Fi on M.

Proof. Let £ be a leaf path, then we may assume that ¢ is transversal to OW. If £
comes into a component of W and goes out of W, then by pushing £ slightly into
the interior int(M \ W) of M \ W, £ can be modified so that £ stays in int(M \ W)
because W is a collar. Hence we may assume that £ meets OW at most twice.
Since the foliation is transversely holomorphic when restricted respectively to W
and to int(M \ W), and since the transverse complex dilatation of ¢ is bounded, the
complex dilatation along £ is bounded. Hence 2) of Theorem 3.3 can be applied so
that one can find a transverse complex structure on M;. The estimate of distortion
follows from the fact that the composition of a Ki-quasiconformal map and a K-

quasiconformal map is Ky Ks-quasiconformal. [

Remark 3.7.

1) The gluing map ¢ is a priori transversely K-quasiconformal for some K if
N7 is compact and ¢ is smooth.
2) If F is a flow, the transverse complex dilatation of ¢ is just the complex

dilation of the mapping ¢|n, .

Remark 3.8. As examples in the next section show, this surgery need not produce

a new foliation.



Remark 3.9. This kind of surgeries of transversely holomorphic foliations are con-
sidered in [8] when the gluing mappings are transversely holomorphic. Corollary 3.6
shows that these mappings need not be transversely holomorphic if one is allowed
to modify the transverse holomorphic structure on one piece. We will study such

surgeries in detail for one-dimensional foliations in the next section.

4. EXAMPLES

First we introduce a simple example where the main theorem is related with

quasiconformal deformations of foliations.

Example 4.1. Let « € C and define a mapping f : C — C by setting f,(z) =
e2™V=Ia, Note that o and a+1 give the same mapping. Assume that a, § € C\ R,
and define a homeomorphism ¢ of C to itself by setting

m o
p(z) = 2|2 YRR
Im g .. . .
We also assume that —— > 0 so that ¢ is orientation preserving. The homeomor-

m
phism ¢ is in fact a quasiconformal homeomorphism and we have ¢ o f, = fgo ¢,
indeed,

¢ o falz)

=p(e¥V7T2) = 2”“—_1%<e—2ﬂm>—ﬁ?n?5 2|7V T
_2rV-18, 2|~ i

=fp o ¢(2).

The complex dilatation of ¢ is given by

18-«
5 < \ ZIma) |Z| e %

Pz
_(Z) - T8
= <1 V™ ZIma) 2] 7V e
_a—Bz
a-p0z

Note that a — 3 # 0 because izg > 0.

Let R = {(t,z) € Rx C||z] < e*™m} and set Hy = R/(t+ 1,2) ~ (¢, fa(2)).
The foliation of R x C by the lines R x {z} naturally induces a transversely holo-
morphic foliation of H, and the orientation of the leaves. Since o € C \ R, this

foliation is transversal to the boundary. Hence 0H, is naturally a complex torus.
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According to Corollary 3.6, a new transversely holomorphic structure will be de-
fined if we modify the complex structure of 0H,. For example, if we construct 0Hpg
in a parallel way and replace the complex structure of 0H, with that of 0Hg, the
mapping ¢ : H, — Hp defined by ¢(t, z) = (¢, ¢(2)) describes the deformation.

In order to proceed further, fix the longitude ¢ and the meridian m of 0H, by
setting £ = {(t,e~2"V=1o0) 1, _p and m = {(0,e>"V~1)},cr. These £ and m inherit
the orientation of R.

If Ima < 0, it is natural to consider that the complex structure of 0H, is given
from the inside of H,, namely, the complex structure is given so that its natural
orientation is opposite to the orientation as the boundary of H,. In this case, 0H,
is isomorphic to C/I" with I' = Z{ + Zm, where £ is considered as 1 and m is
considered as —«a. The modulus of 0H,, is thus equal to —a modulo PSL(2; Z). On
the other hand, if Im a > 0, the complex structure is natural if it is chosen so that
its natural orientation coincides with the orientation as the boundary. In this case,
0H, is again isomorphic to C/I" with I' = Z{ + Zm, where / is again considered
as 1 and m is considered as —a. However, taking the orientation into account, the
modulus of 0H, is equal to —1/a modulo PSL(2; Z), in other words, under the
usual normalizing conditions, m corresponds to 1 and ¢ corresponds to —1/«.

As firstly remarked, o and a4 1 give the same mapping f, and thus everything
would be the same even if « is replaced with a+ 1. This is indeed the case; adding
1 to a corresponds to the Dehn twist of H,, along m in the clockwise direction, and
hence the flow remains isomorphic as a transversely holomorphic flow. In particular,
the modulus of the boundary remains unchanged. The value o modulo Z can be
detected by the residue of the Bott class [2] (see also [10]). Roughly speaking, it is
the linear holonomy along the leaves. Indeed, the residue of the Bott class for H,,

is equal to @ modulo Z.

The above example is closely related with the characteristic classes and also with
the Julia sets in the sense of Ghys, Gomez-Mont and Saludes [8]. It is clearly seen

in the following example of Bott.

Example 4.2 (Bott). Consider S as the unit sphere in C? and let (z,w) be the
standard coordinate of C2?. Let X be the holomorphic vector field on C? defined

0 0
by X = )\za— + p,wa—. Then X determines a holomorphic foliation, denoted by
z w

Fap of C2\ {0}. We assume that A/u ¢ R, then X is transversal to $3 and to the
tori T; = {|2)” = r2, |w|® = 1 —r2} contained in $3. Thus X naturally determines

a transversely holomorphic flow, denoted by Fy , on S 3 and a complex structure
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of T,.

Consider now the Heegaard decomposition of S by cutting along T} /2. Namely,
set 71 = {(2,w) € S| |jw| <1/2}, 7» = {(2,w) € S*||z| < 1/2} and consider S*
as 71 U 7o. Then one can find a diffeomorphism from 71 to H, 5 which is trans-
versely holomorphic, and also a transversely holomorphic diffeomorphism from 7
to Hy/,. In particular, the moduli of 07 and 07 are equal to A/ and p/A (modulo
PSL(2; Z)), respectively. Conversely speaking, by gluing 7; and 75 in the standard
way, we can reconstruct the original foliation of S3. The gluing will be discussed
in Example 4.5.

We can deform the foliation by varying A and p. By using Example 4.1 and the
above decomposition, this deformation can be also viewed as a transverse quasicon-
formal deformation. Quasiconformal deformations are closely related with the Julia
set defined in [8] defined as follows. First find a continuous vector field X of the

form X = g(z, 2)3— of certain regularity such that X is leafwise constant and that
z
dg 0
8_!{8_ ®dz = ua— ® dz, where p is the transverse complex dilatation. It can be
zZ 0z z
shown that it is always possible, and then the Julia set is given by the intersection of

the zeroes of all such vector fields. The Julia set of F) , is precisely two closed orbits

placed in the core of 71 and 75. Indeed, such an X which corresponds to the defor-

: 0

mation of Fy , to Fy s is given on 7 = H, by X = (g:g, zlog |z|* + h(z)) py
z

with h being holomorphic, where « = p/A and o = p//N. An easy additional
argument shows that h(z) should be of the form h(z) = kz, where k € C if X

extends to the whole S® and if A\/u € C \ R.

Before discussing the gluings, we introduce another example on S3. It is probably
known although we could not find literature.

Example 4.3. Let X be the 2-plane field on C? \ {0} defined by X = )\za3 +
z

0
/MDF. More precisely, X is the 2-plane field spanned by the vector fields Y and
W
Z defined as follows. First write z = x1 + v —1y1, w =2+ vV —1ys, A=a++/—1b
0 0 0 0
and pu =p++v—1q. Set R; =rv;— +y;— and N; = —y; — +x;— for v =1, 2,

Ox; oYi Ox; 0yYi
and define Y and Z by

Y =aR; +bNy +pRy — N3,
Z = G,Nl — le —pN2 — qu.

It is easy to see that X is integrable, in fact, the leaves are {(zoe*, woet?)}ec.

We denote this foliation of C%\ {0} by §>\,w then ék,u is transversely holomorphic
11



because it is the pull-back of the foliation ﬁk,u by the mapping (z,w) — (z,w).
A concrete foliation chart for QN,\,N is given as follows. Let ¢; be the mapping
from C x C to C* x C defined by

(Pl(t,Z) _ (627r\/—_1t7 2627r\/—_1(u/)\)t).

Set now ﬁu/x = C x C/(t+1,2) ~ (t, z2e>™V=11/N) and denote the equivalence
class of (t,z) by [t,z]. The mapping ¢; induces a diffeomorphism, denoted again
by ¢1, of fNIu/A to C* x C. Indeed, let Log be a fixed branch of the logarithmic

function, then ¢ !(u,v) = Log u, ve~(W/MLogu| = When pulled back to

1
2T
H u/x, the foliation QA ,u 1s nothing but the suspension of the mapping f,/\ defined
in Example 4.1 so that QA . 1s transversely holomorphic on H u/x- Similarly, set
Hk/u =C x C/(s+ 1L,w) ~ (s,we?™V=TA/1)) and define a diffeomorphism from
Hyj, to C x C% by po([s,w]) = (we2™V=IA/ms ¢2nV=1s) " The foliation Gy,
pulled back to H A/u 18 again transversely holomorphic. Note that ¢y 1(u,v) =

Log v, ue~(M/mlog ”] .

1
2mv/—1

Thus it suffices to see that the transition from ﬁu/x to H A/p 18 transversely

holomorphic. Simply by calculating, we see that

05t opi([t,2]) = 3 L (e2mVTTE, 22TV

1 2w/ =T(u/ )t
_ ( 2m/— (M/A)t> 2mV/=Tt, —(\/u)Log ze
= [2 \/_llog ze

1 — —
_ Lo (2627r\/—1(u/k)t>,e_(A/H)LOgZ .
|:27T\/—1 &
The second component is indeed holomorphic in z, moreover, for an appropriate

choice of the branch, the function Log z can be replaced by Log z.

0
Set now A = 15—+ Gy 42 gy T2, then YV-N = a(ai+y])+p(a3+y3)

1
and Z - N = —b(z? + y?) — q(x3 + y3). By considering XX instead of X, we see

that C:A,u is transversal to S2 if and only if u/\ € R™. If we assume moreover that
p/A ¢ R, then G A, 18 transversal to the torus 7 as in Example 4.2. Assume now
p/A € C/R™ and denote by G ,, the induced flow on S3.

There are no extensions of Gy , to holomorphic vector fields with a Poincaré type
singularity at the origin. Indeed, Gy, has two closed orbits C; = {(2™V=1,0)}1er
and Cy = {(0,e2™V=1%)},cp on S3. If F is induced by a holomorphic vector

field, the both C; and C5 are positively linked. Note that the flow Gy , is given
12



by the vector field (b(zF + y7) + q(z3 + ¥3)) Y + (a(z? + yi) + p(e3 +y3)) Z if we
assume that C'; is oriented in the standard way. Indeed, this vector field is equal
to (a® +b*) Ry if w = 0 and to —(p? + ¢*) Rz if 2 = 0. It follows that C; and Cy are
negatively linked. Thus there are no such extensions. This example shows that the
extendability of a transversely holomorphic foliation of S® to a holomorphic vector
field on C? depends on its realization, namely, the embedding of S into C?\ {0}.

Remark 4.4. Assume that A/ € C\ R, then G, , is obtained as follows: first
consider the foliation F) , of S® as in Example 4.2. Decompose then S* as H, U
Hy /o, where o = X/p. Then glue H, and H;/, again after turn Hy/, over. One

obtains again S® but now the flow inside H; /o is modified.

In general, transversely holomorphic flows on the Lens spaces can be constructed

as follows (S and S? x St are included).

Example 4.5. We retain the notations in the previous examples. Assume that
Ima <0< Impg and set 71 = H, and 79 = Hpg, then the flow on H, is repelling
while the flow on Hpg is attracting. One can glue 7; and 7 if the complex structures
of their boundaries agree, and will obtain a transversely holomorphic flow on a Lens
space. Let £; and m; be the longitude and the meridian of 7; chosen as in Example
4.1. Then, the topological type of the manifold is determined by the image of mg
on d11. We denote by L(p,q) if my is mapped to pf; + gm;. Assume that ¢35 is

mapped to rf1 + smy. Taking the orientation into account, we may assume that the
attaching map from 07 to 071 is represented by an element (1(; ;) of SL(2; Z).
Noticing that Im3 > 0 > Im«, we see that the complex structures on dm, and
on 07y coincide via the attaching map if and only if <€ Z) (—a) = —%, where
PSL(2; Z) acts on CP! by linear fractional transformations. In other words, one
can always attach Hg to H, by Corollary 3.6 provided that Ima < 0 < Im (3, but

once « is fixed, Hg should be deformed into Hg with g’ = 7% The Bott
pa—4q

modulo Z (more precisely, it

ro —

class of the foliation is given by a4+ = a —

is an element of H3(L(p,q); C/Z), see [2]).
It is easy to see that L(+p, £q) are diffeomorphic regardless of the choice of the

sign. It is also known that if p, p’ > 0 then L(p,q) = L(p',q’) if and only if 1) p = p/
and ¢ = +¢' mod p, or 2) p=p’ and q¢' = +1 mod p [3], [4]. Thus we will have
several distinct flows and its Bott class on a Lens space.

1) L(£1,q) & S3. If p = 41, then L(p, q) is diffeomorphic to S and s = (1 +qr).
13



1
Hence a+ 8 =aFr+ — = a +
aFq a+q

the number ¢ and r reflect the Dehn surgeries, namely, twisting along the meridian

mod Z. One can easily verify that

of H, and Hg when they are attached. These foliations are obtained from linear

holomorphic vector fields, namely, if p = 1, then in the coordinates as in Example

0
4.2, the foliation is given by o + (. — q)wa—. If p = —1, the foliation is given
z w

by ,z2 + (o — q)w%.

0z
2) L(0,£1) =2 S2x St. In this case r = Fl and 3 = —aFs. Hence a+3=Fs =0
modulo Z. If ¢ = —1, then the foliation is the suspension of the automorphism

of CP! defined by f.(2) = e2™V=lay for z € C C CP. If ¢ = 1, then the
foliation is obtained as follows. First consider the foliation of R3 by real lines
{{(z,y)} x R}, where (z,y) € R?. Remove the origin, then the mapping ¢, :
R3\ {0} — R3\ {0} defined by ¢, (p) = e2™V=1% p e R3, preserves the foliation.
Thus there is an induced foliation of (R \ {0})/(p ~ ©va(p))- It is easy to see that
the foliation is transversely holomorphic under the natural identification of this
space with C P! x S'. This is the foliation corresponding to the case where ¢ = 1.
3) L(2,41) = RP3. In this case r = +(2s — 1) and

1 1 1 1
_ )t =Tl t—— mod Z.
atp ajF<8 2>+2(2aIF1) 52T 1) 22ax1) M

0 0
Indeed, taking the double cover, the foliation of S induced by 25 + (2aF l)wa—
Z w

is obtained. If we replace p = 2 by —2, then again we are in the situation as in
Example 4.3.
4) General case (p # 0): one has the following equation, namely,

T — 8 1 1

a+fB=a-— =—-(po—71r)+ —".
pa—q P p(pa —q)

After taking a |p|-fold covering, one obtains S3 equipped with the foliation as

0 0
in the case 1). The foliation is defined by a vector field 5 + (pa — q)wa— or
z w
0

2_'_( _ )—_
9, WP DU

Remark 4.6. Let M be a closed 3-manifold and let F be a nonsingular Morse-Smale
flow on M. Assume that the monodromy of closed orbits are either repelling or
attracting. Then one can show that there are only a single repelling orbit and a
single attracting orbit. Hence M is a Lens space. Example 4.5 can be considered

as an example of this kind.
14



There is a simple example where the set M, appeared in Section 3 is bounded
but there is a sequence of monodromies associated with loops passing through x

which is not convergent.

Example 4.7. Define f : R? — R? by setting f(z,y) = (—2y,x/2) and consider
the suspension of f. Clearly f is not holomorphic if we consider R? as C in the
standard way. Set now ¢ (x,y) = (x/2,y), then ¢ o f o p~™(z,y) = (—y,z). Thus
by identifying R? with C via 1, f is holomorphic. As f(z) = 2/-1z — 3\/-1z

and f2(z) = —2,
_3 if n is odd
pgn = o

0 if n is even.

Form now the suspension of f, then one can find a sequence of the holonomy pseu-
dogroup whose complex dilatations do not converge although the foliation clearly
admits a transverse holomorphic structure. The conjugacy v can be found by Theo-
rem 3.3. Indeed, some calculation shows that the function p in the proof of Theorem

3.3 is equal to —1/3, which is in tern the complex dilatation of the mapping .

Finally, there is an easy example which shows the necessity of the compatibility

condition in Theorem 3.3.

Example 4.8. Let F be the foliation of T? x [0, 1] by the intervals {p} x [0, 1],
p € T?. Give T? x {0} and T? x {1} two distinct complex structure, and extend
them trivially to Wy = T? x [0,¢) and Wy = T? x (1 — ¢, 1], respectively, where €
is a small positive real number. It is then obvious that the transverse holomorphic

structure on Wy U W7 cannot be extended to any transverse holomorphic structure
of F on the whole T? x [0,1].

Acknowledgement. The author would like to express his gratitude to Professor
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