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1. Introduction

In this article, we review theory of Floer homology of Lagrangian submanifolds
developped in [13] jointly with Oh, Ohta, Ono. We include some of new results
whose detail will appear later in [12] and also some results which will be included
in a revised version of [13]. In this article, we emphasise its application to symplectic
topology of Lagrangian submanifold. In other surveys [10, 11, 26], more emphasise
is put on its application to Mirror symmetry.

The author would like to thank the organizers of the school “Morse theoretic
methods in non-linear analysis and symplectic topology” to give him an opportunity
to write this article. He would also like to thank his collaborators Y-G. Oh, H. Ohta,
K. Ono and acknowledge that many of the results discussed in this article are our
joint work.

2. Lagrangian submanifold of Cn

In this section we extract some arguments of the Floer theory and use it to
study Lagrangian submanifolds of Cn. We do not introduce Floer homology in this
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section yet. Let xi +
√−1yi, i = 1, · · · , n be the canonical coordinate of Cn. We

put the standard symplectic structure ω =
∑

dxi ∧ dyi to Cn.

Definition 2.1. An n dimensional submanifold L of Cn is said to be a Lagrangian
submanifold if ω|L = 0.

In this article we always assume that our Lagrangian submanifold is compact.
For a Lagrangian submanifold L Ω Cn we define an energy function E : º1(L) →

R by

EL(∞) =
∑

i

∫
S1

∞§xidyi =
∫

D2
u§ω.(2.1)

Here u : D2 → Cn is a map with u(∂D2) µ L and [u(∂D2)] = ∞.

Remark 2.1. For a general Lagrangian submanifold L Ω M , we can define EL :
H2(M,L) → R in the same way.

The following result due to Gromov is one of the most basic results of symplectic
topology.

Theorem 2.1 (Gromov [18]). EL 6= 0 for any embedded Lagrangian submanifold
L Ω Cn.

Theorem 2.1 in particular implies H1(L; Q) 6= 0 for any Lagrangian submanifold
L of Cn. To state the next result we need to define Maslov index of Lagrangian
submanifold.

Definition 2.2. The set of all real n dimensional R linear subspaces V of Cn with
ω|V = 0 is called Lagrangian Grassmannian. We write it as GLagn.

Let Grn be the set of all real n dimensional R linear subspaces V of Cn, that is
the Grassmanian manifold.

Lemma 2.2. º1(GLagn) = Z. The map GLagn → Grn induces a surjective
homomorphism Z = º1(GLagn) → º1(Grn) = Z2.

See for example [1] for its proof.
In case L Ω Cn is a Lagrangian submanifold, we define a map TiL : L → GLagn

by

TiL(p) = TpL ∈ GLagn.(2.2)

Definition 2.3. The Malsov index ηL : º1(L) → Z = º1(GLagn) is a homomor-
phism induced by TiL.

Remark 2.2. In case of general Lagrangian submanifold L Ω M , we can define
ηL : º2(M,L) → Z in a similar way. The composition of º2(M) → º2(M,L) and
ηL coincides with β 7→ 2β ∩ c1(M), where c1(M) is the first chern class.

Lemm 2.2 imnplies that, if L is oriented, then image of ηL is in 2Z.

Theorem 2.3 ([13]). Let L µ Cn be a Lagrangian submanifold. If H2(L; Q) = 0
and if L is spin, then ηL 6= 0.

Remark 2.3. We actually do not need to assum L is spin. See [13].
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Let us consider the case L = S1 × Sn for example. The assumption of Theorem
2.3 is satisfied if n > 2.

For n = 1, L = S1×S1, it was proved by Viterbo [34] and Polterovich [28], that
there exists ∞ ∈ º1(L) such that E(∞) > 0 and ηL(∞) = 2. For general n we can
prove the following.

Proposition 2.4 ([25, 13]). Let L = S1 × Sn Ω Cn be a Lagrangian submanifold
with n ≥ 2. We choose the generator ∞ ∈ º1(L) = Z, such that E(∞) > 0.

If n is odd then there exists a positive integer ` such that ηL(`∞) = n + 1.
If n is even then either ηL(∞) = 2 or exists a positive integer ` such that ηL(`∞) =

2− n.

Remark 2.4. In case ηL(∞) > 0, Proposition 2.4 follows from [25]. Proposition
2.4 follows from the results of [13] directly as we will see in §5, though it was not
written in its 2000 version explicitely.

Actually, in the case n is even, we can show ηL(∞) = 2. Namely we can exclude
the second case. See §13.

Before proving the results stated above we mention some of the constructions of
Lagrangian submanifolds. See [2] for detail.

We say i : L → Cn is a Lagrangian immersion if i is an immersion, dimL = n
and if i§ω = 0. The map TiL : L → GLagn is defined in the same way.

Two Lagrangian immersions i0, i1 are said to be regular homotopic to each other
if there exists a faimily of Lagrangian immersions is s ∈ [0, 1] joining them.

Theorem 2.5 (Gromov[19]-Lees[23]). (1) There exists a Lagrangian immersion
i : L → Cn if and only if TL≠ C is a trivial bundle.

(2) We assume that TL ≠ C is trivial. Then i 7→ [iL] induces a bijection from
the set of regular homotopy classes of Lagrangian immersions i : L → Cn to the set
of the homotopy classes of maps L → GLagn.

The proof is based on Gromov’s h-principle. See [9].
Theorem 2.5 implies that every element of ºn(GLagn) is realized by a Lagrangian

immersion i : Sn → GLagn. (We remark that Theorem 2.1 implies that none of
them is realized by a Lagrangian embedding.)

Theorem 2.6 (Audin-Lalonde-Polterovich[2]). If iL : L → Cn is a Lagrangian
immersion and iL0 : L0 → Cm is a Lagrangian embedding then there exists a La-
grangian embedding i : L × L0 → Cn+m such that Ti : L × L0 → GLagn+m is
homoltopic to sum ◦ (TiL ≠ TiL0). Where sum : GLagn ×GLagm → GLagn+m is
given by (V,W ) 7→ V ©W .

Proof: Let us take f : L → Rm Ω Cm such that I = (iL, f) : L → Cn+m is
an embedding. Clearly I§ω = 0. Then Weinstein’s theorem (see [1, 9]) implies
that there exists a neighborhood U of I(L) in Cn+m and a symplectic embedding
I 0 : U Ω T §L×Cm such that I 0 ◦ I is an embedding q 7→ ((q, 0), 0). Then, for small
≤, the map I+ : L × L0 → T §L × Cm, I+(q,Q) = ((q, 0), ≤iL0(Q)) sends L × L0 to
I 0(U). We put iL,L0 = I 0 ◦ I+ : L× L0 → Cn+m. §

We take L = Sn and L0 = S1. We remark that there is an obvious La-
grangian embedding S1 → C. Maslov index of it is given by ηS1 [S1] = 2. Hence
we have an embedding S1 × Sn → Cn+1 such that ηS1×Sn([S1]) = 2. Note
regular homotopy class of Lagrangian immersion of S1 × Sn is identifided with
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º1(GLagn)× ºn(GLagn). The construction above realize any elements of the form
(2, α) ∈ º1(GLagn)× ºn(GLagn) as an Lagrangian embedding.

In [28] Polterovich constructed a Lagrangian embedding S1×S2n−1 Ω C2n such
that ηL(∞) = 2n, as follows1. (∞ ∈ º1(L) is a generator with E(∞) > 0.) Let
S2n−1 = {~x ∈ R2n||~x| = 1}. We then put L = {θ~x ∈ C2n|~x ∈ S2n−1, θ ∈ C, |θ| =
1}. We can show that L is diffeomorphic to S1 × S2n−1 and is a Lagrangian
submanifold. We can also prove ηL(∞) = 2n.

In case k = 2, L = S1 × S3, then ηL(∞) is 2 or 4 according to Proposition 2.4.
They both actually occur. In case k = 3, L = S1 × S5, Proposition 2.4 implies
ηL(∞) is 2 or 6. They again both occur. In case k = 4, L = S1×S7, Proposition 2.4
implies ηL(∞) is either 2, 4 or 8. 2 and 8 occur. However example with ηL(∞) = 4
does not seem to be known.

Problem 2.1. Are there any Lagrangian submanifold L Ω C2n diffeomorphic to
S1 × S2n−1 such that ηL(∞) 6= 2, 2n.

As for the the other factor º2n−1(GLag2n), there is no restriction in the case
ηS1×S2n−1(∞) = 2. However, in other case, especially in the case ηS1×S2n−1(∞) = 2n
the following seems to be open.

Problem 2.2. For which homotopy class α ∈ º2n−1(GLag2n), the class (2n, α) ∈
º1(GLag2n)× º2n−1(GLag2n) is realized by a Lagrangian embedding ?

The first case to study seems to be the case of S1×S3. We remark Theorem 13.1
determines when the regular homotopy class of Lagrangian immersion S1×S2m →
C2m+1 is realized by a Lagrangian embedding. We will discuss more results on
Lagrangian submanifolds in Cn in §§11,12,13.

3. Perturbing Cauchy-Riemann equation

Let us start the proof of Theorems 2.1,2.3. We use the moduli space of holomor-
phic disks which bound L. We define it below. Let β ∈ º2(Cn, L) ª= º1(L).

Definition 3.1. We consider a map ' : D2 → Cn with the following properties.

(1) ' is holomorphic.
(2) '(∂D2) Ω L.
(3) The homotopy type of ' is β.

We denote by IntM̃(L;β) the set of all such maps. We can define a topology
on it (see [13]).

We consider the group PSL(2; R). It can be identified with the group of biholo-
morphic maps D2 → D2. We denote {g ∈ PSL(2; R)|g(1) = 1} by Aut(D2, 1).
(Here we identify D2 = {z ∈ C||z| < 1}, PSL(2; R) = Aut(D2). Aut denotes the
group of biholomorphic automorphisms.) Then we put

IntM̂(L;β) =
IntM̃(L;β)
Aut(D2, 1)

, IntM(L;β) =
IntM̃(L;β)
PSL(2; R)

.

1The author thanks Polterovich who pointed out his example and corrected an error author
made during author’s lecture at Montreal.
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The moduli spaces IntM̂(L;β), IntM(L;β) can be compactified by including
stable maps (from open Riemann surface of genus 0). (See [13] for its precise
definition.) We denote them by M̂(L;β), M(L;β) respectively. These moduli
spaces are used to define and study Floer homology of Lagrangian submanifold.
We will discuss it in §5. In this section we use it more directly to prove Theorems
2.1,2.3.

For this purpose, we use a similar but a different moduli space using perturbation
of the Cauchy-Riemann equation (which is the equation that ' is holomorphic) by
Hamiltonian vector field. We need some notations to describe it.

Definition 3.2. For each positive R we consider a smooth function χR : R → [0, 1]
such that

(1) χR(t) = 1, if |t| > R,
(2) χR(t) = 0, if |t| < R− 1,
(3) The Ck norm of χR is bounded uniformly on R.

We next take a smooth function H : Cn → R of compact support and let

XH = J gradH(3.1)

be the Hamiltonian vector field generated by it.

Definition 3.3. We consider a map ' = '(τ, t) : R× [0, 1] → C with the following
properties.

∂'

∂τ
(τ, t) = J

(
∂'

∂t
(τ, t)− χR(τ)XH('(τ, t))

)
,(3.2a)

'(τ, 0), '(τ, 1) ∈ L,(3.2b) ∫
R×[0,1]

'§ω < 1.(3.2c)

We denote by N (R) the set of all such '.

Note (3.2a) implies that ' is holomorphic outside [−R,R] × [0, 1]. Therefore
(3.2c) and removable singularity theorem of Gromov [18] and Oh [24] imply the
following.

Lemma 3.1. There exists p+1, p−1 ∈ L such that limτ→±1 '(τ, t) = p±1.

We remark that D2 \ {1,−1} is biholomorphic to R× [0, 1]. Hence element ' of
N (R) may be regarded as a map ' : (D2, ∂D2) → (Cn, L).

Definition 3.4. Let N (R;β) be the set of all ' ∈ N (R) such that the homotopy
class of ' is β.

For a fixed p0 ∈ L, let N (R;β; p0) be the set of all element of ' ∈ N (R) such
that limτ→+1 '(τ, t) = p0. We define N (R; p0) in the same way.

Let expXH
t : Cn → Cn be a one parameter group of transformations associated

to XH .

Assumption 3.1. expXH
1 (L) ∩ L = ;.

Since L is compact we can always find H satisfying Assumption 3.1. Now the
following three propositions are basic points of the proof of Theorems 2.1,2.3.
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Proposition 3.2. There exists C depending only on H and L (and independent of
R) such that if N (R;β) 6= ; then

β ∩ ω > −C.(3.3)

The proof is based on well established argument and is omitted. We remark that
Definition 3.2 (3) is essential for the proof of Proposition 3.2.

Proposition 3.3. If Assumption 3.1 is satisfied then, there exists R0 depending
only on H and L such that N (R) = ; for R > R0.

Proof. (Sketch) If not there exists 'i ∈ N (Ri) with Ri →1. We can use Proopsi-
tion 3.2 and elliptic regurality to show the existence of τi ∈ [−Ri +2, Ri− 2], δ > 0
such that the C1 norm of 'i on [τi − δ, τi + δ]× [0, 1] is bounded and that

lim
i→1

∫
[τi−δ,τi+δ]×[0,1]

'§ω = 0.(3.4)

(3.4), (3.2a) and elliptic regurality implies that

lim
i→1

sup
t∈[0,1]

∥∥∥∥∂'

∂t
(τi, t)− VH

∥∥∥∥ = 0.

This implies
lim

i→1
dist

(
expXH

1 ('(τi, 0)), '(τi, 1)
)

= 0.

In view of (3.2b) this contradicts to Assumption 3.1. §
For the next proposition we need an assumption.

Assumption 3.2. If E(β) > 0 then ηL(β) ∑ 0.

Let β0 = 0 ∈ º2(Cn, L).

Proposition 3.4. Under Assumption 3.2, we may choose p0 such that N (0;β; p0) =
;, for any β 6= β0.

Proof. (Sketch) We have

dimM(L;β) = n + ηL(β)− 3,(3.5)

(see [13]), for β 6= β0. Hence, by Assumption 3.2 we have

dim
⋃

'∈M(L;β)

'(S1) ∑ n + ηL(β)− 3 + 1 ∑ n− 2.

Therefore we may take p0 which is not contained in the union of
⋃

'∈M(L;β) '(S1)
for various β. We remark that the equation (3.2a) is the Cauchy-Riemann equation
when R is zero. Proposition 3.4 holds. §
Lemma 3.5. N (0;β0; p0) is one point.

The lemma follows immedately from the fact that each element of N (0;β0) is a
constant map. We put

N (β; p0) =
⋃

R≥0

N (R;β; p0)× {R}.(3.6)

We can perturb our moduli spaces so that N (β; p0) is a manifold with boundary.
Now we are in the position to prove Theorem 2.1. The main point is as follows.



APPLICATION OF FLOER HOMOLOGY OF LANGRANGIAN SUBMANIFOLDS 7

Lemma 3.6. If E : º2(Cn, L) → R is zero then N (β; p0) is compact.

Proof. (Sketch) We prove by contradiction. Let 'i ∈ N (Ri;β0; p0) be a divergent
sequence. We may assume by Proposition 3.3 that Ri converges to R. Then there
exists pi = (τi, ti) ∈ R× [0, 1] such that

|dpi'i| = sup{|dx'i||x ∈ R× [0, 1]}.(3.7)

We put ≤i = 1/Di. We consider the following three cases separately.
Case 1 : |dpi'i| = Di diverges. Didist(pi, ∂(R× [0, 1])) = Ci →1.
Case 2 : |dpi'i| = Di diverges. Didist(pi, ∂(R× [0, 1])) is bounded.
Case 3 : |dpi'i| = Di is bounded. |τi| diverges.

In Case 1, we define hi : D2(Ci) → Cn by hi(z) = 'i(≤iz + pi) − 'i(pi). (3.7)
implies that dhi is uniformly bounded. Moreover hi(0) = 0 and |d0hi| = 1. Hence,
by elliptic regularity, hi converges to h : C → Cn. Since |d0h| = 1, h is not a
constant. On the other hand, by (3.2a),

sup
{∣∣∣∣∂hi

∂τ
− J

∂hi

∂t
(z)

∣∣∣∣ ∣∣∣∣ z ∈ D2(Ci)
}

< ≤iC

where C is a constant independent of i. Therefore h is holomorphic. Moreover by
(3.2c) the integral

∫
D2(Ri)

h§i ω is uniformly bounded. If follows that
∫

D2(Ri)
h§ω is

finite. Hence the holomorphicity of h implies that h is a constant map. This is a
contradiction.

In Case 2, we consider a similar limit and obtain a map h : h = {z ∈ C|Imz ≥
0} → Cn which is nonconstant and holomorphic. Moreover h(R) Ω L and

∫
h h§ω is

finite. Therefore by removable singularity theorem of Gromov [18] and Oh [24], h
can be extended to h+ : D2 → Cn with h+(∂D2) Ω L. (Namely when we identify
D2 \ {1} = h, h+ = h on h.) Since E = 0 by assumption, it follows that∫

h
h§ω =

∫
D2

h+§ω = 0.

Therefore, since h is holomorphic, h is a constant map. This is a contradiction.
We next consider Case 3. We can show that Di is bounded away from zero

in the same way as the Case 1. We define hi : R × [0, 1] → Cn by hi(z) =
'i(z − (τi, 0)). Since |τi| diverges it follows that hi, after taking a subsequence
if necessary, converges to a holomomorphic map h : R × [0, 1] → Cn which is
nonconstant. Moreover h(R× {0, 1}) Ω L. Furthermore :∫

R×[0,1]
h§ω ∑ lim sup

∫
R×[0,1]

'§i ω < 1.

By Lemma 3.1 and E = 0, we find that
∫

R×[0,1] h
§ω = 0. Since h is holomorphic,

this implies that h is a constant map. This is a contradiction.
The proof of Lemma 3.6 is now complete. §

Now the rest of the proof of Theorem 2.1 is as follows. We remark that

dimN (R;β) = n + ηL(β)(3.8)

can be proved in the same way as (3.5). Then

dimN (R;β; p0) = ηL(β)(3.9)
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and hence

dimN (β; p0) = ηL(β) + 1.(3.10)

In particular ∂CN (β0; p0) is a one dimensional manifold. It is compact by Lemma
3.6. Its boundary is one point by Proposition 3.4, Lemma 3.5. This is a contradic-
tion.

Thus we proved Theorem 2.1. §

Remark 3.1. To make the above argument rigorous we need to find a perturbation
by which various moduli spaces have fundamental chain. We omit the arguments
on transversality in various places of this article. We explain one novel argument
on transversality in §6, however. We do not discuss sign (orientation) either. Those
points are discussed in detail in [13]. (The detail of the new argument on transver-
sality in §6 will be in [12].)

4. Maslov index of Lagrangian submanifold with vanishing second
Betti number.

In this section, we continue the argument of the previous section and sketch the
proof of Theorem 2.3. We here assume ηL : º2(Cn, L) → Z is zero. It follows from
(3.9) and (3.10) that dimN (β; p0) = 1, dimN (R;β; p0) = 0, dimM(L;β) = n− 3.

We next need the following result :

Theorem 4.1 ([13, 31]). A spin structure of L determines an orientation of
M(L;β), N (β; p0) etc.

Hereafter we assume that L is spin and use the orientation obtained by Theorem
4.1. Since we do not assume E = 0, Lemma 3.6 does not imply compactness of
N (β; p0). We are going to study its compactification. We use our assumption
ηL = 0 in the next lemma.

Lemma 4.2. If ηL = 0, we may choose p0 such that, for any ' ∈ M(L;β), we
have p0 /∈ '(S1).

Proof. Since dimM(L;β) = n − 3, it follows that the union of all '(S1) for ' ∈
M(L;β) is n− 2 dimensional. The lemma follows. §

Using Lemma 4.2, we can describe compactification ofN (β; p0) and ofN (R;β; p0).
We put A = (R× {0, 1}) ∪ {−1} in this section. We define

ev : N (R;β; p0)×A → L

by

ev(', (τ,±1)) = '(τ,±1), ev(',−1) = lim
τ→−1'(τ, t).(4.1)

We also define M̂(L;β) → L by

ev([']) = lim
τ→+1'(τ, t).(4.2)

Now we have
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Proposition 4.3. We assume ηL = 0. Then N (R;β; p0), N (R;β; p0) has compact-
ifications CN (R;β; p0), CN (R;β; p0) which has Kuranishi structure with boundary.
The boundary is identified as

∂CN (R;β; p0) =
⋃

β1+β2=β

M̂(L;β1)×L (N (R;β2; p0)×A) β 6= β0

∂CN (β; p0) \ N (0;β; p0) =
⋃

β1+β2=β

M̂(L;β1)×L (N (β2; p0)×A) β0 = 0.

Remark 4.1. We do not explain the definition of “Kuranishi structure with bound-
ary” here. See [14]. If the reader is not familier with it, he may read the statement
as “there is a perturbation so that the virtual fundamental chain satisfies the equal-
ity . . . ”.

Proof. (Sketch) The proof of Proposition 4.3 goes in a similar way as the proof of
Lemma 3.6. We consider a divergent sequence 'i ∈ N (Ri;β0; p0). Ri is bounded
by Proposition 3.3 and hence we may assume Ri → R. We choose pi = (τi, ti) ∈
R× [0, 1] satisfying (3.7). Then we consider Cases 1,2 and 3 in the proof of Lemma
3.6. Case 1 does not occur by the same reason as the proof of Lemma 3.6. So we
need to consider Cases 2 and 3 only.

If lim τi = τ ∈ R and lim ti = t1 ∈ {0, 1}, the limit correspond to an element

([h+], ('1, (τ, t1))) ∈ M̂(L;β1)×L (N (R;β2; p0)×A).

Here h+ : D2 → Cn is a bubble at (τ, t1).

Figure 1

If τi → −1 we have an element

([h+], ('1, (−1))) ∈ M̂(L;β1)×L (N (R;β2; p0)×A).

Using Lemma 4.2 we may assume τi → +1 does not occur. (See Figure 2.)
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Figure 2

We next consider Case 3. τi → +1 does not occur by the same reason. In the
case τi → −1, we again get an element

([h+], ('1, (−1))) ∈ M̂(L;β1)×L (N (R;β2; p0)×A).

Figure 3

This implies Proposition 4.3. §

The next lemma is a consequence of Proposition 3.2 and Gromov compactness.

Lemma 4.4. There exists only a finitely many β ∈ º1(Cn, L) such that N (β; p0) 6=
; and E(β) < 0.

First we consider the case when the following is satisfied in addition.

Assumption 4.1. There exists a unique β ∈ º1(Cn, L) such that N (β; p0) 6= ;
and E(β) < 0.

Moreover if β0 ∈ º1(Cn, L) with E(β0) > 0, −E(β) > E(β0) > 0, then M̂(L;β0) =
;.

This assumption is rather restrictive. We will explain the argument to remove
it later in the next section.

Now we assume ηL = 0, L is spin and Assumption 4.1. We consider the boundary
∂CN (β0; p0) by using Lemma 4.3. We have

∂CN (β0; p0) \ N (0;β0; p0) =
⋃

β1+β2=β0

M̂(L;β1)×L (N (β2; p0)×A).(4.3)

Since E(β1) > 0 if M̂(L;β1) 6= ; and since E(β0) = 0 it follows from (4.3) and
Assumption 4.1 that

∂CN (β0; p0) \ N (0;β0; p0) = M̂(L;−β)×L (N (β; p0)×A).(4.4)
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Note that CN (β0; p0) is a one dimensional oriented chain and N (0;β0; p0) is a one
point. Hence the right hand side of (4.4) is an oriented zero dimensional manifold
whose order counted with sign is 1.

By the second half of Assumption 4.1, we can show that M̂(L;−β) = IntM̂(L;−β)
and defines a cycle. Its dimension is n− 2. Hence

ev§([M̂(L;−β)]) ∈ Hn−2(L; Z).

Similarly we find
ev§([N (0;β; p0)]) ∈ H2(L; Z).

We now have
ev§([M̂(L;−β)]) · ev§([N (0;β; p0)]) = 1,

since it is equal to the right hand side of (4.4). (Here · is the intersection pairing.)
This implies H2(L; Q) 6= 0. Theorem 2.3 is thus proved under additional hypothesis
Assumption 4.1.

5. Floer homology and a spectre sequence.

We now introduce Floer cohomology of Lagrangian submanifold and explain how
it can be used to study Lagrangian submanifold of, say Cn.

Let L be a compact Lagrangian submanifold of a symplectic manifold M . (In
case M is noncompact we assume that M is convex at infinity. See [8].) Let us
define a universal Novikov ring Λ by

Λ =
{∑

aiT
∏i

∣∣∣ ai ∈ R, ∏i → +1, ∏i ∈ R
}

.(5.1)

Actually Λ is a field.
Let ηL : º2(M,L) → Z be the Maslov index and E : º2(M,L) → R is defined

by integrating the symplectic form. We say that L is relatively spin if there exists
st ∈ H2(M ; Z2) which is sent to the second Stiefel-Whiteney class of L. (If L is
spin then it is relatively spin.)

Theorem 5.1 ([13]). We assume L is relatively spin. Then there exists a series of
elements βi ∈ º2(M,L) with E(βi) > 0, E(βi) ∑ E(βi+1) and cohomology classes

oβi ∈ H2−ηL(βi)(L; Q),

such that oβ = 0 if 2−ηL(β) = 0 or n, and oβ = 0 if E(β) ∑ 0. It has the following
properties.

If oβi = 0 for all βi then there exists a Λ module HF (L,L) and a spectral
sequence E§ such that

(1) E2
ª= H(L; Λ).

(2) E1 ª= HF (L,L).
(3) The differential di = TE(βi)dβi is a Λ module homomorphism induced by
dβi : Hk(L; Q) → Hk+1−ηL(βi)(L; Q).
(4) dβ([1]) = 0. Here [1] ∈ H0(L; Q) is a generator.
(5) The fundamental cocycle [L] ∈ Hn(L; Q) is not contained in the image of
dβ.
(6) If Φ : M → M is a Hamiltonian diffeomorphism and L is transversal to
Φ(L), then

dimΛ HF (L,L) ∑ ](L ∩ Φ(L)).
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Remark 5.1. Floer cohomology HF (L,L) is not an invariant of symplectic diffeo-
morphism type of (M,L) but depends on an element of a moduli space M(L) of
bounding chains b. We introduced the notion of bounding chain and denote its
moduli space by M(L) in [13]. We do no discuss bounding chain here, since we use
only the properties stated above in this article. (Namely any choice of bounding
chain is good for the applications which appear in this article.)

For other applications, especially for applications to Mirror symmetry, the space
M(L) itself plays a crucial role.

We first show

Lemma 5.2. Theorem 5.1 implies Theorem 2.3.

Proof. Let L Ω Cn be a spin Lagrangian submanifold. We assume H2(L; Q) = 0
and ηL = 0 and deduce a contradiction.

Since oβ ∈ H2−η(β)(L; Q) = H2(L; Q) it follows that we can define HF (L,L).
By (6), we have HF (L,L) = 0. Hence by (1)(2), [L] ∈ Hn(L) does not survive
until E1. Since [L] is not in the image of dβ by (5), it follows that dβ([L]) 6= 0 for
some β. However this is impossible since dβ([L]) ∈ Hn+1+ηL(β)(L; Q) = 0. §

We next apply Theorem 5.1 to the case of (M,L) = (Cn+1, S1 × Sn) and prove
Proposition 2.4. Namely we prove the following two lemmas.

Lemma 5.3 (Oh [25]). Let L = S1 × Sn be a Lagrangian submanifold of Cn and
n is odd. We choose the generator β ∈ º2(Cn+1, L) so that E(β) > 0. Then ηL(β)
is positive and divides n + 1.

Proof. We first remark that E 6= 0 by Theorem 2.1. Hence there is a unique choice
of β as in the statement of Lemma 5.3.

Since η(β) is even, it follows that oβ ∈ Heven(L; Q). Since n if odd, the coho-
mology group Heven(L; Q) is nonzero for H0(L) and Hn+1(L) only. In that case
oβ = 0 by Theorem 5.1. Therefore HF (L,L) is well defined. Since L µ Cn+1, it
follows that HF (L,L) ª= 0. By (4) and (5) there exists k, k0 such that dkβ(1) 6= 0,
and [L] = dk0βu for some u ∈ H(L). Since dkβ is odd degree either dkβ(1) = c[S1]
or dkβ = c[Sn]. (c ∈ Q.) (Since E(β) > 0, it follows that k > 0.) In the case
dkβ(1) = [S1], we have ηL(kβ) = 2. Hence k = 1 and ηL(β) = 2.

In the case dkβ(1) = [Sn], we have ηL(kβ) = n+1. Hence ηL(β) divides n+1. §

Lemma 5.4 ([13, 25]). Let L = S1×Sn be a Lagrangian submanifold of Cn+1 and
n is even. We choose the generator β ∈ º2(Cn+1, L) so that E(β) > 0. Then either
ηL(β) = 2 or it is nonpositive and divides 2− n.

Proof. If okβ 6= 0 then, since deg okβ is nonzero and even, it follows that okβ ∈
Hn(L; Q). It implies 2− ηL(kβ) = n. Hence ηL(β) is negative and divides 2− n.

If okβ are all zero, then Floer cohomology HF (L,L) is well defined and is zero.
Hence dkβ(1) 6= 0 for some k. Since [L] is not in the image of dkβ , it follows that
dkβ(1) = c[S1]. Hence ηL(kβ) = 2. Herefore k = 1 and ηL(β) = 2. §

Remark 5.2. The second possibility ηL(β) < 0 in Lemma 5.4 will be eliminated in
§13. (Theorem 13.1.)
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6. Homology of loop space and Chas-Sullivan bracket.

In §§6,7,8, we will explain a construction of a filtered A1 structure on the co-
homology group H(L) of Lagrangian submanifold L. We take a bit different way
from one in [13] and uses De-Rham cohomology.

Remark 6.1. In [13] a variant of singular chain complex was used. The way taken
in [13] has an advantage that we can work over Z coefficient at least in case L is
semipositive2. The way taken here has an advantage that we can then keep more
symmetry. Especially, cyclic symmetry is established in §9.

Let L be a compact smooth manifold. We denote its free loop space by L(L).
Namely

L(L) = {` : S1 → L | ` is piecewise smooth.}(6.1)

M.Chas and D.Sullivan [5] introduced a structure of graded Lie algebra on the
homology of L(L). Let us recall it here. We identifty S1 = R/Z. Let fi : Pi → L(L)
be cycles. (We write P̂i = (Pi, fi).) We put

P1 § P2 = {(x, y, t) ∈ P1 × P2 × S1 | (f1(x))(0) = (f2(y))(t)}(6.2)

We define f1 § f2 : P1 § P2 → L(L) by the following formula.

((f1 § f2)(x, y, t))(s) =


(f2(y))(2s) 2s ∑ t,

(f1(x))(2s− t) t ∑ 2s ∑ t + 1,

(f2(x))(2s− 1) t + 1 ∑ 2s.

(6.3)

Figure 4

We then put

P̂1 § P̂2 = (P1 § P2, f1 § f2).(6.4)

If P̂1, P̂2 are cycles, of dimension k1,k2 respectively, then, under an appropriate
transversality condition, P̂1 § P̂2 is a cycle of dimension k1 + k2 − n + 1. Here
n = dimL. Therefore § defines a map

§ : Hk1(L(L))≠Hk2(L(L)) → Hk1+k2−n+1(L(L)).(6.5)

2Actually we can do it in general using the method of [15].
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Definition 6.1 ([5]). We define loop bracket {·, ·} by

{[P̂1], [P̂2]} = [P̂1 § P̂2] + (−1)(deg P1+1)(deg P2+1)[P̂2 § P̂1].

Theorem 6.1 ([5]). Loop bracket satisfies Jacobi identity. Namely it defines a
structure of graded Lie algebra on H§(L(L)).

Actually we can work in chain level and construct an L1 algebra, (that is a
homotopy version of graded Lie algebra).

There are various ways to work out transversality problem to justify Chas-
Sullivan’s construction. Here we use the following one which works best with our
construction of virtual fundamental chain of the moduli space of pseudoholomorphic
disks.

Definition 6.2. (P, f, ω) is said to be an approximate De-Rham chain of L(L) if
the following holds.

(1) P is an oriented smooth manifold of finite dimension (with or withour bound-
ary). ω is a smooth diferential form on P of compact support.
(2) f : P → L(L) is a smooth map.
(3) The map ev : P → L defined by ev(x) = (f(x))(0) is a submersion. In case
∂P is nonempty we assume that ev : ∂P → L is also a submersion.

We say (P, f, ω) is an approximate De-Rham cycle if P does not have a boundary
and ω = 0.

We define the degree of approximate De-Rham chain by

deg(P, f, ω) = dimP − deg ω.

We put

∂(P, f, ω) = (∂P, f, ω) + (−1)deg P (P, f, dω)(6.6)

An approximate De-Rham cycle (P, f, ω) of degree k determines an element
Hk(L(L); R) as follows. Let H§

c (P ; R) be the De Rham cohomology group of com-
pact support and PD : Hdim P−k

c (P ; R) → Hk(P ; R) be the Poincaré duality. Then
we associate f§(PD([ω])) ∈ Hk(L(L); R) to (P, f, ω). It is easy to see that any
element of H§(L(L); R) can be realized by an approximate De-Rham cycle.

An approximate De Rham chain (P, f, ω) determines a smooth differential form
evL(P, f, ω) of L of codimension k = deg(P, f, ω) as follows.

evL(P, f, ω) = ev!(ω) ∈ ≠n−k(L).(6.7)

Here ev! is integration along fiber. It is well defined since ω is of compact support
and ev : P → L is a submersion.

We can easily check

PD([evL(P, f, ω)]) = f§(PD([ω]))

if (P, f, ω) is an approximate De Rham cycle.
The following lemma follows easily from Stokes’ theorem.

Lemma 6.2. d(evL(P, f, ω)) = evL(∂(P, f, ω))
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Now we go back to the loop bracket. Let (Pi, fi, ωi) be approximate De-Rham
chains of degree ki for i = 1, 2.

Lemma 6.3. (P1 §P2, f1 §f2, ω1×ω2) is an approximate De-Rham chain of degree
k1 + k2 − n + 1.

Proof. We remark that the map

P1 × P2 × S1 → L× L, (x, y, t) 7→ ((f1(x))(0), (f2(y))(t))

is transversal to diagonal by Condition (3) of Definition 6.2. The rest of the proof
is straightforward. §

Thus we can define § in the chain level using approximate De-Rham chains.
Hence we can define loop bracket also in the chain level. By the argument of [5], loop
bracket satisfies graded Jacobi identity in the chain level modulo parametrization of
the loop. Hence we can prove easily that it induces L1 structure. (The argument
we need to do so is the same as the argument to show that the (based) loop space
is an A1 space. See [32, 33]).

Now we want to use moduli space of pseudoholomorphic disks to construct a
chain (approximate De Rham chain) in the loop space. Let M be a symplectic
manifold and L be its Lagrangian submanifold. We assume that L is compact and
relatively spin and M is convex at infinity (in case M is noncompact). For each
β ∈ º2(M ;L) we define the spaces M̃(L;β), M̂(L;β), M(L;β) in the same way as
Definition 3.1. Actually since M 6= Cn in general, we need to consider sphere buble
to compactify them. But the argument to handle sphere bubble of M̂(L;β) is the
same as the case of the moduli space of pseudoholomorphic map from Riemann
surface without boundary (see [14]) since the sphere bubble is a codimension 2
phenomenon. So we do not discuss it. As for the compactification M(L;β) there
exists one new point to discuss which we mention briefly in §14 (see Theorem 14.2
and its proof) and will be discussed in detail in the reviced version of [13].

Now we consider M̂(L;β). Recall

M̂(L;β) =
M̃(L;β)

Aut(D2, 1)
and the group Aut(D2, 1) is contractible. Hence we take a lift

Liftβ : M̂(L;β) → M̃(L;β)

and fix it. We define a map ev : M̃(L;β) → L(L). by ev(') = '|∂D2 , and consider
a map ev ◦Liftβ : M̂(L;β) → L(L). We want to use the chain (M̂(L;β), ev ◦Liftβ)
to construct Floer cohomology etc.

For the purpose of transversality, we want to replace (M̂(L;β), ev ◦Liftβ) by an
appropriate approximate De-Rham chain. To describe it precisely we need to use
the notion of Kuranishi structure more systematically. We will do it in [12]. Here we
sketch the argument by simplifying the situation. Let us consider a Banach mani-
fold B together with a Banach bundle E → B and a section s : B → E which is not
necessary transversal to zero. We assume that the differential of s is Fredholm. Let
f̃ : B → L(L) be a smooth map. (In our application B = Map((D2, ∂D2); (M,L)),
and s = 0 gives the equation ' ∈ B to be pseudoholomorphic.) We assume s−1(0)
is compact. Then we can find a finite dimensional space W and a family of pertur-
bations sw of s parametrized by w ∈ W which has the following properties.
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(1) We put P = {(x,w) ∈ B ×W |sw(x) = 0}. Then P is a smooth manifold.
(2) The projection ºW : P → W is smooth and proper.
(3) If we put f(x,w) = f̃(x) then f : P → L(L) is a smooth map.
(4) The composition ev ◦ f : P → L is a submersion.

(4) becomes possible by taking W of very big dimension.)
Now let ωW be a smooth form on W of top dimension. We assume that it is

of compact support and
∫

W ωW = 1. We put ω = º§W ωW . Then (P, f, ω) is an
approximate De Rham cycle.

In our actual application, we have locally an orbibundle Eα → Uα on an orb-
ifold Uα together with its sections sα such that ∪αs−1

α (0) = M̂(L;β). Moreover
(Eα, Uα, sα) are glued in an appropriate sense. More precisely we have a Kuranishi
structure on M̂(L;β). We can use a smooth family of multisections (see [14]) in a
similar way as above to obtain an approximate De Rham chain for each M̂(L;β).
We write it by the same symbol M̂(L;β) for simplicity.

Theorem 6.4 ([12]). We can choose Liftβ and approximate De Rham chain M̂(L;β)
such that

∂M̂(L;β) +
1
2

∑
β=β1+β2

{M̂(L;β1),M̂(L;β2)} = 0.(6.8)

The proof is similar to the proof of Proposition 4.3 and will be given in detail in
[12].

Remark 6.2. The method to realize virtual fundamental chain using approximate
De Rham chain is somewhat similar to Ruan’s approach [30].

7. Iterated integral and Gerstenhaber bracket.

In §6, we studyed homology of the loop space L(L). The relation of homology
of L and of L(L) is classical. Especially there is a construction by Chen [6], which
we review here.

Let L be a smooth manifold and (≠(L), d,∧) be its De Rham complex. We put

≠(L)[1]k = ≠k+1(L),
Bk(≠(L)[1]) = ≠(L)[1]× · · · × ≠(L)[1]︸ ︷︷ ︸

kcopy

B(≠(L)[1]) =
⊕

k

Bk(≠(L)[1])

and define
mk : ≠(L)[1]k≠ → ≠(L)[1]

of degree +1 by

mk(u) = (−1)deg udu, m2(u, v) = (−1)deg u(deg v+1)u ∧ v(7.1)

and mk = 0 for k 6= 1, 2. It will define a structure of A1 algebra (which will be
defined later). We now define

d̂ : B(≠(L)[1]) → B(≠(L)[1]),
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by

d̂(u1 ≠ · · · ≠ uk) =
∑

i

(−1)§iu1 ≠ · · · ≠m1(ui)≠ · · · ≠ uk +∑
i

(−1)§iu1 ≠ · · · ≠m2(ui, ui+1)≠ · · · ≠ uk

(7.2)

where §i = deg u1 + · · · + deg ui−1 + i − 1, here deg is the degree as a differential
form. It is easy to see that d̂2 = 0 and hence (B(≠(L)[1]), d̂) is a cochain complex.

To define iterated integral we modify it a bit. We fix a base point p0 of L and
define ≠0(L) as follows.

≠k
0(L) = ≠k(L), k 6= 0,

≠k
0(L) = {f ∈ C1(L)|f(p0) = 0.}

We define B(≠0(L)[1]) in a similar way.
It is easy to see that d̂ preserves B(≠0(L)[1]) and hence (B(≠0(L)[1]), d̂) is a

cochain complex also.
We denote by L0(L) the based loop space. Namely :

L0(L) = {` : S1 → L|`(0) = p0}.
Theorem 7.1 (Chen [6]). There exists a cochain homomorphism

Ich : (B(≠0(L)[1]), d̂) → ≠(L0(L), d)

where (≠(L0(L)), d) is the De-Rham complex of the based loop space.

Proof. Since L0(L) is infinite dimensional we need to be careful to define De Rham
complex ≠(L0(L), d). We do not discuss this point. See [6]. Instead we take a
smooth chain (P, f) of L0(L) and define an integration of Ich(u1 ≠ · · · ≠ uk) over
(P, f) as follows.

We put

Ck = {(t1, · · · , tk) ∈ [0, 1]k|0 ∑ t1 ∑ · · · ∑ tk ∑ 1}.(7.3)

We define a map ev : L0(L)× Ck → Lk, by

ev(`, (t1, · · · , tk)) = (`(t1), · · · , `(tk)).(7.4)

We now define∫
P

f§(Ich(u1 ≠ · · · ≠ uk)) =
∫

P×Ck

(ev ◦ (f × id))§(u1 ∧ · · · ∧ uk).(7.5)

We can prove that∫
∂P

f§(Ich(u1 ≠ · · · ≠ uk)) =
∫

P
f§(Ich(d̂(u1 ≠ · · · ≠ uk))).(7.6)

by studying the boundarry of P ×Ck. (We omit the detail.) This implies that Ich
is a cochain homomorphism. §

We define a free loop space version of the homomorphism of Theorem 7.1. We
consider

Hom(B(≠(L)[1]),≠(L)[1]) =
∏
k

Hom(Bk(≠(L)[1]),≠(L)[1]),



18 KENJI FUKAYA

and define a boundary operator δ on it as follows. Let ' ∈ Hom(B(≠(L)[1]),≠(L)[1])
then

(δ')(a1 ≠ · · · ≠ ak) = d('(a1 ≠ · · · ≠ ak))

− (−1)deg '(' ◦ d̂)(a1 ≠ · · · ≠ ak)

+ (−1)(deg u+1) deg 'm2(a1, '(a2 ≠ · · · ≠ ak))
+ m2('(a1 ≠ · · · ≠ ak−1), ak)

It is easy to check that δ2 = 0.
We denote by SD(L(L)) the set of all approximate De Rham chains on L(L). It

is a chain compex.

Proposition 7.2. There exists a chain homomorphism

Ich§ : SD(L(L)) → Hom(B(≠(L)[1]),≠(L)[1])

Proof. We define a map

ev+ = (ev, ev0) : L(L)× Ck → Lk+1

by
ev+(`, (t1, · · · , tk))) = (`(t1), · · · , `(tk), `(0)).

Now we put

Ich§((P, f, ω))(u1 ≠ · · · ≠ uk))
= (ev0 ◦ º)! (ω ∧ (ev ◦ (f × id))§(u1 ∧ · · · ∧ uk)) .

(7.7)

Here ev0 ◦ º : P × Ck → L is the composition of P × Ck → P , f : P → L(L) and
ev0 : L(L) → L. (ev0 ◦ º)! is the integration along fiber.

It is straightforward to check that Ich§ is a chain map. §

We next recall Gerstenhaber bracket, which was in troduced by [16] to study
deformation theory of associative algebra.

We restrict ourselves to the case of ≠(L). We define a structure of differential
graded Lie algebra on Hom(B(≠(L)[1]),≠(L)[1]) as follows. Let

'i ∈ Hom(Bki(≠(L)[1]),≠(L)[1]).

We put

('1 ◦ '2)(u1 ≠ · · · ≠ uk1+k2−1)(7.8)

=
∑

i

(−1)§i'1(u1 ≠ · · ·'2(ui ≠ · · ·ui+k2−1) · · · ≠ uk1+k2−1).

where §i = (deg '2)(deg u1 + · · ·+ deg ui−1 + i− 1). We then define :

{'1, '2} = '1 ◦ '2 − (−1)deg '1 deg '2'2 ◦ '1.(7.9)

We call {·, ·} the Gerstenhaber bracket.

Theorem 7.3 ([16]). (Hom(B(≠(L)[1]),≠(L)[1]), δ, {·, ·}) is a differential graded
Lie algebra.

Now we have :
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Proposition 7.4. We have δ(Ich§((P, f, ω))) = Ich§(∂(P, f, ω)) and

Ich§({(P1, f1, ω1), (P2, f2, ω2)}) = {Ich§((P1, f1, ω1)), Ich§((P2, f2, ω2))}
where {·, ·} in the left hand side is Loop bracket and {·, ·} in the right hand side is
Gerstenhaber bracket.

The proof is straight forward calculation and is omitted. The proposition implies
that Ich§ is a homomrphism of differential graded Lie algebra.

Remark 7.1. Chas-Sullivan in [5] already mentioned that their construction is an
analogy of Gerstenhaber bracket.

Remark 7.2. Precisely speaking the loop bracket defines an L1 structure since the
Jacobi identity holds only modulo homotopy. However Jacobi identity on SD(L(L))
fails only because of parametrization. The difference of parametrization is killed by
Ich§.

8. A1 deformation of De Rham complex.

We now use the result of §§6 7 to define an A1 deformation of the De Rham
complex. We first recall the definition of filtered A1 algebra. Let CR be a graded
R vector space. Let

Λ0 =
{∑

aiT
∏i ∈ Λ

∣∣∣ ∏i ≥ 0
}

, Λ+ =
{∑

aiT
∏i ∈ Λ

∣∣∣ ∏i > 0
}

.

Λ0 is a local ring and Λ+ is its maximal ideal. Λ0 has a filtration F∏Λ0 = T∏Λ0

which defines a (non Archimedian) norm on it. We put Ck ª= CR≠̂Λ0 here and
hereafter ≠̂ means that we are taking an approariate completion with respect to
the (non Archimedian) norm on Λ0. (We omit the detail refer [13].) C[1]k = Ck+1.
We put

Bk(C[1]) = C[1]≠̂Λ0 · · · ≠̂Λ0C[1]︸ ︷︷ ︸
k

, B(C[1]) =
⊕

k

Bk(C[1])

and consider a series of Λ0 module homomorphisms

mk : Bk(C[1]) → C[1]

of odd degree. We assume that it is written as

mk =
∑

i

T∏imk,i

where ∏i ≥ 0, ∏i → +1 and mk,i is induced by R linear map

CR ≠R · · · ≠R CR︸ ︷︷ ︸
k

→ CR,

of degree di+1. (Here di are even numbers. We assume that ∏i and di is independent
of k.) We assume also ∏0 = 0 and ∏i > 0 for i > 0.

Definition 8.1. We say that (C,mk), k = 0, 1, · · · is a filtered A1 algebra if∑
k+`=n+1

∑
i

(−1)§mk(x1 ≠ · · ·m`(xi ≠ · · · ≠ xi+`−1) · · · ≠ xn) = 0

where § = deg x1 + · · ·+deg xi−1 + i−1 (deg is a degree before shift) and if m0 ≡ 0
mod Λ+.
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We take Ck
R = ≠k(L) the De-Rham complex. We are going to define mk. We

take mk,0 = mk. We recall that m1 = ±d, m2 = ±∧ and other mk are zero. We put

'k =
∑
i>0

mk,i ∈ Hom(BkC[1], C[1]), ' = ('0, '1, · · · ).(8.1)

The next proposition is in principle due to Gerstenhaber.

Proposition 8.1. mk is an filtered A1 algebra if and only if

δ' +
1
2
{', '} = 0.

We remark we can generalize Gersenhaber blacket {·, ·} in an obvious way to∏
k Hom(BkC[1], C[1]).
Now let L be a Lagrangian submanifold of M . We assume that it is relativelly

spin and is compact.

Definition 8.2.
α(L) =

∑
i

TE(β)M̂(L;βi).

α(L) is a Λ0 valued approximate De Rham chain of L(L).

Here βi ∈ º2(M,L) such that 0 = E(β0) < E(β1) ∑ · · · . We define

' = ('0, '1, · · · ) = Ich§(α),(8.2)

where Ich§ is as in (7.7) We use 'k to define mk by (8.1).

Theorem 8.2. The operator mk above defines a structure of filtered A1 algebra
on ≠(L)≠̂Λ0.

Proof. Theorem 8.2 follows immediately from Theorem 6.4, Propositions 7.4, 8.1.
§

To define a structure of filtered A1 algebra on the cohomology group H§(L; R)
we use the following theorem. Let (C,mk) be a filtered A1 algebra. We remark
that m1,0 is induced from an R linear map Ck

R → Ck+1
R , which we write m1. Using

m0,0 = 0, (which follows from m0 ≡ 0 mod Λ+.), we can prove m1 ◦ m1 = 0. Let
H§(CR) be the cohomology group H§(C;m1) that is nothing but the De Rham
cohomology group in our main example. We consider H§(C; Λ0) = H§(CR)≠R Λ0.

Theorem 8.3 ([13]). There exists a structure of filtered A1 algebra on H§(C; Λ0)
such that it is homotopy equivalent to (C,m).

Theorem 8.3 is a filtered version of a classical result of homotopical algebra (see
Kadeishvili [21] etc.) and is proved in the reviced version of [13] (see also [11]). We
also refer [13] (and [11]) for the definition of homotopy equivalence of filtered A1
algebra.

Theorems 8.2 and 8.3 imply that we have a structure of filtered A1 algebra on
H§(L; Λ0) for a compact relatively spin Lagrangian submanifold L. We now show
how the structures of Theorem 5.1 is deduced from it. First we consider

m0 : B0H(L; Λ0) = Λ0 → H(L; Λ0).

We put
oβi = m0,i(1) ∈ H2+di(L; R).
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By Definition 8.2 we can show that di = −ηL(βi). Hence oβi ∈ H2−ηL(βi)(L; R) as
required.

We next assume that oβ are all zero. Then

(m1 ◦m1)(x) = ±m2(m0(1), x)±m2(x,m0(1)) = 0.

We define

Definition 8.3.
HF (L,L; Λ0) =

Kerm1

Imm1
.

We remark that H§(L; Λ0) has a filtration induced by the filtration F∏Λ0 =
T∏Λ0. We can use it to construct a spectral sequence in Theorem 5.1. The formula

m1 =
∑
i≥0

T∏im1,i

implies that the differential of the spectral sequence is induced by m1,i. We put
dβi = m1,i.

Remark 8.1. Actually the filtration F∏Λ0 = T∏Λ0 is parametrized by ∏i ∈ R≥0 and
is rather unusual. (Usually spectral sequence is induced by a filtration parametrized
by integer.) Moreover the ring Λ0 is not Noetherian. This causes serious trouble
to construct spectral sequence and prove its convergence. This problem is resolved
in [13].

Remark 8.2. In the above argument we use Λ0 in place of Λ. Off course Floer
homology over Λ0 induces Floer homology over Λ. The reason we need to work over
Λ is that (6) of Theorem 5.1 (or more generally the invariance of Floer homology
under Hamiltonian deformation of Lagrangian submanifold) is not true over Λ0 and
can be proved only over Λ coefficient. See [13].

We need more argument to establish the properties asserted in Theorem 5.1.
(Especially (4)(5)(6) of it.) We do not explain it here and refer [13].

We mention one application of the construction of this article.

Theorem 8.4. Let L be a compact relatively spin Lagrangian submanifold of M .
We assume that L admits a metric of negative sectional curvature and dimL is
even. Then oβ = 0. Moreover HF (L;L) ª= H(L; Λ).

Proof. (Sketch) We remark that deg M̂(L;β) = n−2+ηL(β) is even, since n is even
and ηL(β) is even. Let us decompose L(L) into connected components ∪L[∞](L),
where ∞ ∈ º1(L) and [∞] be its conjugacy class. Since L has negative curvature
Hi(L[∞](L)) ª= Hi(S1) for ∞ 6= 1. We remark that if M̂(L;β) is nonempty then
it is at least one dimensional. (In fact if M̂(L;β) is nonempty then M(L;β) is
nonempty.) This implies that M̂(L;β) is homologous to zero if ∂β 6= 1. Hence mk,i

is nonzero only for βi with ∂βi = 1. However since L is aspherical L[1](L) is homo-
topy equivalent to L. We can use it to show that Ich§ is trivial on L[1](L). Thus
the A1 algebra (≠(L)≠̂Λ0,mk) is homotopy equivalent to the De Rham complex.
Theorem 8.4 follows. §

Remark 8.3. Actually there is one point where the argument above is not sufficient.
Namely since M̂(L;β) is not a cycle in general (see Theorem 6.4), it is not clear
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how to use vanishing of cohomology of L[∂β](L) to modify M̂(L;β) to zero, without
changing the homotopy type of filtered A1 algebra induced by it on ≠(L)≠̂Λ0.

We can overcome this point in the following way.
First there is a notion of gauge equivelence between elements satisfing Maurer-

Cartan equation (that is the conclusion of Theorem 6.4), such that gauge equivalent
M̂(L;β) induces a homotopy equivalent A1 structure on ≠(L)≠̂Λ0. See [11].

Second we find that the set of homotopy equivalence class of elements satisfing
Maurer-Cartan equation, is independt of the homotopy type of differential graded
Lie algebra (or more generally of L1 algebra).

Third we can show that and differential graded Lie algebra C is homotoyp equiv-
alent to an L1 algebra defined on cohomology group of C. This fact is an L1
analogue of Theorem 8.3 and is proved by various people including [21].

Since our solution M̂(L;β) of Maurer-Cartan equation has degree where coho-
mology group vanish, it follows that it is gauge equivalent to zero. Summing up
we find that the A1 structure induced by M̂(L;β) is homotopy equivalent to one
induced by zero. Theorem 8.4 follows.

Remark 8.4. Theorem 8.4 implies that negatively curved spin manifold of even
dimension is not embeded to C×M (for any symplectic manifold M which is convex
at infinity) as a Lagrangian submanifold. This fact was established in stronger form
by Viterbo. Namely negatively curved manifold is not embeded as a Lagrangian
submanifold to C×M or CPn. (He does not need to assume neigher L is spin nor
that L is of even dimension.) We will discuss related problems in §14.

Remark 8.5. The idea to use Chan-Sullivan’s String topology to study open string
theory is also applied by [4]. Their interest is in its application to Physics. We here
emphasise its application to sympletic topology. The application of our approach
to mirror symmetry will be discussed elsewhere.

The idea to use homology of loop space in Floer theory is independently pro-
posed in [3], where Barraud and Cornea applied it in the case when there exist no
pseudoholomorphic disk and Floer homology is isomorphic to the usual homology3.
F.Lalonde informed the author that together with authors of [3] he is now trying
to apply it in more general situation.

9. S1 equivariant homology of Loop space and cyclic A1 algebra.

The loop space L(L) has a canonical S1 action defined by (s · `)(t) = `(t + s).
Chas-Sullivan [5] also defined a blacket (which they call string blacket) on the S1

equivariant homology HS1

§ (L(L)). Namley they define

{·, ·} : HS1

k (L(L))≠HS1

` (L(L)) → HS1

k+`−n+2(L(L)),(9.1)

by

{x, y} = I§{I§(x), I§(y)}(9.2)

where I§ : Hk(L(L)) → HS1

k (L(L)) and I§ : HS1

k (L(L)) → Hk+1(L(L)) are obvious
maps and {} in the right hand side is the loop bracket. In a similar way, we
can construct it in the chain level using S1 equivariant approximation De Rham
chain of L(L). Here S1 equivariant approximation De Rham chain of L(L) is an

3Our main application in §§11,12,13,14 is in the case when Floer homology may not be well
defined in the sense of [13].
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approximate De Rham chain (P, f, ω) such that S1 acts on P and that f ,ω are S1

equvariant.
We next consider M(L;β). We may regard it as an S1 equivariant approximate

De Rham chain of L(L) of degree n− 3 + ηL(β). Then we have

∂M(L;β) +
1
2

∑
β=β1+β2

{M(L;β1),M(L;β2)} = 0.(9.3)

We next define a cyclic Bar complex Bcyc
k (C[1]) deviding Bk(C[1]) by the equiva-

lence relation generated by

x1 ≠ · · · ≠ xk ª (−1)(deg xk+1)(deg x1+··· deg xk−1+k−1)xk ≠ x1 ≠ · · · ≠ xk−1.

We can define a Gerstenhaver bracket on
∏

k≥1 Hom(Bcyc
k (C[1]), R) in a similar

way. We have homomorphism

Ich :
⊕

k

Bcyc
k (C[1]) → ≠§S1(L(L))

here the right hand side is the set of S1 equivarent forms. (See [17].) Its dual Ich§

is a chain homomorphism and sends string blacket to Gerstenhaber bracket.
Now we put

α(L) =
∑

i

TE(β)M(L;βi).

which is an S1 equivalent approximate De Rham chain of L(L). Hence pulling
it back by Ich§, we have an element Ich§(α(L)) of

∏
k≥1 Hom(Bcyc

k (≠(L)[1]),Λ+)
Then we have

δ(Ich§(α(L))) +
1
2
{Ich§(α(L)), Ich§(α(L))} = 0.

It defines a family of operations

m+
k : Bcyc

k (≠(L)[1]) → Λ0.

It is related to the operations mk in the last section by the fomula

hmk(u1, · · · , uk), uk+1i = m+
k+1(u1, · · · , uk, uk+1)(9.4)

if we take perturbation appropriately. Here h·, ·i : ≠k(L)≠≠n−k(L) → R is defined
by

hu, vi =
∫

L
u ∧ v.

(9.4) implies that mk satisfies the following cyclic symmetry.

hmk(u1, · · · , uk), uk+1i = (−1)§hmk(uk+1, u1 · · · , uk−1), uki(9.5)

where § = (deg xk+1 + 1)(deg x1 + · · ·deg xk + k). We will discuss the contents of
this section in more detail in [12].

Remark 9.1. We constructed filtered cyclic A1 algebra in this section using De
Rham cohomology. Hence it is defined over R. The author does not know how to
do it keeping cyclic symmetry over Z even in semipositive case. (Actually he does
not know how to do it for classical cohomology either.) Compare Remark 6.1.
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10. L1 structure on H(S1 × Sn; Q).

In this section we consider the case of S1×Sn in Cn+1 and calculate the leading
term of the symmetrization of A1 structure of it.

We first discuss symmetrization of (filtered) A1 algebra briefly. Let Bk(C[1]) is
as in §8. We divide it by the equivalence relation generated by

x1 ≠ · · · ≠ xi ≠ xi+1 ≠ · · · ≠ xk(10.1)

ª (−1)(deg xi+1)(deg xi+1+1)x1 ≠ · · · ≠ xi+1 ≠ xi ≠ · · · ≠ xk,

and denote it by Ek(C[1]). mk induces lk : Ek(C[1]) → C[1] by

lk([x1 ≠ · · · ≠ xk]) =
1
k!

∑
σ∈Sk

(−1)§σmk(xσ(1) ≠ · · · ≠ xσ(k))(10.2)

here §σ =
∑

i<j;σ(i)>σ(j)(deg xi +1)(deg xj +1). In case mk = mk is induced by the
structure of (graded commutative) differential graded algebra by (7.1) then we can
check by an easy calculation that the induced operations lk becomes zero. Hene the
part of lk on Ek(≠(L)[1]) induced by wedge product of differential forms vanishes.

lk defines an L1 structure. Here we define :

Definition 10.1. (C, lk) is said to be a filtered L1 algebra if the following holds :∑
k+`=n

∑
I,J

(−1)§l`+1(lk(xi1 ≠ · · ·xik)≠ xj1 ≠ · · · ≠ xj`) = 0

where the second sum is taken over all I = {i1, · · · , ik}, J = {j1, · · · , j`} with
i1 < · · · < ik, j1 < · · · < j`, I ∩ J = ;, I ∪ J = {1, · · · , n} and

§ =
∑

a,b;ia>jb

(deg xia + 1)(deg xjb + 1).

We thus obtained a filtered L1 algebra (≠(L), lk) for a relatively spin compact
Lagrangian submanifold L µ M . We consider the case L = S1 × Sn Ω Cn+1 and
calculate the leading term of lk.

We put

hlk(u1, · · · , uk), uk+1i = l+k+1(u1, · · · , uk, uk+1).(10.3)

Let us chooose a generator ∞ ∈ º1(S1 × Sn) such that E(∞) = ∏1 > 0. (Such ∞
exists by Theorem 2.1.) We consider the case ηL(∞) = 2, n + 1. They are the only
cases we have an examples. Let a, b, c, e ∈ H§(S1 × Sn; Z) be generators of degree
1, n, n + 1, 0 respectively.

Theorem 10.1. If ηL(∞) = 2 then

l+k+1(a, · · · , a, c) ≡ ±T∏1
1
k!

mod T 2∏1 .

All other operations l+ among generators vanish.

Theorem 10.2. If ηL(∞) = n + 1 (n is odd) then

l+k+2(a, · · · , a, b, c) ≡ ±T∏1
1

(k + 1)!
mod T 2∏1 .

All other operations l+ among generators vanish.
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Remark 10.1. We can show that the left hand side of Theorems 10.1, 10.2 is well
defined modulo T 2∏1 . Namely it is independent of the perturbation etc. This is
because then are leading terms. (In other words it is because the cup product m2

will cancel out after symmetrization.) On the other hand, m+
k+1(a, · · · , a, c) etc.

depends on perturbation etc. even modulo T 2∏1 . This is because cup (or wedge)
product is the leading term. m+

k+1 is well defined only up to homotopy equivalent.
We will discuss this point more in the reviced version of [13].

To prove Theorems 10.1,10.2, we first remark that Theorem 6.4 implies that
M̂(S1 × Sn; ∞) is a cycle in SD(L(S1 × Sn)). (This is because there is no ∞0 ∈
º1(S1 × Sn) with 0 < E(∞0) < E(∞).)

Actually we can prove more. Namely, since our Lagrangian submanifold is mono-
tone we can use a result of [13] to find an appropriate (single valued) perturbation
so that the fundamental chain of M̂(S1 × Sn; ∞) is a cycle over Z.

Hence in case of Theorems 10.1, we have [M̂(S1×Sn; ∞)] ∈ Hn+1(L(S1×Sn); Z),
and in case of Theorems 10.2 we have [M̂(S1 × Sn; ∞)] ∈ H2n(L(S1 × Sn); Z). We
are going to calculate them below. We first use the following :

Lemma 10.3. [M̂(S1 × Sn; ∞)] is in the image of I§ : HS1

k (L(S1 × Sn); Q) →
Hk+1(L(S1 × Sn); Q).

This is a consequence of the §9.
We next remark that it is easy to show

H§(L(X × Y )) = H§(L(X))≠H§(L(Y )).(10.4)

Let ∞0 ∈ º1(S1) is a generator and L∞0(S1) be the component containing ∞0. It is
easy to see that H§(L∞0(S1)) ª= H§(S1), HS1

§ (L∞0(S1)) ª= HS1

§ (S1) ª= Z.
Now we consider the component of L∞(S1 × Sn). Then using a commutative

diagram
L(Sn)

Ω
?

L∞(S1 × Sn)
/S1

−−−−→ L∞(S1 × Sn)/S1

º

? º

?
L∞0(S1)

/S1

−−−−→ one point
Diagram 1

where the left vertical maps are fibration, we find that

HS1

k (L∞(S1 × Sn)) ª= Hk(L(Sn))(10.5)

and the map I§ : HS1

k (L∞(S1 × Sn)) → Hk+1(L∞(S1 × Sn)) is identifided with
x 7→ [S1]≠ x where we use the identification (10.4) and H§(L∞0(S1)) ª= H§(S1).

We now recall the calculation of homology group of loop space of Sn. (See [29]
for detail.)

Let E(a, b, · · · , c) be the free graded commutative graded algebra generated by
a, b, · · · , c. (Namely if all of a, b, · · · , c are of even degree then E(a, b, · · · , c) are
polynomial algebra and if all of them are of odd degree then E(a, b, · · · , c) is an
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exterior algebra.) We recall the following classical result. Let L0(X) be the based
loop space.

Lemma 10.4. If n is odd then H§(L0(Sn); Q) ª= E(x) with deg x = n− 1. If n is
even then H§(L0(Sn); Q) ª= E(x, y) with deg x = n− 1, deg y = 2n− 2.

To caclucate the cohomology of free loop space L(Sn) we use the Leray-Serre
spectral sequence associated to the fiberation L0(Sn) → L(Sn) → Sn. Let [Sn] be
the fundametal cohomology class of Sn. Then the E2 term of the spectral sequence
is (Q[Sn]≠Q[pt])≠H§(L0(Sn); Q).

Lemma 10.5. The boundary of the spectral sequence (Q[Sn]≠Q[pt])≠H§(L0(Sn); Q) )
H§(L(Sn); Q) is zero if n is odd and is given by

d(x≠ [pt]) = 0, d(y ≠ [pt]) = 2x≠ [Sn].

if n is even.

Now we consider first the case when ηL(∞) = 2. Then [M̂(S1 × Sn; ∞)] ∈
Hn+1(L(S1 × Sn); Z) corresponds to an element of Hn(L(Sn); Q). We can use
Lemmas 10.4,10.5 to see that it corresponds to ` [pt]≠ [Sn] for some ` ∈ Z.

Lemma 10.6. ` = ±1.

Postponing the proof of Lemma 10.6 for a while, let us complete the proof of
Theorem 10.1. We remark that the operations lk depends only on the homology
class of M̂(S1 × Sn; ∞). Hence we may assume that M̂(S1 × Sn; ∞) = S1 × Sn and
elements (s, x) ∈ S1 × Sn corresponds to the curve t 7→ (s + t, x) in S1 × Sn. Let
dt be the one form on S1 and ≠ be the volume form of Sn. Then a, b, c are the
De Rham cohomology classes represented by dt, ≠ and dt ∧ ≠ respectively. Let us
write mk =

∑1
i=0 T i∏1mk,i∞ . Then, by definition, we have

hmk,∞(a, . . . , a), ci

= ±
∫

x∈Sn

∫ 1

t1=0

∫ t1

t2=0
. . .

∫ tk−1

tk=0
d(s + t1) ∧ . . . ∧ d(s + tk) ∧ ds ∧ ≠

= ±1/k!.

This implies Theorem 10.1. §
Let us prove Lemma 10.6. By the same argument as above we can show (without

using Lemma 10.6) that hmk,∞(a, . . . , a), ci = ±`/k!. In particular m1,∞(a) = ±`e.
Since e should be on the image of m1 by Theorem 5.1, it follows that ` = ±1
as required. (We remark that since our Lagrangian submanifold is monotone we
can work over integer. (See [13].) Hence we can prove not only ` 6= 0 but also
` = ±1.) §

We next consider the situation of Theorem 10.2. Then [M̂(S1 × Sn; ∞)] ∈
H2n(L(S1 × Sn); Z) corresponds to an element of H2n−1(L(Sn); Z). We can use
Lemmas 10.4,10.5 to see that it corresponds to ` x≠ [Sn] for some ` ∈ Z.

Lemma 10.7. ` = ±1.

Postponing the proof of Lemma 10.7 for a while let us complete the proof of
Theorem 10.2.

Let P → L(Sn) be the cycle representing x. For z ∈ P , let µz : S1 → Sn be
the curve represented by it. We consider the map ev : P × S1 → Sn × Sn defined
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by ev(z, t) = (µz(0), µz(t)). By the definition of the class x, we find easily that
ev : P × S1 → Sn × Sn is of degree one.

Now by Lemma 10.7 [M̂(S1 × Sn; ∞)] is homologous to the cycle represented by
f : P × S1 → L(S1 × Sn) given by f(z, s)(t) = (s + t, µz(t))

Then, by definition, we have
k∑

i=0

hmk+1,∞(
i︷ ︸︸ ︷

a, . . . , a, b,

k−i︷ ︸︸ ︷
a, . . . , a), ci

= ±
∫

(x,s)∈P×S1

∫ 1

t=0

∫ 1

t1=0

∫ t1

t2=0
. . .

∫ tk−1

tk=0

d(s + t1) ∧ . . . ∧ d(s + tk) ∧ dt ∧ ev§(≠ ∧ ≠)
= ±1/k!.

Theorem 10.2 follows. §
To prove Lemma 10.7 we use the above argument to show m1,∞(b) = ±`e. The

required equality ` = ±1 then follows from (the Z version of) Theorem 5.1. §
Remark 10.2. We remark that we still did not yet elliminate the possibility ηL(∞) =
2 − n when n is even. (We will elliminate this possibility in §14.) If this happens
then [M̂(S1×Sn; ∞)] ∈ H1(L∞(S1×Sn)) ª= Z. Let us suppose for example that it is
a generator. This means that, to calculate lk we may assume that [M̂(S1×Sn; ∞)] ª=
S1 such that s ∈ S1 corresponds to the loop t 7→ (s+ t, x0) for some fixed x0. Then
we can calculate as above and obtain

l+k+1(a, · · · , a, a) ≡ ±T∏1
1
k!

mod T 2∏1 .

and all other operations are zero modulo T 2∏1 . Let us suppose l+k+1(a, · · · , a, a) =
T∏1/k! for simplicity. Then lk(a, · · · , a) = T∏1b/k!.

We remark that lk (k = 0, 1, · · · ) induces a coderivation d̂ on E(H(S1 × Sm)) =
E(a, b, c, e) in the same way as mk induces a coderivation on B(H(L)). We then
have, in our case,

d̂ =
∑

T∏1
1
k!

b
∂k

∂ak
(10.6)

In other words, d̂ is f(a, b, c, e) 7→ T∏1bf(a + 1, b, c, e). (Here we identify element
of E(a, b, c, e) as a (Λnov coefficient) polynomial of a, c tensored with an element of
Q[1, b] ≠ Q[1, e] ª= E[b, e]. Note that a, c has even degree after shifted and b, e has
odd degree after shifted.) From this calculation, we find easily that the homology
of d̂ vanishes. This is actually consistent. In fact the d̂ cohomology of Lagrangian
submanifold of Cn should vanish. (This fact can be proved in a way similar to (6)
of Theorem 5.1.) The argument here shows that the calculation of d̂ cohomolgy of
E(H(S1 × Sm)) is not enough to eliminate the possibility ηL(∞) = 2− n. Actually
we are going to use H(L(S1 × Sm)) (which is closely related to B(H(S1 × Sm)))
to eliminate the possibility ηL(∞) = 2− n.

We remark also that though (10.6) does not actually occur for a Lagrangian
S1×Sn in Cn+1, it can occur for Lagrangian S1×Sn in other symplectic manifolds.
For example, if for some special Lagrangian submanifold L in a Calabi-Yau 3 fold
M with L ª= S1 × S2, the equality (10.6) seems to hold modulo T 2∏1 .
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11. Lagrangian submanifold of C3.

We first state our main result on Lagrangian submanifold of C3. We recal that a
3 dimensional manifold L is said to be prime if L ª= L1]L2 implies L1

ª= S3 or L2
ª=

S3. Here ] stands for connected sum andª= means diffeomorphism. Two Lagrangian
immersions i0 : L → M and i1 : L → M are said to be Legendrian regular homotopic
to each other if there exists a smooth family of Lagrangian immersions it : L →
M connecting them such that E : º2(M, it(L)) → R is independent of t. (Here
º2(M, it(L)) ª= º1(L) is the set of homotopy class of pair of maps (f, g), f : S1 → L,
g : D2 → M such that it ◦ f = g|∂D2 .)

Theorem 11.1 ([12]). An oriented and connected prime 3 dimensional manifold L
can be embeded to C3 as a Lagranaian submanifold if and only if L is diffeomorphic
to S1 × Σg where Σg is an oriented 2 dimensional manifold.

Moreover a Lagrangian immersion i : L = S1 × Σg → C3 is Legendrian regular
homotopic to an Lagrangian embedding if and only if there exists ∞ ∈ º1(L) such
that E(∞) > 0, η(∞) = 2.

Remark 11.1. For any oriented 3 manifold L, we have TL≠C ª= C3. Hence Theorem
2.5 implies that L has a Lagrangian immersion i : L → C3. We may assume that L
is transversal to itself. Hence applying Lagrangian surgery (Lalonde-Sikorav [22],
Polterovich [27]), we can prove that there exists k such that L]k(S1 × S2) can be
embeded as a Lagrangian submanifold of C3. (Here k(S1 × S2) is a conneted sum
of k copies of S1 × S2.)

The following seems to be open yet.

Problem 11.1. Let Li be prime oriented 3 manifolds which are not diffeomorphic
to Q homology sphere or S1 × S2. Let L = L1] · · · ]Lk, k ≥ 2. Can any such L be
embeded to C3 as a Lagrangian submanifold?

The fact that S1 × Σg can be embeded to C3 as a Lagrangian submanifold
follows from Theorem 2.6. We can also prove that if E(S1) > 0 and η(S1) = 2 for
an Lagrangian immersion i : S1×Σg → C3 then it is Legendrian regular homotopic
to an embedding, by carefully examining the proof of Theorem 2.6. So the main
new part of the proof of Theorem 11.1 is the proof of “only if” part.

Let L Ω C3 be an embeded Lagrangian submanifold. We assume that L is
oriented and prime. By Theorem 2.1 H1(L; Q) 6= 0. Hence by a well known result
of 3 manifold topology (see for example [20]), L is diffeomorphic either to S1 × S2

or an aspherical manifold. Here a manifold L is said to be aspherical if ºk(L) = 0
for k ≥ 2. We can generalize Theorem 11.1 in both cases to higher dimensions. We
will discuss it in next two sections together with a sketch of their proofs.

12. Aspherical Lagrangian submanifold.

In this section we consider an aspherical Lagrangian submanifold L of a sym-
plectic manifold M of arbitrary dimension. We assume M is convex at infinity in
case M is noncompact. To prove Theorem 11.1 and its generalization in the case of
aspherical Lagrangian submanifold L we are going to use the moduli space N (R, β)
introduced in §3. To study this moduli space we need to use an assumption similar
to Assumption 3.1 in §3. We state it below. Let H : M × [0, 1] → R be a smooth
function of compact support. We put Ht(x) = H(x, t), then Ht : M → R is a
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smooth function of compact support. We denote by XHt the Hamiltonian vector
field generated by Ht. Namely dHt = iXHt

(ω). Let expXH
t : M → M be a one

parameter group of transformations associated with XH . Namely

∂

∂t
expXH

t (x)
∣∣∣∣
t=t0

= XHt0
(expXH

t0 (x)).

expXH
t is a symplectic diffeomorphism for each t.

Assumption 12.1. expXH
1 (L) ∩ L = ;.

Theorem 12.1. Let L Ω M be a Lagrangian submanifold. We assume that L is
relatively spin and aspherical. We also assume Assumption 12.1. Then there exists
β ∈ º2(M,L) with the following properties.

(1) E(β) > 0.
(2) ηL(β) = 2.
(3) ∂β ∈ º1(L) is nonzero. Its centralizer Z∂β = {∞ ∈ º1(L)|∞ (∂β) = (∂β) ∞} is
of finite index in º1(L).

Remark 12.1. In case L = Tn Ω CPn existence of β ∈ º2(CPn, L) with ηL(β) = 2
was conjectured by M.Audin and is independently proved by Y. Eliashberg and by
K. Cielieback also.

Remark 12.2. (A) Let us assume that c1∩ : º1(M) → Z is zero in Theorem 12.1.
Then ηL induces a homomorphism ηL : º1(L) → Z. We now have an exact sequence

0 → (Ker ηL) ∩ Z∂β → Z∂β
ηL/2−→ Z → 0.(12.1)

(We remark that the image of ηL is even since L is orientable.) Therefore Z∂β
ª=

Z × ((Ker ηL) ∩ Z∂β) by (2). It follows that the finite covering space L̂ of L with
º1(L̂) = Z∂β is homotopy equivalent to S1 × L0 for a K(Z∂β/Z, 1) space L0.

(B) Under the assumption of Theorem 12.1, the finite covering space L̂ of L with
º1(L̂) = Z∂β is homotopy equivalent to an S1 bundle over L0 for a K(Z∂β/Z, 1)
space L0. If the image of c1∩ : º1(M) → Z is mZ, we can show that the Euler class
of this S1 bundle is divisible by m in a similar way.

Let us consider the situation of Theorem 11.1. As we remarked before either
L ª= S1 × S2 or L is aspherical. We discuss the first case in the next section.
So we may assume that L satisfies the assumption of Theorem 12.1. (We remark
that any oriented 3 manifold is spin.) Moreover c1(C3) = 0. Hence we have
Z∂β

ª= Z × ((Ker ηL) ∩ Z∂β) as in Remark 12.2 (A). Using a standard result of 3
dimensional topology, (we remark that L is sufficiently large since H1(L; Q) 6= 0),
we can prove that L̂ is diffeomorphic to Σg × S1. Let G = º1(L)/º1(L̂). It acts
freely on L̂ and L̂/G = L. Since G = Ker ηL/((Ker ηL)∩Z∂β) it follows that G acts
freely on Σg and trivially on the S1 factor. Hence Σg/G is again a Rieman surface.
We can use this fact and Aut(º1(Σg)) Ω PSL(2; R) for g ≥ 2 to show that actually
Z∂β = º1(L). Namely L is diffeomorphic to S1 × Σg. This proves Theorem 11.1
except the case L = S1 × S2. §



30 KENJI FUKAYA

We now sketch the proof of Theorem 12.1. We consider a map ' = '(τ, t) :
R× [0, 1] → M with the following properties. Here χ is as in Definition 3.2.

∂'

∂τ
(τ, t) = J

(
∂'

∂t
(τ, t)− χR(τ)XHt('(τ, t))

)
,(12.2a)

'(τ, 0), '(τ, 1) ∈ L,(12.2b) ∫
R×[0,1]

'§ω < 1.(12.2c)

(Compare Definition 3.6.) We denote by N (R) the set of all such '. In the same
way as §3, we can extend ' to a map ' : (D2, ∂D2) → (M,L). Let N (R;β) be the
set of all ' ∈ N (R) such that the homotopy class of ' is β. Element of N (R;β) may
be regarded as a map (D2, ∂D2) → (M,L). We define a map ev : N (R;β) → L(L)
by ev(') = '|∂D2 . We put

N (β) =
⋃

R∈[0,1)

N (R;β)× {R}

and define ev : N (β) → L(L) in an obvious way. We remark

dimN (β) = n + 1 + ηL(β).(12.3)

Definition 12.1. We define B(L,H) by

B(L,H) =
∑

β

T β∩ωev§[N (β)].

Here we may regard ev§[N (β)] as an approximate De Rham chain of L(L) in a
similar way to §6. We can prove an analogue of Lemma 4.4. Together with Gromov
compactness it implies the following.

Lemma 12.2. There exists C such that if β ∩ ω < −C then N (β) is empty.
Moreove, for any C, there exists only a finite number of β such that β ∩ ω < C

and N (β) 6= ;.
Lemma 12.2 implies that

B(L,H) ∈ SD(L)≠̂Λ,

where ≠̂ means the completion of the algebraic tensor product. Now the main point
of the proof of Theorem 12.1 is the following equality.

Theorem 12.3. Let L Ω M be a Lagrangian submanifold. We assume that L is
relatively spin and Assumption 12.1. Then we have

∂B(L,H) + {α(L),B(L,H)} = [L].(12.4)

Here we embed L → L(L) as the set of constant maps. Hence [L] ∈ SD
n (L(L)).

α(L) is defined in Definition 8.2.

Remark 12.3. We remark that we do not assume that L is aspherical in Theorem
12.3.
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Proof. (Sketch) We are going to study the boundary of B(L,H). Let 'i ∈ N (Ri;β)
be a divergent sequence. In a way similar to the proof of Proposition 3.3, we can
show that Ri is bounded. (This is the place we use Assumption 12.1.) There exists
pi = (τi, ti) ∈ R× [0, 1] such that

|dpi'i| = sup{|dx'i||x ∈ R× [0, 1]}.(12.5)

We then consider three cases separately. (Compare the proof of Lemma 3.6.)
Case 1: |dpi'i| = Di diverges. Didist(pi, ∂(R× [0, 1])) = Ci →1.
Case 2 : |dpi'i| = Di diverges. Didist(pi, ∂(R× [0, 1])) is bounded.
Case 3 : |dpi'i| = Di is bounded. |τi| diverges.
Case 4 : Ri → 0.

Case 1 is a sphere bubble. Hence it happens in codimension two. So it does not
contribute to ∂B(L,H). (We can make this argument rigorous in the same way as
[14].)

Cases 2 and 3 correspond to a bubble at the boundary ∂D2. We can show that
this gives the term {α(L),B(L,H)}.

Let us consider Case 4. We remark that the equation (12.2a) becomes pseudo-
holomorphicity for R = 0. Therefore, the limit limi→0 'i will give a pseudoholo-
morphic map ' : (D2, ∂D2) → (M,L). The moduli space of such maps has an
extra symmetry {g ∈ PSL(2; R)|g(1) = 1} = Aut(D1, 1). The action of this group
is nontrivial if β 6= 0. So in that case the contribution of Case 4 is zero as a chain.
In case β = 0 we have [L].

We thus obtain the fomula (12.4). The detail will be in [12]. §

To apply Theorem 12.3 to the proof of Theorem 12.1, we use a series of lemmas of
purely topological nature. For ∞ ∈ º1(L), let L[∞](L) Ω L(L) be the set of all loops
in the free homotopy class of ∞. (Here [∞] stands for the free homotopy class of ∞.)
Let Z∞ Ω º1(L) be the centralizer. Let L̂∞ be the covering space of L corresponding
to Z∞ .

Lemma 12.4. If ∞ ∈ º1(L) is nonzero, then the natural projection induces a
homeomorphism : º§ : L[∞](L̂∞) → L[∞](L)

Proof. Let ` : S1 → L be a loop in L[∞](L). Let p0 ∈ L be the base point. We can
choose a path m : [0, 1] → L joining p0 to `(1) such that m−1 ◦ ` ◦m is homotopic
to ∞. It then lifts to a loop m̃−1 ◦ ˜̀◦ m̃ in L[∞](L̂∞). It is easy to see that º§(˜̀) = `.
Hence º§ is surjective.

We next assume º§(˜̀1) = º§(˜̀2) = ` and ˜̀
1, ˜̀

2 ∈ L[∞](L̂∞). There exists g ∈
G = º1(L)/Z∞ such that g · ˜̀1 = ˜̀

2. We remark that both ˜̀
1 and ˜̀

2 are in the free
homotopy class of ∞. Since ∞ is in the center of º1(L[∞]) it follows that g−1∞g = ∞.
Since g ∈ G = º1(L)/Z∞ , it follows g = 1. Namely º§ is injective. §

Lemma 12.5. Let L is a K(º, 1) space and ∞ ∈ º1(L) = º, then ev : L[∞](L̂∞) → L̂∞

is a homotopy equivalence.

Proof. If ∞ = 1, then L̂∞ = L̂1 = L. Let L̃ be the universal covering space of
L. Then L[1](L) = L[1](L̃)/º. Since L̃ is contractible it follows that L[1](L̃) is
contractible. Hence ev : L[1](L) → L is a homotopy equivalence.
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Next we assume ∞ 6= 1. We put g∞ = ∞ ∈ º, which acts on L̃. We put X = {` :
R → L̃ | `(t + 1) = g`(t)}. Z∞ acts on X freely and X/Z∞ = L[∞](L̂∞). Hence it
suffices to show that X is contractible.

We consider a map ev0 : X → L̃, ` 7→ `(0). It is a fibration. Hence X is
homotopy equivalent to the fiber of ev0. The fiber can be identified to the space of
path `0 : [0, 1] → L̃ joining p̃0 with gp̃0 and hence is contractible. §
Lemma 12.6. Let L is an n dimensional aspherical manifold and ∞ ∈ º1(L). Then
Hk(L[∞](L); Z) = 0 for k /∈ {0, · · · , n}. Moreover, if Hn(L[∞](L); Z) 6= 0 then Z∞ is
of finite index in º1(L).

Proof. Hk(L[∞](L); Z) ª= Hk(L̂∞ ; Z) by Lemmas 12.4,12.5. Since L̂∞ is a covering
space of n dimensional manifold L it follows that Hk(L̂∞ ; Z) = 0 for k /∈ {0, · · · , n}.
If Hn(L̂∞ ; Z) 6= 0, it follows that L̂∞ is compact. Hence Z∞ is of finite index in
º1(L). §
Lemma 12.7. Let L be an n dimensional compact oriented aspherical manifold
and [L] ∈ Hn(L0(L); Q). Then for any [P ] ∈ H§(L(L); Q) we have {[L], [P ]} = 0.

Proof. For p ∈ L let `p be the constant loop at p. For x ∈ P let `x be the loop
corresponding to it. Now [P ] § [L] is supported at

P § L = {(p, x, t) ∈ L× P × S1|`p(t) = `x(0)}.
If (p, x, t) ∈ P § L then (p, x, t0) ∈ P § L for any t0. Moreover § : P § L → L(L)
sends (p, x, t) to the same loop as (p, x, t0). This implies [P ] § [L] = 0.

On the other hand, [L] § [P ] is supported at

L § P = {(x, p, t) ∈ L× P × S1|`x(t) = `p(0)}.
If (p, x, t) ∈ L § P then (p, x, t0) ∈ L § P for any t0. Moreover §(x, p, t) is different
from §(x, p, t0) only by the parametrization. This implies [L] § [P ] = 0. §

Now we go back to the (sketch of the) proof of Theorem 12.1. By (12.4) we have
β ∈ º2(M) such that

{M(L;β),N (−β)} 6= 0.

We remark that dimM(L;β) = n− 2 + ηL(β), N (−β) = n + 1− ηL(β). Hence, by
Lemma 12.6, n− 2 + ηL(β), n + 1− ηL(β) ∈ {0, · · · , n}. Since ηL(β) is even, this
implies ηL(β) = 2. Then since dimM(L;β) = n and is nonzero, it follows from
Lemma 12.6 that the centralizer Z∞ of ∞ = ∂β ∈ º1(L) is of finite index in º1(L).
This implies Theorem 12.1. §

Remark 12.4. Actually there is one point we need a clearification in the proof above.
Namely the chain N (−β) is not necessary a cycle. So we need to work in the chain
level. So the way to apply Lemma 12.6 is not so clear. We can overcome this
trouble in a way similar to Remark 8.3 by using a theorem that any L1 algebra
is homotopy equivalent to an L1 algebra defined on its homology group. (We use
also Lemma 12.7.) The detail will appear in [12].

Remark 12.5. Loop space homology was used in [35] in a related context. To
find a relation of Floer homology to [35] was one of the motivations of the author
to modify the construction of [13] to ones described in §§6,7,8,9. In [35] and in
[34], Viterbo used closed geodesic. Closed geodesic appears also in the study of
Lagrangian submanifold using contact homology and in the approach by Eliashberg
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and Cielieback mentioned in Remark 12.1 using [7]. Closed geodesic is closely
related to the homology of loop space. In a sense, our approach is more topological
than one using closed geodesic.

It seems possible to describe relation of Floer homology of Lagrangian subman-
ifold to [35] and to [7], using the ideas developped in §§6,7,8,9. We will discuss it
elsewhere.

13. Lagrangian submanifold homotopy equivalent to S1 × S2m.

Theorem 13.1. Let L Ω M be a Lagrangian submanifold. We assume that L is
homotopy equivalent to S1 × S2m. We also assume Assumption 12.1. Then there
exists β ∈ º2(M,L) such that E(β) > 0, ηL(β) = 2, ∂β ∈ º1(L) is a generator4.

Proof. (Sketch) (We need to apply the same remark as Remark 12.4, to make the
argument below precise.)

We put n = 2m. Lemma 5.4 (and its proof) implies that, if the theorem is false,
then there exists β ∈ º2(M,L) with M(L;β) 6= 0, ηL(β) = 2 − n. Moreover by
Theorem 12.3, we may assume

{M(L;β),N (−β)} = [L].(13.1)

Then dimN (−β) = 2n. Let ∞ = ∂β. We remark that [N (−β)] ∈ Hn(L∞(S1×Sn)).
Hence [N (−β)] is either of the form [pt]≠ a or [S1]× a0 where H(L∞(S1 × Sn)) ª=
H(L∞(S1))≠H(L(S2n)) ª= H(S1)≠H(L(Sn)).

By Lemma 10.5, x≠[Sn] in the E2 term of the spectral sequence does not survive.
(Note deg(x ≠ [Sn]) = deg a0.) Using this fact, we can prove that [N (−β)] lies in
the image of H(S1)≠H(L0(Sn)). Here L0(Sn) denotes the based loop space.

We define ev0 : L∞(S1 × Sn) → S1 × Sn by ev0(`) = `(0). Then by defini-
tion ev0({P,Q}) µ ev0(P ) ∪ ev0(Q). Moreover the image of ev0 of elements of
H(S1)≠H(L0(Sn)) is on S1 × {p0} where p0 ∈ Sn is the base point. Furthermore
dimM(L;β) = 0.

Hence the support of ev({M(L;β),N (−β)}) is contained in a one dimensional
space. On the other hand, ev0§[L] = [L]. This contradicts to (13.1). §

14. Lagrangian submanifold of CPn.

As we mentioned in Remark 8.4 Viterbo proved that if L admits a metric of
negative curvature it can not be embeded to CPn as a Larangian submanifold.
Theorem 12.1 does not imply this result even in spin case since Assumption 12.1
may not be satisfied. We however have an alternative argument which implies
Viterbo’s result in spin case.

Theorem 14.1. Let L be a Lagrangian submanifold of CPn. We assume that L is
asperical and spin. Then there exists β ∈ º2(CPn, L) with the following properties.

(1) E(β) > 0.
(2) ηL(β) = 2.
(3) ∂β ∈ º1(L) is nonzero. Its centralizer Z∂β = {∞ ∈ º1(L)|∞ (∂β) = (∂β) ∞} is
of finite index in º1(L).

4The author thanks to Prof. A. Kono who provides informations on the homology of free loop
space useful to prove this Theorem.
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Proof. (Sketch) We are going to construct an S1 equivariant chain B(L) ∈ SD(L(L))
which has a similar property as (12.4). We fix p0 ∈ CPn \ L. For each β ∈
º2(CPn, L), we consider the moduli space of maps ' : D2 → CPn with the follow-
ing properties.

(1) ' is holomorphic.
(2) '(∂D2) Ω L.
(3) The homotopy type of ' is β.
(4) '(0) = p0.

(Compare Definition 3.1.) Let N 0(L;β) be the space of all such '. We consider
Aut(D2, 0) = {g ∈ PSL(2; R)|g(0) = 0} ª= S1. It acts on N 0(L;β) in an obvious
way. ' 7→ '|S1 defines an S1 equivariant map ev : N 0(L;β) → L(L).

Hereafter we denote by SD
S1(L(L)) the set of all S1 equivariant De Rham chains

in L(L).
We can use an argument similar to §6 and may regard ev§[N 0(L;β)] ∈ SD

S1(L(L)).

Definition 14.1. We define B(L) ∈ SD
S1(L(L))≠̂Λ by

B(L) =
∑

β

T β∩ωev§[N 0(β)].

In §9 we regarded M(L;β) as an S1 equivariant approximate De Rham chain
of L(L) of degree n− 3 + ηL(β) and used it to define α(L) =

∑
i TE(β)M(L;βi) ∈

SD
S1(L(L)).

Theorem 14.2. We normalize our symplectic form ω so that ω ∩ S2 = 1 for the
generator [S2] ∈ H2(CPn; Z). We then have

∂B(L) + {α(L),B(L)} ≡ [L] mod T 2.

Proof. (Sketch) We consider a divergent series of elements 'i of N 0(L;β). Then,
in the limit, one of the following occurs.

(1) A bubble occurs at the boundary.
(2) A bubble occurs at interior.

(1) gives the term {α(L),B(L)}.
In general (2) is a phenomenon of codimension 2 and do not contribute to our

formula. However there is an exception. Namely 'i may converge to a union of
trivial disk '0 : D2 → C2 that is a constant map to p ∈ L, and a pseudoholomorphic
sphere ' : S2 → CPn such that '(1) = p0 and '(0) = p = '0(D2).

The reason that this is codimension one phenomenon is that the map '0 ∨ ' :
D2 ∨ S2 → CPn is not stable, since its group of automorphism is S1. We can
analyse the neighborhood of this map in the moduli space and can show that they
correspond to the boundary point of the moduli space N 0(L;β). (We remark that
in order such phenomenon to occur, ∂β must be zero.) We are interested in the
case when '∩ω = 1. It is easy to see that, for each p, there exists exactly one such
'. (This is because there exists exactly one rational curve of degree one containing
p and 1.) Hence this gives [L]. Theorem 14.2 follows. (More detail of the proof
will be in the reviced version of [13].) §



APPLICATION OF FLOER HOMOLOGY OF LANGRANGIAN SUBMANIFOLDS 35

Now we can use Theorem 14.2 in place of Theorem 12.3 and prove Theorem 14.1
in the same way as Theorem 12.1. We also replace Lemma 12.6 by the following :

Lemma 14.3. Let L is an n dimensional aspherical manifold and ∞ ∈ º1(L). If
x ∈ HS1

k (L[∞](L); Z) for k /∈ {0, · · · , n − 1}, then {x, y} = 0 for any y. Moreover,
if x ∈ HS1

n−1(L[∞](L); Z) and {x, y} 6= 0 for some y, then Z∞ is of finite index in
º1(L).

Lemma 14.3 follows immediately from Lemma 12.6 and (9.2). §

Remark 14.1. We remark that we do not assume L to be aspherical in Theorem
14.2. So it can be used to study Lagrangian submanifold L of CPn for more general
L. For example the case L = S1 × Sn can be studyed in a way similar to §13. The
case when L is rational homology sphere is also of interest since Gromov’s theorem
2.1 is not generalized directly to a Lagrangian submanifold of CPn.

One may also study Lagrangian submanifold of more general symplectic manifold
M than CPn. For example the case when M is uniruled may be handled in a similar
way.

The author is planning to explore these points elsewhere.
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