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Abstract

We prove that, if a metric measure space admits a stratification so that each
stratum satisfies the strong doubling condition, then the intrinsic distance induced
from the Cheeger-type energy form coincides with the original distance. In other
words, we can reconstruct the distance function by the Cheeger-type energy form.
We also observe that this reconstruction does not work for the Korevaar-Schoen-type
energy form.

1 Introduction

The theory of Sobolev spaces for functions on an arbitrary metric measure space is making
remarkable progress in recent years (see [C], [HK], [He], [KoSc], etc.). There the Sobolev
space is defined as a space of functions with finite energies, and there are several definitions
of energy forms on a metric measure space. Among them, in this article, we shall consider
Cheeger’s and Korevaar and Schoen’s ones ([C], [KoSc]), and intend to reveal the difference
between them from the geometric point of view.

Our main theorem (Theorem 5.2) asserts that, if a metric measure space admits a
stratification so that each stratum satisfies the strong doubling condition (in the sense
of Ranjbar-Motlagh [R2]), then the intrinsic distance defined by using the Cheeger-type
energy form coincides with the original distance. Here the strong doubling condition
(Definition 5.1) can be regarded as a generalization of Measure Contraction Property in
[S] as well as the weak measure contraction property of Bishop-Gromov type in [KuSh],
and the intrinsic distance (Definition 4.1) is defined as in [BM]. The coincidence between
the original distance and the intrinsic distance induced from the canonical Dirichlet form
is known for Riemannian manifolds and, more generally, for Alexandrov spaces with lower
curvature bounds ([KMS, Theorem 7.1]).
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One aspect of the theorem is that we can reconstruct the distance function by using the
energy form, and another one is that we can distinguish metric spaces by comparing the
energy forms on them (Corollary 6.1). We will observe that the analogue is not true for
the Korevaar-Schoen-type energy form in the case of Banach spaces (§6). Thus it seems
that the Korevaar-Schoen-type energy form is suitable when we consider Riemannian
spaces such as Alexandrov spaces, rather than Finsler spaces.

Acknowledgements. I would like to express my gratitude to Professor Takashi Shioya for
his valuable comments.

2 Preliminaries for Cheeger-type energy form

This section is devoted to recalling the definition and some fundamental properties of the
Cheeger-type energy form. See [C] for detail. Throughout this article, let (X, dX) be a
metric space and µ be a Borel regular measure on X such that 0 < µ(B(x, r)) < ∞ holds
for all x ∈ X and r > 0. Here B(x, r) denotes the open ball with center x and radius
r. For real numbers a, b ∈ R, we set a ∧ b := min{a, b} and a ∨ b := max{a, b}. We will
use some terminologies on Dirichlet forms (with quotation marks ‘· · · ’), consult [FOT] for
them.

A Borel measurable function g : X −→ [0,∞] is called an upper gradient for a function
f : X −→ R if, for any unit speed curve γ : [0, l] −→ X, we have

∣∣f(
γ(0)

)− f
(
γ(l)

)∣∣ ≤
∫ l

0

g
(
γ(t)

)
dt.

Definition 2.1 (Cheeger-type energy form) For p ∈ (1,∞) and f ∈ Lp(X), we define
the Cheeger-type p-energy EC

p (f) of f by

EC
p (f) := inf

{(fi,gi)}∞i=1

lim inf
i→∞

|gi|pLp ,

where the infimum is taken over all sequences {(fi, gi)}∞i=1 satisfying that fi → f in Lp(X)
as i →∞ and that gi is an upper gradient for fi for each i. The Cheeger-type (1, p)-Sobolev
space H1,p(X) is defined as a space

H1,p(X) := {f ∈ Lp(X) |EC
p (f) < ∞}

equipped with a norm |f |H1,p := |f |Lp + EC
p (f)1/p.

It is clear by definition that EC
p is ‘Markovian’. Indeed, for any f ∈ H1,p(X), we

have EC
p (0 ∨ f ∧ 1) ≤ EC

p (f). It is also known that EC
p is ‘closed’ in the sense that

(H1,p(X), | · |H1,p) is complete ([C, Theorem 2.7]).

Remark 2.2 In general, the Cheeger-type 2-energy form EC
2 is not bilinear in the sense

that the symmetric form E : H1,2(X)×H1,2(X) −→ R defined by

E(f1, f2) :=
1

4
{EC

2 (f1 + f2)− EC
2 (f1 − f2)}
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is not bilinear. In particular, E is not actually a Dirichlet form. However, it is a heart of
our reconstruction. Compare this with the Korevaar-Schoen-type energy form which will
be defined in §6.

A function g ∈ Lp(X) is called a generalized upper gradient for f ∈ H1,p(X) if there
exist sequences {fi}∞i=1 and {gi}∞i=1 in Lp(X) such that fi → f and gi → g in Lp(X) as
i → ∞, respectively, and that gi is an upper gradient for fi for each i. By definition, it
clearly holds that EC

p (f) ≤ |g|pLp . A generalized upper gradient g ∈ Lp(X) for f ∈ H1,p(X)
is said to be minimal if it satisfies |g|pLp = EC

p (f).

Theorem 2.3 ([C, Theorem 2.10]) For any f ∈ H1,p(X), there exists a unique minimal
generalized upper gradient g ∈ Lp(X) for f .

We denote by gf,p ∈ Lp(X) the unique minimal generalized upper gradient for f ∈
H1,p(X).

Proposition 2.4 (‘Strong locality’, [C, Corollary 2.25]) For functions f1, f2 ∈ H1,p(X)
and a real number a ∈ R, if f1 = f2 + a holds a.e. on a measurable set A ⊂ X, then we
have gf1,p = gf2,p a.e. on A.

We also state two more known properties for the later use.

Lemma 2.5 ([C, Lemma 1.7]) Let g1 and g2 be upper gradients for functions f1 and f2,
respectively. Then, for any ε > 0, the function g1(|f2| + ε) + (|f1| + ε)g2 is an upper
gradient for f1f2.

Theorem 2.6 ([C, Theorem 2.5]) Let f ∈ H1,p(X) and {fi}∞i=1 ⊂ H1,p(X) be a sequence
such that fi → f in Lp(X) as i tends to ∞. Then we have EC

p (f) ≤ lim infi→∞ EC
p (fi).

3 Regularity

In this section, we show the ‘regularity’ of EC
p under some appropriate assumptions on

X.

Definition 3.1 (Doubling condition) A metric measure space (X, dX , µ) is said to satisfy
the (local) doubling condition if there exist constants CD = CD(X) ≥ 1 and RD =
RD(X) > 0 such that

µ
(
B(x, 2r)

) ≤ CDµ
(
B(x, r)

)

holds for every x ∈ X and r ∈ (0, RD].

Definition 3.2 (Poincaré inequality) A metric measure space (X, dX , µ) is said to satisfy
the (local) weak Poincaré inequality of type (1, p) if there exist constants CP = CP (X) ≥ 1,
RP = RP (X) > 0, and Λ = Λ(X) ≥ 1 such that we have

∫
−

B(x,r)

∣∣∣∣f −
∫
−

B(x,r)

f dµ

∣∣∣∣ dµ ≤ CP r

(∫
−

B(x,Λr)

(gf,p)p dµ

)1/p

for all x ∈ X, r ∈ (0, RP ], and for all f ∈ H1,p(B(x, Λr)).
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As usual, for a measurable set A ⊂ X, we define
∫
–

A
f dµ := µ(A)−1

∫
A

f dµ. A metric
space (X, dX) is said to be geodesic if any two points x, y ∈ X can be connected by a
minimal geodesic between them, i.e., a rectifiable, constant speed curve γ : [0, l] −→ X
satisfying γ(0) = x, γ(l) = y, and length(γ) = dX(x, y). A subset V ⊂ X is said
to be convex if every two points in V is joined by a minimal geodesic contained in V .
Henceforth, let (X, dX , µ) be a complete, geodesic metric measure space and assume the
following.

Assumption 3.3 There exists an (at most) countable family of open sets in X, say
{Un}∞n=1, which satisfies the following:

(1) Un ⊂ Un+1 for all n ≥ 1;

(2) X =
⋃∞

n=1 Un;

(3) Denote the connected components of Vn := Un \ Un−1 (= (Un \ Un−1)
−) by {Vn,α}Nn

α=1,
1 ≤ Nn ≤ ∞, where we put U0 := ∅. Then each Vn,α is convex and, for any x ∈ X,
R > 0, and any n ≥ 1, only finitely many Vn,α’s intersect with B(x,R);

(4) For any x ∈ X, R > 0, and any n ≥ 1, we have

lim sup
ε→0

ε−pµ
(
(B(Un, ε) \ Un) ∩B(x,R)

)
< ∞

for a common p ∈ (1,∞);

(5) Each (Vn,α, dX , µ) satisfies the doubling condition and the weak Poincaré inequality of
type (1, p) for p in (4).

In Assumption 3.3(5), we need to treat not only balls contained in Vn,α, but also the
intersections of balls and Vn,α, so that it requires the smoothness of the boundary of Vn,α.
We also remark that, by the doubling condition in (5) and the completeness, (X, dX) is
proper. So that µ is a Radon measure and (2) implies that, for any x ∈ X and R > 0, we
have B(x,R) ⊂ Un for some n. (4) means that, roughly speaking, ∂Un has a codimension
at least p in Un+1 \Un. In particular, we have µ(∂Un) = 0. Therefore X may have various
dimensions.

Example 3.4 Let X = Rm ∪ Rn/ ∼, m ≤ n, and n ≥ 2, where 0Rm ∼ 0Rn . We
consider the induced length metric and µ := Lm|Rm + Ln|Rn on X, where Lk denotes
the k-dimensional Lebesgue measure. Then X satisfies Assumption 3.3 by putting U1 =
Rm \ {0Rm}, U2 = X, and p = 2.

For f ∈ Lp(X) and x ∈ Vn,α, we set

M(f)(x) := sup
0<r≤RD(Vn,α)/5

∫
−

B(x,r)∩Vn,α

|f | dµ.

The following two lemmas are proved in the standard ways (see [HK] and [He]).

Lemma 3.5 (Maximal function theorem) Assume Assumption 3.3.

4



(i) For f ∈ L1(X) and t > 0, we have

µ({x ∈ Vn,α |M(f)(x) > t}) ≤ 2CD(Vn,α)t−1|f |L1({|f |≥t/2}∩Vn,α).

(ii) For f ∈ Lp(X), we have |M(f)|Lp(Vn,α) ≤ C1

(
p, CD(Vn,α)

)|f |Lp(Vn,α).

Lemma 3.6 Assume Assumption 3.3 and let f ∈ H1,p(X). For Lebesgue points x, y ∈
Vn,α of f with dX(x, y) ≤ min{RP (Vn,α)/2, RD(Vn,α)/10Λ(Vn,α)}, we have

|f(x)− f(y)| ≤ C2(CD, CP )dX(x, y)
{
M(gp

f )(x)1/p + M(gp
f )(y)1/p

}
.

We define, as a ‘core’,

C := {f ∈ H1,p(X) ∩ C0(X) | f is locally Lipschitz on Un \ Un−1 for all n ≥ 1}, (3.1)

where C0(X) denotes the set of continuous functions on X with compact supports.
For a continuous function f : X −→ R and a point x ∈ X, we define

Lip f(x) := lim
r→0

sup
y∈B(x,r)\{x}

|f(x)− f(y)|
dX(x, y)

.

Note that Lip f is Borel measurable and, if f is Lipschitz continuous, then it does not
exceed the Lipschitz constant of f . It is not difficult to show that, for a locally Lipschitz
function f , Lip f is an upper gradient for f ([C, Proposition 1.11]).

Theorem 3.7 (‘Regularity’, cf. [C, Theorem 4.24]) Assume Assumption 3.3. Then the
set C is dense in both (H1,p(X), | · |H1,p) and (C0(X), | · |∞).

Proof. The density in (C0(X), | · |∞) is well-known (see [He, Theorem 6.8]), so that
it suffices to show that every function f ∈ H1,p(X) is approximated by a sequence of
functions in C with respect to | · |H1,p . Note that, without loss of generality, we can
suppose that |f | ≤ M for some M > 0 and that supp f ⊂ B(x0, R) for some x0 ∈ X and
R > 0. Furthermore, by Assumption 3.3(2), (3), and (4), we know supp f ⊂ UN for some
N ≥ 1, supp f ∩ Vn ⊂

⋃αn

α=1 Vn,α for some αn < ∞, and

C(n) := lim sup
ε→0

ε−pµ
(
(B(Un, ε) \ Un) ∩B(x0, R)

)
< ∞

for all n ≥ 1. Put

CD(Vn) := max
1≤α≤αn

CD(Vn,α), RD(Vn) := min
1≤α≤αn

RD(Vn,α),

and define CP (Vn), RP (Vn), and Λ(Vn) in the same manner. In the remainder of this
proof, we will omit ‘∩B(x0, R)’ for brevity.

We fix n ≥ 1 for a while and consider an approximation of f |Vn . For l ≥ 1, set

Al := {x ∈ Vn | Lebesgue point of f, M(gp
f )(x) ≤ lp}.
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Then, by Lemma 3.5(i), we find

µ(Vn \ Al) = µ({M(gp
f ) > lp} ∩ Vn) ≤ 2CD(Vn)l−p|gf |pLp({gp

f≥lp/2}∩Vn)
,

and hence liml→∞ lpµ(Vn \ Al) = 0. It follows from Lemma 3.6 that, for x, y ∈ Al ∩ Vn,α

with α ≤ αn and dX(x, y) ≤ min{RP (Vn)/2, RD(Vn)/10Λ(Vn)}, we have

|f(x)− f(y)| ≤ 2C2(CD, CP )ldX(x, y).

Since Vn,α ∩ Vn,β = ∅ if α 6= β, we can choose a positive δ ≤ min{RP /2, RD/10Λ}/4 for
which B(Vn,α, 2δ) ∩B(Vn,β, 2δ) = ∅ holds if α 6= β and α, β ≤ αn. Take l large enough to
satisfy l−2 < δ and

µ(Vn \ Al) < inf
x∈Vn∩B(x0,R)

µ
(
B(x, δ) ∩ Vn

)
.

We remark that the right hand side is positive by the doubling condition together with
the convexity of Vn,α. We can extend f |Al

to Wn,l := B(Vn, l
−2) \ Un−1 by a local version

of MacShane’s lemma, more precisely,

fn,l(x) := inf{f(y) + 2C2ldX(x, y) | y ∈ Al ∩B(x, 2δ)}.
Note that, for any x ∈ Wn,l, we have µ(Al ∩ B(x, 2δ)) > 0 by our construction and that,
for any y1, y2 ∈ Al∩B(x, 2δ), we have |f(y1)− f(y2)| ≤ 2C2ldX(y1, y2). Hence fn,l = f on
Al and fn,l is locally Lipschitz on Wn,l (with a Lipschitz constant 2C2l). It follows from
Assumption 3.3(4) that

lim
l→∞

lpµ(Wn,l \ Al) = lim
l→∞

lp
{
µ
(
B(Un, l

−2) \ Un

)
+ µ(Vn \ Al)

}
= 0,

and hence, by Proposition 2.4,

|f − fn,l|H1,p(Wn,l)

≤ |M + (M + 4C2δl)|Lp(Wn,l\Al) + |gf−fn,l
|Lp(Wn,l\Al)

≤ (2M + 4C2δl)µ(Wn,l \ Al)
1/p + |gf |Lp(Wn,l\Al) + 2C2lµ(Wn,l \ Al)

1/p

→ 0

as l tends to the infinity.
Fix m ≥ 1 and define a partition of unity {ϕn}∞n=1 by ϕ0 ≡ 0 and

ϕn(x) :=





1− ϕn−1(x) if x ∈ Un,

1− (
dist(x, Un)l2

)1/m
if 0 < dist(x, Un) ≤ l−2,

0 otherwise

for n ≥ 1, inductively. Note that, by Assumption 3.3(1),
∑∞

n=1 ϕn = 1 holds on B(x0, R)
if l is sufficiently large. Set fl :=

∑∞
n=1 ϕnfn,l. It is a finite sum since supp f is bounded,

so that fl ∈ C0(X) and fl is locally Lipschitz on each Un \ Un−1. We have

|f − fl|H1,p ≤
∞∑

n=1

|ϕn(f − fn,l)|H1,p(Wn,l\Al),
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and

|ϕn(f − fn,l)|Lp(Wn,l\Al) ≤
(
2M + 4C2(Vn)δl

)
µ(Wn,l \ Al)

1/p → 0

as l tends to the infinity.
We next estimate |gϕn(f−fn,l)|Lp(Wn,l\Al). Let {(fi, gi)}∞i=1 be a sequence such that fi →

f − fn,l and gi → gf−fn,l
in Lp(Wn,l) as i → ∞, respectively, and that gi is an upper

gradient for fi. Clearly we may assume |fi| ≤ 2M + 4C2δl. Since ϕn is bounded, ϕnfi

tends to ϕn(f − fn,l) in Lp(Wn,l) as i → ∞. Hence it follows from Theorem 2.6 and
Lemma 2.5 that

|gϕn(f−fn,l)|Lp(Wn,l\Al)

≤ lim inf
i→∞

{|Lip ϕn · (|fi|+ i−1)|Lp(Wn,l) + |(ϕn + i−1)gi|Lp(Wn,l)

}

≤ (2M + 4C2δl)|Lip ϕn|Lp(Wn,l) + |gf−fn,l
|Lp(Wn,l\Al).

On one hand, in the first part of this proof, we already observe that

lim
l→∞

|gf−fn,l
|Lp(Wn,l\Al) = 0.

On the other hand, we have

|Lip ϕn|pLp(Wn,l)
=

∫ ∞

0

µ({(Lip ϕn)p > t} ∩Wn,l) dt

=

∫ ∞

0

ptp−1µ({Lip ϕn > t} ∩Wn,l) dt.

It follows from |(d/ds)
(
1 − (sl2)1/m

)| = (1/m)l2/ms(1−m)/m together with Assumption
3.3(4) that

|Lip ϕn|pLp(Wn,l)
/p

≤
∫ ∞

l2/m

tp−1
{
µ
(
B(Un, (mtl−2/m)−m/(m−1)) \ Un

)

+ µ
(
B(Un−1, (mtl−2/m)−m/(m−1)) \ Un−1

)}
dt

≤ {C(n− 1) + C(n)}
∫ ∞

l2/m

tp−1(mtl−2/m)−mp/(m−1) dt

= {C(n− 1) + C(n)}m−mp/(m−1)l2p/(m−1)

[
− m− 1

p
t−p/(m−1)

]∞

l2/m

= {C(n− 1) + C(n)}m− 1

p
m−p =

C(n− 1) + C(n)

p

m− 1

m
m1−p

→ 0

as m tends to the infinity. Therefore we obtain |f − fl|H1,p → 0 as m → ∞ and then
l →∞. This completes the proof. 2
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4 Intrinsic distance

Theorem 3.7 allows us to adopt C as a set of test functions for defining the intrinsic
distance according to Biroli and Mosco ([BM]).

Definition 4.1 (Intrinsic distance) For p ∈ (1,∞) and x, y ∈ X, define the p-intrinsic
distance between x and y by

dp(x, y) := sup{f(x)− f(y) | f ∈ C, gf,p ≤ 1 a.e. on X}.
We first recall Cheeger’s theorem on the minimality of Lip f for a locally Lipschitz

function f .

Theorem 4.2 ([C, Theorem 6.1]) Let (X, dX , µ) be a complete metric measure space
satisfying the doubling condition and the weak Poincaré inequality of type (1, p) for some
p ∈ (1,∞). Then, for any locally Lipschitz function f ∈ H1,p(X), we have gf,p = Lip f
a.e. on X.

The following is an immediate generalization of Theorem 4.2 through Proposition 2.4.

Lemma 4.3 Let (X, dX , µ) be a complete metric measure space satisfying Assumption
3.3 for some p ∈ (1,∞). Then, for any function f ∈ H1,p(X) which is locally Lipschitz
on each Un \ Un−1, we have gf,p = Lip f a.e. on X.

Proposition 4.4 Let (X, dX , µ) be a complete, geodesic metric measure space satisfying
Assumption 3.3 for some p ∈ (1,∞). Then we have

dX ≤ dp ≤ 2C2

(
CD(Vn,α), CP (Vn,α)

)
dX

on Vn,α for each n, α ≥ 1. Here C2 is a constant in Lemma 3.6. In particular, dp gives
the same topology on X as dX .

Proof. Fix two points x, y ∈ Vn,α and a function f ∈ C with gf,p ≤ 1 a.e. on X. For any
ε > 0, we can find Lebesgue points x′, y′ ∈ Vn,α of f satisfying dX(x, x′) ≤ ε, dX(y, y′) ≤ ε,
|f(x)− f(x′)| ≤ ε, and |f(y)− f(y′)| ≤ ε. It follows from Lemma 3.6 that

|f(x)− f(y)| ≤ |f(x′)− f(y′)|+ 2ε ≤ 2C2dX(x′, y′) + 2ε

≤ 2C2dX(x, y) + 4C2ε + 2ε.

Since both f ∈ C and ε > 0 are arbitrary, we obtain dp(x, y) ≤ 2C2dX(x, y).
Put f(z) := max{dX(x, y)− dX(x, z), 0} for z ∈ X. Then f is 1-Lipschitz, f ∈ C, and

clearly f(x)− f(y) = dX(x, y). Therefore we obtain dX(x, y) ≤ dp(x, y). 2

5 Strong doubling condition and main theorem

To improve the estimate dX ≤ dp ≤ 2C2dX in Proposition 4.4 to the equality dp = dX , we
need a kind of measure contraction property. A measurable map Φ : X×X× [0, 1] −→ X
is called a geodesic bicombing if, for each x, y ∈ X, a map [0, 1] 3 t 7−→ Φ(x, y, t) ∈ X
gives a minimal geodesic between x and y.

8



Definition 5.1 ([R2]) A geodesic metric measure space (X, dX , µ) is said to satisfy the
(local) strong doubling condition along a geodesic bicombing Φ : X ×X × [0, 1] −→ X if
there exist positive numbers a = a(X) > 0 and R = R(X) > 0 such that we have

µ
(
Φ(x,A, t)

) ≥ aµ(A)

for any x ∈ X, r ∈ (0, R], t ∈ [1/2, 1], and any measurable subset A ⊂ B(x, r).

Finite dimensional Alexandrov spaces with lower curvature bounds as well as Rieman-
nian manifolds with lower Ricci curvature bounds satisfy the strong doubling condition
(see [KuSh], [R2]). Clearly the strong doubling condition implies the doubling condition.
Furthermore, it is shown in [R2] that, if (X, dX , µ) satisfies the local strong doubling con-
dition, then it satisfies the weak Poincaré inequality of type (1, 1) for the Cheeger-type
energy form (see also [R1]).

Theorem 5.2 Let (X, dX , µ) be a complete, geodesic metric measure space satisfying As-
sumption 3.3(1), (2), (3), and (4) for some p ∈ (1,∞). If, in addition, each (Vn,α, dX , µ)
satisfies the strong doubling condition (along a geodesic bicombing Φ? = Φn,α), then we
have dX = dp on X.

Proof. Note that the strong doubling condition of Vn,α implies Assumption 3.3(5). We
already know dX ≤ dp by Proposition 4.4, so that we need only to show dp ≤ dX . We
first show this inequality on Vn,α. To do this, it is sufficient to prove that every f ∈ C
with gf,p ≤ 1 a.e. on X is 1-Lipschitz on Vn,α. Suppose that there exist two distinct
points x, y ∈ Vn,α and a function f ∈ C with gf,p ≤ 1 a.e. on X such that we have
|f(x) − f(y)| ≥ (1 + 2ε)dX(x, y) for some ε > 0. Since Vn,α is convex, without loss
of generality, we may assume dX(x, y) ≤ R(Vn,α)/2. We remark that f |Vn,α is locally
Lipschitz by Lemma 3.6. Since f is continuous, we can find a sufficiently small r > 0 such
that |f(w)−f(z)| ≥ (1+ε)dX(w, z) holds for all w ∈ B(x, r)∩Vn,α and z ∈ B(y, r)∩Vn,α.
We define A := {z ∈ Vn,α |Lip f(z) ≥ 1 + ε}, denote by χA the characteristic function
of A, and set k as a smallest integer not smaller than − log2 r. We put Φ0 := Φ and
Φi(x, z, t) := Φ(x, Φi−1(x, z, 1/2), t) for i = 1, 2, . . . , k− 1, inductively. Then we have, for
every z ∈ B(y, r) ∩ Vn,α,

k−1∑
i=0

∫ 1

1/2

χA

(
Φi(x, z, t)

)
dt > 0

since |f(Φk−1(x, z, 1/2))−f(z)| ≥ (1+ε)dX(Φk−1(x, z, 1/2), z). Note also that µ(B(y, r)∩
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Vn,α) > 0. By the strong doubling condition, we obtain

0 <
k−1∑
i=0

∫

B(y,r)∩Vn,α

∫ 1

1/2

χA

(
Φi(x, z, t)

)
dt dµ(z)

=
k−1∑
i=0

∫ 1

1/2

∫

B(y,r)∩Vn,α

χA

(
Φi(x, z, t)

)
dµ(z) dt

=
k−1∑
i=0

∫ 1

1/2

∫

Φi(x,B(y,r)∩Vn,α,t)

χA(z)
(
Φi(x, ·, t)∗(dµ)

)
(z) dt

≤
k−1∑
i=0

a(Vn,α)−(i+1)

∫ 1

1/2

∫

Φi(x,B(y,r)∩Vn,α,t)

χA(z) dµ(z) dt.

Therefore we have µ(A) > 0, but it is a contradiction. Thus every f ∈ C with gf,p ≤ 1
a.e. on X is 1-Lipschitz on Vn,α, so that we obtain dp = dX on Vn,α.

For general x ∈ Vn,α and y ∈ Vm,β, let γ : [0, dX(x, y)] −→ X be a minimal geodesic
between them. By Assumption 3.3(2) and (3), we have

γ([0, dX(x, y)]) ⊂
N⋃

k=1

N⋃
σ=1

Vk,σ

for some N ≥ 1. Fix ε > 0 and set t0 := 0 and

t1 := sup{t ∈ [0, dX(x, y)] | γ(t) ∈ Vn,α}.
If t1 > dX(x, y) − ε/N2, then we put t2 := dX(x, y). If not, then we put t2 := sup{t ∈
[0, dX(x, y)] | γ(t) ∈ Vk,σ}, where k, σ ≤ N are such that γ(t1 + ε/N2) ∈ Vk,σ. Note that,
by the definition of t1, we have (n′, α′) 6= (n, α). We iterate this construction and obtain
a sequence 0 = t0 ≤ t1 < t1 + ε/N2 ≤ t2 < · · · ≤ tM = dX(x, y). By our construction,
we observe M ≤ N2. Since the proof is common, we assume tM > tM−1 + ε/N2 in the
following. By the first part of this proof, we know dp(γ(t0), γ(t1)) = dX(γ(t0), γ(t1)) and
dp(γ(tl + ε/N2), γ(tl+1)) = dX(γ(tl + ε/N2), γ(tl+1)) for l = 1, 2, . . . ,M − 1, and hence we
conclude that

dp(x, y)

≤ dp

(
γ(t0), γ(t1)

)
+

M−1∑

l=1

{
dp

(
γ(tl), γ(tl + ε/N2)

)
+ dp

(
γ(tl + ε/N2), γ(tl+1)

)}

≤ dX

(
γ(t0), γ(t1)

)
+ 2(M − 1)C2

ε

N2
+

M−1∑

l=1

dX

(
γ(tl + ε/N2), γ(tl+1)

)

≤ dX(x, y) + 2C2ε,

where we set C2 := max1≤k,σ≤N C2(CD(Vk,σ), CP (Vk,σ)). Since ε > 0 is arbitrary, this
completes the proof. 2

In a quite general setting, the condition Lip f ≤ 1 a.e. does not imply the 1-Lipschitz
continuity of a Lipschitz function f . At least, the Poincaré inequality is necessary to
ensure that, if f has zero energy, then it is constant.
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6 Distinguish metric spaces by energy forms

By Theorem 5.2 with X = V1,1, we find the following.

Corollary 6.1 Let d and d′ be two equivalent distance functions on a measure space
(X,µ) such that both (X, d) and (X, d′) are complete and geodesic and that both (X, d, µ)
and (X, d′, µ) satisfy the strong doubling condition. If gd

f,p = gd′
f,p holds a.e. on X for some

p ∈ (1,∞) and every f ∈ C, then we have d = d′.

Here we denote by gd
f,p and gd′

f,p the minimal generalized upper gradients for f with
respect to d and d′, respectively. We remark that the core C defined as (3.1) is common
to d and d′ since they are equivalent.

Corollary 6.1 means that we can distinguish two (equivalent) distance functions by
comparing energy measures of functions in the core C. In the reminder of this article, we
shall observe that, if we consider the Korevaar-Schoen-type energy form in place of the
Cheeger-type one, then we can not distinguish some metric spaces. In particular, we can
not reconstruct the distance function by using the Korevaar-Schoen-type energy form. In
the following, we treat only the case of p = 2.

Definition 6.2 (Korevaar-Schoen-type energy form) For f ∈ L2(X), define the Korevaar-
Schoen-type 2-energy EKS

2 (f) of f by

EKS
2 (f) := lim sup

r→0

∫

X

{∫

B(x,r)\{x}

|f(x)− f(y)|2
r2

dµ(y)

µ(B(y, r))1/2

}
dµ(x)

µ(B(x, r))1/2
.

This definition is due to [S] and is slightly different from that in [KoSc]. By [S, Theorem
5.6], EKS

2 gives a Dirichlet form if (X, dX , µ) satisfies the strong Measure Contraction
Property.

Example 6.3 Let n ≥ 2 and (X, dX , µ) = (Rn, | · |, dx) be an n-dimensional Banach
space with the standard measure. Then there exists an inner product 〈·, ·〉 on Rn such
that we have EKS

2 (f) =
∫
Rn〈df, df〉 dx for every f ∈ C∞

0 (Rn). On the other hand, we
know EC

2 (f) =
∫
Rn |df |2∗ dx, where we denote by (Rn, | · |∗) the dual space of (Rn, | · |).

Note that the moduli space consisting of inner products on Rn, that is, the space of
positive definite symmetric n× n matrices, is obviously finite dimensional. However, the
moduli space of norms on Rn is infinite dimensional, so that many norms give the same
Korevaar-Schoen-type energy form. For example, for all lp-norm | · |p with p ∈ [1,∞], the
associated inner product is a constant mutilple of the standard Euclidean one (because
they are symmetric enough). If we denote by cp that constant, then the Korevaar-Schoen-

type energy form with respect to the norm c
1/2
p | · |p coincides with the standard Dirichlet

form on Rn. Therefore the Korevaar-Schoen-type energy form can not distinguish these
(uncountably many) norms.
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