
METRIC RIEMANNIAN GEOMETRY

KENJI FUKAYA

Contents

1. Introduction 2
2. Sphere theorems 6
3. Finiteness theorems and Gromov-Hausdorff distance 9
4. Geodesic coordinate, injectivity radius, comparison theorems

and sphere theorem 11
5. Packing and precompactness theorem 18
6. Construction of homeomorphism by isotopy theory 21
7. Harmonic coordinate and its appliaction 24
8. Center of mass technique 26
9. Embedding Riemannian manifolds by distance function. 29
10. Almost flat manifold. 32
11. Collapsing Riemannian manifolds -I- 34
12. Collapsing Riemannian manifolds - II - 38
13. Collapsing Riemannian manifolds - III - 44
14. Morse theory of distance function 48
15. Finiteness theorem by Morse theory 53
16. Soul theorem and splitting theorem 56
17. Alexandrov space - I - 61
18. Alexandrov space - II - 70
19. First Betti number and fundamental group 80
20. Hausdorff convergence of Einstein manifolds 88
21. Sphere theorem and L2 comparison theorem 92
22. Hausdorff convergence and Ricci curvature - I - 100
23. Hausdorff convergence and Ricci curvature -II - 108
References 125

1



2 KENJI FUKAYA

1. Introduction

This artible is a survey of (a part of) Riemannian geometry. Rie-
mannian geometry is a huge area which occupies, I believe, at least
1/3 of whole differential geometry. So obviously we need to restrict
attention to some part of it to write an article in this handbook. (M.
Berger’s books [18, 19] deal with wider topics.) Let me mention first
what is not included in this article but should have been included in
the survey of Riemannian geometry.

(1) We do not include elementary or introductory part of Riemann-
ian geometry. For example topics covered in [104] Section II,III or [97]
are not in this article. We assume the reader to have some knowledge
about it.
(2) We focus our attention to global results, and results of local
nature are rarely discussed.
(3) One powerful tool to study global Riemannian geometry is par-
tial differential equation, especially nonlinear one. We do not discuss
it1. The theory of geodesic (which is a theory of nonlinear ordinary dif-
ferential equation) is one of the main tool used in this article. Linear
partial differential equation, especially Laplacian, is mentioned only
when it is closely related to the other topics included in this article.
(4) We do not discuss manifolds of nonpositive curvature.
(5) We do not discuss scaler curvature.

After removing so many important and interesting topics there are
still many things missing in this article. For example results such as
filling volume ([74]) is not discussed. Study of closed geodesic is not
included either.

So what is included in this article ?
We focus the part of Riemannian geometry which describes relations

of curvature (sectional or Ricci curvature) to topology of underlining
manifold. Since we do not discuss nonpositively curved manifold, the
main target is manifold of (almost) nonnegative curvature and more
generally the class of manifolds with curvature bounded from below.
The study of such Riemannian manifolds is started with sphere theo-
rems in 50’s where comparison theorems are introduced by Rauch as
an important tool of study.

At the begining of 70’s Cheeger (and Weinstein) proved finiteness
theorems which provides another kinds of statements to be established
other than sphere theorems. Soon after that M. Gromov intorduced
many new ideas, results and tools, such as Gromov-Hausdorff conver-
gence, almost flat manifold theorem, Betti number estimate, etc., and
gave tremendous influence to the area. These present the first turning
point of the development of metric Riemannian geometry.

1So for example famous result by Hamilton on the 3 manifold of positive Ricci
curvature is not discussed.
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In 1980’s global Riemannian geometry was a very rapidly develop-
ping area. Especially the class of Riemannian manifolds with sectional
curvature bounds from below and above are studied extensively. One of
the important progress on 1980’s is the theory of collapsing Riemannian
manifolds.

Those topics are discussed in §2 ª §13. After a brief review of sphere
theorem in §2, we describe finiteness theorem in §3. In §4, while ex-
plaining a rough sketch of the proof of a sphere theorem we review sev-
eral basic facts on global Riemannian geometry, such as Rauch’s com-
parison theorem, cut point, conjugate point, injectivity radius etc. One
of the main tools of global Riemannian geometry is Gromov-Hausdorff
distance, which we define in §5 and will prove Gromov’s precompact-
ness theorem. The proof of finiteness theorems is discussed in §6 ª §9.
We try to sketch various (different) techniques used to prove finiteness
theorem etc. there, rather than to concentrate on one method and to
give its full detail. Collapsing Riemannian manifolds (under the bound
of absolute value of sectional curvature) is discussed in §10 ª §13.

In §14 ª §18, we discuss the class of Riemannian manifolds under
sectional curvature bound from below (but not above). The basic tool
to study it is Morse theory of distance function, which was initiated by
Grove-Shiohama. We discuss it and its application to sphere theorem in
§14. We explain application of the same method to finiteness theorem
in §15. The thema of §16 is noncompact manifolds of nonnegative
curvature. Besides its own interest, it is used in many places to study
compact Riemannian manifold. Our focus in this article is on compact
case, so we restrict our discussion on noncompact manifolds to ones
which have a direct application to compact manifolds.

New turning point of development of metric Riemannian geometry
came at some point in 1990’s when several mathematicians belonging
to new generation (such as Perelman and Colding) began to work in
this field. In §17 and §18 we discuss Aleandrov space. It is a metric
space which has curvature > −1 in some generalized sense. The
notion of curvature on a metric space which is not a manifold was
introduced by Alexandrov long ago. Recently various applications of
it to Riemannian geometry (study of smooth Riemannian manifolds)
were discovered. It makes this topic more popular among Riemannian
geometers. An important structure theorem of Alexandrov space is
obtained by Perelman and his collaborators, which we review in §17
and §18.
§19 ª §23 we discuss the class of Riemannian manifolds with Ricci

curvature bounded from below. First betti number and fundmental
group are the topics studied extensively under this curvature assump-
tion. We review some of such study in §19. The thema of §20 is
(mainly) a special case, that is the case of Einstein manifold. Our dis-
cussion of Einstein manifold is restricted to those related to the other
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parts of this article. We discuss Einstein manifold here since it provides
rich examples of new phenomenon which appears when we replace the
assumption sectional curvature ≥ const, by Ricci curvature ≥ const.
Also it is an area where results we discuss in §§21,22,23 provide (and
will provide) powerfull tool. §§21,22,23 are review of results obtained
recently by Colding and Cheeger-Colding on the class of manifolds
whose Ricci curvature is bounded from below. Here we emphasise geo-
metric part of the story and omits most of the analytic parts of the
proof, though analytic parts are as important as geometric parts.

It is of course impossible to write full detail of the proof in this article.
However, rather than stating as many results as possible without proof,
the author tried to survey as many ideas, tools, techniques, methods
of proofs etc. as possible. In that sense, the emphasis of this article is
on methods of proofs and not of their outcome. (Off course important
applications of various techniques are explained.) Since this is a survey
article there is no new results in it.

The author would like to thank Professrs A. Kasue, Y. Otsu, T.
Sakai, T. Shioya, and T. Yamaguchi (the authors of [92]) who provide
detailed information on the topics covered in this article (those which
are written or not written in [92]). This article grow up from the
(english translation of) the introduction of [92]. The author also would
like to thank Professor F. Dillen for his patience and encouragement.
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Notations used in this article.

TpM = the tangent space, Expp : TpM → M, the exponential map.

Bp(R, X) = {x ∈ X|d(x, p) < R}, for a metric space (X, d) and p ∈ X.

KM = the sectional curvature of M, Vol(M) = the volume of M,

RicciM = the Ricci curvature of M, Diam(M) = the Diameter of M.

iM(p) = the injectivity radius of M at p (Definition 4.1),

xy = a minima geodesic joining x and y,

∠xyz = the angle between xy and yz at y.

Sn(D) = {M |RicciM ≥ −(n− 1), dim = n, Diam(M) ∑ D},
Sn(D, v) = {M ∈ Sn(D) |Vol(M) ≥ v},
Sn(D, i > ρ) = {M ∈ Sn(D) |8p iM(p) ≥ ρ},
Mn(D) = {M ||KM | ∑ 1, dim = n, Diam(M) ∑ D}.
Mn(D, v) = {M ∈ Mn(D) |Vol(M) ≥ v}.
M0

n(D, v) = {M |KM ≥ −1, Diam(M) ∑ D, Vol(M) ≥ v}.
dGH(X1, X2) = the Gromov-Hausdorff distance (Definition 3.2).

Sn(∑) = simply connected Riemannian manifold with KM ≡ ∑

Ap(a, b; M) = {x ∈ M |a ∑ d(p, x) ∑ b},
Sp(a; M) = {x ∈ M |d(p, x) = a}.
limGH

i→1Xi = X means limi→1 dGH(Xi, X) = 0.
The symbol

.
= means almost equal. The argument using this symbol

is note rigorous. We use it only when we sketch the proof.
The symbol τ(≤1, · · · , ≤k|a1, · · · , am) stand for the positive number

depending only on ≤1, · · · , ≤k, a1, · · · , am and satisfying

lim
≤1,··· ,≤k→0

τ(≤1, · · · , ≤k|a1, · · · , am) = 0,

for each fixed a1, · · · , am. In other words

f(≤1, · · · , ≤k|a1, · · · , am) < τ(≤1, · · · , ≤k|a1, · · · , am)

is equivalent to the following statement.
For each δ, a1, · · · , am there exists ≤ such that if ≤1 < ≤, · · · , ≤k < ≤

then
f(≤1, · · · , ≤k|a1, · · · , am) < δ.
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2. Sphere theorems

There are several pioneering works in metric Riemannian geometry
(such as Myers’ theorem (Theorem 5.4), Hadamard-Cartan’s theorem
(Theorem 4.6), study of convex surface in R3 etc.). But let me set the
begining of metric Riemannian geometry at the time when the following
theorem was proved. From now on, we denote by KM the sectional
curvature of a Riemannian manifold M . We assume all Riemannian
manifolds are complete unless otherwise stated.

Theorem 2.1 (Rauch’s sphere theorem [129]). There exists a positive
constant ≤n depending only on the dimension n such that, if a simply
connected Riemannian manifold M satisfies 1 ≥ KM ≥ 1− ≤n, then M
is homeomorphic to a sphere.

This theorem is a first of the theorems which are called “sphere
theorem”. In this section, we mention some of the most important
sphere theorems2.

Theorem 2.2 (Klingenberg [94], Berger, [17]). If a simply connected
Riamannian manifold M satisfies 1 ≥ KM > 1/4, then it is homeo-
morphic to a sphere.

If M satisfies 1 ≥ KM ≥ 1/4, then M is either homeomorphic to a
sphere or is isometric to a symmetric space of compact type3.

Theorem 2.2 is a generalization of Rauch’s theorem, and is optimal
results among those characterizing spheres under assumption of the
sectional curvature from above and below4. (We remark that the sec-
tional curvature of complex, or quaternionic projective space, or Caylay
plane is between 1 and 1/4.)

Theorem 2.3 (Bochner [151]). If the curvature tensor R of a simply
connected Riemannian manifold M satisfies

C

2
∑ −Rijk`ξijξk`

kξk ∑ C

for any antisymmetric 2 tensor ξ (where C is a positive constant), then
the homology group over R of M is isomorphic to the homology group
of the sphere.

The assumption of Theorem 2.3 is on curvature operator and is more
restrictive than one on sectional curvature. Hence Theorem 2.3 follows
from Theorem 2.2. (Theorem 2.3 was proved earier.) We mention
Theorem 2.3 since the idea of its proof is quite different from one of
Theorem 2.2. We mention them later in §19.

2In this article we mention only a part of many sphere theorems. The reader
may find more in [139].

3more precisely, one of complex or quaternionic projective space or Caylay plane
4Several results which relax the condition of Theorem 2.2 to 1 ≥ KM ≥ 1/4− ≤

are known. See [3].
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Theorem 2.4. If M is simply connected and if 1 ≥ KM ≥ 1− ≤, then
M is diffeomorphic to a sphere.

The difference between Theorems 2.4 and 2.2 is that the conclusion
of Theorem 2.4 is one on diffeomorphism type and is sharper. The
constant 1−≤ in Theorems 2.4 was 1−≤n where ≤n is a positive number
depending only on dimension n and was not explicite, at the time when
it was first proved by Gromoll and Shikata in [65, 136]. Later it was
improved to a constant 1 − ≤ which is independent of the dimension.
It was further improved and an explicite bound (1 − ≤ = 0.87) was
found [143]. The explicite bound is improved several times5 . The
possibility that “1 ≥ KM > 0.25 and º1(M) = {1} implies that M is
diffeomorphic to Sn” was not yet eliminated. The best constant is not
yet found.

Remark 2.1. Hitchin [85] proved that there are some exotic spheres
which does not admit metric of positive scaler curvature, by using KO
index theorem of Dirac operator. Gromoll-Myer [66] (and Grove-Ziller
[83]) found examples of exotic sphere which has metric of nonnegative
curvature. So far example of exotic sphere which has metric of (strictly)
positive sectional curvature is not found.

Theorem 2.5 (Berger [17], Grove-Shiohama [82]). If KM ≥ 1/4 and
if the diameter of M is greater than º, then M is homeomorphic to a
sphere.

Berger proved that M is homotopy equivalent to a sphere under
the assumption of Theorem 2.5 and Grove-Shiohama proved that M is
homeomorphic to a sphere. By generalized Poincaré conjecture (proved
by Smale and Freedman) the later follows from the former (in case di-
mension is not 3). But the proof by Grove-Shiohama (which is different
from Berger’s) uses Morse theory of function which is not differentiable.
This technique turns out to be very useful to study Riemannian man-
ifold under lower (but not upper) curvature bounds. (See §14.)

The next theorem is a final form of series of results due to Shio-
hama [137], Otsu-Shiohama-Yamaguchi [111], Perelman [118]. We will
discuss it in §22.

Theorem 2.6 (Cheeger-Colding [29]). There exists ≤n > 0 such that
if M satisfies RicciM ≥ (n − 1), Vol(M) ≥ Vol(Sn) − ≤n then M is
diffeomorphic to a sphere.

Sphere theorem is a characterization of a sphere, that is the most
basic example of Riemannian manifolds.

5The best estimate known at the time of writing this article is about 1−≤ = 0.68
([86, 144]).
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Let us recall the classification of surface (two manifolds). There it
was first proved that “simply connected compact 2 dimensional man-
ifold is a sphere”, then the classification in the general case was per-
formed by simplifying general surface by, say, surgery.

In a similar sense, sphere theorem plays an important role in metric
Riemannian geometry. Especially the techniques used to prove the
sphere theorems we mentioned above play an important role to study
more general Riemannian manifolds.
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3. Finiteness theorems and Gromov-Hausdorff distance

Another type of important results in metric Riemannian geometry
are finiteness theorems. First of that kind are ones by Cheeger and
by Weinstein, which appeared at the begining of 1970’s. Cheeger’s
finiteness theorem is as follows.

Theorem 3.1 (Cheeger [25]). For each positive numbers D,v,n, the
number of diffeomorphism classes of Riemannian manifolds M with
Diam(M) ∑ D, Vol(M) ≥ v, and |KM | ∑ 1 is finite.

The method of proof of Theorem 3.1 is closely related to the proofs
of Rauch’s sphere theorem and of Theorems 2.2, 2.4. We will explain
it later.

Theorems 2.4 and 3.1 (and their proof) use an idea that if two Rie-
mannian manifolds are “close” to each other then they are diffeomor-
phic to each other.

One way to formulate precisely what we mean by two Riemannian
manifolds to be close, is by using the notion Gromov-Hausdorff dis-
tance6. Let us first review the definition of (usual or classical) Haus-
dorff distance. Let (X, d) be a metric space and Y1, Y2 be subspaces.
We put :

N≤Y = {x ∈ X|d(x, Y ) < ≤},
where d(x, Y ) = inf{d(x, y)|y ∈ Y }.
Definition 3.1. The Hausdorff distance dX(Y1, Y2) between Y1 and Y2

is the infinimum of ≤ > 0 such that Y2 Ω N≤Y1, Y1 Ω N≤Y2.

Hausdorff distance defines a complete metric on the set of all compact
subsets of a fixed complete metric space (X, d).

Gromov-Hausdorff distance is an “absolute analogue” of Hausdorff
distance. Namely it defines a distance between two metric spaces (for
which we do not assume to be embeded somewhere a priori).

Definition 3.2. The Gromov-Hausdorff distance dGH((X1, d), (X2, d))
between two metric spaces (X1, d) and (X2, d) is an infinimum of the
Haudsorff distance dZ(X1, X2), where Z is a metric space such that
X1, X2 are embeded to Z by isometries.

Hereafter we write limGH
i→1Xi = X if limi→1 dGH(Xi, X) = 0.

Gromov-Hausdorff distance defines a complete metric on the set of
all the isometry classes of compact metric spaces.

The following version is sometimes convenient.

Definition 3.3 ([52]). A map ' : X1 → X2 is called an ≤-Hausdorff
approximation, if |dX1('(x), '(y))−dX2(x, y)| ∑ ≤ for all x, y ∈ X1 and
if the ≤ neighborhood of the image '(X1) is X2.

6See [70, 76, 57] for more detailed acount on it.
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If dGH(X1, X2) ∑ ≤ then there exists a 3≤-Hausdorff approximation
X1 → X2. If there exists an ≤-Hausdorff approximation X1 → X2 then
dGH(X1, X2) ∑ 3≤.

There are two types of important results on Gromov-Hausdorff dis-
tance which are applied to finiteness theorems. In this section, we
explain results which was developped mainly in 1980’s.

We first state Gromov’s precompactness theorem on manifolds with
Ricci curvature bound. Let n,D be a positive integer and a positive
number. We denote by Sn(D) the set of all isometry classes of Rie-
mannian manifolds M such that Ricci ≥ −(n− 1) and diameter ∑ D.
Here and hereafter the diameter Diam(X) of a metric space (X, d) is
the supremum of d(x, y) where x, y ∈ X.

Theorem 3.2 (Gromov [70]). (Sn(D), dGH) is relatively compact in
the space of all isometry classes of compact metric spaces.

The method of proof of Theorem 3.2 is related to the proofs of
Rauch’s sphere theorem and of Theorem 2.2. We will explain it in
§5.

We next mention rigidity theorem. Gromov’s precompactness theo-
rem assumes bounds from below of Ricci curvature, which is rather a
weak assumption. We need stronger assumption for rigidity theorem.
We first discuss the case when Gromov studied in [70]. For n,D,v, we
denote by Mn(D, v) the set of all isometry classes of n dimensional
Riemannian manifolds M such that |KM | ∑ 1, Diam(M) ∑ D, and
Vol(M) ≥ v.

Theorem 3.3 ([70], [93]). There exists ≤n(D, v) > 0 such that if
M1, M2 ∈ Mn(D, v) and if dGH(M1, M2) ∑ ≤n(D, v), then M1 is diffeo-
morphic to M2.

Attempts to prove a similar conclusion as Theorem 3.3 under an as-
sumption milder than M1, M2 ∈ Mn(D, v), played a very important
role in the development of metric Riemannian geometry. Perelman
proved that M1 is homeomorphic to M2 if dGH(M1, M2) ∑ ≤n(D, v)
under the assumption KM ≥ −1, which replace |KM | ∑ 1 in the defi-
nition of Mn(D, v). (Theorem 18.2.) Further study is done in the case
when we assume Ricci curvature bounds. (See Theorem 22.3).

Theorem 3.1 follows from Theorems 3.2 and 3.3. (We leave its proof
as an exercise to the reader.)

Theorem 3.2 asserts relatively compactness. Namely it implies that,
for any sequence Mi of elements of Sn(D), there exists a converging
subsequence. Its limit M1 may be regarded as a “weak solution” of
various problems of metric Riemannian geometry, (when we regard it
as an analogy of functional analysis). Then it is natural and important
to study the “regurality” of M1. It is closely related to the proof of
Theorem 3.3. The next result is related to “regurality” question.
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Theorem 3.4 ([70],[64, 116]). Each element of Mn(D, v) is a Rie-
mannian manifold of C1,α class7.

Here α is any positive number with α < 1 and a Riemannian manifold
of C1,α class is a manifold with metric tensor g whose first derivative
is Cα Hölder continuous.

The assumption of Theorem 3.4 is rather strong. There are two kinds
of study to relax this condition X ∈ Mn(D, v).

One is to remove the assumption volume≥ v. It means that we study
limit of a sequence of Riemannian manifolds which will become degen-
erate. This is called the study of collapsing Riemannian manifolds. We
discuss it in §10 ª 13. (See also [57].)

The other direction is to relax the assumption |KM | ∑ 1. Theorem
3.1 is generalized as follows toward this direction.

For n,D,v, we denote by M0
n(D, v) the set of all isometry classes of n

dimensional Riemannian manifolds M such that KM ≥ −1, Diam(M) ∑
D, Vol(M) ≥ v.

Theorem 3.5 (Grove-Petersen-Wu [78, 81]). For each n, D, v, the
number of homeomorphism classes of elements of M0

n(D, v) is finite8.

We explain the proof of Theorem 3.5 in §15.
The limit of a sequence of manifolds M satisfying KM ≥ −1 is an

Alexandrov space. We will discuss it in §17 and §18.

Remark 3.1. (1) If Mi is a sequence of Riemannian manifolds such
that N = limGH

i→1Mi and N is a Riemannian manifold. Then KMi ≥ ∑
implies KN ≥ ∑. Moreover we have dim N ∑ dim Mi.

(2) On the other hand, in case when Λ ≥ KMi ≥ ∑. Λ ≥ KN

is, in general, false for limGH
i→1Mi = N . A counter example can be

constructed as follows. Let Rotθ be the rotation by angle θ of S2 =
{(x, y, z) ∈ R3|x2+y2+z2 = 1} around z axis. We consider the quotient
of S2 × R by the Z action generated by (p, t) → (Rotα≤(p), t + ≤). Let
M≤,α be the quotient space with quotient metric. (M≤,α is diffeomorphic
to S2 × S1.) We have 1 ≥ KM≤,α ≥ 0 since M≤,α is locally isometric to
S2×R. The limit of M≤,α as ≤ → 0 is S2 with some Riemannian metric
gα. 1 ≥ (S2, gα) does not hold unless α = 0.

4. Geodesic coordinate, injectivity radius, comparison
theorems and sphere theorem

The following theorem in differential topology is used in the proof of
Theorem 2.2.

7The proof of this theorem is completed in [64, 116] based on the idea of
Gromov[70]. There seems to be various independent research in Russia. (See for
exapmle [107, 108, 16]).

8In case dimension is 3, [78, 81] proved only finiteness of homotopy types. Now,
Perelman’s stability theorem (Theorem 18.2) implies the finiteness of homeomor-
phism classes in general.
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Theorem 4.1. If a compact n dimensional manifold M is a union
of two open sets both of which are diffeomorphic to Rn, then M is
homeomorphic to a sphere.

In order to apply Theorem 4.1 to the proofs of sphere theorems, we
want to cover M by two coordinate neighborhoods. Estimate of the
size of the coordinate charts plays an important role for the study of
other problems also. Let us begin with the following.

Proposition 4.2. For each compact Riemannian manifold M , there
exists a positive number ≤M with the following properties. If the dis-
tance between p, q ∈ M is smaller than ≤M , then, there exists a unique
geodesic of length < ≤M joining p, q.

The proof of Proposition 4.2 is in many standard text books of Rie-
mannian geometry. (For example in [97, 33].)

The uniquenss of such geodesic is essential for our purpose. Let us
explain this point. Let M be a complete Riemannian manifold. For
each p ∈ M we define the exponential map, Expp : TpM → M as
follows. Let V ∈ Tp(M). There exists a geodesic ` : R → M , such that
d`
dt (0) = V . We then put `(1) = Expp V .

Proposition 4.2 implies that Expp : TpM → M is a diffeomorphism
on the ball of radius ≤M .

Definition 4.1. The injectivity radius of a Riemannian manifold M is
a function iM : M → R which associate to p ∈ M the positive number
:

iM(p) = sup
{
≤|Expp : TpM → M is injective on {V ∈ TpM |kV k < ≤}} .

Proposition 4.2 implies iM ≥ ≤M for compact Riemannian manifold
M . (It is easy to see that iM is continuous. Hence iM ≥ ≤M > 0 follows
easily from implicite function theorem. Proposition 4.2 is a bit more
involved.)

If R < iM(p), then the restriction of the exponential map Expp :
TpM → M to the mertric ball of radius R centered at origin, defines a
coordinate of a neighborhood of p. We call it the geodesic coordinate.

To prove Theorem 2.2, it is important to estimate the injectivity
radius iM from below. The next result9 provides such an estimate.

Theorem 4.3. Suppose that dim M is even. If KM > 0, then iM ≥ º
and M is simply connected10.

Suppose dim M is odd. If 1 ≥ KM ≥ 1/4 and if M is simply con-
nected then, iM ≥ º.

In particuler, if M satisfies the assumption of Theorem 2.2, then we
have iM ≥ º.

9This theorem is due to [17] in even dimension, and to [95, 37] in odd dimension.
10The second assertion is a classical result due to Sygne.
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(There are several results in the non simply connected case. We omit
it.) Another results we use is the following :

Proposition 4.4 (Berger). Let us assume that KM ≥ 1/4 and Diam(M) ≥
º. We take p, q ∈ M such that d(p, q) = Diam(M). Then we have

Int Bp(º, M) ∪ Int Bq(º, M) = M.

(Here Int denotes the interior.)

The proof is in §14.
Using Theorem 4.3 and Proposition 4.4, the proof of Theorem 2.2

goes roughly as follows. By Theorem 4.3, the injectivity radius of M is
not smaller than º. Especially the diameter of M is not smaller than
º.

Let us first assume 1 ≥ KM > 1/4. We replace the metric gM of
M by (1 + δ)gM , where δ is a positive number sufficiently close to 0.
The assumption 1 ≥ KM > 1/4 is still satisfied. Hence M satisfies the
assumption of Proposition 4.4. Hence Int Bp(º, M) ∪ Int Bq(º, M) =
M. Moreover Int Bp(º, M) and Int Bq(º, M) are diffeomorphic to the
ball by Theorem 4.3. Therefore, by Theorem 4.1, M is homeomorphic
to a sphere.

We next consider the case when 1 ≥ KM ≥ 1/4. If the diameter of
M is strictly greater than º, then again Proposition 4.4 and Theorems
4.1 and 4.3 imply that M is homeomorphic to a sphere.

Finally we consider the case when the diameter of M is º. In this
case, we consider the restriction of the exponential map Expp : TpM →
M to the ball Dn(º) of radius º. Then it is a diffeomorphism at
the interior. So M is obtained from Dn(º) by identifiying boundary
points only. We examine this situation carefully and conclude that M
is a symmetric space of compact type. We omit the detail. (See for
example [33] Chapter 7.) §

We explain the outline of the proof of Theorem 4.3 later in this
section. We first explain some basic facts. Let us begin with the
following theorem. Let ∑ be a constant. We put

s∑(t) =


sin t

√
∑√

∑ ∑ > 0

t ∑ = 0
sinh t

√−∑√−∑
∑ < 0

(4.1)

Theorem 4.5 (Rauch). If KM ∑ ∑, then the derivative dx Expp of the
exponential map Expp satisfies

kdx Expp(V )k ≥ kV ks∑(r).

Here x ∈ Tp(M), kxk = r, V ∈ TxTp(M) ª= Tp(M) and we assume
r ∑ º/

√
∑ in case ∑ > 0.
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Let KM ≥ ∑. In case ∑ > 0 we assume dtx Expp is invertible for
t ∈ [0, 1]. Then we have

kdx Expp(V )k ∑ kV ks∑(r).

Theorem 4.5 implies that if KM ∑ 1 then the restriction of Expp :
TpM → M to the ball of radius º is an immersion. (Namely its Jacobi
matrix is invertible.)

We remark that the equality in Theorem 4.5 holds in the case when
M is of constant curvature ∑.

Theorem 4.5 is used by Rauch to prove his sphere theorem. We use
Jacobi field in the proof of Theorem 4.5 as follows. Let x, V be as in
Theorem 4.5, and define a geodesic `s by

`s(t) = Expp(t(x + sV ))

For each s, `s is a geodesic. Its derivative

J(t) =
∂`s(t)

∂s

∣∣∣∣
s=0

∈ T`0(t)M

with respect to s, by definition, is a Jacobi field. Note dx Expp(V ) =
J(1). Therefore, to prove Theorem 4.5, it suffices to estimate Jacobi
field. We use the following equation (which Jacobi field satisfy) for this
purpose.

D2

dt2
J(t) + R

(
d`0

dt
(t), J(t)

)
d`0

dt
(t) = 0(4.2)

Here D
dt is a covariant derivative with respect to the tangent vector

d`0
dt (t) and R is a curvature tensor.

If e1, e2 is an orthonormal frame of a plain º in the tangent space,
then g(R(e1, e2)e2, e1) is the sectional curvature of the plane º. (Here g
is the metric tensor.) Therefore, the second term of the equation (4.2)
can be written in terms of the sectional curvature. Using it we can
compare the equation (4.2) to one in case our manifold is of constant
curvature. Namely if KM ≡ ∑ then (4.2) will be

D2

dt2
J(t) + ∑J(t) = 0.(4.3)

Its solution is J(t) = s∑(t)V (t) where ∇ ˙̀(t)V = 0. Namely kJ(t)k =
s∑(t) if KM ≡ ∑. This implies Theorem 4.5. §

Theorem 4.5 implies the following :

Theorem 4.6 (Hadamard-Cartan). If a complete Riemannian mani-
fold M satisfies KM ∑ 0, the Expp : TpM → M is a covering map. In
particular the universal covering space of M is diffeomorphic to Rn.
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In fact, Theorem 4.5 implies that the Jacobi matrix of Expp : TpM →
M is of maximal rank everywhere. To prove that it is a covering map
we need a bit more. We use completeness of metric for this last step.
We omit it. §

By integrating the conclusion of Theorem 4.5, we can compare the
distance between two points Expp(x), Expp(y), (which are close to p)
to the corresponding distance in the space with constant curvature.
Actually we can do it more globally and obtain Toponogov comparison
theorem.

To state it we need some notation. Let Sn(∑) be the complete sim-
ply connected Riemannian manifold with constant curvature ∑. Let
x0, y0, z0 ∈ Sn(∑). We denote by x0y0 etc. the minimal geodesic joining
x0 and y0 etc. Let θ = ∠y0x0z0 be the angle between x0y0 and x0z0 at
x0. We put a = d(x0, y0), b = d(x0, z0). It is easy to see that d(y0, z0)
depends only on a, b, θ, ∑. We define

s(a, b, θ, ∑) = d(y0, z0).(4.4)

We remark that in case ∑ > 0, the number s(a, b, θ, ∑) is definded only
for a, b < º/

√
∑.

Let M be a Riemannian manifold and x, y, z ∈ M . We denote by xy
a minimal geodesic joining x and y. (In case there are several minimal
geodesic we take any of them.) Let ∠yxz be the angle between xy and
xz at x.

Theorem 4.7 (Alexandrov-Toponogov). If KM ≥ ∑ then we have

d(y, z) ∑ s(d(x, y), d(x, z), ∠yxz, ∑)

If KM ∑ ∑ and if d(x, y), d(x, z) ∑ iM(x) then

d(y, z) ≥ s(d(x, y), d(x, z), ∠yxz, ∑)

x x'

zy y'
z'

.

Figure 4.1

We remark that in the first inequality we do not need to assume that
the triangle x, y, z is small. Actually we only need to assume one of
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the geodesics joining x to y and to z are minimal and the other may be
any geodesic of length ∑ º/

√
∑. Theorem 4.7 is proved in many text

book (See for example [33]).

As we already mentioned, Theorem 4.5 implies that, if KM ∑ 1, then
the exponential map is an immersion on the metric ball of radius º.
Especially it is locally an injection there. To prove Theorem 4.1 we
need global injectivity. We here introduce several terminology.

Definition 4.2. q ∈ M is said to be a conjugate point of p ∈ M if there
exists x such that q = Expp(x) and that dx Expp is not of maximal rank.

q is said to be a cut point of p ∈ M if there exists x 6= y ∈ Tp(M)
such that Expp x = Expp y = q.

Example 4.1. We consider sphere S2 of constant curvature 1. Every
geodesic which start north pole np meets again at south pole sp. Hence
south pole is a conjugate point of north pole.

We next divide S2 by the involution and obtain the real projective
space RP 2. Then np and sp determine the same point x = [np] = [sp] ∈
RP 2. If c ∈ S2 is on the equator then there are minimal geodesics `1, `2

joining c to np, sp respectively. `1,`2 induce two minimal geodesics `1,
`2 in RP 2 joining x to y = [c]. Thus y is a cut poin of x.

Note that iM(p) > r holds if there exists neither a cut point nor a
conjugate point q of p such that d(p, q) ∑ r. We can use Theorem 4.5
to estimate the distance to the conjugate point. However the problem
to estimate the distance to the cut point is more global one.

We remark the following fact.

Lemma 4.8. If ` : [a, b] → M is the minimal geodesic, then for t ∈
(a, b), q = `(t) is neither a cut point nor a conjugate point of p = `(0).

In fact if q is a cut point then there is a geodesic `0 joining p to q with
|`0| = |`[a,t]|. Then the union `0∪`|[t,b] of two geodesics is not smooth and
has the same length as the minimal geodesic `. This is a contradiction.
If q is a conjugate point then by Morse index theorem (see [104, 97, 33]),
`[a,t+≤]

p

q

l

l'

is not minimal. This contradicts to the assumption.

Figure 4.2
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Here we state the following basic result about cut point. (See for
example [33] p96 for its proof.)

Theorem 4.9 (Klingenberg). Let M be a Riemannian manifold. We
assume that q is not a conjugate point of p, for each p, q ∈ M with
d(p, q) < r. If there exists p ∈ M with iM(p) < r then there exists a
closed geodesic of length < 2r in M .

In view of Theorems 4.5 and 4.9, to prove Theorem 4.3, it suffices to
show that the length of nontrivial closed geodesic of M is greater than
2º. We explain the brief outline of its proof below. (See [33] p100 for
its detail.)

We first consider the case dim M is even. Let M be a simply con-
nected Riemannian manifold with 1 ≥ KM > 0. Let ` : S1 → M be
a nontrivial geodesic of minimal length. We regard S1 ª= R/Z. Put
p = `(0). By the parallel transport along ` we have a holonomy homo-
morphism hol` : TpM → TpM . The tangent vector d`

dt (0) is invariant of
the holonomy. Since hol` is orthogonal transformation, and dim M is
even, it follows that there exists a nonzero vector V ∈ TpM orthogonal
to d`

dt (0) such that hol`(V ) = V . The parallel transport of V defines a
vector field V (t) ∈ T`(t)M , which is a parallel vector field. We put :

`s(t) = Exp`(t)(sV (t))

Using ∇V (t) = 0 and first variation formula (see for example [33] §1,
[97] Vol II Theorem 5.1, [104] Theorem 12.2), we find that d`s

ds (0) = 0.
Using moreover the second variation formula (see for example [33] §6,
[97] Vol II Theorem 5.4, [104] Theorem 13.1) and the positivity of
curvature, we find d2`s

ds2 (0) < 0, which contradicts to the minimality of
the length of `.

The proof of odd dimensional case is more involved. We remark
that the quotient of S3 by a cyclic group Z/pZ has constant positive
curvature one (and is not simply connected). Its injectivity radius
converges to 0 as p → 1. This shows that, to prove Theorem 4.3 in
odd dimensional case, we need to use the assumption that M is simply
connected.

The proof of odd dimensional case is roughly as follows. We assume
that there exists a closed geodesic ` of length < 2º. Since M is simply
connected, ` is null homotopic. Let `s be a homotopy such that `0 = `,
`1 = const. We may assume that the length of ` is minimal among all
nontrivial closed geodesics. By using the assumption that KM > 1/4
we can prove that the length of `s is always smaller than 2º. (This
is the essential point of the proof. To prove this we use the fact that
the Morse index (with respect to the length) of the closed geodesic of
length > 2º is not smaller than 211.)

11Let us consider the round sphere of radius 2 (that is the round sphere of
curvature 1/4). The geodesic segment of length 2º, that is the geodesic segment
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Now we conside the exponential map Expp at the tangent space of
p = `(0). Expp is a submersion on the ball of radius º. Hence it has a
similar property to the covering map up to radius º. Especially it has
homotopy lifting property there. Since the length of `s is not greater
than 2º its image is of distance ∑ º from p. Therefore we can lift `s

to TpM . (Note we can lift `1 since it is a constant map.) Hence we
obtain a lift ˜̀

0 : S1 → TpM . But this is a contradiction since `0 = ` is
a geodesic12. §

5. Packing and precompactness theorem

A similar argument as the last section is used in the proof of finiteness
theorem(Theorem 3.1) and of Theorem 3.2. We explain this point here.
We first discuss Theorem 3.2. The basic fact we use for its proof is the
following.

Proposition 5.1. Let D > 0 and N : (0, 1) → N. We denote by
Met(D, N), the set of all isometry classes of complete metric spaces
satisfying (1), (2) below. Then Met(D, N) is compact with respect to
the Gromov-Hausdorff distance.

(1) The diameter of M ∑ D.
(2) For each ≤ ∈ (0, 1) there exists a finite subset Z of M with the
following properties.

(2.a) ]Z ∑ N(≤).
(2.b) For each x ∈ M , there exists x0 ∈ Z satisfying d(x, x0) < ≤.

The proof of Proposition 5.1 is for example in [57] §2.
Here we introduce a notation.

Definition 5.1. We call the subset Z an ≤-net if it satisfies (2.b) .

To deduce Theorem 3.2 from Proposition 5.1, we use the following
Theorem 5.2. Let Sn(∑) be the complete simply connected Riemannian
manifold with constant curvature ∑. Let Bp(R, M) be the metric ball
in M of radius R centered at p.

Theorem 5.2 (Bishop-Gromov). If Ricci ≥ (n− 1)∑ then the volume
Vol(Bp(R, M)) of the metric ball satisfies the following inequality for
r < R.

Vol(Bp(R, M))

Vol(Bp(r, M))
∑ Vol(Bp0(R, Sn(∑)))

Vol(Bp0(r, Sn(∑)))
.(5.1)

joining north pole with south pole, has Morse index n − 1. (Here we consider the
set of all arcs joining north pole with south pole and consider the length as a Morse
funciton on it. n− 1 is the Morse index with respect to this Morse funcition.) We
compare our closed geodesic with this geodesic segment to obtain the conclusion
about Morse index.

12This argument is not enough to handle the case 1 ≥ KM ≥ 1/4 of Theorem
2.2, (since then we can only show that º is a submersion at the interior of the ball
of radius º.) In that case we need additional argument. We omit it.
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(5.1) is called Bishop-Gromov inequality. It plays a key role to study
the class of Riemannian manifolds with Ricci curvature bounded from
below. The equality holds if M is of constant curvature ∑.

Let us sketch a proof of Proposition5.2. We put

A(t) =
Vol(Bp(t,M))

Vol(Bp0(t, Sn(∑)))
.(5.2)

It suffices to show that A is nonincreasing. (In case ∑ > 0 Theorem 5.4
implies that we need to consider t ∑ º only.)

Let ` : [0, a) → M be a minimal geodesic with `(0) = p parametrized
by arc length. Let v = (d`/dt)(0).

We take a vector v§ ∈ Tp0Sn(∑)) with unit length We put

a(v, t) =
det dtv Expp

det dtv§ Expp§
(5.3)

Here det dtv Expp is the determinant of derivative of the exponential
map. We first prove that a(v, t) is a nonincreasing function of t for
each fixed v.

We can prove it in a way similar to the proof of Theorem 4.5. One
difference however is that our assumption in Theorem 5.2 is only on
Ricci curvature while in Theorem 4.5 the assumption is on sectional
curvature. However since we only need to estimate determinant of
the Jacobi matrix of the exponential map, the assumption on Ricci
curvature, which is a trace of curvature tensor, is enouth. This is half
of the idea of the proof of Proposition 5.2. Let us fix p and move q ∈ M ,
and consider the set

V =

{
d`p,q

dt
(0) ∈ TpM

∣∣∣∣ q ∈ M

}
(5.4)

where `p,q is the minimal geodesics joining p and q. (If there are several
we take all of them.) (We take parametrization of `p,q so that the length
of d`p,q

dt (0) is d(p, q).)
We have

Vol(Bp(R, M)) =

∫
V ∩B0(R,RpM)

k det dx Expp kdx(5.5)

(Here det dx Exp is the determinant of Jacobi matrix.) (5.5) and the
fact that a(v, t) is a nonincreasing function of t implies (5.1) for R, r
smaller than injectivity radius.

To prove Theorem 5.2 beyond injectivity radius, we proceed as fol-
lows. We remark that V is star shaped (that is if x ∈ V t ∈ [0, 1] then
tx ∈ V ). We then modify a to a0 so that a0(t, v) = a(t, v) if tv ∈ V
and a0(t, v) = 0 if tv /∈ V . Then a0 is a nonincreasing function of t.
Theorem 5.2 follows. §
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Corollary 5.3. If RicciM ≥ ∑ and p ∈ M then

Vol(Bp(R, M)) ∑ Vol(Bp0(R, Sn(∑))).

This corollary follows from the fact that the function A in (5.2) is
nonincreasing and limt→0 A(t) = 1.

Theorem 5.2 and 5.1 imply Theorem 3.2 as follows. Let us assume
that M satisfies the assumption of Theorem 3.2. It suffices to show
that M satisfies the assumption of Proposition 5.1. Let ≤ > 0. We
take Z Ω M which is maximal (with respect to inclusion) among the
subsets of M satisfying “z1, z2 ∈ Z, z1 6= z2 implies d(z1, z2) > ≤”. The
maximality implies (2.6). On the other hand, since Bz(≤/2, M), z ∈ Z
are disjoint to each other, it follows that :∑

z∈Z

Vol(Bz(≤/2, M)) < Vol M.

Since Bz(D, M) = M , Proposition 5.1 implies

]Z ∑ Vol(M)

sup Vol(Bp(≤/2, M))
∑ Vol(Bp0(D, Sn(∑)))

Vol(Bp0(≤/2, Sn(∑)))
.

If we let N(≤) be the right hand side, then the assumption of Proposi-
tion 5.1 is satisfied. Theorem 3.2 follows. §

We remark that the following classical result is actually proved dur-
ing the proof of Theorem 5.2.

Theorem 5.4 (Myers). If M is an n dimensional complete Riemann-
ian manifold with Ricci ≥ (n − 1)∑ > 0, then M is compact and its
diameter is not greater than º/

√
∑.

In fact during the proof of Theorem 5.2 we proved the following
under the assumption p ∈ M , RicciM ≥ ∑.

“If t 7→ Expp(tv) is a minimal geodesic for t ∈ [0, 1], then det dv Expp

is not greater than det dv0 Expp0
where p0 ∈ Sn(∑), v0 ∈ Tp0Sn(∑) and

|v0| = |v|. ”
we remark that det dv0 Expp0

= 0 if kv0k = º/
√

∑. Therefore there
exists no minimal geodesic of length > º/

√
∑ if RicciM ≥ ∑. Theorem

5.4 follows immediately. §
In the above argument, Bz(≤, M), z ∈ Z covers M . Namely we esti-

mate the number of metric balls (geodesic coordinate) to show Theorem
3.2. If ≤ is smaller than the injectivity radius of M , then Bz(≤, M) is
diffeomorphic to Dn. The proof of Theorem 3.2 is related to the proof
of spher theorems in this way. Theorem 4.1 deals with the case when
two balls cover M and conclude that M is a sphere. If we can replace
Theorem 4.1 by a statement such as “if M is covered by the balls whose
number is estimated by C, then the number of diffeomorphism classes
of such M is estimated by C” then finiteness theorem would follow.
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Unfortunately the statement in the parenthesis above does not hold.
So we need to include information how the balls are glued. Theorem
3.1 can be proved in that way. (See §6 ª 8.) Here we prove a weaker
version (Weinstein [150]).

Proposition 5.5. For each D, ≤ the number of homotopy equivalence
classes of n dimensional Riemannian manifolds satisfying (1), (2) below
is finite. (1) M ∈ Mn(D), (2) The injectivity radius of M is greater
than ≤.

To prove Proposition 5.5 we use the set Z above. We then obtain an
open covering Bz(≤, M), z ∈ Z of M . It is a simple covering. Namely
for each z1, · · · , zk ∈ Z the intersection ∩k

i=1Bzi(≤, M) is either empty
or contractible. It implies that the simplicial complex K(Z) defined
below is homotopy equivalent to M .

(1) The vertex of K(Z) corresponds to an element of Z.
(2) z0, · · · , zk ∈ Z is the set of vertex of a k simplex of K(Z) if and
only if ∩k

i=0Bzi(≤, M) 6= ;.
Since the order of Z is estimated by the number depending only on

D and ≤, it follows that there exists only finitely many possibility for
the homotopy type of K(Z). Proposition 5.5 follows. §

In Theorem 3.1, there is no assumption on injectivity radius but only
a bound of volume from below is assumed. Assumption on volume is
more natural and geometric than one on injectivity radius. However
in case absolute value of the sectional curvature is bounded, these two
assumptions are equivalent.

Proposition 5.6 (Cheeger [25]). There exists a positive number c(n, D, v)
depending only on n, D, v such that if M ∈ Mn(D, v) then iM ≥
c(n, D, v).

The proof of Proposition 5.6 is closely related to the proof of Theorem
3.5. We will explain it in §15.

6. Construction of homeomorphism by isotopy theory

In §5, we discussed an estimate of the number of open sets which
cover M and which are diffeomorphic to Dn, and we showed how it
is used to estimate the number of homotopy types (Proposition 5.5).
However as we mentioned there, we need more argument to estimate
the number of diffeomorphism classes (or homeomorphism classes). We
will explain some of them in the 4 sections begining from this section.

We again begin with a sphere theorem, the differentiable sphere
therem (Theorem 2.4) this time.

Let M satisfy the assumptions of Theorem 2.4. Namely we assume
that M is simply connected and 1 ≥ KM ≥ 1− ≤. Then by Proposition
4.4 and Theorem 4.3, M is a union of two balls V1,V2 such that Vi

ª= Dn.
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We may assume ∂Vi
ª= Sn−1. Moreover we may assume V1∩V2 = ∂V1 =

∂V2. So we obtain a diffeomorphism :

I : Sn−1 ª= ∂V1 → ∂V2
ª= Sn−1.(6.1)

It is easy to see that if I is diffeotopic to the identity map (namely if
there exists a smooth family It of differomorphisms such that I0 = I,
I1 = id), then M = V1 ∪ V2 is diffeomorphic to Sn.

Now we use the following :

Proposition 6.1. For each compact Riemannian manifold N there
exists ≤N > 0 such that if the C1 distance between F : N → N and the
identity is smaller than ≤N , then F is diffeotopic to the identity.

Here we recall

Definition 6.1. A two diffeomorphisms F1, F2 : N → N 0 are said to be
diffeotopic to each other if there exists a smooth map F : [1, 2]×N →
N 0 such that F (1, x) = F1(x), F (2, x) = F2(x) and that x 7→ F (t, x) is
a diffeomorphism for each t.

The proof is elementary. To apply Proposition 6.1 to the proof of
Theorem 2.5, we use the following lemma.

Lemma 6.2. For each ≤ > 0 there exists δn(≤) > 0 with the following
properties. Let M be an n dimensional simply connected Riemannian
manifold with 1 > K > 1− δn(≤). Then we may choose the gluing map
(6.1) so that its C1 distance from identity is smaller than ≤.

We omit the proof. See for example [33] Chapter 7.

We are going to explain how we use the idea above to the proof of
Theorems 3.3 and 3.1. Cheeger’s original proof of Theorem 3.1 ([25])
is similar to the idea explained in this section.

Let M , N be Riemannian manifolds. We assume that they are cov-
ered by the same number of metric balls. Namely we assume M =
∪k

i=1Bpi(≤, M), N = ∪k
i=1Bqi(≤, N). We assume also that 10≤ is smaller

than injectivity radius of M and of N . (We put 10 by a technical
reason.) We assume also that intersection pattern of the balls are the
same. Namely, for each i, j, Bpi(≤, M) ∩ Bpj(≤, M) 6= ; if and only if
Bqi(≤, N) ∩Bqj(≤, N) 6= ;.

We want to find a sufficient condition for M to be diffeomorphic to
N . For this purpose we compare the chart ∪k

i=1Bpi(≤, M) of M , with the
chart N = ∪k

i=1Bqi(≤, N) of N . To compare, we want to take the same
domain for coordinate transformations. For this purpose we proceed as
follows. Let Bpi(≤, M) ∩ Bpj(≤, M) 6= ; then Bpi(≤, M) Ω Bpj(10≤, M).
For each pi,qj, we fix a linear isometry TpiM

ª= Rn, TqjN
ª= Rn and

use it to identify tangent spaces with Rn. (There are various choices of
identification. We take one and fix it.)



Figure 6.1

METRIC RIEMANNIAN GEOMETRY 23

We consider the composition ;

'M
ji = Exp−1

pj
◦Exppi

: Bn(≤) → Bn(10≤).

Here Bn(≤) is a metric ball of radius ≤ in Rn centered at origin, and
Exp−1

pj
is an inverse of the exponential map Exppj

: Bn(10≤) → N . We

define 'N
ji in a similar way.

In the next proposition we assume that the C2 norm (or C1,α norm)
of 'M

ji , 'N
ji is smaller than a constant C.

Proposition 6.3. There exists ≤n,k(C) > 0 such that if the C1 distance
between 'M

ji and 'N
ji is smaller than ≤n,k(C), then M is diffeomorphic

to N .

Cheeger proved Proposition 6.3 in the following way. First we use
Proposition 6.1 to prove that the coordinate transformation 'M

ji is dif-
feotopic to 'N

ji . We then use it to construct a diffeomorphism ∪K
i=1Ui →

N (to its image) by induction in K. For detail see [25]. We prove
Proposition 6.3 in a slightly different way in §7.

Proposition 6.3 is used to prove Theorem 3.1. For this purpose,
we first observe that there is a constant C such that a Riemannian
manifold satisfying the assumption of Theorem 3.1 is covered by metric
balls whose number is not greater than C. Since the number of metric
balls is bounded, the number of possible intersection patterns among
them is also bounded. Let us fix intersection pattern of the metric
balls we use. We use Proposition 6.3 and find that, if the coordinate
transformations 'M

ji are C1 close to 'N
ji , then M is diffeomorphic to N .

If coordinate transformations 'M
ji are uniformly bounded in C2 norm
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then Ascoli-Alzera’s theorem implies that they are precompact in C1

topology. Theorem 3.1 will follow.
We need however to estimate second derivative of the coordinate

transformaiton uniformly. Our assumption in Theorem 3.1 is on cur-
vature, which is a second derivative of metric tensor. So one may
imagine that it implies the estimate of the second derivative of coor-
dinate transformation. However when we use geodesic coordinate, the
assumption of (sectional) curvature is not enough to do so. (Cheeger
[25] proved it under the additional assumption that a covariant deriva-
tive of the curvature tensor is also bounded.) To go around this trouble
Cheeger in [25] proceed as follows. In place of using a statement such as
“two diffeomorphism is diffeotopic to each other if they are C1 close to
each other” we can use a statement such as “two homeomorphism are
isotopic to each other if they are C0 close to each other” ([48]). And
we can use isotopy extension theorem13 to construct homemorphism
∪k

i=1Ui → N by induction on k. This argument implies finiteness of
homeomorphism classes and is not enough to prove Theorem 3.1 in four
dimension14. (In higher dimension, one can use surgery etc. to deduce
finiteness of diffeomorphism classses from finiteness of homeomorphism
classes by purely topological argument.)

We can use harmonic coordinate (which we discuss in the next sec-
tion) to find a coordinate chart such that the C2,α norm of its coordinate
transformation can be estimated uniformly.

7. Harmonic coordinate and its appliaction

As we mentioned in the last section, in order to obtain an estimate
of the Hölder norm of the coordinate transformation, taking geodesic
coordinate does not give an optimal result. Harmonic coordinate is the
best choice for this purpose15. There are various other applications of
harmonic coordinate16. It also plays an important role to prove the
limit metric in Theorem 3.4 is of C1,α class.

13which is much less elementary than Proposition 6.1 and is based on highly
nontrivial results such as Kirby-Siebenman’s result on Hauptvergmutung. See [48].

14[115] added some technical argument and proved Theorem 3.1 in four dimen-
sion as well.

15In mathematical study of gauge theory, we need to take representative of gauge
equivalence class in order to kill freedom of gauge transformation. This is an im-
portant point to study moduli space of connections. Here we are studying “gravity”
and coordinate transformation plays a role of gauge transformation. The process
to find a good coordinate is called gauge fixing in Physics. Harmonic coordinate
is used in Riemannian geometry around the same time when Uhlenbeck etc. used
Coulomb gauge in the study of moduli space of connections. The proof of Theorem
3.4 we present in this section is very similar to the proof by Uhlenbeck etc. of the
compactification of the moduli space of self dual connections on 4 manifolds.

16We can use it to study Gromov-Hausdorff convergence under weaker assump-
tion also. See §20.



METRIC RIEMANNIAN GEOMETRY 25

Let M be a Riemannian manifold. We assume that the injectivity
radius of M is much greater than r. Let p ∈ M and ei(p), i = 1, · · · , n
be an orthonormal frame of TpM . We put vi(p) = Expp(rei(p)),
wi(p) = Expp(−rei(p)) and define :

hp,i(x) =
d(x, wi(p))2 − d(x, vi(p))2

4r2
(7.1)

We call hp,i an almost linear function. (We remark that hp,i is a linear
function if M = Rn.)

hp = (hp,1, · · · , hp,n) defines a coordinate system in a neighborhood of
p. However since hp is in principle a distance function, this coordinate
does not provide optimal result for the estimate of the Hölder norm of
coordinate transformation. We will replace it by a harmonic function.
We consider a boundary value problem of the Laplace equation ∆' = 0
as follows. Let us take δ such that r ø δ ø iM(p), and consider
'p,i : Bp(δ, M) → R with the following properties.

(1) ∆'p,i = 0.
(2) If q ∈ Sp(δ, M), then 'p,i(q) = hp,i(q).

Definition 7.1. We call 'p = ('p,1, · · · , 'p,n) a harmonic coordinate.

Using the fact that 'p
i is C1 close to hp

i we can prove that 'p defines
a coordinate in a neighborhood of p.

Now we can prove an estimate of C2,α norm of the coordinate trans-
formation of the harmonic coordinate as follows. We put Dn(≤) = {x ∈
Rn|kxk < ≤}. We take ≤ with 10≤ < r. Let p, q ∈ M with d(p, q) < ≤.
We consider the inverse '−1

p of 'p. Then the image of '−1
p : Dn(≤) → M

is contained in the domain of 'q : Bq(r, M) → Rn. Therefore we can
define :

'M
q,p = 'q ◦ '−1

p : Dn(≤) → Rn.(7.2)

Theorem 7.1. There exists a positive constant C(r, ≤, α, n) depending
only on r, ≤, α and the dimension n, such that the C2,α norm of 'M

q,p is
not greater than C(r, ≤, α, n).

Also the C1,α norm of the metric tensor in harmonic coordinate is
estimated by C(r, ≤, α, n).

The proof is based on a priori estimate of harmonic functions. See
[87, 88, 64], where the second half is proved. The first half follows easily
from the second half. Theorem 7.1 is generalized to Theorem 20.7.

Let us prove Theorem 3.4 as a typical application of Theorem 7.117.
Let us take a sequence Mk of elements of Mn(D, v). We denote its limit
in Gromov-Haudsorff distance by X. By Theorem 4.3, the injetivity
radius of Mk is greater than r, a number indepdent of k. We take ≤

17The author follows the argument of [90] here.
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such that 10≤ < r. In the same way as §2, we can take a finite subset
{pi,k|i = 1, · · · , Ik} ∈ Mk with the following properties.

(1) Ik is smaller than a number independent of k.
(2)

⋃
i '

−1
pi,k

(Dn(≤)) = Mk.

By (1) we may assume that Ik is independent of k by taking a sub-
sequence if necessary. Set I = Ik. Then, the intersection pattern of
the coordinates '−1

pi,k
(Dn(≤)) has only a finite number of possibilities.

Hence by taking a subsequence we may assume that the intersection
pattern is independent of k. Namely we may assume that for each
i, j ∑ I

'−1
pi,k

(Dn(≤)) ∩ '−1
pj,k

(Dn(≤))(7.3)

is empty or not does not depdend on k.
Now for any i, j such that (7.3) is not empty, we consider 'Mk

pj,k,pi,k

defined by (7.2). We fix α < 1, and apply Theorem 7.1 to α0 with
1 > α0 > α. We then find that the C2,α0 norm of 'Mk

pj,k,pi,k
is estimated

by a number independent of k. Hence we may take a subsequence and
assume that that 'Mk

pj,k,pi,k
converges in C2,α topology. Let us denotes

its limit by
'pj,1,pi,1 : Dn(≤) → Rn.

We use them as a coordinate transformation to obtain a smooth man-
ifold M1 of C2,α class. Moreover by the uniform C1,α0 boundedness of
metric tensor, we find a Riemannian metric g1 on M1 of C1,α class
which is a limit of metrics on Mk. We can prove that Mk converges to
(M1, g1) in Gromov-Hausdorff distance. Hence (M1, g1) is isometric
to X. Theorem 3.4 follows. §

We next prove Theorem 3.3. We assume that the theorem is false.
Then there exist M1,k, M2,k ∈ Mn(D, v) such that dH(M1,k, M2,k) <
1/k but M1,k is not diffeomorphic to M2,k. We use Theorem 3.3 to
show that, after taking a subsequence, M1,k, M2,k converges to X1, X2

respectively. By Theorem 3.4, X1, X2 are Riemannian manifolds of
C1,α class. By using the center of mass technique we will explain in
the next section, we can prove that M1,k is diffeomorphic to X1 and
M2,k is diffeomorphic to X2 for large k. On the other hand, since the
Gromov-Hausdorff distance between X1 and X2 is zero, it follows that
X1 is isometric to X2. Hence X1 is diffeomorphic to X2. This is a
contradiction. §

8. Center of mass technique

In §6 we explained how isotopy extension theorem can be used to
construct a homeomorphism. In fact isotopy extension theorem is very
difficult to prove. We can use a method called center of mass technique
which simplify those points. Center of mass technique can be used to
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various other problems for example to group action. In this section we
explain it.

Let us start the explanation of center of mass technique by begining
a proof of (a modified version of) Proposition 6.3.

In Proposition 6.3, the assumption is about exponential map Expp or
coordinate transformation of geodesic coordinate. We actually use the
case of harmonic coordinate. So we consider the following situation.

(a) M = ∪i'pi(D
n(≤)), N = ∪i√qi(D

n(≤)) are open coverings.
(b) The intersection pattern of coordinate neighborhoods coincide
to each other. Namelly 'pi(D

n(≤)) ∩ 'pj(D
n(≤)) 6= ; if and only if

√qi(D
n(≤)) ∩ √qj(D

n(≤)) 6= ;.
(c) If 'pi(D

n(≤)) ∩ 'pj(D
n(≤)) 6= ;, then 'pi(D

n(≤)) µ 'pj(D
n(r)).

(d) The C2,α norm of the coordinate transformation

Φij = '−1
pi
◦ 'pi : Dn(≤) → Rn

is bounded uniformly above by C. The same holds for

™ij = √−1
qi
◦ √qi : Dn(≤) → Rn.

(e) Φij is close to ™ij in C1 norm.

Our purpose is to construct a diffeomorphism F : M → N under
these assumptions.

For each x ∈ 'pi(D
n(≤)), we put :

Fi(x) = √qi ◦ '−1
pi

(x) ∈ N(8.1)

This corresponds that we defined F on each coordinate chart 'pi(D
n(≤)).

The main point is whether we can glue them to obtain F globally.
Namely in case x ∈ 'pi(D

n(≤)) ∩ 'pj(D
n(≤)) we need to know whether

√qi ◦ '−1
pi

(x)
?
= √qj ◦ '−1

pj
(x)(8.2)

or not. It is easy to see that (8.2) does not hold. What follows from
our assumption (assumption of Proposition 6.3 or the assumption (e)
above) is :

d(√qi ◦ '−1
pi

(x), √qj ◦ '−1
pj

(x)) < ≤(8.3)

(where ≤ is a sufficiently small positive number.) (More preciselly (8.3)
is on C0 norm, but assumption (e) is on C1 norm.)

The basic idea of center of mass technique is to take average of Fi(x)
over i with x ∈ 'pi(D

n(≤)). Before we continue the proof of Proposition
6.3, we explain center of mass technique in general here.

Let m a Borel probability measure on M , (namely a measure on M
with m(M) = 1). Let us denote the support of m by Supp(m). We
define a function dm on M by

dm(x) =

∫
d(x, p) dm(p).(8.4)
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Proposition 8.1. We assume the injectivity radius of M is larger than
10≤. We also assume KM ∑ ∑ and 20≤ < º/

√
∑18.

If the diameter of Supp(m) is smaller than ≤, then on

B3≤(Supp(m), M) = {x ∈ M |d(x, Supp(m)) < 3≤},
the function dm is convex.

Here a function on a Riemanniam manifold said to be convex if its
restriction to each geodesic is convex.

We can prove Proposition 8.1 by using the convexity of the distance
function dp on Bp(º/

√
∑,M)19.

Now we assume that the diameter of Supp(m) is smaller than ≤. Then
outside B3≤(Supp(m), M) the value of the function dm is greater than 3≤,
and on Supp(m) the value of the function dm is smaller than ≤. There-
fore Supp(m) attains its minimum on the interior of B3≤(Supp(m), M).
Since dm is convex there, the minimum is attained at unique point.

Definition 8.1. The center of mass is the point where dm attains its
minimum. We write center of mass by CM(m).

We remark that if M = Rn, then

CM(m) =

∫
Rn

x dm(x).

We go back to the proof of Proposition 6.3. We take a partition
of unity χi associated to the covering M = ∪iBpi(≤, M). We define a
measure F(x) on N by

F(x) =
∑

i

χi(x)δFi(x).

Here δFi(x) is the delta measure supported at Fi(x) and the summation
is taken over all i with x ∈ Bpi(≤, M).

By (8.3) we have Diam(supp(F(x))) < ≤. Let F (x) be the center of
mass of F(x). Namely :

F (x) = CM(F(x)) = CM

(∑
i

χi(x)δFi(x)

)
.(8.5)

It is easy to see that F (x) is a continuous function of x. Actually it
is smooth. (We can prove it by using implicite function theorem.) We
can prove that it is a diffeomorphism by using the following lemma.

Lemma 8.2. If Fi i = 1, 2, · · · are C1 close to each other then F
determined by (8.5) is C1 close to Fi.

18In case ∑ ∑ 0 the second condition is void.
19This fact is a consequence of Toponogov’s comparison Theorem 4.7.
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The proof is elementary.
Then, to prove Proposition 6.3, we only need to show that F is

injective. Suppse F (x) = F (y), x 6= y. By using the fact that the
Jacobi matrix of F is invertible, we can show that x can not be close
to y. On the other hand, since F is close of Fi and since Fi is injective,
we can prove that x can not be far from y. This is a cotradiction. This
is an outline of the proof of Proposition 6.3. §

There are various other applications of center of mass technique. Let
us mention another applicatin of it, that is an application to group ac-
tion. Let M be a Riemannian manifold on which G acts. For simplicity
we assume G is a finite group. We assume G has two different action
on M and write them as √1 : G → Diff(M) and √2 : G → Diff(M).
We assume that there exists C such that for each element g ∈ G, the
C2 norm of √1(g), √2(g) are smaller than C.

Proposition 8.3 (Grove-Karcher). There exists a constant ≤ depend-
ing only on C, the dimension n, the injectivity radius of M , and the
maximum of the absolute value of the sectional curvature of M , with
the following property.

If d(√1(g)(x), √2(g)(x)) < ≤ for each g ∈ G, x ∈ M , then there exists
a diffeomorphism φ : M → M such that φ(√1(g)(x)) = √2(g)(φ((x)).

See [77] for its proof. ([77] is the paper where center of mass tech-
nique first appeared).

Proposition 8.3 is applied to study Riemannian manifold whose sec-
tional curvature is closed to 1 but whose fundamental group is not
necessary trivial.

9. Embedding Riemannian manifolds by distance function.

In the last section we explained center of mass technique which we
can use to construct a diffeomorphism. In §6 we mentioned another
way that is to use isotopy theory. In this section, we discuss the third
method which was introduced and used by Gromov [69, 70]. In [53] the
author remarked that this method can be used to construct a smooth
map (projection of a fiber bundle) in collapsing situation (Theorem
11.2). It was further generalized by Yamaguchi [154] (Theorem 11.3)
to the case when we assumed a bound of sectional curvature from below
(but not above).

We here explain an alternative proof of Theorem 3.3. This proof
is completed by Katsuda [93] based on an idea of Gromov [70]. We
assume M, N ∈ Mn(D, v), dH(M, N) < ≤(n, v, D). (We choose ≤ =
≤(n, v, D) > 0 later.) Let √ : M → N be a 3≤ Hausdorff approximation.
We take a 20≤-net X of M . We can take X such that

(*) If x, x0 ∈ X, x 6= x0, then d(x, x0) > 10≤,
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in addition. It is easy to see that √(X) is an 30≤-net of N . It is also
easy to see that

(**) if x, x0 ∈ X, x 6= x0 then d(√(x), √(x0)) > ≤.

We denote by [0, 1]X the set of all maps X → [0, 1]. It is a finite di-
mensional Euclidean space. The idea is to embed M(resp. N) in [0, 1]X

using distance function from X (resp. √(X)). In order to go around
the trouble that distance function is not differentiable, we proceed as
follows. We take ≤ later so that it is much smaller that the injectivity
radius of M and N . We next take χ : R>0 → [0, 1] such that

χ(t) =


0 t < C≤,

t t ∈ [C2≤, C3≤],

const t > C4≤.

Here C is a sufficiently large positive number which will be determined
later. We may assume that C5≤ is smaller than the injectivity radius of
M and N . (Precisely we first choose C and then choose ≤ so that this
condition is satisfied.) Then we define IM : M → [0, 1]X by IM(p)(x) =
χ(d(p, x)) and IN : N → RX by IN(p)(x) = χ(d(p, √(x))). Note χ(t) is
a constant where t is larger than injectivity radius. Hence IM , IN are
smooth. We can prove the following :

Lemma 9.1. (1) IM , IN are smooth embeddings. (2) IM(M) is con-
tained in a tubular neighborhood U(N) of IN(N). (3) We identify U(N)
with a normal bundle and let º : U(N) → N be the projection of the
normal bundle. Then the restriction of º to IM(M) is a diffeomor-
phism.

We omit the detail of the proof, (see [93]), but explain its brief idea.
The reason that (1) holds is that, for each p, there are sufficiently many
points q ∈ X with d(q, p) ∈ [C2≤, C3≤]. Namely using the distance
function from such q we can show the Jacobi matrix of IM ,IN are
invertible in a neighborhood of p.

To prove (2) we observe that, if x ∈ X Ω M , then the distance
between IM(x) and IN(√(x)) is small. (Namely it is something like
const dH(M, N) = const ≤.) Moreover, since X,√(X) are enough dense
in M ,N , it follows that IM(M) are sufficiently close to IN(N). We next
need an estimate of the size of the tubular neighborhods of IM(M),
IN(N). This follows from the estimate of the second derivative of IM

and IN , which turn out to be a consequence of the assumption on
curvature of M , N . To carry out actual proof we need to estimate
the size of tublar neighborhood and the distance between IM(x) and
IN(√(x)) more precisely.

To prove (3) we need to see that the Jacobi matrix of the restriction
of º : U(N) → N to IM(M) is invertible. This follows from the fact
that IM(M) is C1 close to IN(N), namely they are close to each other
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together with their tangent spaces. Since the derivative of the distance
function is written in terms of the angle between edges of geodesic
triangles, we can prove this fact by using comparison theorems. §

Theorem 3.3 follows immediately from Lemma 9.1.

Remark 9.1. (A) We used distance function in the discussion above.
We can use eigenfunction of Laplace opeartor (or green kernel) instead.
Then the estimate about the derivatives of the diffeomorphism we get
becomes better. (See for example [21, 56, 91]). This approach is closely
related to harmonic coordinate.

(B) We took net and embed Rimennian manifolds to a finite dimen-
sional Euclidean space in the above argument. We can use distance
function from all the points and can embed Riemannian manifolds to a
Hilbert or Banach space. This argument is useful for a generalization
of Theorem 3.3 to an equivariant version. (Namely in the situation
when a Lie group acts on M , N .) If we use eigenfunction of Laplace
opeartor as we mentioned in (A), embedding to finite dimensional Eu-
clidean space is good enough to show equivariant version also.
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10. Almost flat manifold.

In this section we start discussing the case when the injectivity radius
goes to zero. In the earier sections, we begin with sphere theorems and
applied the method appeared there to finiteness theorems etc. In sphere
theorems, we study manifolds of positive curvature. We here consider
another typical Riemannian manifold that is a flat manifold. We first
recall the following famous :

Theorem 10.1 (Bieberbach). If M is a compact Riemannian manifold
with KM ≡ 0, then there exists a finite covering M̃ of M such that M̃
is isometric to a flat torus.

We want to study a Riemannian manifold (M, g) whose curvature is
close to zero. To obtain a nontrivial result, we need some normalization.
(In fact, the curvature of (M, kg) tends to 0 as k →1 for any (M, g).)
To normalize volume is not good enough eigher. (For example, M ×S1

for any M carries a metric with volume 1 and curvature arbitrary
small.) So let us normalize diameter to 1. In other words, we assume
|KM |Diam(M)2 is small. We call such manifold almost flat manifold.
However the assumption |KM |Diam(M)2 small does not imply that M
is diffeomorphic to a flat manifold.

Example 10.1. We consider the group N of all 3 × 3 matrix of the

form

1 x z
0 1 y
0 0 1

. We consider a left invariant metric g≤ on N such that

g≤ = ≤2dx2 + ≤2dy2 + ≤4dz2 at the unit matrix I. Let E1,E2,E3 be left
invariant vectors such that E1 = ∂/∂x, E2 = ∂/∂y, E3 = ∂/∂z at I. It
is well known that the curvature of Lie group with left invariant metric
is calculated as follows. If E, F are left invariant orthonormal vector
then the sectional curvature of the plain spanned by them is not greater
6k[E, F ]k. (See [24].) Hence the sectional curvature K(N,g≤) is bounded
as ≤ → 0. On the other hand, we consider the subgroup NZ consisting
of matrix in N such that x, y, z ∈ Z. NZ is a dicrete subgroup of N and
the quotient space M = NZ\N is known to be compact. We consider
the metric on M induced by g≤ and denote it by g≤. It is easy to see
that the diameter Diam(M, g≤) goes to zero. Hence Diam(M, g≤)

2Kg≤

goes to zero. However no finite cover of M is diffeomorphic to T 3.

This example shows that we need to include not only abelian but
also nilpotent Lie group to characterize almost flat manifold.

Theorem 10.2 (Gromov [69]). There exists ≤n > 0 such that if an n di-
mensional compact Riemannian manifold M satisfies |KM |Diam(M)2 <
≤n then M has a finite cover M̃ which is diffeomorphic to Γ\N , where
N is a nilpotent Lie group and Γ is its discrete subgroup.
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There is an improvement of Theorem 10.2 due to Ruh [133]. Let
N be an nilpotent Lie group. There exists a connection ∇can of TN
which is invariant of both left and right actions of N . Let Γ be a
discrete subgroup of N . ∇can induces a connection on Γ\N which we
denote by the same symbol. (We remark that ∇can is not equal to the
Levi-Civita connection.) Let Λ be a finite subgroup of Aut(Γ\N,∇can).
We call Λ\(Γ\N) an infranilmanifold.

Theorem 10.3 (Ruh). Under the assumption of Theorem 10.2, M is
diffeomorphic to an infranilmanifold.

Let us sketch some of the essential ideas behind the proof of Theorem
10.2. One important origin is a Margulis’ lemma. Margulis’ lemma first
apeared in the study of discrete subgroup of Lie group.

Theorem 10.4 (Zassenhaus, see[70] 8.44). For each Lie group G there
exists a neighborhood U of unit, such that if Γ Ω G is a discrete sub-
group then U ∩ Γ generates a nilpotent subgroup.

The proof is based on the following fact. Let g1, g2 ∈ G be in a
neighborhood of unit 1, then

d(1, {g1, g2}) ∑ Cd(1, g1)d(1, g2)(10.1)

Here {g1, g2} is the commutator. This formula (10.1) is a consequence
of the fact that the derivative of (g1, g2) 7→ {g1, g2} at 1 is zero. Once we
have (10.1) we can prove Theorem 10.4 as follows. We choose U small
enough such that if g ∈ U then d(1, g) < 1/(2C). Then (10.1) implies
that if gi ∈ U then d(1, {g1, g2}) is strictly smaller than d(1, gi)/C. We
repeat this and find that N hold commutator between elements of U
is in the 1/CN neighborhood of 1. Since Γ is discrete, it implies the
existence of N such that any N hold commutators between elements of
U ∩ Γ are trivial. It follows that U ∩ Γ generates nilpotent group. §

There are various Riemannian geometry version of Theorem 10.4.
The following, which is proved by Cheeger-Colding [31] (improving
[59]) is one of the strongest version.

Theorem 10.5. There exists ≤n with the following properties. Let M
be an n dimensional complete Riemannian manifold with RicciM ≥
−(n−1) and p ∈ M . Then the image of º1(Bp(≤n, M)) → º1(Bp(1, M))
has nilpotent subgroup of finite index.

If we apply it to the situation of Theorem 10.2 we find that the
fundamental group of M has nilpotent subgroup of finite index. (See
§19 for more discussion on fundamental group.)

Another idea applied by Gromov to prove Theorem 10.2 is to use
local fundamental pseudogroup, which we discuss briefly here. (See
[57] §7 and [24] for its precise definition.) Let M be a complete
Riemannian manifold. We assume KM ∑ 1. Let p ∈ M . Then
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by Theorem 4.5 the exponential map Expp : TpM → M is an im-
mersion on the ball B0(º; TpM). Since B0(º; TpM) has a boundary
Expp : B0(º; TpM) → M is not a covering map. So we can not con-
sider its deck transformation group in the usual sense. But we can
define “pseudogroup” in the following way. Let ≤ < º/10. We consider
the set of all loops ` : S1 → Bp(≤, M) with `(0) = p and |`| < ≤. We say
` ª `0 for such `, `0 if there exists a based homotopy `t between them
such that |`t| < ≤ for each t. Let us denote the set of equivalence class
by º1(M, p; ≤). The loop sum § on º1(M, p; ≤) is not necessary defined.
But when it is defined its ª equivalence class is well defined. (We need
to use the fact that Expp : B0(º; TpM) → M is an immersion to show
this.) When loop sum is well defined it is associative. (Here the reader
may find some fravor of Klingenberg’s argument we mentioned at the
end of §4.) Thus (º1(M, p; ≤), §) is something similar to group. We
call it fundamental pseudogroup. The following pseudogroup version of
Margulis’ lemma is used in the proof of Theorem 10.2.

Lemma 10.6. If |KM | ∑ 1 and if Diam(M) < ≤n, then there exists a
subpseudogroup (º0

1(M, p; ≤), §) of (º1(M, p; ≤), §) such that (º0
1(M, p; ≤), §)

is embeded (preserving §) into a nilpotent Lie group N , its image gener-
ates a discrete subgroup Γ and that the index [º1(M, p; ≤) : º0

1(M, p; ≤)]
is estimaged by a number depending only on n. Here ≤n ø ≤ ø 1.

Lemma 10.6 consists main part of the proof of Theorem 10.2. (Ac-
tually we need a bit more. Namely we have to show that the action of
(º1(M, p; ≤), §) to B0(º; Tp(M)) is diffeomorphic to an action to U Ω N
of some subpseudogroup Γ ∩ U , where N is a nilpotent Lie group and
Γ is its discrete subgroup.) §

For the detail of the proof we refer [24, 57].

11. Collapsing Riemannian manifolds -I-

Using Theorems 3.3,3.4, we can descrive a sequence of n-dimensional
Riemannian manifolds Mi with |KMi| ∑ 1 and Vol(Mi) ≥ v > 0 where
v is independent of i. Namely the limit X (which exists after tak-
ing a subsequence) is a Riemannian manifold of C1,α class and X is
diffeomorphic to Mi for sufficiently large i.

In §10, we consider a sequence of Riemannian manifolds Mi with
|KMi| ∑ 1 and Diam(Mi) → 0. (The second condition is equivalent to
say that Mi converges to a point.) Theorem 10.2 implies that Mi is an
infranilmanifold for large i.

These are two extremal cases. We now discuss the intermediate case.
Namely we consider the case when a sequence of Riemannian mani-
folds Mi converges to a metric space X (with respect to the Gromov-
Hausdorff distance) such that n > dim X > 0. We say that such
sequence collapses to X. Here we discuss results under the assumption



METRIC RIEMANNIAN GEOMETRY 35

|KMi| ∑ 1. (The study under weaker assumption is discussed in later
sections.)

We first explain some examples of collapsing Riemannian manifolds.
The first example is due to Berger and is called the Berger sphere.

Example 11.1. We consider Hofp fibration º : S3 → S2. (Namely
we regard S3 = {(z1, z2) ∈ C2||z1|2 + |z2|2 = 1}, and we associate to
(z1, z2) the complex one dimensional space spaned by it, which is an
element of CP 1 = S2.) We put the standard metri on S3 and regard
S2 as a sphere of radius 1/2. It is easy to see that º is a Riemannian
submersion. (Namely if Vh ∈ TpS3 and V is perpendicular to the fiber
of º containing p, then gS3(Vh, Vh) = gS2(º§Vh, º§Vh).) We define a
metric g≤ on S3 as follows. Let V, W ∈ TpS3. We write

V = Vh + Vv, W = Wh + Wv,

where Vh, Wh are perpendicular to the fiber (with respect to gS3) and
Vv, Wv are tangent to the fiber. We set

g≤(V, W ) = gS3(Vh, Wh) + ≤2gS3(Vv, Wv).

It is easy to see that limGH
≤→0(S

3, g≤) = (S2, gS2). We can check that the
sectional curvature of (S3, g≤) is between 0 and 1 if ≤ ∈ (0, 1].

We can generalize this construction and prove the following :

Proposition 11.1. Let M be a compact manifold on which a torus Tm

acts. We assume that there is no point p on M such that p is fixed by
all the elements of Tm. Then there exists a family of metrics g≤ on M
such that Kg≤ is bounded from below and above and that limGH

≤→0(M, g≤) =
M/Tm.

To find such a sequence of metrics, we first take a Tm invariant
Riemannian metric gM on M . We next take X an element of Lie
algebra of Tm such that the subgroup ª= R generated by X is dense in
Tm. We regard X as a (Killing) vector field on M . We remark that X
never vanishes on M . For V, W ∈ TpM we put

V = Vh + c(V )X(p), W = Wh + c(W )X(p),

where gM(Vh, Xp) = gM(Wh, Xp) = 0. We then define

g≤(V, W ) = gM(Vh, Wh) + ≤2c(V )c(W )gM(X(p), X(p)).

We can prove that the limit of (M, g≤) as ≤ → 0 is M/Tm with quotient
metric and the sectional curvature of (M, g≤) is bounded for ≤ ∈ (0, 1].

§
Let us take for example M = S3. We can find an action of T 2 on

S3 satisfying the assumption of Proposition 11.1. Hence there exists
a sequence of metrics on S3 such that the limit is S3/T 2 = [0, 1] the
interval. In particular the limit space is not a manifold.

This construction is further generalized in [38] (Theorem 12.1).
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There are two approaches to study collapsing Riemannian manifolds
under the assumption |KMi| ∑ 1. One is due to Cheeger-Gromov
[39, 38] the other is due to the author [53, 55, 56]. These two approaches
are unified in [34]. In this section, we discuss the second approach and
in the next section we discuss the first (and the joined) approach.

Here we discuss the following two problems. For n,D, we denote
by Mn(D) the set of all isometry classes of n dimensional Riemannian
manifolds M such that |KM | ∑ 1, and Diam(M) ∑ D.

Problem 11.1. Let Mi ∈ Mn(D) and X = limGH
i→1Mi = X.

(1) What kind of singularity can X has ?
(2) Describe the relation between X and Mi.

We remark that if we replace Mn(D) by Mn(D, v) the answers are
Theorems 3.3, 3.4. Problem 11.1 will be studyed also under milder
assumption on curvature later.

We first discuss Problem 3.4 (2) in the special case when X is a
smooth manifold.

Theorem 11.2 (Fukaya [53, 56]). Let Mi ∈ Mn(D). Suppose B =
limGH

i→1Mi is a smooth Riemannian manifold. Then, for large i, there
exists a fiber bundle ºi : Mi → B with the following properties.

(1) The fiber is diffeomorphic to an infranilmanifold F .
(2) The structure group is the group of affine transformations Aff(F,∇can)
here we define the affine connection ∇can on F as in the last section.
(3) ºi is an almost Riemannian submersion in the following sense. If
V ∈ Tp(Mi) is perpendicular to the fiber then

1− ≤i <
gMi(V, V )

gN(ºi§V, ºi§V )
< 1 + ≤i

where ≤i → 0.

Yamaguchi [154] generalized Theorem 11.2 as follows.

Theorem 11.3 (Yamaguchi). If Mi is a sequence of n dimensional
Riemannian manifold with KMi ≥ −1. We assume B = limGH

i→1Mi is
a smooth Riemannian manifold. Then for large i there exists a fiber
bundle ºi : Mi → B. It satisfies (3) above.

See §19 for more results on the fiber of ºi : Mi → B in Theorem
11.3.

The idea of the proof of Theorems 11.2, 11.3 is similar to the discus-
sion in §9. Namely we embed the limit space B to RX using distance
function (IB : B → RX). (Here X is a net in B.) We then map Mi

to the same space (IMi : Mi → RX). We can not prove that IMi is an
embedding since there is no bound of injectivity radius of Mi. However
IB is an embedding and IMi(Mi) is contained in a tubular neighborhod
U(IB(B)) of IB(B) for large i. Hence we have a composition of three
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maps, IMi , projection of the normal bundle of IB(B), and I−1
B . This

map is our ºi : Mi → B. To check that it safisfies (1),(2) we use
parametrized version of the proof of Theorems 10.2, 10.3. §

In general, the limit space as in Question 11.1 has singularity. Hence
Theorem 11.2 does not apply in the general case. However we can use
its equivariant version and a trick (which we explain below) so that we
can apply it to the general situation.

Let M be an n dimensional Riemannian manifold. We define its
frame bundle by :

FM =

{
(o; e1, · · · , en)

∣∣∣∣ p ∈ M,

(e1, · · · , en) is an orthonormal basis of TpM

}
.

There exists an O(n) action on FM such that FM/O(n) = M . In
other words FM → M is a principal O(n) bundle. The Riemanian
metric determines a connection of this principal bundle (that is the
Levi-Civita connection.) Using it we can canonically define an O(n)
invariant Riemannian metric on FM such that FM → M is a Rie-
mannian submersion and the fiber ª= O(n) has given standard metric
on O(n). From now on we use this metric on FM .

Theorem 11.4 ([55]). If Mi ∈ Mn(D) and if Y = limGH
i→1 FMi. Then

we have the following.

(1) Y is a smooth manifold.
(2) O(n) acts by isometry on Y such that limGH

i→1Mi = Y/O(n).
(3) There exists a sequece of O(n) equivariant Riemannian metric on
gi on Y and ≤i → 0 such that

1− ≤i <
dY (x, y)

dgi(x, y)
< 1 + ≤i

for any x, y ∈ Y , where dY is the limit metric.
(4) For each p ∈ Y the connected component of the isotropy group
{g ∈ O(n)|gp = p} is abelian.

To prove Theorem 11.4, we use the notion of fundamental pseu-
dogroup we explained in the last section as follows. (The idea to use
pseudofundamental group to study collapsing is initiated by Gromov
in [70] Chapter 8.) Let p ∈ X. We take pi ∈ Mi which converges to
p. We fix small ≤ and consider º1(Mi, pi, ≤) which acts on B0(≤, TpiMi)
such that the quotient space is isometric to an ≤ neighborhod of pi

in Mi. (We can define a notion of action of pseudogroup to a space
and of the quotient space, in a reasonable way.) We can define a con-
vergense of a pseudogroup action and can find a limit of º1(Mi, pi, ≤),
which we write N . The group N acts by isometry to the limit B̃(p) of
B0(≤, TpiMi). Here we put a Riemannian metric on B≤(0, TpiMi) which
is induced by on Mi by the exponential map. Since the injectivity ra-
dius of B0(≤, TpiMi) is bound away from 0, it follows that we can apply
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Theorem 3.4 to find that B̃(p) is a Riemannian manifold of C1,α class.
The point here is that N is in general not discrete and collapsing occurs
exactly when N has positive dimension. We can show that the group
germ of the origin of N is a Lie group germ. Note that this is easy in
case when the metric on Y is smooth. To avoid using metric which is
not smooth, we approximate gMi by gMi,≤ such that

|∇kRgMi,≤| < Ck(≤),(11.1a)

e−≤gMi < gMi,≤ < e≤gMi .(11.1b)

here the left hand side of (11.1b) is the norm of the k-th derivative of
the curvature tensor and the right hand side is a constant depending on
k and ≤ but is independent of i. The existence of such approximation
is proved by [15], (and generalized by [1] to complete manifolds).

Then the limit of the ball (B̃(p), g̃Mi,≤) is smooth. Replacing G by
its quotient we may assume that the action of G on B̃(p) is effective.

We now consider the frame bundle FB̃(p). Using the fact that G
is effective and isometry on B̃(p), it follows that the action of N on
FB̃(p) is free. Therefore FB̃(p)/N is a manifold. We can easily see
that FB̃(p)/N is an open set of the limit Y of FMi and by changing
p ∈ X it covers Y . Thus Y is a manifold as required. Using Margulis’
lemma we find that the connected component of N is nilpotent. Since
the isotropy group of O(n) action on Y can be identified to the isotropy
group of N action on B̃(p), it follows that the connected component
of the isotropy group is both companct and nilpotent. Hence it is
abelian. §

Using Theorem 11.4, we can improve Theorem 11.2 as follows.

Theorem 11.5 ([55]). Let Mi, Y be as in Theorem 11.4. Then there
exists º̃i : FMi → Y for large i with the following properties.

(1) º̃ is a fiber bundle satisfying (1),(2),(3) of Theorem 11.2.
(2) º̃ is O(n) equivariant and hence induces a map º : Mi → Y/O(n).

The proof is an equivariant version of the proof of Theorem 11.4.
(Compare Remark 9.1 (B).)

12. Collapsing Riemannian manifolds - II -

As we mentioned before there are two approaches to study collapsing
Riemannian manifolds and we discuss another approach [39, 38] in
this section. One advantage of this approach (compared with one we
discussed in the last section) is that we do not need to assume diameter
bound. Let us first give an example to illustrate a new phenomenon
which occurs when we do not assume diameter bound.
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Example 12.1 (See [135].). Let Σk be a Riemann surface of genus
k > 0. For each ≤ there exists a Riemannian metric gk,≤ on Σk,0 =
Σk \ Int D2 with the following properties.

(1) 0 ≥ Kgk,≤
≥ −1.

(2) A neighborhood of the boundary of Σk,0 is isometric to S1(≤) ×
[0, 1). (Here S1(≤) is a circle with radius ≤.)

Figure 12.1

Now we consider (Σk1,0, gk1,≤)×S1(≤) and (Σk2,0, gk2,≤)×S1(≤) and glue
them at their boundaries by the isometry (s, t) 7→ (t, s), S1(≤)×S1(≤) →
S1(≤) × S1(≤). We thus obtain a family of 3 dimensional Riemannian
manifolds Mk1,k2,≤, which satisfies the curvature condition 0 ≥ K ≥ −1.
The injectivity radius of it goes to zero everywhere as ≤ → 0. It is
however easy to see that Mk1,k2,≤ is not a S1 bundle over surface.

See [4] for a more sophisticated constructin.

We remark that the diameter of Σk,≤ goes to infinity as ≤ goes to zero.
The point of this example is that in each piece Σki ×S1(≤) there is one
direction (the direction of second factor) which collapses. But in the
domain we glue metrics there are two factors which collapse. Theorem
11.2 implies that such a phenomenon does not occur. Namely the di-
mension of collapsing direction is constant in the case when limit space
is compact. Thus to describe collapsing Riemannian manifolds without
curvature bound, we need a language to describe the situation where
the dimension of the collapsing direction changes. Cheeger-Gromov
[38] used a notion of local action of group for this purpose. They call
it F -structure.
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Definition 12.1. F -structure on M is an open cover M = ∪Ui together
with an action of T ni on Ũi, which is a finte cover of Ui, with the
following properties.

(1) There exists no point on x ∈ Ũi which is fixed by all the elements
of T ni .
(2) If Ui∩Uj 6= ; then there exists a covering space ºij : Ũij → Ui∩Uj,
maps ºij,i : Ũij → Ũi, ºij,j : Ũij → Ũj such that :
(3) ºi ◦ ºij,i = ºj ◦ ºij,j = ºi,j.
(4) There exists an action of T nij on Ũij with property (1).
(5) There exists an ni dimensional subtorus T ni

ij Ω T nij and a lo-
cally isomorphic group homomorphism T ni

ij → T ni , such that ºij,i is
equivariant. The same holds when we replace i by j.

Let us consider Example 12.1. We may split M into two pieces Ui
ª=

Σki×S1. On Ui we have an S1 action. These two actions do not coincide
to each other on the overlapped part U1 ∩ U2

ª= S1 × S1 × (−C, C).
Namely the S1 action on U1 is an action to the first factor while the
S1 actoin on U2 is an action to the second factor. However we have
T 2 action which contains both actions. This is a typical situation of
F -structure.

The main theorem in [38] is as follows.

Theorem 12.1 (Cheeger-Gromov). If M has an F -structure then there
exists a sequence of metrics gi on M such that |Kgi| ∑ 1 and that the
injectivity radius of (M, gi) converges to zero everywhere as i →1.

The proof is a kind of generalization of the proof of Proposition 11.1.
The new point which appears in the proof of Theorem 12.1 is that we
need to controll the curvature at the points where the dimension of the
torus acting there changes. Roughly speaking to keep the curvature
bounded from above and below, we expand the direction normal to the
action. §

The converse to Theorem 12.1 is the main theorem of [39]. Namely :

Theorem 12.2 (Cheeger-Gromov). There exists a positive constant
≤n such that if M is an n dimensional complete Riemannian manifold
such that |KM | ∑ 1 and the injectivity radius is everywhere smaller
than ≤n then there exists an F -structure on M .

Remark 12.1. We can modify Theorem 12.2 so that we do not need
to assume that the injectivity radius is small everywhere. Namely we
consider any M with |KM | ∑ 1, and construct the F -structure on
{p ∈ M |iM(p) < ≤}.

Let us sketch the proof of Theorem 12.2 very biefly. We assume
|KMi| ∑ 1 and sup iMi → 0 where iMi is an injectivity radius. We need
to construct an F -structure on Mi for large i. There are two steps to
do so. One is to construct a torus action on the finite cover locally. The
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other is to glue them. We explain the first step only. The following is
the basis of this step.

Lemma 12.3. If a Riemannian manifold X is complete and flat then
there exists a compact flat submanifold S without boundary in X such
that X is diffeomorphic to the normal bundle of S.

This lemma is a special case of soul theorem 16.7 which we will
discuss in §16. By using Theorem 10.1, we find that S has a finite
cover which is a flat torus. So we can find a torus action on the finite
cover of X in Lemma 12.3. To use Lemma 12.3 in our situation, we
proceed as follows. Let pi ∈ Mi and ≤i = iMi(pi). We consider the
metric g0i = gMi/≤i and consider the limit (Mi, g0i). (The limit is taken
with respect to the pointed Hausdorff distance which we define in §16.)
Since the curvature of (Mi, g0i) goes to zero and since the injectivity
radius of (Mi, g0i) at pi is 1 we have a flat manifold X as a limit. Also a
neighborhood of pi is diffeomorphic to a compact subset of X for large
i.

This is very rough sketch. Actually gluing part (which we do not
discuss here) is harder. §

In the case when we do not assume diameter bound, there are several
possible ways to define collapsing. One definition is that injectivity
radius becomes small everywhere. The other is that volume becomes
small. (Note Theorem 5.6 implies that they are equivalent in the case
when the diameter and the absolute value of the sectional curvature are
bounded.) We say the first one (injectivity radius is small) the collapse
and the second one (volume is small) the volume collapse. There is an
example of manifold which admits an F -structure but does not admit
volume collpased metric. Actually CP 2 admits F -structure but we can
use the fact that its Euler number is nonzero to prove the nonexistence
of volume collpased metric. (This example is due to Januszkiewicz.
See [57] p229 or [39].) Cheeger-Gromov defined a notion polarized F -
structure which implies existence of volume collpased metric. However
we do not know whether volume collapsed manifold has polarized F -
structure. So the following problem is still open.

Definition 12.2 ([73]). A minimal volume MinVol(M) of a compact
manifold M without boundary is the infinimum of the volume (M, g)
where g is a Riemannian metric on M such that |Kg| ∑ 1.

Problem 12.1. Does there exists a positive number ≤n depending only
on n with the following properties ? If n dimensional compact manifold
M satisfies MinVol(M) < ≤n then MinVol(M) = 0.

There are several partial results toward Problem 12.1.

Theorem 12.4 (Rong [130, 131]). In case dimension of M is 3 or 4
Problem 12.1 is affirmative.
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There is a very sharp result in the case when M admits a metric of
constant negative curvature.

Theorem 12.5 (Besson-Courtrois-Gallot [20]). Let an n dimensional
manifold M admits a metric of constant curvature g0. Then if g is any
metric on M with Ricci ≥ −(n− 1) we have Vol(M, g) ≥ Vol(M, g0).

Theorem 12.5 in particular implies MinVol(M) = Vol(M, g0).
The answer to Problem 12.1 is affirmative under an additional as-

sumption on diameter.

Theorem 12.6 (Cheeger-Rong [40]). There exists a positive number
≤(n, D) depending only on n and D with the following properties. If n
dimensional compact manifold M has a Riemannian metric g such that
|Kg| ∑ 1, Diam ∑ D and Vol(M, g) < ≤n, then for any ≤ there exists a
Riemannian metric g≤ on M such that |Kg≤ | ∑ 1 and Vol(M, g≤) < ≤.

We next describe the result of [34]. We remark that the results in
the last section do not give enough description in the case when di-
ameter is not bounded. On the other hand, if we consider the case of
almost flat manifold, for example, the F -structure corresponds to the
action of the center of the nilpotent group, and hence only a part of
the collpased direction is described by F -structure. So we need a local
action of nilpotent group to describe collapsing Riemannian manifolds
in the general case. Such a structure may be called N -structure. One
trouble to define it rigorously is that the noncommutativity of group
makes it harder to describe compatibility condition. To have a sim-
plified description we remark the following fact. In the situation of
Theorem 12.2, we can approximate the metric by one invariant of the
F -structure. (Actually original metric is “almost invariant” by the ac-
tion and we can take average so that it is strictly invariant.) So in
place of writing compatibility of actions, we may state the actions are
isometry with respect to the metric nearby (which is independent of
the chart).

Note the fact that we can approximate the metric by invariant one,
is also true in a modified sense for the almost flat manifold and in the
situation of Theorem 11.2. Namely we can make the metric “invari-
ant” of the action of nilpotent group. We need to remark however the
following. In case of Γ\N (where N is a nilpotent group and Γ is its
discrete subgroup) for example, the almost flat metric is not invariant
of the right action of N . Since the induced metric on Γ\N is well dein-
fed only if we start with the left invariant metric on N . It means that
the group acting on Γ\N (equipped with almost flat metric) by isom-
etry is only the centor of N . In other words, we can find an isometric
action of N only after taking infinite (universal) cover. This point is
different from the case of abelian group (torus).



METRIC RIEMANNIAN GEOMETRY 43

Now we are going to state the main result of [34]. Let M be a
manifold and p ∈ M . Let Up Ω M be an open neighborhood of p. We
denote by ∇g the Levi-Civita connection of g.

Theorem 12.7 (Cheeger-Fukaya-Gromov [34]). For each ≤ > 0 and
n ∈ Z+, there exists ρ = ρ(≤, n) > 0 with the following properties. Let
(M, g) be a complete n dimensional Riemannian manifold with |Kg| ∑
1. Then there exists a metric g≤ and Up, Ũp, Γp, Np for each p ∈ M
such that :

(1) Np is nilpotent. Γp Ω Np is a discrete subgroup such that º0(Np)
is finite and that Np is generated by its connected component Np,0 and
Γp.
(2) Up is a neighborhood of p and Up ∂ Bp(ρ, M).
(3) Np acts on (Ũp, g̃p) by isometry. Here Ũp is a covering space of
Up and g̃p is the metric induced by g≤.
(4) If p̃ ∈ Ũp and [p̃] = p then iŨp

(p̃) > ρ .
(5) [Γp : Γp ∩Np,0] < k.
(6) For any x ∈ Ũp Diam(Γp\Npx) < ≤. Here Npx is an Np orbit.

Moreover we have :

(7) e−≤g < g≤ < e≤g.
(8) |∇g −∇g≤ | < ≤.
(9) |∇g≤Rg≤ | < c(n, i, ≤), where Rg≤ is the curvature tensor of g≤ and
c(n, i, ≤) depends only on n, i, ≤.

Remark 12.2. The existence of g≤ satisfying (7)(8)(9) is proved by [15, 1]

Remark 12.3. The metric satisfing (1)(2)(3)(4)(5)(6) is called (ρ, k)
round metric in [34].

We remark that at the point where iM(p) > ρ we may take Np = 1
and Ũp = Up. Hence the statemet above is obvious.

On the other hand, Condition (4) implies that at the point p where
injectivity radius is small, the group Np is nontrivial. Hence, together
with (1), we obtain an local action of torus by restricting the action of
Np to the center. Using (6) and the fact the the local action of torus
is compatible with the metric g≤, we can prove that these actions are
compatible in the sense of Theorem 12.2.

Moreover, in the case when the diameter of M is smaller than a
constant depending only on ≤ and n, we can prove that the group Np is
independent of the choice of p. Hence its orbits defines a foliation on
the frame bundle of M . It implies Theorem 11.5. Thus Theorem 12.7
unifies two approaches to collapsing Riemannian manifolds.

The proof of Theorem 12.7 is a combination of the proofs of Theorem
12.2 and of Theorem 11.5. We use Theorem 12.7 and its proof (together
with some improvement) to find Np locally. We then glue them in a
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way similar to the proof of Theorem 12.7. Finally we take average and
obtain the required metric g≤. §

Example 12.2. Let Γ be a lattice of a semisimple Lie group G of non-
comapct type and G/K be a symmetric space. We assume Γ\G/K is
noncompact. Then for each p ∈ G/K the group Γp = {g ∈ Γ|d(p, gp) <
≤} has nilpotent subgroup Γp,0 of finite index [Γp : Γp,0] < k by Theorem
10.4. (We remark that Γp may not be contained in a small neighbor-
hood of the unit in G. But its subgroup of finite index is in a small
neighborhood of the unit.) The Zariski closure Np Ω G of Γp,0 is a
nilpotent group. This is our Np. The original metric (the metric of
symmetric space) is invariant of left Np action.

Hattori [84] found the following. Let M = Γ\G/K be a locally
symmetric space of noncompact type. We assume that it is noncompact
and of finite volume. Then the limit (M, gM/R) as R goes to infinity
is a cone of a simplicial complex T which is called the Tits building.
(Here the limit is taken with respect to the pointed Gromov-Hausdorff
distance (Definition 16.3). ) Now if we take a simplex ∆ of T then a
“neighborhood” of it in M is diffeomorphic to ∆×[0,1)×Γ(∆)\N(∆).
The dimension of the nilmanifold Γ(∆)\N(∆) depends on ∆. They are
glued appropriately, which gives a structure as in Theorem 12.7.

The following addendum to Theorem 12.7 is useful for various appli-
cations.

Proposition 12.8 ([132]). If a ≥ KM ≥ b in Theorem 12.7 then we
may choose g≤ so that a + ≤ ≥ KM ≥ b− ≤.

13. Collapsing Riemannian manifolds - III -

In this section, we review some of the applications of the collapsing
Riemannian manifolds. We recall that Mn(D) is the set of isometry
classes of n dimensional Riemannian manifold M with Diam(M) ∑ D,
|KM | ∑ 1.

Theorem 13.1 (Fang - Rong [51], Petrunin-Tuschmann [126]). For
each n, D the number of diffeomorphis classes of simply connected man-
ifolds M in Mn(D) with finite º2(M) is finite.

Theorem 13.2 (Fang - Rong [51], Petrunin-Tuschmann [126]). There
exists i(n, δ) > 0 such that if M is simply connected, º2(M) is finite
and if 1 ≥ KM ≥ δ > 0, then the injectivity radius of M is larger than
i(n, δ).

We remark that, in case dimension is even, Theorem 13.2 follows
from Theorem 4.3 without assumption on º2.

Example 13.1. We first consider the Lens space S3/Zp where Zp Ω S1

is a cyclic group of order p. Its curvature is 1 and its limit is S2 =



METRIC RIEMANNIAN GEOMETRY 45

S3/S1. This example shows the assumption on º1(M) is necessary
both in Theorems 13.1, 13.2.

The three examples below show that the assumption on º2(M) is
also necessary in Theorems 13.1, 13.2.

We consider the Lie group SU(3). It has a metric with positive
sectional curvature. We consider its maximal torus T 2 µ SU(2).
Let pi, qi be coprime integers such that lim pi/qi = α ∈ R \ Q. We
identify T 2 = R2/Z2 and let x, y be coordinate of R2. We consider
S1

i = {[x, y] ∈ T 2|y = pix/qi}. We put Mi = S1
i \SU(2) eqiupped with

quotiemt Riemannian metric. Mi is a sequence of 7 dimensional mani-
folds of positive curvature. Using the fact lim pi/qi is irational, we can
easily find that the limit of Mi with respect to the Gromov-Hausdorff
distance is T 2\SU(2). We can also prove that the sectional curvature
of Mi is uniformly positive. Namely C ≥ KMi ≥ δ > 0 for some δ, C in-
dependent of i. (This is a consequence of the fact that pi/qi converges.
We remark that º2(Mi) ª= º1(S1) = Z.)

In a similar way we can use the T 2 action to S3×S3 to get a sequence
of metrics gi on S2 × S3 with C ≥ Kgi ≥ δ > 0 such that (S2 × S3, gi)
converges to S2 × S2.

We next consider an action of T 2 × T 2 on SU(3) where the first
factor acts by left multiplication and the second factor acts by right
multiplication. Using appropriate family of S1

i
ª= S1 µ T 2 × T 2,

Petrunin-Tuschmann [126] (using Eschenburg [50]) found an example
of Mi = S1

i \SU(3) with C ≥ KMi > δ > 0 such that Mi converges to
T 2\SU(3)/T 2.

Remark 13.1. A similar º2 assumption as in Theorem 13.2 was pro-
posed by the author in [57] Remark 15.10. However [57] Conjecture
15.7 (by the author) turns out to be false. A counter example (due to
Petrunin-Tuschmann ) is the last example in Example 13.1.

We now sketch the proof of Theorem 13.1. We start with the follow-
ing :

Lemma 13.3 (Rong [132]). If we assume that º1(M) is finite in the
situation of Theorem 11.5 in addition, then the fiber of º : FMi → Y
in Theorem 11.5 is diffeomorphic to a flat manifold.

Using the fact that the fundamental group of Mi is finite (here we
assume dim Mi > 2), it follows easily that the fundamental group of
the fiber has index finite abelian subgroup. Since the fiber is an in-
franilmanifold the lemma follows immediately. §

Lemma 13.3 implies that we have an F -strucuture whose orbits are
fibers. (Here our F -structure is one called pure F -structure by Cheeger-
Gromov [38]. Pure F structure is an F -structure such that all the
orbits of the local action has the same dimension.) We next apply
the averaging process in the proof of Theorem 12.7 to the situation of
Theorem 11.5 and of Lemma 13.3. Then we have :
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Lemma 13.4. In the situation of Lemma 13.3, we can approximate
the Riemannian metric on FMi by g≤ in the same sense as Theorem
12.7 (7) (8) (9) so that g≤ is invariant of local T k action and of O(n)
action.

Now we start the proof of Theorem 13.1. We assume that Theorem
13.1 is false. Then there exists a sequence Mi ∈ Mn(D) such that Mi is
simply connected, º2(Mi) is finite, and Mi is not diffeomorphic to Mj

for i 6= j. We take FMi and may assume that it converges to Y . Since
we approximate the metric by one satisfying Theorem 12.7 (7) (8) (9),
it follows that Y is a smooth Riemannian manifold. We may replace
FMi by its finite cover F̃Mi so that it has global T k×G action, where
G is a compact group20 and T k orbits are the fibers of the fibration
F̃Mi → Y . We modify metric of F̃Mi so that it is T k ×G equivariant.
The next lemma is the place where we use the key assumption that
º2(Mi) is finite.

Lemma 13.5. If F̃Mi/T k is G diffeomorphic to F̃Mj/T k then F̃Mi

is T k ×G diffeomorphic to F̃Mj.

In fact the torus bundle T k → E → B is determined by the (T k

analogue of) Euler class ∈ Hom(H2(B), º1(T k)) (which is well defined
up to Aut(º1(T k)). In our case where º2(F̃Mj) is finite and º1(F̃Mj)
is trivial, Euler class is an isomorphism H2(B)/Tor → º1(T k) hence
is unique up to Aut(º1(T k)). To obtain the T k equivariant diffeomor-
phism F̃Mi → F̃Mj which is G equivariant also, we use center of Mass
technique (Proposition 8.3). §

We remark that F̃Mj/T k is the same dimension as Y and F̃Mj/T k

converges to Y with respect to the G-Gromov-Hausdorff topology (which
was introduced in [52]). Estimate (9) of Theorem 12.7 implies that Y
is a smooth manifold. On the other hand, the sectional curvature of
F̃Mj/T k is bounded from below. Hence Theorem 11.3 implies that
F̃Mj/T k is diffeomorphic to Y for large i. We can use G equivariant
version of Theorem 11.3 (which can be proved in the same way as The-
orem 11.3 using an embedding to Hilbert space as in [55]21), F̃Mi/T k is
G diffeomorphic to Y for large i. Hence Lemma 13.5 implies that F̃Mj

is G diffeomorphic to F̃Mj for i, j large. Namely Mi is diffeomorphic
to Mj. This is a contradiction. §

To prove Theorem 13.2 we need another result by Petrunin-Rong-
Tuschmann.

Theorem 13.6 ([117]). Let M be a compact manifold. We assume
that M admit a sequence of metrics gi. We assume that Λ ≥ Kgi ≥ ∏
and that the metric space X = limGH

i→1(M, gi) is of dimension strictly

20Actuall it is finite covering group of O(n). (It may be disconnected.)
21See Remark 9.1.
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smaller than M . We also assume that the distance function di : M ×
M → R induced by gi converges to a function d which determines a
pseudometric 22 on M .

Then ∏ ∑ 0.

Remark 13.2. Klingenberg and Sakai conjectured a similar statement,
but their conjecture does not assume additional assumption that di

converges to a pseudometric.

To prove Theorem 13.2 using Theorem 13.6 we proceed as follows.
We assume that there exists Mi with 1 ≥ KKi ≥ δ > 0 and injectiv-
ity radius goes to 0. We can discuss in the same way as the proof of
Theorem 11.3 to show Mi is diffeomorhpic to Mj

23. By looking the
proof carefully we may assume that the diffeomorphism almost pre-
serves distance function. Namely if we identify Mi with Mj then the
sequence M = Mi = Mj satisfies the assumption of Theorem 13.6. The
conclusion of Theorem 13.6 contradicts to KMi ≥ δ > 0. §

One of the ideas of the proof of Theorem 13.6 is the following ob-
servation. If the collapsing occurs in the same way as the proof of
Proposition 11.1 then the sectional curvature of the plain spanned by
X and other vector is always converges to zero. To make this sim-
ple idea works we need a lot of delicate work which is not described
here. §

We next discuss some other applications of collapsing theory.

Theorem 13.7 (Rong [132]). There exists w(n, δ) such that if a com-
pact n dimensional Riemannian manifold M satisfies 1 ≥ KM ≥ δ then
there exists a cyclic subgroup C of the fundamental group º1(M) such
that [º1(M) : C] < w(n, δ).

Remark 13.3. If we assume 1 ≥ KM ≥ 0, Diam(M) < D, then there
exists an abelian subgroup C of º1(M) such that [º1(M) : C] < w(n, D)
([132]). There are results under milder assumption that is the case
when M is of almost of nonnegative curvature. See §19.

The following is another application of collapsing theory. This time
we apply to manifold of almost nonpositive curvature.

Theorem 13.8 (Fukaya-Yamaguchi [58]). There exists ≤(D, n) such
that if a compact n dimensional Riemannian manifold M satisfies Diam(M) ∑
D, ≤(D, n) ≥ KM ≥ −1 then the universal covering space of M is dif-
feomorphic to Rn.

This is a generalization of Hadamard-Cartan’s theorem (Theorem
4.6) which is the case when KM ∑ 0.

22namely it satisfies axioms of metric except “d(x, y) implies = y”.
23We use Proposition 12.8 to show Λ + ≤ ≥ KMi ≥ ∏− ≤
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14. Morse theory of distance function

So far we mainly discussed results assuming the curvature to be
bounded from above and below. From this section, we consider the
case when we assume curvature is bounded from below only.

The next theorem is a corollary of Theorem 4.1.

Theorem 14.1 (Rauch). Let M be a compact manifold without bound-
ary. If there exists a Morse function on M with two ciritical points,
then M is homeomorphic to a sphere.

In §4, we start with Theorem 4.1 and show the way to prove sphere
theorems, finiteness theorems and compactness theorems by estimating
the number of balls we need to cover a manifold. The number of
contractible open subsets one needs to cover the space (plus one), is
called the Lusternik-Shnirel’man category and is important in Morse
theory. In this section we will try to apply Morse theory directly.

For a given Riemannian manifold M , a function which is determined
automatically from the metric is a distance function dp(x) = d(p, x)
from a point. (Note we can use the fact that p = x is the unique
critical point of x 7→ dp(x) with d(x, p) < iM(p) to prove that Bp(r, M)
is diffeomorphic to a sphere if r < iM(p).)

The difficulty to apply Morse theory to distance funciton is that x 7→
dp(x) is not differentiable for d(x, p) > iM(p). (dp is not differentiable
at p either. But this does not cause serious trouble. We may consider
d2

p instead, for example.) During the proof of Theorem 2.5, Grove-
Shiohama applied Morse theory away from the ball with radius = iM(p).
After that, their method is used in many other places. The main idea
of them is the following definition.

Definition 14.1. We say q is a regular point of dp if there exists

a nonzero vector ~V ∈ TqM such that for any minimal geodesic ` :

[0, d(p, q)] → M joining p and q, the angle between d`
dt (0) and ~V is not

greater than º/2.

For example let p,q be as in the Figuer ? below. It is not clear how
many minimal geodesics are there joining p with q. But it is easy to see
that direction of any of them is downwards at q. Hence q is a regular
point of dp.
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Figure 14.1

Remark 14.1. We may consider various situations similar to Definition
14.1. For example let us consider a continuous function f which is an
infinimum of finitely many differentiable functions fα locally, (namely
f = inf fα)24. In this case we say q is a regular point of f if there exists
a vector ~V ∈ TqM such that, for each α with f(q) = fα(q), we have
~V (fα) > 0. We can apply a similar argument to a linear combination
of finitely many dp’s or infinimum of them also. Proposition 14.2 holds
for such cases.

Based on Definition 14.1, we can prove the following analogue of
Morse lemma for dp.

Proposition 14.2. If arbitrary q with a ∑ dp(q) ∑ b is a regular point
of dp, and if Bp(b, M) is compact, then Bp(b, M) \ Bp(a, M) = {q ∈
M |a ∑ d(p, q) ∑ b} is homeomorphic to a direct product of ∂Bp(b, M) =
{q ∈ M |d(p, q) = b} and [0, 1].

The proof is similar to the proof of the following famous :

Theorem 14.3 (Morse lemma). We assume that f : M → R is dif-
ferentiable, and arbitrary q with f(q) ∈ [a, b] is a regular point of f ,
and that f−1([a, b]) is compact. Then, f−1([a, b]) is diffeomorphic to
f−1({a})× [0, 1].

The proof of Morse lemma uses an integral curve of grad f . (See [104].)
Since dp is not differentiable, the vector field grad dp does not make
sense. Instead, we will use the vector field V construted below.

24We remark that dp may not satisfy this condition in general.
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For q ∈ Bp(b, M) \ Bp(a, M) let Vq = V be the vector ∈ TqM as in
Definition 14.1. If we can take Vq depending smoothly on q, then we
can take the vector field V (q) = Vq in place of − grad f . (The condition
in Definition 14.1 implies that dp decreases along the integral curve of
V .)

To find Vq depending smoothly on q, we proceed as follows. We first
take Ṽq which may not depend smoothly on q. We extend it to its
neighborhood and denote it by the same symbol Ṽq. Then if q0 is in a
small neighborhod U(q) of q, then the vector Ṽq(q0) ∈ Tq0M satisfies the
condition of Definition 14.1. We cover Bp(b, M) \ Bp(a, M) by finitely
many of U(qi)’s. We then take a partition of unity χi and put

V (q) =
∑

χi(q)Ṽqi(q).

It is easy to see that this V has required properties.
Using this vector field V the proof of Propositioin 14.2 goes in the

same way as the proof of Morse lemma. §

To apply Morse theory of dp to the proof of Theorem 2.5 we need
the following lemma.

Lemma 14.4. We assume that M satisfies the assumption of Theorem
2.5. Let p, q ∈ M with d(p, q) = Diam(M), and x ∈ M be a point
different from p, q. Let `p : [0, d(p, x)] → M , `q : [0, d(q, x)] → M be
minimal geodesics joining x to p, and x to q, respectively. (In case
there are several of them, we assume any of them have the property
below.)

Then the angle between two tangent vectors d`p

dt (0) and d`q

dt (0) ∈ TxM
is greater than º/2.
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Figure 14.2

The proof of the Lemma 14.4 uses Toponogov’s comparison theorem
(Theorem 4.7). Under the assumption of Lemma 14.4 (that is KM ≥
1/4) Theorem 4.7 implies the following Sublemma 14.5. Let x, y, z ∈
M . We conside the geodesic triangle whose vertices are those three
points. We denote the lengh of its edges by |xy| etc. and angles by
∠xyz etc. We put X = |yz|, Y = |zx|, Z = |xy|.
Sublemma 14.5. If ∠zxy ∑ º/2, then cos X

2 ≥ cos Y
2 cos Z

2 .

Note we have

s(Y/2, Z/2, θ, 1) ∑ s(Y/2, Z/2, º/2, 1) = cos−1(cos Y/2 cos Z/2),

where s(·, ·, ·, ·) is as in Theorem 4.7.
We start the proof of Lemma 14.4. We put |`p| = t, |`q| = s, d(p, q) =

D. Since dp attains its maximum at q it follows that q is not a regular
point of dp. Hence there exists a geodesic ` joining p and q such that the
angle between ` and `q is not greater than º/2. We applly Sublemma
14.5 to the geodesic triangle consisted of `, `p, `q and obtain

cos
t

2
≥ cos

s

2
cos

D

2
.(14.1)

Since D/2 > º/2 we have cos D
2 < 0. Therefore one of cos s

2 , cos t
2 is

positive. We may assume cos s
2 > 0.
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If the angle between `p and `q is not greater than º/2, Then we can
again apply Sublemma 14.5 and obtain :

cos
D

2
≥ cos

s

2
cos

t

2
.(14.2)

Since cos s
2 > 0, (14.1), (14.2) implies

cos
D

2
≥ cos2 s

2
cos

D

2
.

We remark 0 < D/2, s < º25. This is then a contradiction. §
Now Lemma 14.4 implies that if x 6= p, q then x is a regular point of

dp, dq. In fact, let V be the tangent vector of `q at x. It follows from
Lemma 14.4 that the vector field V satisfies the condition in Definition
14.1. Namely x is a regular point of dp. Now we can use Proposition
14.2 to prove that M is homeomorphic to sphere. Namely we proved
Theorem 2.5. §

We remark that we proved Proposition 4.4 during the proof of Lemma
14.4. In fact, we proved cos t/2 > 0 or cos s/2 > 0 there. It implies
t < º or s < º. §

The method we explained above is very useful to study Riemannian
manifolds under the bounds of sectional cuvature from below. It is also
useful to study Alexandrov space (see §17, 18.)

Theorem 2.5 is a sphere theorem. There are several finiteness theo-
rems corresponding to it. The first one is the following, which is called
Gromov’s Betti number estimate.

Theorem 14.6. (Gromov [71]) There exists C(n) such that if an n
dimensional compact Riemanian manifold M satisfies KM ≥ −∑(∑ ≥
0) and if its diameter is D then∑

k

rank Hk(M ; F ) ∑ C(n)1+∑D.

Here F is an arbitrary field.

Note in the case when ∑ = 0 the right hand side is independen of D.
It follows from Theorem 14.6 that connected sum of sufficiently many

copies of CP 2 does not carry a metric of nonnegative sectional curva-
ture.

The proof of Theorem 14.6 is based on Morse theory of a kind of
distance function. Namely we use an idea similar to Morse inequality
to estimate the Betti number in terms of the number of critical points.
However the proof is more involved since Morse theory of distance func-
tion itself does not work. The actual proof requires more complicated
argument, which we omit here.

25This is a consequence of Myers’ theorem (Theorem 5.4).
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There are many other applications of Morse theory of distance func-
tion to metric Riemannian geometry. For example Gromov used it to
show that complete manifold M such that 0 > −a2 ≥ KM ≥ −b2 and
of finite volume is diffeomorphic to an interior of compact manifold
with boundary ([68]).

Let us add a few more remarks to Theorem 2.5. If we assume
1 ≥ KM ≥ 1− ≤ in addition in Theorem 2.2 then we can show that M
is not only diffeomorphic but is also close to a sphere as a Riemannian
manifold. Namely if a sequence of n dimensional simply connected Rie-
mannian manifolds Mi satisfies 1 ≥ KMi ≥ 1− 1/i then Mi converges
to Sn with standard metric with respect to the Gromov-Hausdorff dis-
tance.

On the contrary, corresponding statement in the stuation of Theorem
2.5 does not hold. Namely let us consider a sequence of Riemannian
manifolds Mi such that KMi ≥ 1 and that the diameter of Mi con-
verges to º as i goes to infinity. Then Theorem 2.5 implies that Mi

is homeomorphic to a sphere. However it is not true that the limit
of Mi with respect to the Gromov-Hausdorff distance is isometric to
the sphere with standard metric. We remark however a Riemannian
manifold with diameter = º and KM ≥ 1 (actually weaker assumption
Ricci ≥ n − 1 is enough) is isometric to the sphere. (Theorem 21.11
[148, 41].)

In fact let us consider the quotient of S2 by the action of S2/Zp

generated by the rotation of angle 2º/p around the fixed axis. The
quotient is a Riemannian manifold with constant curvature 1 except
two points where the axis intersects with S2. We approximate the quo-
tient space by a Riemannian manifolds with curvarure ≥ 1 and obtain
a sequence of Riemannian manifolds Mi whose diameter converges to
º and KMi ≥ 1. The limit is S2/Zp and is not isometric to the sphere
with standard metric. The essential point here is that the Alexandrov
space X with = º and KM ≥ 1 is not necessary isometric to a sphere
with standard metric. (Compare Theorem 23.11.)

Figure 14.3
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This is related to the fact that the limit of Riemannian manifolds Mi

with KMi ≥ const is rather different from a Riemannian manifolds even
in the case when the limit has the same dimension. For example, we
consider a boundary S of a convex set in R3. There is a point of S where
it has no tangent plane. In the situation when the absolute value of the
sectional curvature is bounded, the Gromov-Hausdorff convergence is
equivalent to the C1,α convergence of the metric tensor (in the situation
when the limit has the same dimension), by Theorem 3.4. Therefore
the limit space has a tangent space everywhere.

By the reason we explained above the following question is yet open.

Problem 14.1. Are there any ≤n > 0 such that if M is an n dimen-
sional complete Riemannian manifold with KM ≥ 1 and Diam(M) ≥
º − ≤n, then M is diffeomorphic to a sphere ?

We remark that in the proof of Theorem 2.5 we consider distance
function dp, dq simitaniously where p, q lies in the different side from
x. This is similar to the notion strainer used in Alexandrov space. (See
§17.)

15. Finiteness theorem by Morse theory

In this section, we explain idea of the proof of Theorem 3.5. The
first half of it, which was proved in [78], asserts that the number of
homogopy classes represented by an element of M0

n(D, v) is finite. (We
recall that M ∈ M0

n(D, v) if KM ≥ 1, Diam(M) ∑ D, and Vol(M) ≥
v, dim M = n.) In this section we mainly explain this part. The key
of the proof is the following proposition.

Proposition 15.1. There exists ≤ = ≤(n, D, v) > 0 such that the fol-
lowing holds for each M ∈ M0

n(D, v). Let p, q ∈ M with d(p, q) < ≤,
p 6= q. Then q is a regular point of dp.

Moreover we have the following. We put ∆ = {(x, , x) ∈ M ×M |x ∈
M}, ∆(≤) = {(x, , y)|d(x, y) < ≤}. Then ∆ is a deformation retract
of ∆(≤). The deformation retraction H : ∆(≤) × [0, 1] → ∆(≤) can be
chosen so that the length of the curve t 7→ H(p, q, t) is not greater than
Cd(p, q). Here C depends only on n, D, v.

Using Proposition 15.1, the proof of Theorem 3.5 goes in a way
similar to the proof of Proposition 5.5. Namely, from the first half of
the Proposition 15.1, we find that the metric balls Bp(≤, M) of radius
≤ is contractible in M . On the other hand, the number of the metric
balls Bp(≤, M) we need to cover M is estimated in the same way as
§5 by using Proposition 5.2. However since it is not clear whether the
intersection of finitely many metric balls Bp(≤, M) is contractible or not
in our case, so we need to modify the proof of Proposition 5.5 a bit.
The second half of Proposition 15.1 is used for this purpose. We omit
this part of the proof. §
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The proof of Proposition 15.1 is closely related to the proof of Propo-
sition 5.6. So we first sketch the proof of Proposition 5.6. By Theorem
4.9 we only need to estimate the length ≤ of closed geodesic of min-
imal lengh from below for M ∈ Mn(D, v). Let ` : S1 → M be the
closed geodesic of length ≤. We take an arbitrary point x ∈ M , and
let `(t) ∈ `(S1) be the point of smallest distance from x. Then ` is
orthogonal to x`(t) at `(t)26. (Here x`(t) is a minimal geodesic joining
x and `(t).) We put `(0) = p. Since d(p, `(t)) ∑ ≤, it follows that if
d(x, p) is sufficiently larger than ≤, then the angle betweem ` and xp is
close to º/2. We thus have proved the following Lemma 15.2.

Lemma 15.2. Let δ, ρ > 0. Then there exists ≤ depending only on
n, D, v, δ, such that if ` is a closed geodesic with length < ≤ and if
`(0) = p then M is contained in the image of the exponential map of
the domain Ω TpM

D

ρ
δ

Domain IDomain II

in the figure below.

Figure 15.1

We can choose δ sufficiently small compared to D the diameter, so
that the volume of the image of the domain II in the figure is smaller
than v/2. By choosing ρ small we may assume the volume of the image
of the domain I in the figure is smaller than v/2 also. Therefore if there
exists a closed geodesic of length < ≤ then the volume of M is smaller
than v. §

We turn to the proof of Proposition 15.1. It suffices to show the
following Lemma 15.3.

Lemma 15.3. There exist θ = θ(n, v, D) > 0 and ≤ = ≤(n, v, D) > 0
with the following properties. Let M ∈ M0

n(D, v), p, q ∈ M , d(p, q) < ≤.
Let `1 and `2 are minimal geodesics joining p and q. Then the angle
between `1 and `2 at p or q is smaller than º − θ.

Lemma 15.3 implies that q in the lemma is a regular point of dp.
The first half of Proposition 15.1 follows from Proposition 14.2. The

26More precisely in case x is a cut point with respect to the geodesic ` (The
notion of the cut point with respect to a submanifold is defined in a similar way to
the notion of cut point from a point. See for example [33].) ` may not be orthogonal
to x`(t). However this does not cause a trouble for the proof of Lemma 15.2 since
the measure of the set of cut points is zero.
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second half can also be proved in the same way by examining the proof
of Proposition 14.2 carefully. §

The proof of Lemma 15.3 is similar to the proof of Proposition 5.6.
Namely we replace Figure 15.1 by the following Figure 15.2.

Figure 15.2

We thus explained an outline of the first half of the proof of Theorem
3.5. The other half that is the finiteness of the number of homeomor-
phism classes requires another deep argument. The main new technique
required is the idea from controlled surgery. §

16. Soul theorem and splitting theorem

Typical results on nonocomact complete Riemannian manifolds of
nonnegative curvature are soul theorem and splitting theorem. They
also are very useful to study local structure of the Gromov-Hausdorff
limit of Riemannian manifolds or its limit.

We first explain why the study of noncompact manifolds is useful to
study local structure of the limit space. Let us begin with introducing
some notations. Let X be a metric space and ` : [a, b] → X be a
continuous map (that is a curve). The lenght |`| of ` is by definition a
supremum of the sum ∑

d(`(ti), `(ti+1))

where a = t0 < t1 < · · · tN = b runs over all partition, (N moves also).

Definition 16.1. We say that X is a length space if for each p, q ∈ X
there exists a curve joining p, q and of length d(p, q).

Complete Riemannian manifold is a length space. Gromov-Hausdorff
limit of length spaces is also a length space.

Definition 16.2. A complete metric space is said to be compactly
generated if all of its metric balls are compact.

The set of all isometry classes of compact metric spaces is complete
with respect to the Gromov-Hausdorff distance. A natural metric to
put on the set of all isometry classes of complete compactly generated
spaces is pointed Gromov-Hausdorff distance, which we define below.
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Definition 16.3. Let X, Y be metric spaces and x ∈ X, y ∈ Y . We
say that the pointed Gromov-Haudsorff distance dpGH((X, x), (Y, y)) be-
tween (X, x) and (Y, y) is not greater than ≤, if the Gromov-Hausdorff
distance between the metric balls B1/≤(x, X) and B1/≤(y, Y ) is not

greater than ≤. We write limpGH
i→1(Xi, xi) = (X, x) if limi→1 dpGH((Xi, xi), (X, x)) =

0.

The following can be proved in the same way as Theorem 3.2 .

Theorem 16.1. The set of all isometry classes of a pair (M, p) of
an n dimensional Riemanniam manifold M with RicciM ≥ −(n − 1)
and a point p on it is relatively compact with respect to the pointed
Gromov-Haudsorff distance.

Now we can define the tangent cone. Let (X, dX) be a length space
and x ∈ X.

Definition 16.4. If the limit limpGH
c→1((X, cdX), x) exists, we call it the

tangent cone (at x ∈ X) and write it as TxX.

If X is an n dimensional Riemannian manifold then the tangent cone
of X is isometric to Rn at each point.

Example 16.1. Let ≠ Ω Rn be a compact convex set. We put X =
∂≠ and define a length metric on it. (Namely the distance between
x, y ∈ X is the infinimum of the length of all curves joining x and y in
X.)

Then tangent cone TxX is described as follows. We consider all the
ray (half of the strainght line) ` : [0,1) → Rn such that `(t) ∈ ≠ for
small t > 0. The set of such ` is an open subset of Rn. Its boundary
in Rn is the tangent cone TxX.

If the space X is not so wild then we may expect the tangent cone
TxX exists and a neighborhood of x in X is homeomorphic to a neigh-
borhood of the origin (base point) in TxX. (This holds for Alexandrov
space for example. See Theorem 18.1.) Namely we can study local
structure of X by studying the tangent cone TxX.

If X is a Gromov-Hausdorff limit of a sequence of Riemannian man-
ifolds Mi and if the sectional curvature of Mi is bounded from below
by a constant independent of i, then we may regard the limit X as
the space with “curvature bounded from below”. Then the infinimum
of the “curvature” of family of length spaces (X, cdX) as c goes to in-
finity will become nonnegative. Note if we multiply metric by c then
the curvature is multiplied by c−2.) It means that if tangent cone of
X exists then it is of “nonnegative curvature”. (The discussion here
is informal and heuristic. So for a moment the curvature may either
Ricci or sectional curvature.) This is one of the reasons why the study
of the noncompact space with nonnegative curvature is important in
the local theory of space which is a limit of Riemannian manifolds.
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By using Gromov’s precompactness theorem (Theorem 16.1) we have
the following :

Proposition 16.2. Let Mi be a sequence of Riemannian manifolds
with RicciMi > −(n − 1). Let X = limGH

i→1Mi. Let x ∈ X and ck be
a sequence of positive numbers with lim ck = +1. Then there exists
a subsequence of ((X, ckdX), x) which converges in pointed Gromov-
Hausdorff distance.

In general ((X, ckdX), x) itself may not converge. (Namely we need
to take a subsequence.) Hence X may not have a tangent cone. This
is one of the difficulties to study family of Riemannian manifolds with
Ricci curvature bounded from below.

In case when X is a limit of Riemannian manifolds with sectional
curvature bounded from below (or more generaly if X is an Alexan-
drov space), limc→1((X, cdX), x) converges without taking subsequence
(Theorem 17.14).

Let us now state soul theorem and splitting theorem. We first define
line and ray. Let X be a length space. A curve ` : (a, b) → X is called
a geodesic if is length minimizing locally. Namely ` is a geodesic if, for
each t ∈ (a, b), there exists ≤ such that d(`(t − ≤), `(t + ≤)) is equal to
the length of the restriction of ` to (t− ≤, t + ≤). We use arc length as
a parameter in the next definition.

Definition 16.5. Let X be a length space. A geodesic ` : [0,1) → X
is called a ray if d(`(t), `(s)) = |t − s| for any t, s. A geodesic ` :
(−1,1) → X is called a line if d(`(t), `(s)) = |t− s| for any t, s.

(The difference between line and ray is the domain of its definition.)
If there exists a tangent cone TxX = limc→1((X, cdX), x) then it is

a union of its rays ` such that `(0) is the base point. We also have the
following :

Lemma 16.3. Let X be a length space and ` : (−≤, ≤) → X be a
minimal geodesic with `(0) = x. If the tangent cone TxX exists then it
contains a line.

In fact, since in (X, cdX) there exists a minimal geodesic of length
c≤ containing the origin, its limit in TxX will be a line.

We assume that a complete metric space X is a length space and
satisfies one of the following conditions.

Condition 16.1.
(a) X is a Riemannian manifold of nonnegative sectional curvature.
(b) X = limpGH

i→1Mi such that KMi ≥ −≤i, limi→1 ≤i = 0 and dim X =
dim Mi.
(c) X is a Riemannian manifold with nonnegative Ricci curvature.
(d) X = limpGH

i→1Mi such that RicciMi ≥ −≤i, limi→1 ≤i = 0 and
Vol(Mi) ≥ v > 0.
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The next theorem is called the splitting theorem.

Theorem 16.4. If X satisfies one of the Conditions 16.1 and contains
a ray then X is isometric to a direct product R×X0.

Theorem 16.4 is due to Toponogov [149] in case (a), to Cheeger-
Gromoll [36] in case (c), Grove-Petersen [79] and Yamaguchi [154] in
case (b) and Cheeger-Colding ([28]) in case (d).

We will explain an idea of the proof of the case (a),(c) later in this
section. (Case (b) is similar to case (a). Case (d) is discussed in §23.)

We explain more how to apply it to study local structure of the limit
space. Note that we can use Theorem 16.4 repeatedly. Namely if X0

contains a line then we can again apply theorem and show that it is
a direct product. Therefore if we can repeat it dim X times, then we
can prove that X = Rn. Lemma 16.3 implies that if x is an interior
point of a minimal geodesic then TxX contains a line. Therefore if we
can find n(= dim X) “independent” geodesic for which x is an interior
point, then the tangent cone TxX is isometric to Rn. This may imply
that X is a manifold in a neighborhood of x. This argument appears
in §17,18 and in §20,22,23.

We next explain an outline of the proof of splitting theorem. The
main tool we use is covexity of Busemann function, (it is used also in
the proof of soul theorem). Let X be a length space and ` : [0,1) → X
be its ray.

Definition 16.6. The Busemann function is the limit b`(x) = limt→1(t−
d(x, `(t))).

Proposition 16.5. If X satisfies either (a) or (b), then Busemann
function of its ray ` is convex.

If X satisfies (c), then Busemann function of its ray is subharmonic.

In the situation (d) we can not define subharmonicity in the usual
way. So the argument is more involved. See §23 and [26, 31].

The proof of Proposition 16.5 is by comparison theorem. Namely it
follows immediately from the Laplacian and Hessian comparison the-
orem (Theorem 16.6) for distance function. We remark that Hessian
Hessf of a function f on a Riemannian manifold is defined by

(Hessxf)(V, W ) = V (W (f))− (∇V W )(f)(16.1)

and is a symmetric bilinear map TxM ≠ TxM → R. A function f is
convex if its Hessian Hessf is nonnegative everywhere.

Laplacian ∆f is its trace. Namely

∆f(x) =
n∑

i=1

(Hessf)(ei, ei)(16.2)
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where ei is an orthonormal basis of TpM . (We remark that we are using
nonpositive Laplacian. Namely ∆ = −(d§d + dd§).) We say a smooth
function is subharmonic if its Laplacian is nonnegative.

Theorem 16.6. Let M be a Riemannian manifold and p ∈ M . We
consider the function dp(x) = d(p, x).
(1) If KM ≥ ∑ then

Hessxdp ∑ s0∑(d(p, x))

s∑(d(p, x))
(gx − ddp ≠ ddp).(16.3)

Here ddp : TxM → R is the exterior derivative of dp.
(2) If RicciM ≥ ∑ then

∆f(x) ∑ (n− 1)
s0∑(d(p, x))

s∑(d(p, x))
.(16.4)

Here s∑ is as in (4.1).

Remark 16.1. We remark that dp is not differentiable outside the ball
Bp(iM(p), M). So we we need to be more careful to state Thereom
16.6. Precisely speaking (16.4), (16.6) holds in barrier sense. See for
example [26].

We omit the proof of Theorem 16.6. We remark that (16.6) implies
Corollary 21.5. In fact

d

dt
Vol(Bp(t,M)) =

∫
∂Bp(t,M)

hgrad dp, grad dpi≠∂Bp(t,M)

=

∫
Bp(t,M)

div graddp≠M

∑ (n− 1)

∫
B0(t,TpM)

s0∑(d(p, x))

s∑(d(p, x))
≠Rn

∑ d

dt

∫
B0(t,TpM)

s∑(d(p, x))n≠Rn

∑ d

dt
Vol(Bp0(t, Sn

∑)).

Let us explain how we use Proposition 16.5 to prove Theorem 16.4,
in case (a)(b). We assume that X contains a line ` : R → X. We then
have two rays `± : [0,1) → X by :

`+(t) = `(t), `−(t) = `(−t)

We study their Buseman functions b`± . The triangle inequality implies

b`+(t) + b`−(t) ∑ 0.(16.5)

By Proposition 16.5 the right hand side is convex. Since bounded
convex function is constant it follows that `+(t) + `−(t) is constant.
(Actually it is 0). It follows that `+(t) = const−`−(t) is convex and
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is concave. Hence its level surface if totally geodesic. (Here we say
S Ω M is totally geodesic if any minimal geodesic of M joininig two
points of S are contained in S.) This implies Theorem 16.4. In case
(c) we use subharmonicity in place of convexity. §

We next discuss soul theorem.

Theorem 16.7 (Cheeger-Gromoll [35], [128]). If a complete Riemann-
ian manifold M has nonnegative sectional curvature then there exists
a compact submanifold S µ M without boundary, such that M is dif-
feomorphic to a normal bundle of S. Moreover S is totally geodesic.

We call N the soul of M . The basis of the proof of Theorem 16.7
is Proposition 16.5. It asserts that, for each ray ` : [0,1) → M , the
Buseman function b` is convex. In particular for any c the closed set

H(`, c) = {x ∈ M |b`(x) ∑ c}
is convex. The next lemma is the key of the proof of Theorem 16.7.
We fix p ∈ M and let Ray(p) be the set of all rays of M such that
`(0) = p.

Lemma 16.8. The set Cc(p) =
⋂

`∈Ray(p)

H(`, c) is compact.

The proof is by contradiction. Namely we assume that Cc(p) is
not compact and let pi ∈ Cc(p) be a divergent sequence. We put
d(p, pi) = ti, and let `i : [0, ti] → M be a minimal geodesic such that
`i(0) = p, `i(ti) = pi and that it is parametrized by arc length. Since
d`i
dt (0) ∈ TpM is a unit vector, we may take subsequence so that it
converges. Let ` : [0,1) → M be a geodesic such that

lim
i→1

d`i

dt
(0) =

d`

dt
(0).

Since limi→1 ti = 1, it follows that ` is a ray. On the other hand, we
have

lim
i→1

b`(pi) = 1.

This contradicts to pi ∈ Cc(p). §
Thus, we obtained a compact convex subset Cc(p) of M . We can

find a compact covex submanifold S in it. The argument to do so is
rather technical and is omitted. (See [33] Chapter 8.)

Perelman [122] proved that if, in the situation of Theorem 16.7, there
exists a point where KM > 0, then the soul S is a one point. We refer
[63] for other topics related to soul theorem.

We remark that we already applied Theorem 16.7 in §12 to construct
F -structure.
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17. Alexandrov space - I -

In this and the next sections, we discuss recent development [22,
119, 120] of the theory of Alexandrov space. A good text book on
the contents of this section is [138]. (See also [127].) In this and
the next sections, we study compactly generated length space of finite
Hausdorff dimension only. So we always assume that length space has
this property.

The Alexandrov space is a length space with curvature bounded
from below. To define notion of curvature for length space, we use
Toponogov type comparison theorem in the opposite direction. Namely
we define the condition KX ≥ 1 by using the conclusion of comparison
theorem. However the conclusion of Theorem 4.7 does not (yet) make
sense for length space, since it uses angle. So we consider the following
slightly different version.

We use the notation of Theorem 4.7. Let M be a Riemannian man-
ifold and x, y, z, v, w ∈ M . Let x0, y0, z0, v0, w0 ∈ Sn(∑). We assume
v ∈ xy, w ∈ xz, v0 ∈ x0y0, w0 ∈ x0z0.

Theorem 17.1 (Alexandrov-Toponogov). We assume KM ≥ ∑ and
d(x, y) = d(x0, y0), d(x, z) = d(x0, z0), d(y, z) = d(y0, z0), d(x, v) =
d(x0, v0), d(x, w) = d(x0, w0). u ∈ xy, u0 ∈ x0y0, v ∈ xz, v0 ∈ x0y0. Then
we have d(v, w) ≥ d(v0, w0)

x

x'

y

z'

y'

z

w

v
v'

w'

.

Figure 17.1

Definition 17.1 (Alexandrov). A length space of finite dimension is
said to be an Alexandrov space with K ≥ ∑ if the conclusion of Theorem
17.1 holds for X.

Remark 17.1. There are several other definitions equivalent to Defini-
tion 17.1. We will explain them later (Theorems 17.9 and 17.10).

Remark 17.2. There is a notion of Alexandrov space with curvature
bounded from above. We do not discuss it in this article. It is proved by
Beretovskij that if a length space is an Alexandrov space with curvature
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bounded from above and below then it is a C0 Riemannian manifold.
This result is related to Theorem 3.4 but was proved earier than that.
See [16].

Hereafter we say Alexandrov space for Alexandrov space with K ≥ ∑
with some ∑.

The notion of Alexandrov space was introduced by Alexandrov [6]
more than 50 years ago. There are several related pioneering works
around those old days, like Buseman [23]. In [22], Burago-Gromov-
Perelman proved several fundamental theorems on Alexandrov spaces.
After that the study of Alexandrov space becomes very active and
important in metric Riemannian geometry. Their main results are :

Theorem 17.2 (Burago-Gromov-Perelman [22]). Let X be an Alexan-
drov space. Then there exists a dense open subset X0 such that, for each
p ∈ X0, there exists a neighborhood Up and a Lipschitz homeomorphism
Up → Vp where Vp Ω Rn is an open set.

Theorem 17.3 (Burago-Gromov-Perelman). Hausdorff dimension of
Alexandrov space is an integer and is equal to its topological dimension.

Remark 17.3. There are several ways to define topological dimension,
that is covering dimension, (big and small) inductive dimension etc.
Theorem 17.3 also implies that they coincide to each other for Alexan-
drov space.

We do not discuss the proof of Theorem 17.3. (It will follow from
Corollay 18.3 in the next section.) Before explaining some of the ideas
of the proof of Theorems 17.2, we give some examples of Alexandrov
space.

Example 17.1. (0) Riemannian manifold (M, g) is an Alexandrov
space with K ≥ ∑, if and only if the sectional curvature of (M, g)
is greater than ∑ everywhere.

(1) Let ≠ µ Rn be a compact and convex domain. Let S = ∂≠. We
define the length metric d on S. Namely distance between x, y ∈ S is
the minimum of the length of the curves in S joining x with y. Then
we can prove that (S, d) is an Alexandrov space of curvature ≥ 0.

(2) Let M be a Riemannian manifold with KM ≥ ∑ and G be a
compact group acting on M by isometry. Then the quotient space
M/G equipped with quotient metric is Alexandrov space.

An important example of Alexandrov space is a Gromov-Hausdorff
limit of Riemannian manifold. Actually we have

Proposition 17.4. Let Xi be a sequence of compact length spaces and
X = limGH

i→1Xi. If Xi are Alexandrov spaces with K ≥ ∑ then so is X.
(Here ∑ is independent of i.)
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The proof is elementary.

Remark 17.4. Yamaguchi [154] proved that if M a C1 manifold and
G is a compact Lie group acting smoothly on M then there exists a
sequence of metrics gi on M such that Kgi ≥ ∑ for some ∑ independent
and (M, gi) converges to M/G.

Another source of examples is a cone, which we define below.

Definition 17.2. Let (Y, d) be a metric space. We consider the prod-
uct T × [0,1) and identify (x, 0) and (y, 0). We thus obtain a space
CY . We define a cone metric on it as follows :

d((x, t), (y, s)) =
√

t2 + s2 − 2st cos d(x, y).

We denote by o ∈ CY the equivalence class of (x, 0).

Example 17.2. If Y = Sn with KSn ≡ 1 then CSn is isometric to
Rn+1.

Lemma 17.5. If Y is a length space and Diam(Y ) ∑ º then CY is a
length space.

We can prove an analogue of Myers’ Theorem (Theorem 5.4) for
Alexandrov space. Namely :

Theorem 17.6 ([22]). If M is an Alexandrov space with K ≥ 1 then
the Diam(Y ) ∑ º.

Theorem 17.7 ([22]). (1) If CY is an Alexandrov space then Y is an
Alexandrov space of K ≥ 1. (2) If dim Y > 1 and Y is an Alexandrov
space of K ≥ 1 then CY is an Alexandrov space of K ≥ 0. (3) In case
dim Y = 1, the cone CY is an Alexandrov space of K ≥ 0 if and only
if Diam(Y ) ∑ º.

We do not discuss the proof.
We next discuss an example of length sapce which is not an Alexan-

drov space.

Example 17.3. Let us consider simplicial complex X consisting three
arcs which are joined at one point o. We can define a metric on it
such that the length of each arc is 1. Let x, y, z be interior points
of each of the three simplexes, respectively. We can choose v = w on
xy∩xz = xo. Then d(v, w) = 0. But if we choose x0, y0, z0, v0, w0 d(v0, w0)
as in Theorem 17.1 then d(v0, w0) > 0. (For any ∑.) So the conclusion
of Theorem 17.1 does not hold. Namely X is not an Alexandrov space.
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Figure 17.2

The arugument of Example 17.3 implies the following. We denote a
map ` : (a, b) → X a geodesic if for each c ∈ (a, b) there exists ≤ such
that the length of the restriction of ` to (c−≤, c+≤) is d(`(c−≤), `(c+≤)).

Lemma 17.8. If `1, `2 be a geodesic on an Alexandrov space X and if
it coinsides on an open set, then there union is also an geodesic.

In other words geodesic can never branch.
We next explain some other equivalent definitions of Alexandrov

space.

Theorem 17.9. Let X be a length space. We assume that for each p ∈
X there exists a neighborhood U such that the conclusion of Theorem
17.1 holds for any x, y, z, u, v ∈ U . Then X is an Alexandrov space of
K ≥ ∑. In other words, the same conclusion holds globally.

In fact, usually the assumption of Theorem 17.9 is the definition of
Alexandrov space.

We discuss another equivalent definition. Let X be a length space
and x, y, z ∈ X. Let ∑ ∈ R. In case ∑ > 0, we assume d(x, y), d(x, z), d(y, z) <
º/
√

∑. We choose x0, y0, z0 ∈ Sn(∑) such that d(x, y) = d(x0, y0),
d(y, z) = d(y0, z0), d(x, z) = d(x0, z0). We define

∠∑yxz = ∠y0x0z0

Theorem 17.10. Let X be a length space.
(1) If, for each p ∈ X, there exists a neighborhood U of p such that

∠∑bac + ∠∑cac + ∠∑cab ∑ 2º

for and a, b, c, d ∈ U then X is an Alexandrov space with K ≥ ∑.
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(2) Let X is an Alexandrov space with K ≥ ∑ and a, b, c, d ∈ X.
Then

∠∑bac + ∠∑cac + ∠∑cab ∑ 2º.

Remark 17.5. By Theorem 17.6 ∠∑bac etc. in (2) is well defined.

The idea that if comparison theorem holds locally then it holds glob-
ally is due to Alexandrov and Toponogov. Theorem 17.10 is proved in
[22].

We next discuss the angle between geodesics. Hereafter we assume
that geodesic is parametrized by arc length. Let X be an Alexandrov
space with K ≥ ∑ and `1, `2 : [0, c) → X be geodesics such that
p = `1(0) = `2(0).

Lemma 17.11. If s1 ∑ t1, s2 ∑ t2 then

∠∑`1(s1) p `2(s2) ≥ ∠∑`1(t1) p `2(t2).

This follows easily from definition. Therefore we can define :

Definition 17.3. ∠`1`2 = limt1,t2→0 ∠∑`1(t1) p `2(t2).
In case `1, `2 are minimal geodesics joining p to x, y respectively, we

write ∠xpy = ∠`1`2.

Remark 17.6. (1) The angle ∠xpy is independent of ∑. (2) Two geodesics
`1, `2 coicide to each other if ∠`1`2 = 0.

Theorem 17.12. If X is an Alexandrov space of K ≥ ∑ and x, y, z ∈
X, then we have d(y, z) ∑ s(d(x, y), d(x, z), ∠yxz, ∑).

Here s is defined in (4.4) In other words, Theorem 4.7 holds for
Alexandrov space. The other version of triangle comparison theorem
also holds.

Theorem 17.13. If X is an Alexandrov space of K ≥ ∑ and x, y, z ∈
X, then we have ∠yxz ≥ ∠∑yxz.

Remark 17.7. Toponogov type comparison theorem holds in Alexan-
drov space. Hence we can generalize the argument of the last section
to prove splitting theorem (Theorem 16.4) for Alexandrov space with
K ≥ 0.

As we mentioned before an Alexandrov space has tangent cone.

Theorem 17.14 ([22]). If (X, d) is an Alexandrov space with K ≥
∑ and x ∈ X then limk→1((X, kd), x) converges with respect to the
pointed Gromov-Hausdorff distance.

The limit in Theorem 17.14 is the tangenet cone TxX. Tangent cone
is related to the angle between geodesics as follows.
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Definition 17.4. Let Σ̃0
x be the set of all geodesics (parametrized by

arc length) ` : [0, c) → X for some c such that `(0) = x. We identify
`1 and `2 if they coincides to each other at a neighborhood of 0. We
denote by Σ0

x the set of this equivalence relation. We can easily show
that the angle ∠ defines a mertic on it. We define the space of directions
Σx(X) as the completion of Σ0

x.

Lemma 17.15. If X is an Alexandrov space, then Σx(X) is an Alexan-
drov space with K ≥ 1 and TxX is an Alexandrov space with K ≥ 0.

Theorem 17.16 ([22]). The tangent cone TxX of an Alexandrov space
X is isometric to the cone CΣx(X). If dim X = n then dim Σx(X) =
n− 1 and dim TxX = n.

We remark that the second half of Theorem 17.16 is a consequence
of Proposition 17.7.

Now we start the discussion of the proof of Theorem 17.1. As we
mentioned in the last section, if x ∈ X is an interior point of n = dim X
“independent” minimal geodesics then TxX is isometric to Rn, and
this may imply x has neighborhood homeomorphic to Rn. However
the condition about the existance of geodesic is a bit too strict. So
we relax it a bit. This seems to be an idea of strainer. Let X be an
Alexandrov space with K ≥ ∑.

Definition 17.5. Let x ∈ X and (ai, bi) ∈ X2, i = 1, · · · , n. We say
that {(ai, bi)}i=1,2,··· ,n is a (n, δ) strainer at x, if

∠∑aixbi ≥ º − δ,

and

∠∑aixaj, ∠∑aixbj, ∠∑bixbj ∑ δ, for i 6= j.

A point x ∈ X is said to be (n, δ) strained if there exists an (n, δ)
strainer at x.
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Figure 17.3

Remark 17.8. In [22] the strainer here is called “explosion” and strained
point is called “brust point”. The name strainer and strained point
seems to be more popular now.

The main step of the proof of Theorem 17.2 is the following :

Proposition 17.17 ([22] Theorem 9.4 or [138] Theorem 7.4). If p ∈ X
is an (n, δ) strained point, then there exists ρ > 0, neighborhoods U Ω V
of p, and a map ' : V → Rn with '(p) = 0 with the following properties.

(1) d('(x), '(y)) < 2d(x, y),
(2) Let x ∈ U and X ∈ Rn, with d('(x), X) < ρ. Then there exists
y ∈ V such that '(y) = X and d(x, y) ∑ Cd('(x), X). Where C
depends only on n and δ.

We remark that (2) implies that ' is an open mapping in the neigh-
borhood of x. Hence if ' is injective then ' gives a chart in a neigh-
borhood of x. We can use the following to show ' is injective.

Lemma 17.18. We may choose U small enough so that if ' is not
injective then there exists an (n + 1, 10δ) strained point on a small
neighborhood of U .

We remark that the set of all the (n, δ) strained points is open. On
the other hand Proposition 17.17 implies that if (n, δ) strained point
exists then the Hausdorff dimension is not smaller than n.
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Hence Proposition 17.17 and Lemma 17.18 imply the following. For
each open set U , we can find n and a non empty open subset U0 Ω U
consisting of (n, δ) strained points such that there are no (n + 1, 10δ)
strained points on U . Then U0 is an n dimensional manifold by Propo-
sition 17.17 and Lemma 17.18. The proof of Theorem 17.2 then will
be completed by using the next lemma.

Lemma 17.19 ([22] Corollary 6.5). We assume X is connected. If
U, V are nonempty open subsets of X then Hausdorff dimension of U
is equal to the Hausdorff dimension of V .

We now sketch the proof of Proposition 17.17 and Lemmas 17.18,
17.19. We put

µ = inf{d(p, a1), · · · , d(p, an), d(p, b1), · · · , d(p, bn)}.
We first explain the idea of the proof of Proposition 17.17. We put

'(x) = −(d(x, a1), · · · , d(x, an)) + (d(p, a1), · · · , d(p, an)).

It is easy to see that (1) is satisfied. We show (2). For simplicity we
consider the case x = p, n = 2. For each X = (X1, X2) ∈ B0(ρ, R2),
we will find w with '(w) = (X1, X2), d(p, w) ∑ Cd(0, X). We assume
X1, X2 > 0. We first take the point q1 ∈ pa1 such that d(p, q1) = X1.
We first show :

|'(q1)− (X1, 0)|
d(0, X)

∑ τ(ρ, δ|n, ∑, µ)(17.1)

In fact we can prove :

d(q1, a2) ≥ d(p, a2)− τ(ρ, δ|n, ∑, µ)X1

by applying Theorem 17.1, where we put x = a1 y = p, z = v = a2,
u = q1.

To prove the oppsite inequality we take point p0 ∈ b1q1 such that
d(p0, q1) = X1. We have d(p, p0) ∑ X1τ(ρ, δ|n, ∑, µ). In fact, since
∠∑b1pa1 > º−δ, it follows that ∠b1q1a1 ≥ ∠∑b1q1a1 > º−δ−τ(ρ|n, ∑).
Hence ∠pq1b1 < δ + τ(ρ|n, ∑). Theorem 17.12 then implies d(p, p0) ∑
X1τ(ρ, δ|n, ∑, µ).

We use d(p, p0) ∑ X1τ(ρ, δ|n, ∑, µ) to show :

|∠b1q1a2 − º/2|, |∠b1p
0a2 − º/2| < τ(ρ, δ|n, ∑, µ).(17.2)

We next apply Theorem 17.1 again by putting x = q1 y = b1, z = v =
a2, u = p0. Then using (17.2) have d(p0, a2) ≥ d(q1, a2)−τ(ρ, δ|n, ∑, µ)X1.
Hence d(p, a2) ≥ d(q1, a2)− τ(ρ, δ|n, ∑, µ)X1. We have proved (17.1).

We next take w1 ∈ a2q1 such that d(w1, q1) = X2. Then we have

|'(w1)− (X1, X2)|
d(0, X)

∑ τ(ρ, δ|n, ∑, µ)
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We repeat the process replacing p by w1 and obtain w2 such that
d(w1, w2) < C|'(w1)− (X1, X2)| and

|'(w2)− (X1, X2)|
|'(w1)− (X1, X2)| ∑ τ(ρ, δ|n, ∑, µ).

We can define w3, · · · in a similar way. wi is a Cauchy sequence whose
limit w has the required property. §

Let us prove Lemma 17.18. Let '(x) = '(y). Let z ∈ xy with
d(x, z) = d(x, y). It is easy to see that (ai, bi) i = 1, · · · , n and (x, y) is
an (n + 1, 2δ) strainer if d(x, y) is small. §

Finally we sketch the proof of Lemma 17.19. We may assume X is
compact. Take p ∈ V and put D = sup{d(p, x)|x ∈ U}. We take R
such that Bp(D/R, X) Ω V . We define Φ : U → V as follows. For
x ∈ V we take a point Φ(x) ∈ px such that Rd(p, Φ(x)) = d(p, x).
(Note the minimal geodesic px may not be unique. So we need some
technical argument to find Φ which is measurable.) Definition 17.1
implies that there exists ρ > 0 such that d(Φ(x), Φ(y)) ≥ ρd(x, y). It
follows that the Hausdorff dimension of Φ(U) is not smaller than the
Hausdorff dimension of U . Therefore the Hausdorff dimension of V
is not smaller than the Hausdorff dimension of U . We can prove the
opposite inequality in the same way. §

We thus finished a sketch of the proof of Theorem 17.2. §

Definition 17.6. We define the boundary ∂X of an Alexandrov space
X by induction of dim X as follows. If dim X = 1 then X is either
an arc or a circle. So we can define its boundary in an obvious way.
Suppose ∂X is defined for X with dim X < k. Let X be an Alexandrov
space of dim X = k. Then we say x ∈ ∂X if ∂Σx(X) 6= ;. (We remark
that Σx(X) is an Alexandrov space and dim Σx(X) = k − 1.)

Theorem 17.2 is improved by Otsu-Shioya [112]. To state their re-
sults we define notion of singular point set in Alaxandrov space more
precisely.

Definition 17.7. Let X be an n dimensional Alexandrov space and
δ > 0. We put

Sδ(X) = {x ∈ X|Vol(Σx(X)) ∑ Vol(Sn−1)− δ}.
S(X) =

⋃
δ>0

Sδ.

We remark that the Alexandrov space version of the following theo-
rem is a motivation of Defintion 17.7.

Theorem 17.20 (Otsu-Shiohama-Yamaguchi [111]). If an M dimen-
sional Riemanian manifold M satisfies Vol(M) ≥ Vol(Sn)−≤n, KM ≥ 1
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then M is diffeomorpic to the sphere. Also M is close to Sn with respect
to the Hausdorff distance27.

We discuss the idea of the proof of Theorem 17.20 in §21.

Theorem 17.21 (Burago-Gromov-Perelman, Otsu-Shioya). Let X be
an Alexandrov space of dimension n. Then the Hausdorff dimension of
S(X) is not greater than n−1. The Hausdorff dimension of S(X)\∂X
is not greater than n− 2.

Theorem 17.22 (Otsu-Shioya[111]). There exists a C0 Riemannian
metric on X \ S(X) which induces the metric on X. Moreover there
exists X0 Ω X \S(X) such that the (n dimensional Hausdorff) measure
of X \X0 is 0 and that there exists manifold structure of C1.5 class and
a Riemannain structure is of C0.5 class on X0.

Remark 17.9. Actually we need to define C1.5 structure etc. in the
above theorem. This is because X \ S(X), X0 are not open subset
in general. Hence they are not manifold. See [112] for the precise
statement.

Theorem 17.22 is used by Kuwae-Machigashira-Shioya [99] to develop
analysis on Alexandrov space.

We also remark the following :

Theorem 17.23 (Fukaya-Yamaguchi [60]). The isometry group of Alexan-
drov space is a Lie group.

18. Alexandrov space - II -

In [119, 120] Perelman proved the following two fundamental results
on Alexandrov space.

Theorem 18.1 (Perelman). Let X be an Alexandrov space with K ≥ ∑.
Then, for any x ∈ X, there exists a neighborhood of if homeomorphic
to TxX the tangent cone.

Theorem 18.2 (Perelman). Let Xi be a sequence of Alexandrov space
with K ≥ ∑ where ∑ is independent of i. We assume X = limGH

i→1Xi

and dim X = dim Xi. Then Xi is homeomorphic to X for large i.

Remark 18.1. Both of these theorems are proved in [119]. Later Perel-
man published another paper [120] where the proof of Theorem 18.1
is given in a simplified way. Perelman says in [120] that a similar
method gives a slight simplification of the proof of Theorem 18.2, but
the simpification is not so much big compared with one for Theorem
18.1. Unfortunately the paper [119] is not yet published.

27This theorem is improved later to Theorem 21.7 and to Corollary 22.4. Before
[111], Shiohama [137] proved that M is homeomorphic to the sphere under similar
but different assumption KM ≥ −C, Ricci ≥ (n− 1), Vol(M) ≥ Vol(Sn)− ≤(n, C)
.
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In fact Theorem 18.1 follows from Theorem 18.2 (and Theorems
Theorems 17.14, 17.16). However the proof of Theorem 18.2 requires
Theorem 18.1.

In this section we give a review of the proof of Theorem 18.1. Before
that let us mention some of the corollaries of them.

We remark that TxX is homeomorphic to CΣx(X) by Theorems
17.16. Since Σx(X) is again an Alexandrov space we can apply The-
orem 18.1 again. We then find that the singularity of X is obtained
locally by taking cones several times. Let us define it more precisely.

Definition 18.1. We define a connected metrizable space X to be
MCS space of dimension n inductively on n as follows.
(1) An MCS space of dimension 2 is a 2 dimensional manifold with
or without boundary.
(2) X is an MCS space of dimension n if, for each x ∈ X, there exists
a neighborhood U of x and an MCS space Yx of dimension n− 1, such
that there exists a homeomorphism F from the cone of to U such that
F sends cone point to x.

The following is immediate from Theorems 18.1,

Corollary 18.3. Every Alexandrov space is an MCS space.

The following is also an immediate corollary.

Corollary 18.4. For an Alexandrov space X, there exists Xk with
∪Xk = X such that Xk is a k-dimensional topological manifold and
that Xk = ∪i∑kXi.

Corollary 18.5. Alexandrov space X is locally contractible. If it is
compact then º1(X) and Hk(X) are finitely generated.

Hereafter we assume our Alexandrov space X has no boundary, for
simplicity28. An idea used in [120] to prove these result is to generalize
Morse theory of distance function to Alexandrov space. Let us start the
following difinition. Hereafter X is an Alexandrov space with K ≥ −1.
Let p ∈ X. We put dp(x) = d(x, p).

Definition 18.2. x is said to be a regular point of dp if there exists
ξ ∈ Σx(X) such that for each minimal geodesic ` joining x to p we have
∠ξ`0 > º/2. Here `0 ∈ Σx(X) is the equivalence class of ` in Σx(X).

Definition 18.2 is a generalization of Definition 14.1. We can gen-
eralize Proposition 14.2 also and we further generalize it to Theorem
18.7. For the proof of Theorem 18.1 we need to use a bit more general
function than distance function and define the “regurality” of a map
X → Rk for k > 1 also. To state this generalization we need some
notation.

28The general case can be handled by taking a doulbe X ∪∂X X which is an
Alexandrov space by [125].



METRIC RIEMANNIAN GEOMETRY 73

Definition 18.3. Let U be an open subset of X.
(1) An admissible function f : U → R is a function of the form

f(x) =
m∑

i=1

aiφi(d(Ai, x))(18.1)

where Ai is a compact subset of X, φi are smooth function with 0 ∑
φ0i ∑ 1 and ai ≥ 0,

∑
ai ∑ 1.

(2) An admissible map F : U → Rk is a composition F = G ◦ ~f ,
where G is a bi-Lipschitz homeomorphism and ~f = (f 1, · · · , fk) with
admissible functions fi.

Remark 18.2. In [120] more general function (map) is called admissible
function (map). But only those in Definition 18.3 are used.

For A Ω X and x ∈ X we define Σ0
x(xA) Ω Σx(X) by

Σ0
x(xA) = ({[`]|` is a minimal geodesic joining x to a point of A.})

Let Σx(xA) Ω Σx(X) be the closure of Σ0
x(xA).

For Λ1, Λ2 Ω Σx(X) we put

∠Λ1Λ2 = inf{∠uv|u ∈ Λ1, v ∈ Λ2}.
For an admissible function f as in (18.1) we can define its direction

derivative Dxf : Σx(X) → R by

(Dxf)(u) =
∑

i

aiφ
0(d(x, Ai)) cos ∠(u, Σx(xAi)).

In case X is a manifold Dxf is the direction derivative in the usual
sense.

If f (1), f (2) are admissible functions as in (18.1) we put

hDxf
(1), Dxf

(2)i =
∑
i,j

a(1)
i a(2)

j φ(1)0(d(x, A(1)
i ))φ(2)0(d(x, A(2)

j )) cos ∠A(1)
i A(2)

j .

This again coincides with the usual inner product between derivatives
in case when X is a manifold and f (1), f (2) are differentiable.

Definition 18.4. We say F : U → Rk where F = G ◦ ~f is ≤-regular at
p ∈ U if the following conditions hold. Let us put ~f = (f 1, · · · , fk).

(1) For each i 6= j, we have hDpf i, Dpf ji < −≤.
(2) There exists ξ ∈ Σp(X) such that (Dpf i)(ξ) < −≤, for each i.

We say F is regular if it is ≤-regular for some ≤ > 0. We say F is
≤-regular on U if is ≤-regular at every point of U .

Example 18.1. (1) If f : U → R is defined by f(x) = dp(x). It is an
admissible function and hence is an admissible map. It is ≤ regular at
x for some ≤ > 0 if and only if x is a regular point of f in the sense of
Definition 18.2.
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(2) Let X be a two dimensional Alexandrov space. and (a1, b1), (a2, b2)
be a (2, δ) strainer at x. Let us define ' : X → R2 by

'(x) = −(d(x, a1), d(x, a2)) + (d(p, a1), (.p, a2)).

as in the proof of Proposition 17.17. Then ' is a homeomorphism in a
neighborhood of x. We put

p = '−1(r, 0), q = '−1(−r/2, r
√

2/2), r = '−1(−r/2,−r
√

2/2).

and define F = ~f = (dp, dq). We also set ξ ∈ Σx(xr). We can prove
(1)(2) for sufficiently small ≤. We can generalize this construction to
the case of higher dimension and prove that if x is an (k, δ) strained
point, then there exists F : U → Rk from a neighborhood of x which
is ≤ regular at x.

Figure 18.1

We can prove the following in a way similar to the proof of Proposi-
tion 17.17. (See [121] Lemma 2.3 and the argument just after that.)

Lemma 18.6. Let F : Bx(ρ, X) → Rn be an admissible map and
is ≤-regular at x. Then there exists a neighborhood U µ Bx(ρ, X) of
x and δ > 0, with the following property. If y ∈ U, X ∈ Rk with
d(F (v), X) ∑ δ then there exists z ∈ Bx(ρ, X) such that F (z) = X and
d(z, y) < Cd(F (v), X). Here C depends only on ρ, δ, ≤.

Lemma 18.6 implies that F is an open mapping. In case dim X = k
and if there exists an ≤-regular map at x, then Lemma 18.6 shows that
a neighborhood of x is a manifold. In the general case, we have to
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study the situation where k < dim X. The following Proposition 18.7
is the main result in such a case. We need a definition.

Definition 18.5. A map F : X → Y between topological space is
called a topological submersion at x ∈ X if there exists a neighborhood
U of x, a neighborhood V of F (x), and a topological space W such that
there exists a homeomorphism Φ : U ª= V ×W satisfying F = Pr1 ◦Φ
on U .

In case X, Y are smooth manifolds and F is a smooth map, F is a
topological submersion if its derivative is of maximal rank.

Theorem 18.7 ([120] Theorem 1.4). Admissible map F : X → Rk is
a topological submersion at regular point.

The following result is also used in the proof of Theorem 18.1.

Theorem 18.8 (Siebennman [142] Corollary 6.14). Every proper topo-
logical submersion between MCS spaces is a locally trivial fiber bundle.

Remark 18.3. (1) We remark that if M, N are smooth manifolds (with-
out boundary) and F : M → N be a proper smooth submersion then
F is a locally trivial fiber bundle. This fact can be proved much more
easily than Theorem 18.8.

(2) The proof of Theorem 18.8 is based on isotopy extension theory.
We remark that isotopy extension theory for manifolds (see [48]) was
used by Cheeger for the proof of his finiteness theorem. (See §6.)

We next sketch the proof of Proposition 18.7. The difficult case is
when X is of dimension greater k. We try to increase k as much as
possible we then arrive the following situation.

Definition 18.6. Let F : U → Rk be a regular admissible map from
an open set U of an Alexandrov space X. We say p ∈ X is imcom-
plementable if there exists no g such that (f 1, · · · , fk, g) is regular at
p.

The case k = 0 is included. Namely in that case p ∈ X is imcomple-
mentable if there exists no admissible function such that p is regular.

Example 18.2. (1) Let us consider the domain {(r cos θ, r sin θ)|θ ∈
[−α, +α], r ≥ 0}. We glue (r cos α, r sin α) and (r cos−α, r sin−α) to
obtain a space Xα. We can show that o = [0, 0] is imcomplementable
if and only if α ∑ º/2. Actually we put g = d[r,0]. Then g is regular if
α > º/2. On the other hand, if α ∑ º/2 then the diameter of ΣoXα

is not greater than º/2. Hence it is easy to see that (2) in Definition
18.4 can never be satisfied29.

29It is ease to see from this argument that in case k = 0 the point p ∈ X is
imcomplementable if and only if DiamΣp(X) ∑ º/2
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Figure 18.2

(2) Let us next take X = Xα × R where Xα is as above. We define
f : X → R by f = d(o,−1). It is easy to see that (o, 0) is a regular
point. Actually we may take ξ = D(o,0)d(o,1). We can show that f is
imcomplementable (o, 0) if α ∑ º/2.

Figure 18.3

(2) Let

Now the main technical result in [120] is as follows.

Lemma 18.9 ([120] 1.3.). If F : U → Rk is admissible and regular at
p ∈ U , and if p is imcomplementable, then there exists an admissible
function g : V → R defined on an open neighborhood V of p with the
following properties. We write F = G ◦ ~f , ~f = (f 1, · · · , fk).
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(1) g ∑ 0 on V and g(p) = 0.
(2) F |g−1(0) : g−1(0) → Rk defines a homeomorphism onto a neigh-
borhood of F (p).
(3) (F, g) : V → Rk+1 is regular on V \ g−1(0).
(4) There exists ρ > 0 such that {x ∈ V |d(F (x), F (p)) ∑ ρ, g(x) ≥
−ρ} is compact.

Let us show how to choose such g in the case of Example 18.2 (2).
Namely we have U = Xα×R and F = f = d(o,−1). We write a point of
U as ([r cos θ, r sin gθ], t) and use r, θ, t as a coordinate. (We take r ≥ 0,
θ ∈ [−α, α].) Then f(r, θ, t) =

√
(t + 1)2 + r2. We take q = (δ, 0, δ)

and put h = dq. Then h(r, θ, t) =
√

(t− δ)2 + r2 + δ2 − 2rδ cos |θ|. It
is easy to see that (f, h) : U → R2 is regular outside on (B(o,0)(ρ, U) \
{o})× R. (We remark {o}× R is the set of singular points.)

However if we put g = h then (1)(2) are not satisfied. So we compose
it with a homeomorphism of R2

(o,0)

q=(δ,0,δ)

so that (1)(2) will be satisfied.

Figure 18.4

We consider the set K(v) = {x ∈ U |f(x) = v, r < ρ} where |ρ| and
|v| is small. We can easily check that

h(v, 0, 0) = sup{h(x)|x ∈ K(v)}.
if α ∑ º/230. Namely

(*) Restriction of h to K(v) takes its maximum at a unique point.

30This condition equivalent to the condition that (o, 0) is imcomplementable.
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We remark that f(v, 0, 0) = 1 + v and h(v, 0, 0) =
√

(v − δ)2 + δ2.
So if we put

g(r, v, θ) = h(r, v, θ)−
√

(f(r, v, θ)− 1− δ)2 + δ2.

(1)(2) are satisfied. We define G : B(1,
√

2δ)(ρ, R2) → R2 by

G(a, b) = (a, b−
√

(a− 1− δ)2 + δ2)

where ρ ø δ. Since (f, g) = G ◦ (f, h), it follows that (f, g) is admissi-
ble. It also satisfies (3) since (f, h) satisfies (3). Thus we constructed
g in the case of Example 18.2 (2).

In the general case, we need to choose h more carefully so that it is
enough “concave”. (Then (*) holds.) The proof of Lemma 18.9 is in
[120] §3. §

We can use Lemma 18.9 to complete the proof of Proposition 18.7
as follows. We also proves the following at the same time.

Proposition 18.10. If F : X → Rk is an admissible map and if p ∈ X
is a regular point, then F−1(F (p)) is a MCS space near p.

The proof is by downward induction on k. If k = dim X then both
Theorem 18.7 and Proposition 18.10 follows from Lemma 18.6. Let us
assume that Theorem 18.7 and Proposition 18.10 are true for k + 1
and prove the case k. We remark that both propositions are local
statement on p31. In case p is not imcomplementable then we can in-
crease k and use induction hypothesis. So it suffices to consider the
case p is imcomplementable. We apply Lemma 18.9 to get g. Then
(F, g)|V \g−1(0) : V \ g−1(0) → Rk+1 is regular. We can use the induc-
tion hypothesis to conclude that it is a topological submersion and the
fibers are MSC spaces. Therefore V \ g−1(0) is a MSC space. Let
(F, g)−1(B0(ρ, Rk)× (−ρ, 0)) = W . Since

F : W → B0(ρ, Rk)× (−ρ, 0)(18.2)

is proper, Theorem 18.8 implies that (18.2) is a locally trivial fiber
bundle. Since the base space is trivial it follows that (18.2) is a trivial
bundle. Hence using Lemma 18.9 (2) we can prove Propositions 18.7
and 18.10 for F : U → Rk. Thus the induction works.

We remark that Proposition 18.10 implies Theroem 18.1 by putting
k = 0.

We thus sketched the proof of Theroem 18.1. The proof of Theorem
18.2 uses a similar argument but more involved. See [119].

Let us compare the results we reviewed in the last and this section
so far, to one in earier sections, where we consider the case |KM | is
bounded. In §11, we asked two questions, Question 11.1 for a sequence
Mi converging to X. (1) was on the singurality of X and (2) was on
the relation between topologies of Mi and X.

31So we prove them by induction without assuming completeness of X.



METRIC RIEMANNIAN GEOMETRY 79

In the case |KMi| ∑ 1, an answer to (1) was Theorem 11.4 and an
answer to (2) was Theorems 11.5 and 12.7.

In our more general case where we assume KMi ≥ −1 only, Theorem
18.1 and Corollary 18.3 give a satisfactory answer to (1).

However results on (2) is not satisfactory. In case X = limGH
i→1Mi

satisies dim X = dim Mi, Theorem 18.2 is a satisfactor answer. This
is the non collpasing case. On the othe hand if X is a smooth Rie-
mannian manifold, Theorem 11.3 by Yamaguchi, gives a nice answer.
Namely there exists a fiber bundle Mi → X for large i 32. However
the trick (taking frame bundle) we explained in §11 does not work in
our more general situation to reduce the problem to the case when X
is a manifold. So the result is not yet satisfactory. There are however
several interesting approach and partial results about the problem (2)
in the case Mi ≥ −1, which we review very briefly here.

First Theroem 11.3 is generalized to the case when the limit X has
rather mild singularity. There are two papers about it. In [155], Ya-
maguchi assumed that for each x ∈ X there exists a strainer (ai, bi)
i = 1, · · · , n = dim X with d(x, ai), d(x, bi) > µ > 0 where µ is in-
dependent of x. Then he conclude that there exists a locally trivial
Lipschtz fiber bundle structure Mi → X 33.

Perelman in [124] assumed that X has no proper extremal set. Here
:

Definition 18.7. F Ω X is extremal if for each p /∈ F , x ∈ X, and
u ∈ Σx(X), we have Dxdp(u) ∑ 0.

For example F = {x} consisting of one point is not extremal if and
only if there exists an admissible function f which is regular at x.

Perelman’s theorem in [124] is that if there is no extremal set then
there exists fi : Mi → X such that ºk(Mi, f

−1
i (p)) ª= ºk(X) for each

p ∈ X. The plan proposed by Perelman [121] then is to stratify X using
extremal set and construct fiber bundle structure stratawise. This plan
is not yet completed.

Shioya-Yamaguchi [141] and Yamaguchi [156, 157] studied the case
when dim Mi = 3, 4 without extra assumption on X and gave satis-
factory description in that case. In this article, we discuss 3 dimen-
sional case only. Let Mi be 3 dimensional Riemannian maifold with
KMi ≥ −1, and X = limGH

i→1Mi. We assume dim X ∑ 2. Then X is
homeomorphic to a manifold with or without boundary. We assume
that X is connected.

Theorem 18.11 (Shioya-Yamaguchi [141]). We assume dim X = 2.

32Theorem 11.3 does not say much about the fibers. But there are various results
which shows that the fibers are “of nonnegative curvature” in some sense.

33In the preprint version of [155] (which the author has), the locally triviality is
not asserted. It is proved in [141].
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(1) If ∂X = ;, then there exists a structure of Seifert fibered space
Mi → X for large i.
(2) If ∂X 6= ;, then Mi is homeomorphic to Seii(X) ∪ (∂X × D2)
where Seii(X) is a Seibert fibered space over IntX. We glue it with
∂X ×D2 where the fibers of Seii(X) over the boundary point x is glued
with {x}× ∂D2.

In case dim X = 1 there are two possibilities, X ª= S1 or [0, 1]. In
the case X = S1 there exists a fiber bundle Mi → S1 by Theroem 11.3.

Theorem 18.12 (Shioya-Yamaguchi [141]). If X ª= [0, 1] then Mi is
obtained by gluing Bi and Ci along their boundaries where each of Bi, Ci

is homeomorphic to one of the following 4 manifolds. (1) D3, (2) non-
trivial [0, 1] bundle over RP 2, (3) S1 ×D2, (4) nontrivial [0, 1] bundle
over Klein bottle.

The rough idea of the proofs of Theorems 18.11,18.12 are as fol-
lows. In either cases, we can apply generalization [155] of Theroem
11.3 except finitely many points (plus ∂X in case (2) of Theorems
18.11). In the neighborhood of those points we scale the metric to ob-
tain noncompact nonpositively curved Alexandrov space. Then apply
soul theorem (Alexandrov space analogue of Theorem 16.7). The soul
S is an Alexandrov space of dimension ∑ 2 so is a manifold with or
without boundary. Actually Shioya-Yamaguchi classified 3 dimensional
noncompact complete Alexandrov space with K ≥ 0. in this way, we
can classify neighborhods Ω Mi of a singular point of X locally. Then
the last step is to glue those local neighborhoods. §

In the case when dim X = 0 we can scale the metric of Mi and obtain
limit of nonzero dimension. In this way [141] (improving [154, 59])
proved the following :

Theorem 18.13 (Shioya-Yamaguchi). There exists ≤ such that if M
is a Riemannian 3 manifold with KMDiam(M) ≥ −≤ then a finite
cover of M is homeomorphic to S1 × S2, T 3, nilmanifold or a simply
connected Alexandrov space with K ≥ 0.
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19. First Betti number and fundamental group

So far we discussed results about sectional curvarure. In this section
we discuss also Ricci curvature. The recent progress mainly due to
Cheeger-Colding will be discussed in later sections. In this section, we
mainly concern with older results. To study Ricci curvature we need
partial differential equation frequently. But we do not mention them
so much.

We first review Theorem 2.3. The proof of Theorem 2.3 is based on
Bochner trick. The most famous result in metric Riemannian geometry
based on Bochner trick is the following :

Theorem 19.1 (Bochner [151]). If an n dimensional compact Rie-
mannian manifold M has nonnegative Ricci curvature then the first
Betti number of M is not greater than n.

The proof of Theorem 19.1 due to Bochner is as follows. Let u is a one
form on M . Then we have the following equality of Weitzenböck type.
(For proof see [151]. We remark that we use nonpositive Laplacian
(16.2).)

h−∆u, ui = −1

2
∆kuk2 + h∇u,∇ui+ Ricci(u, u).(19.1)

Let u be a harmonic one form. We integrate (19.1) over M . The left
hand side is zero (since u is harmonic) and the integral of the first term
in the right hand side vanish. Therefore we have :∫

M

h∇u,∇ui≠M +

∫
M

Ricci(u, u)≠M = 0.(19.2)

(Here ≠M is a volume element .) The first term of (19.2) is nonnegative.
If we assume that the Ricci curvature is nonnegative then the second
term also is nonnegative. Therefore the first and second term both are
zero. Namely every harmonic one form is parallel. Since parallel one
form is determined by its value at one point (here we are assuming that
M is connected), it follows that the dimension of the space of harmonic
one forms on M is at most n. Theorem 19.1 follows. §

When we try to apply a similar argument to the forms of higher
degree and try to estimate higher Betti number by Ricci curvature, we
will meet a trouble. In formula (19.1), the third term involves only
Ricci curvature. This is true only for one form. A similar formula for
forms of higher degree is much more comlicated. The assumption we
need to apply a similar argument to forms of higher degree is exactly
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the assumption in Theorem 2.3, which is much stronger than one on
Ricci curvature34.

In §16, we discussed splitting theorem of Riemannian manifold of
nonnegative Ricci curvature (Theorem 16.4). We can prove Theorem
19.1 by using it also. Actually we have the following :

Theorem 19.2 (Cheeger-Gromoll). If M is a compact manifold with
nonnegative Ricci curvature then there exists a finite cover M̃ of M ,
such that M̃ is isometric to the direct product X × T k , where X is
simply connected and T k is a flat torus.

To prove Theorem 19.2, we consider the universal covering M̂ . Since
we may assume that the fundamental group of M is infinite (otherwise
we may take X = M̂), we can prove that M̂ contains a line35. Now by
applying Theorem 16.4, we find M̂ = R×Y . We may split M̂ = Rk×Y 0

so that Y 0 has no R factor. If Y 0 is not compact, we can show Y 0contains
a line by the same argument. Then, by Theorem 16.4, Y 0 has an
R factor, a contradiction. Namely Y 0 is compact. The º1M action
preserves the splitting M̂ = Rk × Y 0. Theorem 19.2 follows easily. §

In case k = n in Theorem 19.2, or in case when the first Betti number
is equal to the dimension in Theorem 19.1, we can show that M is flat.
(We can show this fact either by Bochner’s proof using (19.1) or by
Cheeger-Gromoll’s proof based on splitting theorem.)

Theorem 19.2 is generalized by Gromov as follows.

Theorem 19.3 ([70] p73). There exists a continuous function b(n, ρ)
of ρ ∈ R with b(n, 0) = n, such that the following holds. If M is an
n dimensional Riemannian manifold with diameter 1, Ricci cuvature
≥ ρ, Then its first Betti number is not greater than b(n, ρ).

Corollary 19.4. If M is an n dimensional Riemannian manifold with
diameter 1 and Ricci > −≤n, then its first Betti number is not greater
than n. Here ≤n is a positive number depending only on n.

Gromov’s proof is based on the estimate of growth function by using
Bishop-Gromov inequality (Proposition 5.2) and is closer to the study
of fundamental group we mention later in this section (Theorem 19.9,
Theorem 19.10). The analytic proof using a similar idea to Bochner’s
is given by Gallot [61].

34On the other hand, if we write a formula similar to (19.1) for spinor and Dirac
operator the second term involves only a Scaler curvature. (See text book of Atiyah-
Singer index theorem.). A theorem by Lichnerowicz which asserts “The Â genus of
Riemannian manifold of positive scaler cuvature is zero” is obtained from this fact.

35Let pi, qi ∈ M with d(pi, qi) → 1. Let xi be the midpoint of a minimal
geodesic joining pi and qi. Moving them by an action of º1(M), we may assume
that there exists R independent of i such that d(x, xi) < R. Then a subsequence
of the sequence of geodesics joining pi, xi, qi has a limit. This limit is a line.
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As we mentioned before, the idea of the proof of Theorem 19.1 can
not directly be applied to the study of second or higher Betti number.
In fact a result similar to Theorem 19.3 does not hold for higher Betti
number. Namely the statement such as :

“ If M is an n dimensional compact Riemannian manifold with di-
ameter 1, Ricci curvature ≥ ρ, then its Betti number is smaller than a
number depending only on ρ and n”,
is false. See [134, 123] for counter examples. Note if we replace Ricci
≥ ρ by KM ≥ ρ in the statement in the parenthesis then it is Theorem
14.6.

Let us consider the case when equality holds in Corollary 19.4, namely
the case Ricci > −≤n and first Betti number is n.

Theorem 19.5 (Yamaguchi [154]). There exists a positive number ≤n

such that if M is an n dimensional Riemannian manifold with diameter
Diam(M)KM > −≤n, and its first Betti number is b, then there exists
a finite cover M̃ of M and a fiber bundle M̃ → T b over b dimensional
torus.

Moreover if b = dim M then M is diffeomorphic to the torus.

Remark 19.1. (1) Yamaguchi proved the same conclusion for the fiber
of Theorem 11.3.

(2) Yamaguchi [152] proved the same conclusion under a different
hypothesis KM ∑ 1, Diam ∑ D, RicciM ≥ −≤(D, n)

To prove Theorem 19.5, Yamaguchi used Theorem 16.4 case (b).
The second half of Theorem 19.5 is generalized by Colding [45] and
Cheeger-Colding [29] as follows.

Theorem 19.6 ([45, 29]). If M is an n dimensional Riemannian man-
ifold with Diam(M)RicciM > −≤n, and its first Betti number is n, then
M is diffeomorphic to a torus.

Remark 19.2. The first half of the statement of Theorem 19.5 does not
hold under the milder assumption Diam(M)RicciM > −≤n. Anderson
[10] constructed an example of M with Diam(M)RicciM > −≤n but
has no fibration over T b1(M).

We here explain some of the ideas used by Yamaguchi in [154] to
show Theorem 19.5, which is also used in [45]. (The additonal ideas
due to [45, 29] will be explained in later sections.)

For simplicity we consider the case b = n = dim M only. The proof is
by contradiction. By scaling we may assume that there exists Mi with
Diam(Mi) = 1, KMi ≥ −≤i but Mi are not diffeomorphic to T n. We
consider the coverline space M̂i → Mi whose covering transformation
group is Γi = Zb. We study the limit of the pair (M̂i, Γi). Here we
define :
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Definition 19.1 ([52]). A sequence of pairs ((Xi, pi), Gi) of pointed
metric spaces (Xi, pi) and groups of isometries Gi is said to converge
to ((X, p), G) with respect to the equivariant pointed Hausdorff conver-
gence if there exists 'i : Bpi(1/≤i, Xi) → Bp(1/≤i, X), '0i : Bp(1/≤i, X) →
Bpi(1/≤i, Xi) √i : Γi → G, √0i : G → Γi with ≤i → 0 such that :

(1) 'i, '0i are ≤i Hausdorff approximations and

d(x, 'i('
0
i(x))) < ≤i, d(x, '0i('i(x))) < ≤i.

(2) If x, ∞(x) ∈ Bpi(1/≤i, Xi), ∞ ∈ Γi then

d('i(∞(x)), √i(∞)('i(x))) < ≤i.

(3) If x, ∞(x) ∈ Bpi(1/≤i, X), ∞ ∈ Γ then

d('0i(∞(x)), √0i(∞)('0i(x))) < ≤i.

We remark that we do not assume 'i, '0i are homomorphism.
We can prove a similar compactness result as Theorem 16.1. Now

let us go back to the proof of Theorem 19.5. Fix pi ∈ M̂i. We may
consider the limit ((M̂i, Γi), pi) with respect to the equivariant pointed
Hausdorff convergence. However then the limit may be a continuous
group and is a bit hard to handle. So we use the following lemma.

Lemma 19.7 ([154]). There exists subgroups Γ0i Ω Γi of finite index
and η, η0 (independent of i) such that

(1) For each ∞ ∈ Γ0i with ∞ 6= 1 we have d(pi, ∞(pi)) ≥ η.
(2) Γ0i is generated by elements ∞1, · · · , ∞n such that d(pi, ∞k(pi)) ∑ η0.
(Here n = dim M .)

Lemma 19.7 appeared in the proof by Gromov of Theorem 19.3. The
fact that Γi is abelian plays an important role for its proof. We omit
the proof of Lemma 19.7.

Now we can consider the limit of the sequence ((M̂i, Γ0i), pi). We
denote it by ((X, G), p). Using Lemma 19.7 we can easily show that
G ª= Zn and its action is properly discontinuous. Now we apply split-
ting theorem to X and obtain X = Rk × Y where Y is compact36.
Since Zn acts on it properly discontinuously, it follows that k = n.
Since dim X ∑ dim M̂i = n it follows that X = Rn. We can also prove
that M̂i/Γ0i converges to X/G ª= T n. We put M̃i = M̂i/Γ0i. Since M̃i is
n dimensional and converges to T n it follows from Theorem 11.3 that
M̃i is diffeomorphic to T n. Using Hn(Mi, Q) = n again we can show
that Mi is homeomorphic to T n. Furthermore we can arrange covering
index M̃i → Mi so that “Mi is homeomorphic to TN and M 0

i is diffeo-
morphic to T n” imply Mi is diffeomorphic to T n, if ≥ 5. (This point is

36I think this was the first place where splitting theorem of the limit (singular)
space was applied to study Riemannian manifold.
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a standard application of nonsimplyconnected surjery.) The last step
in the low dimension case is a bit complicated and is omitted. §
Remark 19.3. The above argument can be applied to the situation
of Theorem 19.6. We only need to replace splitting theorem to one
by Cheeger-Colding and Theorem 11.3 by Theorem 22.3. Colding’s
argument in [45] (though using Lemma 19.7) is slightly different. This
is probably because splitting theorem we need for this purpose was not
yet proved at that time.

We next remark the following corollaly of Theorem 19.2.

Corollary 19.8. If compact Riemannian manifold M has nonnegative
Ricci curvature, then its fundamental group º1(M) contains an abelian
subgroup of finite index.

It seems that series of results related to Corollaly 19.8 began with
the following theorem.

Theorem 19.9 (Milnor [103]). If a complete manifold M has a non-
negative Ricci curvature and if G is a finitely generated subgroup of
º1(M) then G has polynomial growth.

The definition of group being polynomial growth is as follows. Let
G be a finitely generated group and g1, · · · , gk generate G. Let fG(N)
be the number of elements of G which can be written by a product of
at most N of gi or g−1

i .

Definition 19.2. We say that G has polynomial growth, if there exists
C, K such that fG(N) < C(NK + 1).

It is easy to see that this definition is independent of the choice of
generator of G.

The proof of Theorem 19.9 is based on Proposition 5.2 and proceed
as follows. Let us assume M is compact for simplicity. Let M̃ be the
covering space of M corresponding to G. Let p ∈ M̃ . By Proposition
5.2 we have :

Vol(Bp(R, M̃)) ∑ CRn.

By an elementary argument using fundamental domain, we can show
the existsnce of C with

C−1 <
Vol(Bp(R, M̃))

fº1(M)(R)
< C.

Theorem 19.9 follows. §
Roughly speaking the growth function fG evaluates how much G is

far from being commutative. In fact, if G is free and nonabelian then
there exists c, C such that :

fG(R) > ceR/C .
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(We say that G has an exponential growth in this case). On the other
hand, G = Zk has polynomial growth.

Gromov[72] proved te following :

Theorem 19.10 (Gromov). A finitely generated group G has polyno-
mial growth if and only if G has a nilpotent subgroup of finite index.

Let us very briefly sketch its proof here. First we recall the following
:

Theorem 19.11 (Tits [147] ). Let G be a finitely generated subgroup
of GL(n, R). Then either G contains a solvable subgroup of finite index
or G contains a noncommutative free group.

If G contains a noncommutative free group, we can show that G is not
of polynomial growth. On the other hand, Milnor proved that solvable
group is of polynomial growth if and only if it contains a nilpotent group
of finite index. Hence to prove Theorem 19.10 it suffices to embed G
to some Lie group. Gromov’s idea is to do so by using Hilbert 5th
problem. Let G a group of as in Theorem 19.10. We define a metric
(the word metric) on G as follows. Let ∞1, · · · , ∞n be a generator. Let
µ1, µ2 ∈ G. We define d(µ1, µ2) to be the smallest number k such that
µ2 = ∞≤1

i1 · · · ∞≤k
ik

µ1. Here ij ∈ {1, · · · , n}, ≤j = ±1.

Now we consider the limit limGH
N→1(G, 1

N d) as N → 1. The as-
sumption that G is of polynomial growth is used to show that the limit
exists. It is easy to see that the limit G0 has a structure of group.

We then can use the fact that G0 acts as isometry on itself preserving
metric and a solution of Hilbert’s 5th problem, to show that G0 is a
Lie group. So if we can embed G to G0 we are done. But it is not so
easy to embed G to G0. (Actually in case when G is discrete subgroup
of a nilpotent Lie group N , then the limit is N but has a strange
metric called Carnot-Carateodri metric (See [75]).) Therefore we need
to discuss more carefully and some more technical argument is required.
We omit it. §

Theorems 19.9 and 19.10 imply that the finitely generated subgroup
of the fundamental group of complete manifold of nonnegative Ricci
curvature has nilpotent subgroup of finite index. This fact is general-
ized by Fukaya-Yamaguchi [59]37 and further by Cheeger-Colding [45]
as follows.

Theorem 19.12 (Cheeger-Colding). There exists a positive number
≤n such that if the an n dimensional Riemannian manifold satisfies
Diam(M)2RicciM ≥ −≤n, then º1(M) contains a nilpotent subgroup of
finite index.

37The result of [59] is the same conclusion as Theorem 19.12, but the assumption
there is on sectional curvature instead of Ricci curvature.
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We remark that Theorem 19.12 follows Theorem 10.5. We also re-
mark that Theorem 10.5 implies Theorem 19.9. In Theorem 19.12 we
can not replace the conclusion “nilpotent” by “abelian”. Namely we
can not replace the assumption Ricci ≥ 0 of Corollary 19.8 by ≥ −≤n.
The counter examle is an almost flat manifold (Example 10.1).

Some more results on fundamenta group is proved in [59] and [60]
which we review here.

A group Γ is said to be polycyclic if there exists

1 = Γ0 Ω Γ1 Ω · · · Ω Γk = Γk(19.3)

such that Γi is a normal subgroup of Γi+1 and Γi+1/Γi is cyclic. The
smallest such number k is called degree of polycyclicity of Γ.

Theorem 19.13 ([59] Theorem 0.6, Corollary7.20 plus [45]). There ex-
ists ≤n and wn such that if an n dimenisional Riemannian manifold M
satisfies RicciMDiam(M) ≥ −≤n then º1 contains a normal subgroup
Γ such that

(1) [º1(M) : Γ] ∑ wn.
(2) Γ is polycyclic and its degree of polycyclicity is not greater n.

Theorem 19.14 (Fukaya-Yamaguchi [60]). For each D, n there exists
a finite set of groups G with the following properties. Let M be a
manifold with KM ≥ −1, Diam(M) ∑ D. Then there exists G ∈ G and
a surjective homomorphism º1M → G such that the kernel Γ satisfies
(1),(2) of Theorem 19.13.

Theorem 19.14 implies the following. For a group G let us put

D(G, n) = inf{Diam(M)|KM ≥ −1, dim M = n, º1M ∂ G}.
Then, for any sequence of noncommutative simple groups Gi with Gi 6=
Gj for i 6= j, we have limi→1D(Gi, n) = 1.

Remark 19.4. Theorem 17.23 plays a key role in the proof of Theorem
19.14. So far the author does not know the proof of the conclusion
of Theorem 19.14 under milder assumption RicciM ≥ −(n − 1). The
trouble is a generalization of Theorem 17.23 to the limit X of man-
ifolds Mi with RicciMi ≥ −δi where δi → 0. (Namely the problem
whether the isometry group of such X is a Lie group or not.) Cheeger-
Colding [30] proved that the group of isometries of X is a Lie group
under additional assumption Vol(Mi) ≥ v > 0. Under this additional
assumption there is a following result (Anderson [7]) : The number of
isomorphism classes of º1M where n dimensional Riemanniam mani-
fold M with RicciM ≥ −(n− 1), Vol(Mi) ≥ v > 0, Diam(M) ∑ D, is
finite.
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We here sketch a part of the proof of Theorem 19.12 given in [59].
Namely we assume splitting theorem and explain how to deduce The-
orem 19.12 from it. Here we consider the case Diam(M)KM ≥ −≤n

38

to simplify the argument.
We first need a lemma on the convergence of groups. If Γ acts on a

metric space X by isometry and p is a base point of Xwe write

Γ(D) = h{∞|d(∞(p), p) ∑ D)}i
Here hAi is a subgroup generated by A.

Lemma 19.15 ([59] Theorem 3.10). Let (Xi, Γi, pi) converges to (X, G, q)
in pointed equivariant Hausdorff distance. We assume that the con-
nected component G0 of G is a Lie group and G/G0 is discrete and
finitely presented. We also assume that X/G is compact. Moreover we
assume that Xi is simply connected and Γi is properly discontinuous
and free.

Then there exists a sequence of normal subgroups Γi,0 converging to
G0 such that Γi/Γi,0

ª= G/G0 for large i39.

We omit the proof. Now we prove the following :

Proposition 19.16. Let (Mi, pi) converges to (Rk, 0) with respect to
the pointed Hausdorff distance. Assume RicciMi ≥ −(n − 1). Then
there exists ≤ > 0 such that the image of º1(Bpi(≤, Mi)) in º1(Bpi(1, Mi))
has solvble subgroup of finite index for large i.

The solvability in Theorem 19.12 is the case k = 0 of Proposition
19.16. (The proof of more precise statement as in Theorem 19.13 and
nilpotency (for which the argument of is omitted.)

The proof of Proposition 19.16 is by downward induction on k. The
case k = dim Mi follows from Theorem 11.3. We assume Proposition
19.16 is correct for k + m (m > 0) and show the case of k by contra-
diction.

Let (Mi, pi) as in Proposition 19.16. We use Theorem 11.3 to find
Vi µ Mi and a fiber bundle fi : Vi → B0(Ci, Rn) with Ci → 1. Here
Vi ∂ Bpi(Ci/2, Mi). Let δi = Diam(f−1

i (0)). We take metric gi,1 =
gi/
√

δi. The limit of (Vi, gi,1) with respect to the pointed Hausdorff
distance is Rk × Z where Z is an Alexandrov space with K ≥ 0. Let
Γi = º1(Fi) = º1(Vi). We take ((Ṽi, g̃i,1), Γi, p̃i) where (Ṽi, g̃i,1) is the
covering space of Vi equipped with metric induced from gi,1. Let us

38If we use Cheeger-Colding’s splitting theorem similar argument works. How-
ever we need several modification on the technical points to the arguments on [59]
or one given below. Unfortunately the technical detail of such argument is not
written in the literature. The author and T. Yamaguchi are planning to write it
and make it public near future. But maybe it is too technical to be included in this
article.

39This lemma is actually weaker than [59] Theorem 3.10. But it is enough for
present purpose since we now have Theorem 17.23.
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take a subsequence and let (V1, G, q) be the limit. We apply splitting
theorem 16.4 to V1 and find V1 = R` × Y where Y is compact. Since
(R` × Y )/G ª= Rk × Z we find that V1 = Rk × R`−k × Y such that G
acts only on R`−k × Y and (R`−k × Y )/G = Z.

Since G is a Lie group by Theorem 17.23 it follows that we can take
its connected component G0. Since G/G0 is discrete and (R`−k×Y )/G
is compact we can prove that G/G0 has abelian subgroup of finite index.
(This is easy to see if G acts effectively on R`−k. The compact factor
Y only contributes a finite group.) To apply Lemma 19.15 we replace
V1 = Rk ×R`−k × Y by X = B0(D, Rk)×R`−k × Y for large but fixed
D and find a sequence ((Xi, dXi), Γi, pi) converging to ((X, dX), G, q).
(We can find such Xi Ω Vi easily by using fiber bundle fi.)

We now apply Lemma 19.15 to obtain Γi,0.
Since (X, dX) is an Alexandrov space, it follows from Theorem 17.2

that we can find q0 near q and ri → 1 such that ((X, ridX), q0) con-
verges to (Rk+m, 0) with m > 0. (Note since Diam(Z) = 1 it follows
that R`−k × Y is not a point.)

We may replace ((Xi, dXi), Γi, pi) by a subsequence which converges
to ((Xi, dXi), Γi, pi) very quickley compared to 1/ri. Then we find qi

such that ((Xi, ridXi), Γi, qi) converges to (Rk+m, G0, 0) for some G0.
Since we can use the fact that Γi,0 converges to G0 the connected Lie
group and the convergence is quick compared to ri to show that Γi,0 is
generated by Γi,0(δi) = {∞ ∈ Γi,0|d(∞(qi), qi) < δi} where δi → 0. Now
we apply induction hypothesis. Then if ≤ > δi (where ≤ is as in Propo-
sition 19.16) we find that Γi,0(δi) has index finite solvable subgroup.
This is a contradiction since Γi/Γi,0

ª= G/G0 has index finite abelian
subgroup. §

20. Hausdorff convergence of Einstein manifolds

In the last four sections, we discuss Gromov-Hausdorff convergence
under the assumption Ricci ≥ −(n− 1).

We first remark that, when we work under the assumption Ricci ≥
−(n − 1), the topology can change when we go to the limit, even in
the noncollapsing situation, namely in the situation where we assume
Vol ≥ v > 0 . Such a phenomenon was first observed in the study
of 4 dimensional Einstein (or complex 2 dimensional Kähler-Einstein)
manifold (at least around 20 years ago as far as I know).

Let us so start by a review of the case of Einstein manifolds. Let
Γ Ω SU(2) be a finite subgroup. We consider the quotient C2/Γ. It is
a Kähler orbifold with isolated singularity at origin. (This singularity
is called the Kleinian singularity.) There is a resolution called minimal

resolution of Kleinian singularity which we denote by ]C2/Γ → C2/Γ.
Eguchi-Hanson [49] and others constructed a Ricci flat Kähler metric
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g ]C2/Γ
on ]C2/Γ which is asymptotically locally Euclidean (in the sense

we define later in Definition 20.1). (Such a metric is called gravita-

tional instanton.) Asymptotically locally Euclidean metrics on ]C2/Γ is
classified by Kronheimer [98].

Suppose (X, gX) is a 4 dimensional Riemannian orbifold locally of
Kleinian type. (Namely X is locally a quotient of C2 by a finite group
Γ Ω SU(2). We assume also that the metric on X is a quotient metric
with respect to certain Γ invariant metric locally.) We assume that X
is Ricci flat Kähler. (Namely its Ricci curvature at regular points is 0
and the metric is Kähler at regular point.) We can locally glue metric
gX on X and the Ricci flat Kähler metric ≤g ]C2/Γ

on X to obtain a

metric g0≤ on the resolution X̃ of X. g0≤ is almost Ricci flat. We can use
the technique of Yau’s proof of Calabi conjecture [158] to show that
there exists a Ricci flat Kähler metric on X̃ near g≤. (See [96, 13].)
We remark that (X̃, g0≤) and (X̃, g≤) converges to (X, g) with respect to
the Gromov-Hausdorff distance. Typical example is a Kummer surface
where we take X = T 4/Z2 (and Γ = Z2).

Thus, we have

Observation 20.1. There exists a famly of Riemannian manifolds
(X, g≤), such that Riccig≤ ≡ 0, Vol(X, g≤) ≥ v > 0 and that the limit of
(X, g≤) as ≤ → 0 converges to a compact metric space X which is not a
manifold.

The construction here is an analogue of Taubes’ constructon [145] of
Anti-Self dual connection on 4 manifolds.

Later Joyce (see [89]) generalized this construction and used it to
construct (higher dimensional) Riemannian manifolds with exceptional
holonomy. (They are in particular Ricci flat.) Namely Joyce started,
for example, with a 7 dimensional flat orbifold X = T 7/Γ, which is
obtained by T 7 divided by a finite group of isometries Γ. In his exam-
ple, the singular locus of X is codimension 4 totally geodesic smooth
submanifold (actually it is a disjoint union of T 3). Then Joyce glued

T 3× Ĉ2/Z2 (equipped with direct product metric) along singularity to
obtain a Riemannian manifold and use implicit function theorem to
obtain a manifold with exceptional holonomy. In his construction, we
also have a family of metrics g≤ which is of exceptional holonomy (and
inparticular is Ricci flat) and which converges to X.

A converse to the Observation 20.1 is proved by Nakajima and others
as follows.

Theorem 20.2 (Nakajima [105]). Let gi be a sequence of Einstein
mertrics with Ricci = ±1 or 0, on a 4 manifolds M , such that Vol(M, gi) ≥
v > 0. (Here v is independent of i.) Let X = limGH

i→1(M, gi). Then
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there exists a finite subset S Ω X such that X \ S is an Einstein 4
manifold.

Moreover for ever δ > 0 there exists a diffeomorphism Φi : X\NδS →
M such that the pullback Riemannian metric Φ§i gi converges to the
Riemannian metric on X in C1 topology.

Remark 20.1. In case of 4 dimensional Einstein manifold, the L2 norm
of the curvature ∫

Mi

|RMi|n/2≠Mi =

∫
M

|RM |2≠M(20.1)

is a topological invariant and is estimated by the Euler number. This
fact is essential in the proof of Theorem 20.240.

In case dim Mi = 4 the same conclusion as Theorem 20.2 holds under
the additional hypothesis∫

Mi

|RMi|n/2≠Mi ∑ C.(20.2)

(In case we assume (20.2) we do not need to fix a topological type of
M .) Namely under Assumption (20.2) and Vol(Mi) ≥ v > 0, the limit
space X of a sequence of Einstein manifolds Mi has only finitely many
singular points.

We remark however the assumption (20.2) is too restrictive to handle
limit of Einstein manifold. In the example of Joyce mentioned above
the limit of a sequence of 7 dimensional Einstein manifolds is T 7/Z2

whose singularity is 3 dimensional. In this example, L2 norm of the
Ricci curavature is bounded but L3.5 norm is not bounded.

To study the structure of Mi or X near a singular point ∈ S, we
use the scaling argument as follows. For completeness we include the
case when dim M is general. Namely we assume we have a sequence
of Einstein manifolds Mi converging to X. We assume (20.2) and
Vol(Mi) ≥ v > 0. (Then the singular point set S of X of finite or-
der.) Let pi ∈ Mi which converges to p1 ∈ S. We scale the metric
gMi to RigMi so that |KRigMi

| becomes 1 at pi. We then consider the
limit ((Mi, RigMi), pi) with respect to the pointed Gromov-Hausdorff
distance. Theorem 16.1 implies that it has a limit, which we denote by
(X, gX). Using injectivity radius bound we can show that (X, gX) is a
Ricci flat Riemannian manifold. (It is noncompact but complete.) It
also satisfies the following condition :

40(20.1) is scale invariant if and only if dimM = 4. (We do not need Einstein
condition for this.) In this sense also the situation is very much similar to the study
of Yang-Mills equation in dimension 4. (Compare also the footnote at the beginig
of §7.)
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∫

X

|RX |n/2≠X ∑ C1

Vol(Bp(R, X)) ≥ C2R
n.

(20.3)

(See [14].) We then can apply the following Theorem 20.3. We define
:

Definition 20.1. A complete pointed Riemannian manifold ((X, g), p)
is said to be locally almost Euclidean (abbreviated by ALE hereafter) of
order τ > 0, if there exists a finite group Γ Ω O(n) and a diffeomorpism
Φ : X \Bp(R, X) → (Rn\B0(R, Rn))/Γ such that

|(Φ−1)§gX − gcan)(x)| ∑ C|x|−τ ,(20.4a)

|(∇kΦ−1)§gX(x)− (∇kΦ−1)§gX(y)|
|x− y|α ∑ C min(|x|, |y|)−1−τ−α,(20.4b)

holds for some α and R. Here gcan is the metric on Bp(R, X) ≥ C2Rn

induced by the Eulidean metric on Rn.

Theorem 20.3 (Bando-Kasue-Nakajima [14]). If (X, gX) is an n di-
mensional Einstein manifold satisfying (20.3) then it is ALE of order
n− 1. If (X, gX) is Einstein-Kähler and n = 4 then it is ALE of order
n.

Combining them we have :

Theorem 20.4 ([14], Anderson [11]). The limit space X in Theorem
20.2 is an Einstein orbifold41.

In higher dimension Theorems 23.16, 23.17 give a natural general-
ization of the results we explained here. If we remove the assumption
Vol(Mi) ≥ v > 0 (namely if we study collapsing situation), then even
in the case of Einstein manifold, not so many thing is known. This
problem is related to mirror symmetry in string theory and is calling
attention of several differential geometers working on it. There is a
result by Gross-Wilson [67] which discuss the case of K3 surface in the
collapsing situation and obtain a singular torus fibration.

We now consider more general Riemannian manifolds under condi-
tion of Ricci curvature below. To obtain a result similar to Theorem
3.4 we need to avoid the phenomenon we described in Observation 20.1.
There are several results assuming lower bound of injectivity radius, for
this purpose. We denote by Sn(D, i > ρ) the set of all isometry classes
of n dimensional compact Riemannian manifold (without boundary)
such that RicciM ≥ −(n− 1), Diam(M) ∑ D and iM ≥ ρ everywhere.
Let α ∈ (0, 1).

41A similar results hold under an additional assumption (20.2)
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Theorem 20.5 (Anderson-Cheeger [12]). Let Mi ∈ Sn(D, i > ρ) and
X = limGH

i→1Mi. Then X is a Riemannian manifold of Cα class and
there exists diffeomorphisms 'i : Mi → X such that ('−1

i )§gMi con-
verges to gX with respect to Cα norm.

Remark 20.2. Under stronger assumption |RicciM | ∑ (n−1), Diam(M) ∑
D and iM ≥ ρ, Anderson [8] proved a stronger result. Namely the limit
space X is a C1,α Riemannian manifold and ('−1

i )§gMi converges to gX

with respect to C1,α norm. It was applied (in [8]) to prove a sphere
theorems and pinching theorem for almost Einstein metric.

Corollary 20.6. The number of diffeomorphism classes represeted by
elements of Sn(D, i > ρ) is finite.

The proof of Theorem 20.5 is quite similar to the argument §6,7,8.
Namely we construct harmonic coordinate and obtain an appropriate
estimate then the proof is complete by using diffeotopy extension theo-
rem (or center of mass technique which we can apply to a smooth metric
near the limit Cα metric.) So the new result in [12] is the following :

Theorem 20.7 ([12] Theroem 0.1). There exists C(n, ρ), ≤(n, ρ) > 0
with the following property. Let M ∈ Sn(D, i > ρ). We can then cover
M by harmonic corrdinate Ui such that the C1,α norm of the coordinate
transformation is smaller than C(n, ρ) and the Cα norm of the metric
tensor written in this coordinate is smaller than C(n, ρ). Moreover for
any p ∈ M , the metric ball Bp(≤(n, ρ), M) is contained in some Ui.

21. Sphere theorem and L2 comparison theorem

In the last three sections, we concern with the class of Riemannian
manifolds with Ricci curvature bounded from below. Especially we
discuss results obtained by Colding and Cheeger-Colding recently. The
surveys [46, 47, 62] and a book [26] are recommended for their results.
The basic tool to study such Riemannian manifolds is Theorem 5.2. So
we first draw some of its consequences. We put

Ap(a, b; M) = {x ∈ M |a ∑ d(p, x) ∑ b},
Sp(a; M) = {x ∈ M |d(p, x) = a}.(21.1)

Lemma 21.1. If RicciM ≥ ∑, a < b < c, then

Vol(Ap(a, b; M))

Vol(Ap0(a, b; Sn(∑)))
≥ Vol(Ap(b, c; M))

Vol(Ap0(b, c; Sn(∑)))
(21.2)

and
Vol(Sp(a; M))

Vol(Sp0(a; Sn(∑)))

≥ Vol(Ap(a, b; M))

Vol(Ap0(a, b; Sn(∑)))
≥ Vol(Sp(b; M))

Vol(Sp0(b; Sn(∑)))
.

(21.3)
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(21.2) follows from

Vol(Ap(0, a; M)) + Vol(Ap(a, b; M))

Vol(Ap0(0, a; Sn(∑))) + Vol(Ap0(a, b; Sn(∑)))

≥ Vol(Ap(0, a; M)) + Vol(Ap(a, b; M)) + Vol(Ap(b, c; M))

Vol(Ap0(0, a; Sn(∑))) + Vol(Ap0(a, b; Sn(∑))) + Vol(Ap0(b, c; Sn(∑)))
.

By taking limit b → a and b → c in (21.2) we obtain (21.3). §
Lemma 21.2. If RicciM ≥ (n− 1) = dim M − 1 and if p, q ∈ M with
d(p, q) > º − ≤, then for each x ∈ M we have

d(p, x) + d(q, x)− d(p, q) ∑ τ(≤|n).

To show Lemma Let δ = d(p, x) + d(q, x) − d(p, q), r = d(p, x) −
δ/2, s = d(p, q) − r = d(q, x) − δ/2. Then (Bp(r, M) ∪ Bq(s, M)) ∩
Bx(δ/2, M) = ;. Bp(r, M) ∩ Bq(s, M) = ;. Therefore, by Theorem
5.2, we have

Vol(Bp(r, M) ∪Bq(s, M))

Vol(M)
≥ 1− τ(≤|n),

Bx(δ/2, M)

Vol(M)
≥ Cδn.

Hence δ < τ(≤|n) as required. §

Corollary 21.3. If RicciM ≥ (n − 1) = dim M − 1 and if p, q ∈ M
with d(p, q) > º − ≤, then

Diam(M\Bp(º − ≤, M)) < τ(≤|n).

Corollay 21.3 is an immediate consequence of Lemma 21.2 and Myers’
theorem 5.4. We remark that Corollay 21.3 is a version of Proposition
4.4. Namely the coclusion of Corollay 21.3 is weaker than that of
Proposition 4.4 but it holds under milder assumption.

Lemma 21.4. If RicciM ≥ (n− 1) = dim M − 1 and if p, q ∈ M with
d(p, q) > º − ≤, then

Vol(Sp(δ; M))

Vol(Sp0(δ; Sn(1)))
∑ Vol(Sp(º − δ; M))

Vol(Sp0(º − δ; Sn(1)))
+ τ(≤|δ, n).(21.4)

We remark
Vol(Sp(δ; M))

Vol(Sp0(δ; Sn(1)))
≥ Vol(Sp(º − δ; M))

Vol(Sp0(º − δ; Sn(1)))

is a consequence of (21.1). Hence (21.4) implies that the ratio or
the volume, Vol(Sp(t; M))/Vol(Sp0(t; Sn(1))) is almost constant for t ∈
[δ, º − δ].

Let us prove Lemma 21.4. Let ≤ ø ρ ø δ. By Corollary 21.3, we
have :
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Aq(δ − 2ρ, δ − ρ; M)

µ Ap(º − δ + ρ− τ(≤|n), º − δ + 2ρ + τ(≤|n); M).
(21.5)

We may assume ρ− τ(≤|n) ≥ 0. We remark

Vol(Ap0(δ − 2ρ, δ − ρ; Sn(1))) = Vol(Ap0(º − δ + ρ, º − δ + 2ρ; Sn(1))).

Therefore (21.5) (together with Lemma 21.1) implies the first inequality
of :

Vol(Aq(δ − 2ρ, δ − ρ; M))

Vol(Ap0(δ − 2ρ, δ − ρ; Sn(1)))

∑ Vol(Ap(º − δ, º − δ + ρ; M))

Vol(Ap0(º − δ, º − δ + ρ; Sn(1)))
+ τ(≤|δ, ρ, n)

∑ Vol(Ap(δ − 2ρ, δ − ρ; M))

Vol(Ap0(δ − 2ρ, δ − ρ; Sn(1)))
+ τ(≤|δ, ρ, n)

(21.6)

Here the second inequlity is a consequence of Lemma 21.1. Changing
the role of p and q we have

Vol(Ap(δ − ρ, δ; M))

Vol(Ap0(δ − ρ, δ; Sn(1)))

∑ Vol(Aq(δ − ρ, δ; M))

Vol(Ap0(δ − ρ, δ; Sn(1)))
+ τ(≤|δ, ρ, n)

(21.7)

Therefore by (21.6), (21.7) and Lemma 21.1 we have

Vol(Sp(º − δ; M))

Vol(Sp0(º − δ; Sn(1)))
+ τ(≤|δ, ρ, n) ≥ Vol(Sp(δ; M))

Vol(Sp0(δ; Sn(1)))

as required. §

Lemma 21.5. If RicciM ≥ ∑ and p ∈ M then

Vol(Bp(R, M)) ∑ Vol(Bp0(R, Sn(∑))).

This is an immediate consequence of Theorem 5.2. §
We next discuss sphere theorems. The sphere theorem appearing

here can be regarded as a generalizatin of Theorem 17.20. So we first
sketch its proof. We first remark :

Lemma 21.6 ([80, 111]). If KM ≥ 1, Vol(M) > Vol(Sn)− ≤, then the
Gromov-Hausdorff distance between M and Sn is smaller than τ(≤|n).

Let p ∈ M we identify TpM with Tp§S
n for a point p§ ∈ Sn. We

then define Φ : M → Sn by Φ = Expp§ ◦Exp−1
p . Note Exp−1

p is discon-
tinuous. Using Corollary 21.3, Lemma 21.5, Toponogov comparison
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theorem 4.7, we can show that Φ is an τ(≤|n)-Hausdorff approxima-
tion. We omit the detail since we discuss sharper result (Theorem
21.8) later. §

Now under the assumption of Lemma 21.6 we can find points p0, · · · , pn,
q0, · · · , qn ∈ M such that

|d(pi, pj)− º/2| < τ(≤|n), |d(pi, qj)− º/2| < τ(≤|n),

|d(pi, qi)− º| < τ(≤|n).
(21.8)

In fact, if Sn µ Rn+1, the points p0i = (0, · · · , 0,
i
1, 0, · · · , 0), q0i = −p0i,

satisfy (21.8). Hence we can choose pi = Φ(p0i) where Φ : Sn → M is
an ≤-Hausdorff approximation.

Moreover, in case of Sn, the canonical embedding ISn : Sn → Rn+1

is obtained by

ISn(x) = (cos d(p0, x), · · · , cos d(pn, x)).(21.9)

Now the idea is to embed M in a neighborhood of Sn by using a formula
similar to (21.9). Namely we first take a smooth function 'i which is
close to d(x, pi) up to first derivative, if x /∈ Bpi(o(≤), M)∪Bqi(o(≤), M).
We then define IM : M → Rn+1 by

IM(x) = ('0(x), · · · , 'n(x)).(21.10)

We can then prove that d(IMΦ(x), I(x)) < o(≤) and

dist(TI(x)S
n, TIMΦ(x)(IM(M)) < τ(≤|n).

Here dist in the above formula is a distance as a codimension one linear
subspace in Rn+1. We can use these two formulas to prove that M is
diffeomorphic to Sn (in a similar way to §9.) §

Theorem 17.20 is generalized by Perelman as follows.

Theorem 21.7 ([118]). There exists ≤n > 0 such that if M satisfies
RicciM ≥ (n − 1), Vol(M) ≥ Vol(Sn) − ≤n, then M is homeomorphic
to a sphere.

Actually Perelman proved that ºk(M) = 1 for k < n under the
assumption of Theorem 21.7 and apply generalized Poincaré conjecture.
The idea of the proof is hard to explain for the author in this kind of
article. So we refer [118] or [159]. We will discuss a proof a sharper
version Corollary 22.4 in §22.

Remark 21.1. We remark that a similar sphere theorem replacing vol-
ume by diameter does not holds. Actually Anderson [9] and Otsu
[110] found examples of manifolds (M, gi) such that Riccigi ≥ (n− 1),
Vol(M, gi) ≥ v > 0 and Diam(M, gi) → º but M 6= Sn. (Otsu’s
example is Sm × Sn−m and Anderson’s example is CP n or CP 2]CP 2.

We remark that Vol(Mi) → Vol(Sn) implies DiamMi → º (under
the assumption Riccigi ≥ (n− 1)) by Bishop-Gromov comparison the-
orem 5.2.
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Now we start the review of the works of Colding, who began with
the following theorem closely related to Theroems 17.20 and 21.7.

Theorem 21.8 (Colding [43, 44]). Let M be an n dimensional Rie-
mannian manifold with RicciM ≥ (n− 1).

(1) If Vol(M) ≥ Vol(Sn)− ≤ then dGH(M, Sn) < τ(≤|n).
(2) If dGH(M, Sn) < ≤ then Vol(M) ≥ Vol(Sn)− τ(≤|n).

The proof is somewhat similar to the proof of Theorem 17.20. How-
ever we need several new ideas. Especially we need to develop some
method to compare IM (21.10) with ISn (21.9). In the situation of
the proof of Theorem 17.20, this was done by Toponogov’s comparison
theorem. In our situation, Toponogov’s comparison theorem does not
apply since there is no sectional curvature bound. Colding developped
L2 comparison theorem for this purpose. We describe it below.

We consider p§ ∈ Sn and `§ : [0, α] → Sn be a geodesic parametrized
by arc length. We put `§(0) = q§, (d`§/dt)(0) = v§ ∈ Tq§S

n. We then
put hp§,α(v§, t) = cos d(`§(t), p§). We can calculate it easily as

hp§,α(v§, t) =
1

sin α
(d(p§, `(α)) sin(α− t) + d(p§, `(0)) sin t) .(21.11)

Now we use (21.11) to define a function on M with which we compare
the distance function. Let p ∈ M and ` : [0, α] → M be a geodesic
parametrized by arc length. We put `(0) = q, (d`/dt)(0) = v ∈ TqM .
(` is determined by v so we write ` = `v.) Let f : M → R be a function.
We then define

hf,α(v, t) =
1

sin α
(f(`v(α)) sin(α− t) + f(`v(0)) sin t) .(21.12)

We remark that hf,α may be regarded as a function of (v, t) ∈ SM ×
[0, α], where SM is the unit tangent bundle SM = {v ∈ TM ||v| = 1}.
In case f(x) = d(p, x) we put hf,α = hp,α.

Now L2 Toponogov theorem in [44] is as follows.

Theorem 21.9 ([44] Proposition 1.15). Let a0 ∈ [º/2, º). We assume
RicciM ≥ (n− 1) and p, q ∈ M with d(p, q) ≥ º− ≤. Then, for α ∑ α0,
we have :

1

αVol(SM)

∫
v∈SM

∫ α

0

|cos d(p, `v(t))− hp,α(v, t)|2 ≠SMdt < τ(≤|n, α0).

(21.13)

1

αVol(SM)

∫
v∈SM

∫ α

0

∣∣∣∣ d

dt
cos d(p, `v(t))− dhp,α

dt
(v, t)

∣∣∣∣2 ≠SMdt < τ(≤|n, α0).

(21.14)

Here ≠SM is the Liouville measure. (Hereafter we omit the symbol
of volume form in case it is clear which volume form we use.)
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Remark 21.2. We remark that (21.15) means that the length d(p, `v(t))
is close to the length of the corresponding triangle in Sn in L2 sense.

(21.14) means that the angle ∠p`v(t)`v(0) is close to the angle in
corresponding triangle in Sn in L2 sense.

Let us explain a part of the ideas of the proof of Theorem 21.9.
We first recall the following. Let ∏1(M) denotes the first nonzero

eigenvalue of Laplacian on (the functions of) M .

Theorem 21.10 (Lichnerowicz[100]-Obata[109]). If an n dimensional
Riemannian manifold satisfies RicciM ≥ (n − 1) then ∏1(M) ∑ −n.
The equality holds if and only if M is isometric to the sphere.

The proof can be done by Bochner formula, in the same way the the
argument of Step 1 below.

We also remark the following theorem by Cheng which is closely
related to Theorem 21.10.

Theorem 21.11 ([41]). Let M be a compact Riemannian manifolds
with RicciM ≥ (n− 1). If Diam(M) ≥ º then M is isometric to Sn.

What is important for us is that the first eigenfunction of Sn is
cos d(p, ·) and is exactly the function we want study in Theorem 21.10.
So the idea of the proof of the Theorem 21.10 goes as follows.

Step 1: Let f satisfy k∆f + nfk < δ, kfk = 1. (Here k k is the L2

norm.) We prove :

1

αVol(SM)

∫
v∈SM

∫ α

0

|f(`v(t))− hf,α(v, t)|2 < τ(δ|n),(21.15)

and a similar estimate for the t derivative of cos f(`v(t)) − hf,α(v, t)
([44] Lemma 1.4.)

This step uses Bochner-Weitzenbeck formula

1

2
∆|∇f |2 = |Hess(f)|2 + h∇∆f,∇fi+ Ricci(∇f,∇f).(21.16)

Here Hess(f)(X, Y ) = X(Y (f))− (∇XY )(f). (Note we are using pos-
itive Laplacian.) The proof is a kind of “almost version” of the proofs
of Theorems 21.10 and 21.11. To clarify geometric ideas, avoiding an-
alytic detail, we consider the case ∆f = ∏f , n ≥ −∏ > 0 and prove
f(`v(t)) = hf,α(v, t). We integrate (23.13) and using

∫
Mh∇f1,∇f2i =

− ∫
Mh∆f1, f2i, we find∫

M

(|Hess(f)|2 − |∆f |2 + (n− 1)|∇f |2) ∑ 0

Since ∏
∫

M |∇f |2 =
∫

Mh∇∆f,∇fi = − ∫
M |∆f |2, it follows that∫

M

(
|Hess(f)|2 − ∏ + n− 1

∏
|∆f |2

)
∑ 0.
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By TraceHess(f) = ∆f and elementary linear algebra, we find ∏ = −n
and

Hess(f) = −fgM .(21.17)

Using the fact d2f(`v(t))/dt2 = Hessf( ˙̀
v(t), ˙̀

v(t)) we have

d2

dt2
f(`v(t)) = −f(`v(t)).(21.18)

f(`v(t)) = hf,α(v, t) follows. §
Step 2: Let p, q ∈ M with d(p, q) > º − δ. We consider g(x) =
cos d(p, x). We then find f with k∆f + nfk < δ and kf − gkL2

1
< δ.

(k kL2
1

is Sobolev norm, that is an L2 norm up to first derivative.)([44]
Lemma 1.10.)

The essential part of this step (which is explained below) is to show∣∣∣∣n ∫
M

g2 −
∫

M

|∇g|2
∣∣∣∣ ∑ τ(δ)Vol(M),(21.19)

|
∫

g| < τ(δ)Vol(M),(21.20)

In fact, (21.20) implies that g is almost perpendicular to the 0-th eigen-
function of Laplacian (the constant). Then we can use (21.19) and
∏1 ≥ n to get conclusion.

Let a(v, t) be as in the proof of Theorem 5.2. We extend it as 0
outside V . (So precisely speaking a(v, t) is the function which we wrote
a0(v, t) in the proof of Theoremm 5.2.) By Lemma 21.4 we have∫

v∈Sn−1

a(v, δ) ∑
∫

v∈Sn−1

a(v, º − δ) + τ(≤|δ, n)(21.21)

On the other hand, the map t 7→ a(v, t) is nondecreasing by the proof
of Theorem 5.2. It follows that∣∣∣∣∫

v∈Sn−1

a(v, s)−
∫

v∈Sn−1

a(v, s0)
∣∣∣∣ ∑ τ(≤|δ, n)(21.22)

for s, s0 ∈ [δ, º − δ]. Therefore∣∣∣∣∫
M

g

∣∣∣∣ =

∣∣∣∣∫
v∈Sn−1

∫ º

t=0

a(v, t) cos t sinn−1 t

∣∣∣∣
=

∣∣∣∣∣
∫

v∈Sn−1

∫ º/2

t=0

(a(v, t)− a(v, º − t)) cos t sinn−1 t

∣∣∣∣∣
∑ τ(≤, δ|n)Vol(M).

(21.23)

Moreover using |∇g|2(x) = sin2 d(p, x) we have :∫
M

|∇g|2 =

∫
v∈Sn−1

∫ º

t=0

a(v, t) sinn+1 t.
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On the other hand∫
M

|g|2 =

∫
v∈Sn−1

∫ º

t=0

a(v, t) cos2 t sinn−1 t.

We remark
∫ º

0 sinn+1 tdt = n
∫ º

0 cos2 t sinn−1 tdt. Hence using (21.22)
we can easily show∣∣∣∣∫

M

|∇g|2 − n

∫
M

|g|2
∣∣∣∣ < τ(≤, δ|n)Vol(M).(21.24)

(21.23) and (21.24) complete this step as we mentioned before. §
These two steps and some more arguments imply Theorem 21.9.

(The integral in Theorem 21.9 is taken with respect to the Liouville
measure on the unit sphere bundle. In argument so far the measure is
taken with respect to the measure on M itself (or its products). They
are equivalent by Theorem 5.2.) §

We remark that in Theorem 21.9 we use only a weaker assumption
Diam(M) ª º and not yet Vol(M) ª Vol(Sn). (Compare Remark 21.1
which shows that Diam(M) ª º does not imply dGH(M, Sn) is small.)

Now using Theorem 21.9, the proof of Theorem 21.8 goes roughly as
follows.

We first explain (1). Let us assume Vol(M) ≥ Vol(Sn) − δ. It then
implies that for each p ∈ M there exists q ∈ M such that d(p, q) >
º − τ(δ)42. (This follows from Bishop-Gromov Theorem 5.2.) Now we
claim :

Lemma 21.12 ([44] Lemma 2.25). Under the assumption of Theorem
21.8 (1) there exists pi, qi (i = 0, · · · , n) such that (21.8) holds.

Once we have Lemma 21.12 we can construct a Hausdorff approxima-
tion Φ : M → Sn by perturbing x → (cos d(x, p0), · · · , cos d(x, pn)). In
fact, by Theorem 21.8, we can prove that the function x 7→ cos d(x, p0)
behave in a similar way (modulo τ(δ)) outside the set of measure τ(δ).
This is enough to show that it is a Hausdorff approximation. §
Remark 21.3. As we mentioned before we can use L2 comparison theo-
rem directly to show that a map is a Hausdorff approximation. However
we can not use it directly to find a homeomorphism. This is because L2

comparison theorem does not tell what happens on a set of small mea-
sure. This point is very different from Toponogov comparison theorem,
which however works only under the assumption of sectional curvarure.
We can use several ‘indirect’ argument to obtain various topological in-
formation using L2 comparison theorem. (See the next two sections.)

42Shiohama-Yamaguchi [140] introduced the notion of radius of M that is
infp supq d(p, q). This assertion means radius of M is close to º.
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The proof of Lemma 21.12 uses Theorem 21.7 and goes as follows. We
construct pi, qi (i = 0, · · · , k) satisfying (21.8) by induction on k. Sup-
pose we have pi, qi (i = 0, · · · , k). We then construct a map Φk : M →
Rk by x → (cos d(x, p0), · · · , cos d(x, pk)). We construct a set Ak from

of p0, · · · , pk, q0, · · · , qk. In case M = Sn and pi = (0, · · · , 0,
i
1, 0, · · · , 0)

Ak = Rk+1∩Sn = Sk and obtained by joining pi, qi several times along
minimal geodesics. We imitate the construction of Ak from pi, qj in M
to obtain Ak Ω M . (Actually we need to join only by good geodesics `v

that is a geodesic such that cos d(p, `v(t))−hp,a(v, t) is small. Theorem
21.9 implies that there are enough such geodesics.)

Now the restriction of Φk to Ak is similar to one for Sn. Hence Φk(Ak)
lies in a neighborhood of Sk and we may regard Ak

ª= Sk. Since k < n,
Theorem 21.7 implies that Ak is homotopic to zero in M . This implies
that there exists pk+1 ∈ M such that Φk(pk+1) = 0. We take qk+1 with
d(pk+1, qk+1) > º − δ. Thus induction works. §

To prove (2) of Theorem 21.8 we proceed as follows. We take pi, qi

(i = 0, · · · , n) such that (21.8) holds. (Since dH(M, Sn) is small we
can take such pi, qi.) We use it to construct Φ : M → Sn by Φ̃(x) =
(cos d(p0, x), · · · , cos d(pn, x)), Φ(x) = Φ̃(x)/|Φ̃(x)|. Using Theorem
21.9, we find that the determinant of the Jacobi matrix of Φ is almost
everywhere close to 1. It follows that |Vol(M)−Vol(Φ(M))| < τ(δ|n).
We need another idea to show that Vol(Sn \ Φ(M)) < τ(δ|n). Actu-
ally for this purpose we need a “local version” of Theorem 21.15 ([43]
Proposition 4.5). We omit it. §

The argument of the proof of Theorem 21.8 is a prototype of the
argument which are used by Coolding and Cheeger-Colding in several
other places. We explain them more in the last two sections where the
argument is combined with other arguments which are of more analytic
nature.

22. Hausdorff convergence and Ricci curvature - I -

In §21, we compared the distance function of a manifold of positive
Ricci curvature to one of round sphere, in the sense of L2

1 norm. In
this section, we compare the distance function of a manifold of almost
nonnegative Ricci curvature to one of Eulidean space.

Theorem 22.1 (Colding [45] Theorem 0.1). Let Mi be a sequence of
n dimensional Riemannian manifolds with RicciMi ≥ −(n − 1) and
let M1 be another n dimensional Riemannian manifold. We assume
limGH

i→1Mi = M1. Then we have :

lim
i→1

Vol(Mi) = Vol(M1).
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Remark 22.1. Actually Colding proved the following stronger (local)
result in [45]. Let Mi and M1 be complete Riemannian manifolds.
We assume RicciMi ≥ −(n − 1). Let pi ∈ Mi, p1 ∈ M1, and
r > 0. We assume that limGH

i→1Bpi(r, Mi) = Bp1(r, M1). Then
limi→1Vol(Bpi(r, Mi)) = Vol(Bp1(r, M1)).

Together with a result by Perelman and using results of controlled
surgery, Theorem 22.1 implies the following.

Theorem 22.2 ([45]). In the situation of Theorem 22.1, Mi is homo-
topy equivalent to M1 for large i. Moreover Mi is homeomorphic to
M1 for large i if n 6= 3.

Remark 22.2. In case the limit space is singular we can not prove a
result similar to Theorem 22.2 because of Example 21.1 by Anderson
and Otsu.

The Gromov-Hausdorff limit of the metrics Otsu constructed on S3×
S2 is a suspension of S2×S2 and hence is not a topological manifold.

Theorem 22.1 follows from Theorem 22.2 roughly in the following
way. Choose p1j ∈ M1, j = 1, · · · , N and small r > 0 such that

N⋃
i=1

Bp1j (r, M1) = M1,

and

1− δ ∑ Vol(Bp1j (r, M1))

Vol0(B0(r, Rn))
∑ 1 + δ(22.1)

Let Φi : M1 → Mi be ≤i Hausdorff approximation with ≤i → 0. We
take pi

j = Φi(p1j ) ∈ Mi. Since dH(Bpj
i
(r, Mi), Bpj1(r, M1)) is small it

follows from Theorem 22.1 (more precisely its local version stated in
Remark 22.1) together with (22.1) that

1− 2δ ∑
Vol(Bpi

j
(r, M1))

Vol0(B0(r, Rn))
∑ 1 + 2δ.(22.2)

We can then apply the method of Perelman appeared in the proof of
Theorem 21.6. It may43 imply that Bpi

j
((1− ≤)r, M1) is contractible in

Bpi
j
(r, M1). This will imply that Mi is homotopy equivalent to M in a

way similar to the proof of Theorem 3.5 in §15. Using controll surjery
in a way similar to [113] we can prove that Mi is homeomorphic to
M . §

43I wrote “may” here since Perelman did not state this result explicitely and
only say that “The Main Lemma can obviously be modified . . . ” at [118] p300.
Indeed it is very likely so. But I did not check it in detail. By the way, Colding
quote [119] in place of [118] at [45] p478 just before Theorem 0.4. I believe it is a
misprint.
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The proof of Theorem 22.2 is not worked out in so much detail in
[45]. However we do not need to worry about it at all now, since
Cheeger-Colding [29] improved Theorem 22.2 as follows.

Theorem 22.3 ([29] Theorem A.1.12). In the situation of Theorem
22.1, Mi is diffeomorphic to M1 for large i.

We discuss its proof later in this section. Theorem 22.3 together with
Theorem 21.8 immediately imply the following sharpning of Theorem
21.7. (We stated it as Theorem 2.6 in §2.)

Corollary 22.4 (Cheeger-Colding [29] Theorem A.1.10). There exists
≤n > 0 such that if M satisfies RicciM ≥ (n−1), Vol(M) ≥ Vol(Sn)−≤n

then M is diffeomorphic to a sphere.

Remark 22.3. We remark Therem 21.8 is used in the proof of Corollary
22.4. The proof of Therem 21.8 we sketched in the last section uses
Theorem 21.7. However we can avoid it as follows. Let RicciMi ≥
(n − 1), Vol(Mi) ≥ Vol(Sn) − ≤i, where ≤i → 0. We may assume that
Mi converges to a metric space X. Then, by Theorem 23.11, X is
isometric to a metric suspension SY , where SY is defined in Example
23.1 (3). Using the assumption on Mi and Theorem 22.5, we can show
that the tangent cone TxX of X at any point x ∈ X is Rn. Therefore,
since X = SY , it follows that Y = Sn−1. Hence X = Sn (isometric) as
required.

Remark 22.4. The assumption of Theorem 22.2 plus an additional as-
sumption RicciMi ∑ ∏ implies that the Riemannian metric of Mi con-
verges to one of M in C1,α topoology (after identifying manifolds by
appropriate diffeomorphism). ([45] Theorem 0.6.)

We now explain some of the ideas of the proof of Theorem 22.1. The
main part of the proof is the proof of (2) of the following theorem.

Theorem 22.5 ([45] Theorem 0.8 and Corollary 2.19). Let M be an
n dimensional Riemannian manifold with RicciM ≥ −∏ and p ∈ M .

(1) If Vol(Bp(1, M)) ≥ Vol(B0(1, Rn))− ≤ the we have

dGH(Bp(1, M), B0(1, Rn)) < τ(≤, ∏|n).

(2) If dGH(Bp(1, M), B0(1, Rn)) < ≤ the we have

Vol(Bp(1, M)) ≥ Vol(B0(1, Rn))− τ(≤, ∏|n).

An argument to show Theorem 22.1 by using Theorem 22.5 (2) is
omitted.

Let us sketch how to prove Theorem 22.5 (2). We will discuss the
proof of Theorem 22.5 (1) in the next section. We only show the
following version.
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Lemma 22.6. If M satisfies dGH(Bp(2R, B), B0(2R, Rn)) < ≤ and
RicciM ≥ −∏ then we have

Vol(Bp(1, M)) ≥ (1− τ(≤, ∏, 1/R|n))Vol(B1(1, Rn)).

The argument to show Theorem 22.5 (2) using Lemma 22.6 is tricky
but technical. (See [45] P 494.) (Note the inequality of oppsite direction

(1− τ)Vol(Bp(1, M)) ∑ Vol(B1(1, Rn)).

is a consequence of Theorem 5.2.)

Theorem 22.5 looks similar to Theorem 21.8. The proof of Lemma
22.6 also is similar. We first need a result corresponding Theorem 21.15.
In the proof of Theorem 21.15 we cosider the function x 7→ cos d(p, x)
in case when there exists q with d(p, q) ≥ º − δ. Here we consider the
following function bi

+ i = 1, · · · , n instead.
Let Φ : B0(2R, Rn) → Bp(2R, M) be an ≤-Hausdorff approximation.

Let qi = Φ(0, · · · , 0,
i
1, 0, · · · , 0) ∈ M . We put

bi(x) = d(x, qi)− d(p, qi),(22.3)

and study it in the ball Bp(1, M). We remark that bi may be regarded
as an approximation of Busemann function (Definiton 16.6). In the
proof of Cheeger-Gromoll splitting theorem 16.4, subharmonicity of
Busemann function is the main point.

We choose ρ with 1 ø ρ ø R. We consider bi : Bp(ρ, M) → R such
that

∆bi = 0,(22.4a)

bi = bi on ∂Bp(ρ, M).(22.4b)

In the case of Euclidean space Busemann function is nothing but a
linear function. So we compare bi with a linear function. We put
gi(v, t) = bi(`v(t)).

Proposition 22.7. For r ∑ α < 1, we have

kbi − bikL2
1(Bp(1,M)) ∑ τ,(22.5a) ∫

v∈SBp(1,M)

∣∣∣∣dgi(v, ·)
dt

(r)− gi(v, α)− gi(v, 0)

α

∣∣∣∣ < τ,(22.5b) ∫
Bp(1,M)

|h∇bi,∇bji − δij| < τ,(22.5c) ∫
Bp(1,M)

|Hess(bi)| < τ.(22.5d)

here τ = τ(∏, ρ/R, 1/ρ|n) and k kL2
1

is the L2 norm up to first deriva-
tive.
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The proof of (22.5a) is based on Li-Shoen’s Poincaé inequality [101]
(estimate of the first eigenvalue of Bp(ρ, M)), and the proof of (22.5d)
is based on Bochner-Weitzenbeck formula (19.1) and Cheng-Yau’s gra-
dient estimate [42]. Then (22.5b) follows in a way similar to the proof
of Theorem 21.9. We can use it to prove (22.5c). §

We put

Φ̃ = (b1, · · · ,bn) : Bp(1, M) → Rn.

(22.5a), (22.5b) imply that it induces an τ -Hausdorff approximation to
B0(1, Rn). (22.5c) implies that Φ̃ almost preserces volume.

To complete the proof of Lemma 22.6 we need to show that Vol(B0(1, Rn)\
Φ̃(Bp(1, M))) is small. We can prove it as follows44. Using (22.5)
we can find a point p0 ∈ Bp(1/2, M) such that Φ̃−1(Φ̃(p0)) = {p0}.
(See [26]p53-54 for the proof of this fact.) On the other hand, since
Φ̃ is a τ -Hausdorff approximation, it follows that Φ̃(∂Bp(1, M)) Ω
B1+τ (0, Rn) \B1−τ (0, Rn). Hence

Φ̃§ : Hn(Bp(1, M), ∂Bp(1, M); Z2) → Hn(B1+τ (0, Rn), B1−τ (0, Rn); Z2)

is well defined. Note

Hn(Bp(1, M), ∂Bp(1, M); Z2) ª= Hn(B1+τ (0, Rn), B1−τ (0, Rn); Z2) ª= Z2.

Using Φ̃−1(Φ̃(p0)) = {p0} we can show

Φ̃§ : Hn(Bp(1, M), ∂Bp(1, M); Z2) → Hn(B1+τ (0, Rn), B1−τ (0, Rn); Z2)

is non zero. This implies Φ̃(Bp(1, M))) æ B1−τ (0, Rn). This completes
the proof of Lemma 22.6. §

We next sketch the proof of Theorem 22.3 given in [29] Appendix A.
As is mentioned there this proof is similar to the proof by Cheeger [25]
of his finiteness theorem using diffeotopy extension theorem (which we
explained briefly in §6).

Let us begin with a definition. Let Z be a complete metric space
and ≤, r > 0. (n is a positive integer.)

Definition 22.1. We say that Z satisfies R≤,r,n condition if for each
x ∈ Z there exists s < r such that

dGH(Bx(s, Z), B0(s, Rn)) < ≤s.(22.6)

Theorem 22.8 (Cheeger-Colding [29] Theorems A.1.2, A.1.3). For
each n there exists ≤n independent of r such that the following holds.
If Z satisfies R≤,r,n condition with ≤ < ≤n, then, for each s < r, we
can associate a smooth Riemannian manifold Z(s) with the following
properties.

44Here we follows [26]p53-54. Colding’s argument in [45] is a bit different.
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(1) There exists a homeomorphism ΦZ,s : Z → Z(s) which is of
C1−τ(≤|n)- Hölder continuous. Namely :

C−1 ∑ (d(ΦZ,s(x), ΦZ,s(y)))1−τ(≤|n)

d(x, y)
∑ C(22.7)

for each x, y ∈ Z. Moreover ΦZ,s is an sτ(≤|n) Hausdorff approxima-
tion.
(2) Z(s) is ‘well-defined’ and ‘independent’ of s in the following
sense. If u ∑ s then there exists a diffeomorphism which is C1−τ(≤|n)-
Hölder continuous in a way independent of t, u. Namely we have

C−1 ∑ (d(ΦZ,u,s(x), ΦZ,u,s(y)))1−τ(≤|n)

d(x, y)
∑ C.(22.8)

where C is indepent of u, s, x, y. Moreover ΦZ,u,s is an sτ(≤|n) approx-
imation and satisfies :

d(ΦZ,u,s ◦ ΦZ,s(x), ΦZ,u(x)) < sτ(≤|n).(22.9)

(3) If Z is a Riemannian manifold then we may choose ΦZ,s to be a
diffeomorphism for sufficiently small s.
(4) There exists δ(n, r) > 0 depending n and r such that if Z, Z 0 both
satisfy R≤,r,n condition with ≤ < ≤n, and if dGH(Z, Z 0) < δ(n, r) then
there exists a diffeomorphism ™ : Z(r/2) → Z 0(r/2) such that

e−τ(≤,δ|r,n) ∑ d(™(x), ™(y))

d(x, y)
∑ eτ(≤,δ|r,n)(22.10)

d(™ ◦ ΦZ,r/2(x), ΦZ0,r/2(x)) < τ(≤, δ|r, n).(22.11)

To apply Theorem 22.8 for the proof of Theorem 22.3 we need the
followig.

Proposition 22.9. Let Mi be a sequence of n dimensional Riemannian
manifolds and let M1 be another Riemannian manifold of the same
dimension. We assume limGH

i→1Mi = M1. Then for each ≤ there exists
r such that Mi for large i and M1 satisfy R≤,r,n condition.

Proposition 22.9 and Theorem 22.8 immediately imply Theorem
22.3.

Let us prove Proposition 22.9. Under the assumption we have r =
r(µ) for each µ such that

1− µ ∑ Vol(Bp(r, Mi))

Vol(B0(r, Rn))
∑ 1 + µ,

for large i and i = 1 and any p ∈ Mi. (See (22.2).) Then we apply
Theorem 5.2 to obtain

1− µ ∑ Vol(Bp(s, Mi))

Vol(B0(s, Rn))
∑ 1 + µ,
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for any s ∑ t. We now apply Theorem 22.5 (1) after scaled to obtain

dGH(Bp(s, Mi), B0(s, Rn)) < sτ(µ|r, n).

as required. (Note since we scale the metric by factor 1/s > 1/r so the
curvature will be Ricci ≥ −(1− n)r2. So the curvature assumption in
Theorem 22.5 is satisfied if r is small enough.) §

We remark that independence of ≤n of r in Theorem 22.8 played a
key role here.

We now prove of Theorem 22.8. Let 100s < r. We will construct
Z(s) first. We remark that by using Assumption 22.6 we can find a
subsets {xi|i ∈ I} ∈ Z such that⋃

i∈I

Bxi(s, Z) = Z,(22.12a)

]{i ∈ I|Bxi(30s, Z) ∩Bxj(30s, Z) 6= ;} ∑ N(n),(22.12b)

for each j ∈ I. Here N(n) is independent of i, s. Let 'i : Bxi(100s, Z) →
B0(100s, Rn) be τ(≤|n)s Hausdorff approximaion. We have τ(≤|n)s
Hausdorff approximation '0i : B0(100s, Rn) → Bxi(100s, Z) such that
dist('0i ◦ 'i, id) < τ(≤|n)s and dist('i ◦ '0i, id) < τ(≤|n)s. We consider

'ji = 'j ◦ '0i|B0(10s,Rn) : B0(10s, Rn) → B0(35s, Rn)(22.13)

for i ∩ j with Bxi(30s, Z) ∩Bxj(30s, Z) 6= ;. It satisfies

|d('ji(x), 'ji(x))− d(x, y)| < τ(≤|n)s.(22.14)

We here remark the following simple lemma.

Lemma 22.10. If 'ji satisfies (22.14) then there exists √0ji : B0(10s, Rn) →
B0(35s, Rn) satisfying (22.14) and

e−τ(≤|n) ∑ d(√0ji(x), √0ji(x))

d(x, y)
∑ eτ(≤|n)(22.15a)

d('ji(x), √0ji(x)) < sτ(≤|n)(22.15b)

|√0ji|Ck < s−kCk,n.(22.15c)

Here Ck,n depends only on k and n.

The proof is an elementary smoothing argument.
We want to construct a smooth manifold by using √ji as a coordinate

transformation. It does not satisfy √0kj ◦ √0ji = √0ki but the following
holds if Bxi(20s, Z) ∩Bxj(20s, Z) ∩Bxk

(20s, Z) 6= ;.
d(√0kj ◦ √0ji(x), √0ki(x)) ∑ sτ(≤|n),(22.16)

for x ∈ B0(20s, Rn). We can now use the argument of [25] to approxi-
mate √0ji by √ji which satisfies (22.15) and

√kj ◦ √ji = √ki.(22.17)



108 KENJI FUKAYA

(Note that the number of steps we need to take to achieve (22.17) is
controlled by (22.12b).)

We thus constructed a manifold Z(t) whose coordinate transforma-
tion is √ji. We can use partition of unity to modify standard metric
on Rn so that it is compatible with √ji. Hence Z(t) is a Riemannian
manifold. We will construct ΦZ,s : Z → Z(s) later. At this stage we
have ™Z,s : Z → Z(s) which is an sτ(≤|n) Hausdorff approximation.

We next show ‘well-definedness’ property (2). We first consider the
case u ∈ [s/2, s]. Let us suppose we have Z(u) for u ≥ s. We use the
symbol \tilde, for points, maps etc. used to construct Z(u). (Namely
we write '̃ĩ, x̃ĩ, etc.)

Let Bx̃ĩ
(30u, Z) ∩ Bxj(30s, Z) 6= ;. We define ™jĩ : B0(20u, Rn) →

B0(30s, Rn) by ™jĩ = 'j ◦ '̃0
ĩ
. It satisfies

|d(™jĩ(x), ™jĩ(y))− d(x, y)| ∑ τ(≤)s ∑ 2τ(≤)u.

Hence we can approximate it by a smooth map Φ0
jĩ

satisfying (22.15c).

It is almost compatible with cooridinate transformations √ji,√̃j̃ĩ. Hence
again by an argument similar to [25] (or by using center of mass tech-
nique) we can approximate it by a diffeomorphism Φjĩ(x) which is
exactly compatible with coordinate transformation. We thus obtain
ΦZ,s,u, if u ∈ [s/2, s]. It is also an sτ(≤|n) Hausdorff approximation.
Let ΦZ,u,s be the inverse of it. We remark that we have an inequality

e−τ(≤|n) ∑ d(ΦZ,u,s(x), ΦZ,u,s(y))

d(x, y)
∑ eτ(≤|n)(22.18)

which is sharper than (22.10) in case u ∈ [s/2, s].
We remark here that the proof of Theorem 22.8 (4) is almost the

same as this argument. (So we do not discuss it.)
Now we continue the proof of (2) for the general u, s. We may assume

u = 2−ks. And put

ΦZ,u,s = ΦZ,u,2u ◦ · · · ◦ ΦZ,s/2,s.(22.19)

It is a diffeomorphism. We will check (22.10). Let ρ > 0. We first
remark that ΦZ,a,b is a bτ(≤|n) Hausdorff approximation for a ∑ b.
(This is because if b = 2ka then ΦZ,a,b is

∑k
j=0 τ(≤|n)2−jb Hausdorff

approximation.)
We first take ` such that

e−ρ <
1 + 2−`−1

1− 2−`−1
< eρ.(22.20)

Now we take x, y ∈ Z(s). We take k1 such that 2−k1−1s < d(x, y) ∑
2−k1s. (In case d(x, y) ≥ s we put k1 = 0.) Note, if d(x, y) ∑ s, we
have

k1 ∑ −C log
d(x, y)

s
(22.21)
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We use (22.18) and (22.21) and obtain

d(ΦZ,2−k1s,s(x), ΦZ,2−k1s,s(y))

d(x, y)
∑ ek1τ(≤|n) ∑ Cd(x, y)−τ(≤|n)(22.22)

Combining inequality of the opposite direction which can be proved in
a similar way, we have

C−1 ∑ (d(ΦZ,2−k1s,s(x), ΦZ,2−k1s,s(y)))1−τ(≤|n)

d(x, y)
∑ C(22.23)

We next put k2 = k1 + `. We may take ≤ so small that `τ(≤|n) < ρ.
Then we have :

e−ρ ∑ d(ΦZ,2−k2s,s(x), ΦZ,2−k2s,s(y))

d(ΦZ,2−k1s,s(x), ΦZ,2−k1s,s(y))
∑ eρ(22.24)

Finally (22.20) inplies

e−ρ ∑ d(ΦZ,u,s(x), ΦZ,u,s)

d(ΦZ,2−k2s,s(x), ΦZ,2−k2s,s(y))
∑ eρ(22.25)

since ΦZ,u,2−k2s is an 2−`−k1sτ(≤|n) Hausdorff approximation and d(x, y) ≥
2−k1−1s. The proof of (2) is complete.

We remark here that once the well definedness property is established
(3) is actually obvious. We only need to take s much smaller than
injectivity radius of Z.

We finally construct ΦZ,s : Z → Z(s). We put Φji = ΦZ;2−js,2−is :
Z(2−is) → Z(2−js). By construction we have Φkj ◦ Φji = Φki. Thus
we have an inductive system. Using (2), it is easy to see that the
inductive limit lim Z(2−is) is isometric to Z and there exists a map
Z(s) → limi→1 Z(2−is) satisfying the condition of (1).

We thus finished the proof of Theorem 22.8. §

23. Hausdorff convergence and Ricci curvature -II -

In this section we continue the discussion about the Gromov-Hausdorff
limit of a sequence of manifolds Mi with RicciMi ≥ −(n−1). It is know
that the limit space X can be very wild. For example it may not be lo-
cally contractible. ([102, 123].) Nevertheless various results are known
for such limit space, some of which we describe in this section.

We first state Theroem 16.4 again.

Theorem 23.1 (Cheeger-Colding [28]). Let Mi be a sequence of n
dimensional Riemannian manifolds with RicciMi > −∏i with ∏i → 0
and let (X, p) = limpGH

i→1(Mi, pi). Suppose X contains a line. Then X
is isometric to the direct product R×X 0.

Remark 23.1. The following a bit more general statement is proved.
Let RicciMi ≥ −∏i with ∏i → 0, and (X, p) = limpGH

i→1(Mi, pi). We
assume X ª= Rk × Y and that Y contains a line. Then Y ª= R× Y 0.
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Before explaining the outline of the proof, we mention several of its
applications. One important application is Theorems 19.12 and 10.5
which we explained already.

To state other applications, we need some definitions.

Definition 23.1. A measured metric space (X, µ) is a pair of metric
space X and a Borel measure µ on it. In this article we always assume
that µ(X) = 1. For pointed measured metric space (X, p, µ) we assume
µ(Bp(1, X)) = 1.

For a Riemannian manifold M we use renormalized volume form
µM = ≠M/Vol(M) and regard it as a measured metric space (unless
other measure is specified explicitely). For a pointed Riemannian mani-
fold (M, p), we use renormalized volume form µM = ≠M/Vol(Bp(1, M)).

Definition 23.2 ([54]). A sequence of measured metric spaces (Xi, µi)
is said to converge to (X, µ) with respect to the measured Gromov-
Hausdorff topology and write limmGH

i→1 (Xi, µi) = (X, µ), if there exists
a sequence of ≤i-Hausdorff approximations 'i : Xi → X with ≤i → 0,
which are Borel measurable and such that, for any continuous function
f on X, we have

lim
i→1

∫
Xi

(f ◦ 'i)dµi =

∫
X

fdµ.

The pointed measured Gromov-Hausdorff convergence is defined in the
same way. (To be precise we need net in place of sequence to define a
topology. It is obvious modification and is omitted.)

Remark 23.2. In [76] Chaper 31
2D Gromov defined a notion of §∏ con-

vergence for measured metric space. It is similar to but is slightly differ-
ent from measured Gromov-Hausdorff topology defined above. Namely
there is a situation where the support supp µ of limit measure is dif-
ferent from X. In that case §∏ convergence the limit of (Xi, µi) is
(supp µ, µ), and is different from the limit (X, µ) of measured Gromov-
Hausdorff topology. However if (Xi, µi) = (Mi, µMi) is a Riemannian
manifold and if RicciMi ≥ −(n − 1), then the support of the limit
measure is always X itself. (We can prove it using Bishop-Gromov
inequailty.) So the two definitions coincide to each other.

Measured Gromov-Hausdorff convergence was introduced to study
spectra of Laplace operator. We mention it later.

Lemma 23.2 ([54]). If limGH
i→1Xi = X, and if µi is a probability

Borel measure on Xi, then there exists a subsequence ki such that
limmGH

i→1 (Xki , µki) = (X, µ).

The proof is elementary.
We remark that the limit measure µ depends on the choice of sub-

sequence in general. In fact let us consider T 2 = S1 × S1 with metric
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gf
≤ = dt2 + ≤2f(t)2ds2, where f : S1 → R+ is a smooth function. Then

(T 2, g≤) converges to S1 with standard metric and measure fdt with
respect to the measured Gromov-Hausdorff topology. On the other
hand, the limit in Gromov-Hausdorff distance is indepedent of f .

We denote by Sn(D) the set of n dimensional Riemannian mani-
folds M with RicciM ≥ −(n − 1), Diam(M) ∑ D. We denote by
Sn(1) the set of n dimensional pointed Riemannian manifold (M, p)
such that RicciM ≥ −(n − 1). Let Sn(D), Sn(1) be the closure
of Sn(D), Sn(1) with respect to the Gromov-Hausdorff distance,
pointed Gromov-Hausdorff distance, respectively.

We next define the singularity set and the regular set of a length
space X ∈ Sn(D). We recall that the sequence (X, RidX , x) with
Ri → 1 always has a subsequence such that (X, RidX , x) converges
with respcet to the pointed Gromov-Hausdorff distance (Proposition
16.2). However the limit is not unique. (Such an example is constructed
in [29] §8.)

Definition 23.3. We say that TxX is a tangent cone of X at x if there
exists a sequence Ri →1 such that (X, RidX , x) converges to (TxX,o)
with respect to the pointed Gromov-Hausdorff distance45.

Definition 23.4. Let X ∈ Sn(1). We say that a point x ∈ X is in
Rk if Rk is a tangent cone TxX of x.

We say x is regular if it is in R = ∪kRk. Otherwise it is said to be
singular and we denote by S the set of all singular points.

Remark 23.3. This definition coincides with S(X) in Definition 17.7
by Otsu-Shioya in case when X is an Alexandrov space, because of
Theorem 22.5.

One of the main result by Cheeger-Colding on the limit space X (in
the collapsin situation) is the following :

Theorem 23.3 (Cheeger-Colding [29]). µ(S) = 0 for any limit mea-
sure µ.

Remark 23.4. (1) We remark that Theorem 23.3 implies µ(X\∪kRk) =
0 but does not imply the existence of k such that µ(X \ Rk) = 0.

(2) In Theorem 23.3 the limit measure µ is used. We do not know how
to uses Hausdorff measure since it is not known whether the Hausdorff
dimension of X ∈ Sn(D) is integer or not.

Here is some very brief idea how a statement like Theorem 23.3
follows from Theorem 23.1. We want to find many points x on X ∈
Sn(D) such that TxX is an Eulcidean space. A naive idea to find

45I am sorry that this terminology is inconsistent with one in Definition 16.4,
where TxX is called tangent cone when any such sequence (X,RidX , x) converges
to (Tx, 0). In this section we follow Cheeger-Colding and use this terminology. In
Definition 16.4 we followed Burago-Gromov-Perelman.
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such a point may be as follows. First we consider a minimal geodesic
xy1 and take an interior point on it and put it x1. Then any tangent
cone Tx1X contains a line and hence split as Tx1X ª= R × X1. We
may next take a point x2 near o ∈ Tx1X which is a midpoint of the
minimal geodesic. Then Tx2X1 contans a line and hence Tx2X1 splits.
This process stops after finitely many stages since we can estimate
the dimensoin of tangent cone by Bishop-Gromov inequality. Thus we
find near x some kind of ‘point’ for which a tangent cone is Rk. This
argument however is too much naive to prove Theorem 23.3. So we
need to work more seriously. See [29] §2. §

We remark that Theorem 23.3 can be applied also to collapsing sit-
uation. Namely it can be applied to the limit X of Mi such that
Vol(Mi) → 0. Several other results are proved by Cheeger-Colding in
[29, 30]. Neverthless there are yet many things unclear in the collapsing
situation. (In other words, the result in the collapsing situation does
not seem to be in the final form.) So we do not discuss it here. (We
will discuss one of the main results of [31] later.)

In the non-collapsing case, Cheeger-Colding obtained more precise
results. We discuss some of them here. The following theorem is a
generalization of Theorem 22.1. We denote by Sn(D, v) the set of
n dimensional Riemannian manifolds M with RicciM ≥ −(n − 1),
Diam(M) ∑ D, Vol(M) ≥ v. We also denote by Sn(1, v) the set of n
dimensional pointed Riemannian manifold (M, p) such that RicciM ≥
−(n − 1), Vol(Bp(1, M)) ≥ v. Let Sn(D, v), Sn(1, v) be the closure
of Sn(D, v), Sn(1, v) with respect to the Gromov-Hausdorff distance,
pointed Gromov-Hausdorff distance, respectively.

Theorem 23.4 ([29] Theorem 5.9). Let Mi ∈ Sn(1, v) We assume
that limpGH

i→1(Mi, pi) = (X, p). Then for any R we have

lim
i→1

Vol(Bpi(R, Mi)) = Hn(Bp(R, X))

Here Hn denotes the n-dimensional Hausdorff measure.

Corollary 23.5 ([29]). If X ∈ Sn(1, v) then the Hausdorff dimension
of X is n. Moreover any limit measure µ is equal to a multiple of the
n dimensional Hausdorff measure.

Corollary 23.5 follows from Theorem 23.4 easily. We explain an idea
of the proof of Theorem 23.4 later in this section.

Theorem 23.6 ([28] Theorem 5.2). Let X ∈ Sn(1, v) and x ∈ X.
Then any tangent cone TxX is isometric to a cone CY of some length
space Y of diameter ∑ º.

Remark 23.5. This result is a kind of generalization of the correspond-
ing result Theorem 17.16 on Alexandrov space. However it is not as-
serted that CY is unique. Actually there is a counter example [29]



METRIC RIEMANNIAN GEOMETRY 113

8.41. The conclusion of Theorem 23.6 does not hold in the collapsing
situation ([29] 8.95).

To prove Theorem 23.6 we need another kind of comparison theorem,
which we will explain later.

To state the next result we need a definition.

Definition 23.5. Let X ∈ Sn(1, v). We say that x ∈ R≤ if every
tangent cone TxX satisfies :

dGH(B0(1, TxX), B0(1, Rn)) < ≤.

We put S≤ = X \ R≤.

Remark 23.6. (1) Using Theorems 22.5,23.4 we can prove that there
exists δ such that Vol(Bx(r, X)) ≥ (1−δ)Vol(B0(r, Rn)) implies x ∈ R≤.
Thus Definition 23.5 is equivalent to Sδ(X) in Definition 17.7.

(2) We can easily see that if ≤0 < ≤ then R≤0 is contained in the
interior IntR≤ of R≤.

(3) In the case of X ∈ Sn(1, v), we can easily show R = Rn. Using
it, we can easily prove S = ∪≤>0S≤, R = ∩≤>0R≤.

The following is an analogy of Thereoms 17.2 and 17.22.

Theorem 23.7 ([29] Theorem 5.14). There exists ≤0(n) such that if
X ∈ Sn(1, v) and if ≤ < ≤0(n) then there exists a smooth Riemannian
manifold Z(≤) and a homeomorphism Φ≤ : Z(≤) → IntR≤ such that

C−1 <
d(Φ≤(x), Φ≤(y))1−τ(≤|n)

d(x, y)
< C.

Theorem 23.7 actually follows easily from Theorem 22.8. Namely
we find, for each ≤0 > ≤ and x ∈ R≤, a positive number r such that
dGH(Bx(r, X), B0(r, Rn))) < ≤0. Therefore any compact subset of IntR≤

satisfies condition R≤0,r,n for some r. Theorem 23.7 then follows from
Theorem 22.8. §

We next prove of Theorem 23.4. For simplicity of notation we assume
X is compact. We first prove Hn(S) = 0. Let µ be a limit measure.
We remark that there exists C1, C2 such that for 0 < r ∑ 1 we have :

C1r
n ∑ Vol(Bp(r, Mi)) ∑ C2r

n,(23.1a)

C1r
n ∑ µ(Bp(r, X)) ∑ C2r

n(23.1b)

In fact (23.1a) is a consequence of Bishop-Gromov inequality and Vol(Mi) ≥
v > 0. Then (23.1b) follows, since µ is a limit measure. By Theorem
23.3 we have µ(S) = 0. Therefore by (23.1b) and the definition of
Hausdorff measure we have Hn(S) = 0.

It follows that :

lim
≤→0

Hn(IntR≤) = Hn(X).(23.2)
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We can take disjoint union of finitely many balls U≤ = ∪jByj(rj, X) Ω
R≤ such that

Hn(X \ U≤) < τ(≤),(23.3a) ∣∣∣∣∣ωn

∑
j

rn
j −Hn(X)

∣∣∣∣∣ < τ(≤)(23.3b)

dGH(Byj(rj, X), B0(rj, Rn)) < 2≤rj.(23.3c)

where ωn = Vol(B0(1, Rn)). Here (23.3c) is a consequence of yj Ω R≤.
Then, for large i, we have disjoint union of balls U≤,i = ∪jByj,i(rj, Mi) Ω
Mi with

dGH(Byj,i(rj, Mi), B0(rj, X)) < 3≤rj.(23.4)

Thereofore, by (23.3b), (23.3c), (23.4), and Theorem 22.5 we have

|Hn(U≤)− Vol(U≤,i)| < τ(≤, 1/i|n).(23.5)

We thus proved :

Hn(X) ∑ Vol(Mi) + τ(≤, 1/i|n).

To prove the opposite inequality, we take finitely many balls Bza(ta, X)
such that

X µ
⋃
j

Byj(rj, X) ∪
⋃
j

Bza(ta, X)(23.6a) ∑
j

tna ∑ τ(≤).(23.6b)

Then for large i we find za,i such that

Mi =
⋃
j

Byj,i(rj, Mi) ∪
⋃
j

Bza,i(ta,i, Mi).(23.7)

Since

Vol

(⋃
j

Bza,i(ta,i, Mi)

)
< Cnt

n
a

it follows that

Vol(Mi \ U≤,i) ∑ τ(≤|n).(23.8)

Therefore, Hn(X) ≥ Vol(Mi)− τ(≤, 1/i|n), as required. §
We now sketch the proof of Theorem 23.1. We start with the follow-

ing situation.

(A) M is a Riemannian manifold with RicciM ≥ −∏ with small ∏.
(B) We assume dGH(BL(z, M), BL(z0, X)) < ρ/10 and there is a line
containing z0. (Here L is large.)
(C) Let p, q ∈ M with d(p, q) = 2L with large L.
(D) d(z, pq) ∑ ρ/3, |d(z, p)− L| ∑ ρ/3, |d(z, q)− L| ∑ ρ/3.
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Here M = Mi, where Mi is as in Theorem 23.1 for large i. Such pair
of points p, q exists because of (B).

We want to find a length space X 0 such that Bz(R, M) is close to
a D ball B(x0,0)(R, R × X 0) in R × X 0 with respect to the Hausdorff
distance. (Here 1 ø R ø L.)

We use the following function which is an approximation of the Buse-
mann function.

b+(x) = d(p, x)− d(p, z), b−(x) = d(q, x)− d(q, z).(23.9)

The argument to controll them is similar to the proof of Proposition
22.7. However our problem is a bit different from the situation of
Proposition 22.7 where Hausdorff approximation is given by assump-
tion. Our situation is similar to Theorem 22.5 (1) where we use other
assumption (which was the almost maximality of volume in case of
Theorem 22.5 (1)) to find Hausdorff approximation. In our case, we
use the following theorem by Abresch-Gromoll to obtain some infor-
mation on b± and improve it by using a similar argument as the proof
of Proposition 22.7. To state the result by Abresch-Gromoll we need a
notation.

Definition 23.6. For x, p, q ∈ M , an excess E(x; p, q) is by definition

E(x; p, q) = d(x, p) + d(x, q)− d(p, q).

Theorem 23.8 (Abresch-Gromoll[2]). If RicciM ≥ −(n−1)∏, d(z, p) ≥
L, d(z, q) ≥ L and if E(z; p, q) < ρ, then

E(x; p, q) < τ(ρ, ∏, 1/L|n, R)

for any x ∈ Bz(R, M).

Remark 23.7. Abresch-Gromoll stated Theorem 23.8 in the case E(z; p, q) =
ρ namely the case z ∈ pq. The above form is a modification by Cheeger-
Colding [28] Proposition 6.2. ([26] Theorem 9.1.)

Remark 23.8. Abresch-Gromoll used Theorem 23.8 to show the follow-
ing Theorem 23.9. It seems that Theorem 23.8 is the first comparison
theorem established assuming condition on Ricci curvature only.

For a length space M and B Ω A µ M we write Diam(B Ω A) the
following number

sup
p,q∈B

{the length of the shortest curve joinng p and q in A}.

Theorem 23.9 ([Abresch-Gromoll[2]). If M is a complete manifold
with RicciM ≥ 0, inf KM > −1, and

Diam(Sp(3R, M) µ Ap(2R, 4R; M)) ∑ C/R,

then M is homotopy equivalent to an interior of a compact manifold
with boundary.
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Theorem 23.9 is proved by Theorem 23.8 and Morse theory of dis-
tance function in a way similar to Theorem 14.6 .

Let us go back to the discussion of the proof of Theorem 23.1. The-
orem 23.8 and b+ + b− = E(x; p, q)− E(z; p, q) implies

−ρ ∑ b+ + b− ∑ τ(L−1, ρ, ∏|R, n)(23.10)

Using the fact that b± is “almost subharmonic” we have the following
formula (23.12). We define b+ : Bz(R, M) → R by

∆b+ = 0,(23.11a)

b+ = b+ on ∂Bz(R, M).(23.11b)

Then, we can prove

kb+ − b+kL2
1(Bz(R,M)) ∑ τ(L−1, ρ, ∏|R, n).(23.12)

(Here the right hand side will become small by taking L large, ∏, ρ
small.)

We now consider the Bochner formula :
1

2
∆(|∇b+|) = |Hessb+|2 + Ricci(∇b+,∇b+).(23.13)

We remark |∇b+| = 1. Hence using (23.12) the integral of the left
hand side of (23.13) is small. Since RiccM ≥ −(n− 1)∏ it follows from
(23.13) ∫

Bz(R,M)

|Hessb+| ∑ τ(L−1, ρ, ∏|R, n)(23.14)

∫
Bz(R,M)

(|∇b+|− 1) ∑ τ(L−1, ρ, ∏|R, n).(23.15)

We put X 0 = b−1
+ (0). Now we will use (23.14), (23.15) to show that

Bx(R, M) is close to a R ball in X 0 × R. with respect to the Gromov-
Hausdorff distance as follows.

Let us take y, z ∈ Bx(R, M). Let y0, z0 ∈ X 0 such that

d(y, y0) = d(y, X 0), d(z, z0) = d(z, X 0).

We will prove∣∣d(y, z)2 − d(y0, z0)
2 − (b+(y)− b+(z))2

∣∣ ∑ τ(L−1, ρ, ∏|R, n).(23.16)

(23.16) obviously implies that y 7→ (y0,b+(y)) : Bx(R, M) → B(x,0)(R, X 0×
R)) is a Hausdorff approximation and hence :

dGH(Bx(R, M), B(x,0)(R, X 0 × R)) ∑ τ(L−1, ρ, ∏|R, n),

which is enough to comlete the proof of Theorem 23.1.

Let us sketch the proof of (23.16). For simplicity we take b+(z) = 0
and z = z0.
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Let ` : [0, l] → M be a minimal geodesic joining y0 to y. We put
Q(t) = d(`(t), z). Let ∞t : [0, Q(t)] → M be a minimal geodesic joining
z to `(t

y
y

z=z

γ
t

l(t)

0

0

).

Figure 23.1

We put ht(s) = b+(∞t(s)). We remark that

d2ht

ds2
(s) = (Hessb+)(∞̇t(s), ∞̇t(s)) ø 1.(23.17)

On the other hand ht(Q(t)) = b+(∞(t)) is almost equal to t 46. Hence∥∥∥∥dht

ds
(s)− t

Q(t)

∥∥∥∥ ø 1(23.18)

(Here we remark that (23.17), (23.18) does not hold pointwise but only
after integrating over some domain. We omit the technical difficulty
which arises from this point.) By first variational formula, we have

dht

ds
(s) = h∞̇t(s),∇b+i .

= cos ∠y0∞(t)z =
dQ

dt
(t).(23.19)

(Here and hereafter
.
= means “almost” equal.)

Hence Q(t) “almost” satisfies the following differential equation.

dQ

dt
.
=

t

Q(t)
.(23.20)

The solution of (23.20) with initial value Q(0) = d(y0, z) is Q(t) =√
d(y0, z)2 + t2. Hence at t = b+(y) we have (23.16) with z = z0. (See

[26] Chapter 9 or [28] §6 for the detail of the proof.) §
Here we say a few words about the proof of Remark 23.1. In this

situation we can take not only p, q but also pi, qi i = 1, · · · , k. Namely
p, q is a point close to the line on Y and pi, qi are taken as a point
close to the point on the coordinate axis of Rk. Using them we obtain
b+ together with bi

+, i = 1, · · · , k. They all satisfy (23.14), (23.15).

46We can find (d2/dt2)(b+ ◦ ∞) is small in the same way as (23.17). Moreover
(d2/dt2)(b+ ◦ ∞)(0) is close to 1 by definition and (23.15).
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Moreover we have h∇bi
+,∇bj

+i .
= δij where b0

+ = b+. We define
Φ : X → Rk+1 by Φ = (b0

+, · · · ,bk
+). Using it we can construct a

pointed Hausdorff approximation X → Φ−1(0)×Rk in a way similar to
the proof of Theorem 23.1. See [29] p 425 - 426 where similar argument
appears. §

In §20 we reviewed several results obtained by L2 comparison The-
orem where we compared a manifold with round sphere. In §22 we
used L2 comparison theorem where the model space was flat Euclidean
space. In the proof Theorem 23.1, we compared a manifold with direct
product R × X 0. In [28], Cheeger-Colding developped a comparison
theorem where the model space is a warped product (hereafter we call
it warped product comparison theorem) and gave various applications.
We first review some of its applications.

One of its applications is Theorem 22.5 (1). The following is closely
related to it. (Theorem 22.5 (1) corresponds to the case when Y =
Sn−1.) Cheeger-Colding called this theorem ‘volume cone implies met-
ric cone theorem’.

Theorem 23.10 (Cheeger-Colding [28]). For each ≤ there exists δ =
δ(≤, n) with the following property. Let M be an n dimensional Rie-
mannian manifold with RicciM ≥ −δ(n− 1). We assume

Vol(Bp(1, M))

Vol(Sp(1, M))
∑ (1 + δ)

Vol(B0(1, Rn))

Vol(S0(1, Rn))
.

Then there exists a length space Y with Diam(Y ) ∑ º such that

dGH(Bp(1, M), Bo(1, CY )) ∑ ≤.

We remark that CY = ([0,1) × Y )/ ª where (0, x) ª (0, y) with
metric defined in Definition 17.2.

Another application of warped product comparison theorem is The-
orem 23.11. To state it we define warped product.

Definition 23.7. Let (X, gX) be a Riemannia manifold and f : (a, b) →
R+ be a smooth function. Then the warped product (a, b) ×f X is by
definition a product (a, b)×X equipped with the metric dr2©f(t)2gX ,
where r is the coordinate of the interval (a, b).

We need to define warped product for general length space also. Let
X be a length space and f : (a, b) → R+ be a smooth function. Let
` : [α, β] → (a, b) × X be a path which is, say, Lipschitz continuous.
We put `(t) = (r(t), `X(t)). We may change parameter so that `X(t) :
[α, β] → X is parametrized by arc length. We then define length L(`)
of ` : [α, β]×f X by

L(`) =

∫ β

α

√
((dr/dt)(t))2 + f(r(t))2dt.
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We thus defined the length space (a, b)×f X.

Example 23.1. (1) The simplest case is f ≡ 1. Then warped product
is the direct product.

(2) If (a, b) = (0,1) and f(r) = r, then the warped product (0,1)×r

X is the cone CX minus o. If moreover X = Sn−1 then it is Rn \ {0}.
(3) We take (a, b) = (0, º) and f(r) = sin r. In this case the warped

product (0, º)×sin r X is called the metric suspension SX. In particular
the metric suspension SSn−1 of round sphere Sn−1 is the round sphere
Sn.

Theorem 23.11 ([28] Theorem 5.14). If RicciM ≥ (n−1), dim M = n
and if Diam(M) ≥ º − ≤ then there exists a length space X such that
dGH(M, SX) < τ(≤|n).

Remark 23.9. It is not true in general that M is homemomorphic (or
homotopy equivalent to SX). The counter examples are ones by An-
derson and Otsu we mentioned already.

There are several other applications, for example to the study of cone
at infinity. We omit it.

We now explain the idea of the proofs of these theorems. The main
idea is to use warped product comparison theorem. To state it we
need some preliminary discussion. We begin with a characterization of
warped product. Let f : (a, b) → R+ be a smooth function we put :

F(r) =

∫ r

a

f(t)dt, k(r) =
df

dr
(r).(23.21)

Lemma 23.12. Let X be a Riemannian manifold and M = (a, b)×f X.
Then we have :

Hess(F) = k(r)gM .(23.22)

Example 23.2. (1) In case M = R ×1 X the direct product. F is
linear and k = 0.

(2) In case M = Rn = CX \ 0 = (0,1)×r X, we have F = r2/2 and
k(r) = 1. If X = Sn−1, M = Rn then F(x1, · · · , xn) = 1

2(x
2
1 + · · ·+ x2

n)
and (23.22) is obvious.

(3) In case M = (0, º) ×sin r Sn−1 we have F(r) = −k(r) = cos r.
Formula (23.22) is (21.17).

Let us prove Lemma 23.12. We put ∂r = ∂/∂r. Hess(F)(∂r, ∂r) = k
is obvious since t 7→ (t, p) is a geodesic. Let V be a vector filed of X,
which we we regard a vector field on M . We have [V, ∂r] = 0. Since
gM(V, V ) = f 2gX(V, V ) it follows that

−gM(∂r,∇V V ) = gM(∇V ∂r, V ) = gM(∇∂rV, V ) = fkgX(V, V ).
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On the other hand, V (F) = 0, ∂r(F) = f . Therefore

Hess(F)(V, V ) = −(∇V V )(F) = f 2kgX(V, V ) = kgM(V, V ),

as required. §
The warped product comparison theorem is an ‘almost version’ of

the following converse to Lemma 23.12.

Proposition 23.13. If M is a Riemannian manifold F : M → (α, β)
with is a fiber bundle. Suppose We assume that there exists a function
k : M → R such that

Hessx(F) = k(x)gM .(23.23)

We put X = {x ∈ M |F(p) = F(x)}. Then there exists a function
f : (a, b) → R+ such that

M ª= (a, b)×f X (isometry),(23.24a)

F(x) =

∫ r(x)

r(p)

f(t)dt(23.24b)

k(x) =
df

dr
(r(x)).(23.24c)

Here r : M ª= (a, b)×f X → (a, b) is the projection to the first factor.

We now state warped product comparison theorem. Let M be a
complete Riemannian manifold and K be a compact subset. We put

r(x) = d(x, K) = inf{y ∈ K|d(x, y)},(23.25a)

AK(a, b, M) = {x ∈ M |a < r(x) < b}.(23.25b)

Let f : (a, b) → R+ be a smooth function and we define F(r) and k(r)
as in (23.21). We regard r as a function on AK(a, b, M) then F and
k are functions on AK(a, b, M) as well. The following assumption are
generalization of similar formulae we met several times already. For
example (23.14),(23.14) where k(r) = 0, and (21.17) where k(r) =
cos r.

Assumption 23.1. There exists F̃ : AK(a, b, M) → (a, b) such that

sup |F̃ − F| ∑ ≤,(23.26a)

1

Vol(AK(a, b, M))

∫
AK(a,b,M)

|∇F̃ −∇F| ∑ ≤,(23.26b)

1

Vol(AK(a, b, M))

∫
AK(a,b,M)

|HessF̃ − kgM | ∑ ≤.(23.26c)

Theorem 23.14 asserts under Assumption 23.1 plus some more (which
will follow), AK(a, b, M) is Gromov-Hausdorff close to some warped
product (a, b)×f X.



METRIC RIEMANNIAN GEOMETRY 121

Assumption 23.2. M is an n-dimensional complete Riemannian man-
ifold with KM ≥ −Λ. Diam(AK(a, b, M)) ∑ D. 0 < α0 < α,
0 < ξ < α− α0.

For each x ∈ r−1(a + α0) there exsits y ∈ r−1(b− α0) such that

d0(x, y) ∑ b− a− 2α0 + ≤.(23.27)

Theorem 23.14 (Cheeger-Colding[28] Theorem 3.6). Under the As-
sumptions 23.1 and 23.2, there exists a length space X such that

dGH((AK(a + α, b− α, M), d0), (a+α, b−α)×f X) ∑ τ(≤|α0, ξ, n, f, D).

Remark 23.10. In Assumption 23.2 and Theorem 23.14 we use the
symbol d0 for the metric of subsets of M . Note the space AK(a, b, M) is
not complete. So when we define the metric function d : AK(a, b, M)×
AK(a, b, M) → R using Riemannian metric, we need to be a bit careful.
Namely for p, q ∈ AK(a, b, M) we need to take the infinimum of the
length of the curves joining them in a slightly larger domain. The
metric d0 stands for such a metric. We do not define it since it is too
much technical. See [28] p 205-206.

Let us explain the idea of the proof of Theorem 23.14. Actually the
idea is quite similar to one of the proof of (23.16) we discussed already.

We take X = r−1(a + α). To define a metric on it we consider
broken geodesic on its small neighborhood and take the infinimum of
the length of them. Now we construct Hausdorff approximation Φ :
AK(a + α, b− α, M) → (a+α, b−α)×fX. Let y, z ∈ AK(a + α, b− α, M).
We take y0, z0 ∈ X so that d(y, y0) = d(y, X), d(z, z0) = d(z, X). We
remark r(x) = d(x, X)− a− α0. We put

Φ(y) = (r(y), y0),

and will prove that Φ is an Hausdorff approximation.
We assume z0 = z for simplicity. Let ` : [0, l] → M be a minimal

geodesic joining y0 to y. We put Q(t) = d(`(t), z). Let ∞t : [0, Q(t)] →
M be a minimal geodesic joining z to `(t).

Actually there is a technical trouble here. Namely since AK(a + α, b− α, M)
is not complete, we may not be able to take ∞t. By this reason, we need
to take broken geodesic. (See the figure below.) However since this is
a technical point, we forgot it and presume that we can take ∞t.
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Figure 23.2

We put ht(s) = F̃(∞t(s)). By (23.26), ht ‘almost’ satisfies the differ-
ential equation

d2ht

ds2
(s)

.
= H(ht(s)).(23.28)

where H(c) = k(F̃−1(c)). We remark that (23.28) is an ordinary dif-
ferential equation of second order and hence has unique solution under
appropriate boundary condition. Note ht(0)

.
= F(a + α), ht(Q(t)) =

F(t + a + α). Thus ht is determined by Q(t). (Precisely we have to
say that ht is ‘almost’ determined by Q(t) since (23.28) is only ‘almost’
satisfied.) Moreover we have

dht

ds
(Q(t))

.
=

dQ

dt
(t)(23.29)

by the same reason as (23.19). Thus, (23.29) becomes a differential
equation of first order on Q and is determined by f . We remark that
Q satisfies an initial value condition Q(0) = d(z, y0). Therefore, the
value of Q at t = r(y)−a−α is determined by this equation and initial
value d(z, y0). (Precisely speaking, we can only say the value of Q is
almost determined.) By definition Q(r(y)−a−α) = d(y, z). Since it is
almost determined by d(z, y0) and r(y) and r(z) (which we assumed to
be zero for simplicity), it follows that Φ ‘almost’ preserves the length.

The fact that a small neighborhood of the image of Φ contains (a +
α, b − α) ×f X follows from (23.27). This is a sketch of the proof of
Theorem 23.14. §

We now discuss applications of Theorem 23.14.
We first show how we can use Theorem 23.14 to prove Theorem 22.5

(1). Let us assume Vol(Bp(1, M)) ≥ Vol(B0(1, Rn))− ≤ and RicciM ≥
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−∏. We put f(t) = t. Then k(t) ≡ 1, F(t) = t2/2. We need to check
Assumptions 23.1, 23.2. Put r(x) = d(x, p). We calculate

(2− n)

∫
Sp(R,M)

r1−n =

∫
Sp(R,M)

gradr2−n · dn =

∫
Bp(R,M)

∆r2−n.

(23.30)

Since Vol(Bp(1, M)) ≥ Vol(B0(1, Rn))− ≤ it follows from Lemma 21.1
that

∫
Sp(R,M) r1−n = cnVol(Sp(R, M))/Vol(S0(R, Rn)) is almost inde-

pendent of R. Hence (23.30) implies
∫

Bp(R,M)\Bp(δ,M) ∆r2−n is small.

Namely r2−n is almost a harmonic function on Bp(R, M) \ Bp(δ, M).
(We remark that r2−n is harmonic on Rn.) Then we have

∆r2−n = (2− n)div(r1−ngradr) = (2− n)r1−n∆r + (2− n)(1− n)r−n.

Hence

∆r
.
= (n− 1)r−1.(23.31)

And hence

∆r2 = 2div(rgradr) = 2 + 2r∆r
.
= 2n.(23.32)

We now apply (23.13) to r2/2 = F and obtain

n
.
=

1

2
∆r2 .

= |HessF|2 + r2Ricci(∇r,∇r).(23.33)

Since RicciM ≥ −∏ it follows from (23.33) and (23.32) that

Hess F .
= gM .

Hence if F̃ is a harmonic function which approximate F we can check
Assumptions 23.1, 23.2. Therefore Theorem 23.14 implies that there
exists X such that

dGH((Ap(2δ, 1− 2δ, M), d0), (2δ, 1− 2δ)×r X) ∑ τ(≤|δ, ∏, n).

To complete the proof it suffices to show that X is close to Sn−1 with
respect to the Gromov-Hausdorff distance. We can do it by looking the
proof of Theorem 23.14 in our case a bit more carefully. Alternatively
we can proceed as follows. Take ρ ø 1, with δ ø ρn. By assumption
and Bishop-Gromov inequality we can find p1, q1 such that 2d(p, p1) =
2d(p, q1) = d(p1, q1). We use it in the same way as the proof of Theorem
23.1 to find V1 æ Bp(ρ, M) such that dGH(V1, [−ρ, ρ]×X1) ∑ ρτ(≤, ∏|n).
We then take points p2, q2 in a neighborhood of X1 such that 2d(p2, p)

.
=

2d(q2, p)
.
= d(p2, q2). Then we use it in the same way as the proof of

Remark 23.1 to find V2 æ Bp(ρ2, M) such that dGH(V2, [−ρ, ρ]2×X2) ∑
ρ2τ(≤, ∏|n). Repeating this n times, we obtain Vn æ Bp(ρn, M) such
that dGH(Vn, [−ρ, ρ]n) ∑ ρnτ(≤, ∏|n). Since δ ø ρn it then follows that
dGH(X, Sn−1) ∑ τ(≤, ∏|n). It implies Theorem 22.5 (1). §

The proof of Theorem 23.10 is similar to the first half of the proof
of Theorem 22.5 (1) and is omitted. §
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We next explain the proof of Theorem 23.11. Let RicciM ≥ (n− 1)
and p, q ∈ M with d(p, q) ≥ º − ≤. Put f(r) = sin r, r(x) = d(x, p),
F(r) = −k(r) = − cos r. By (the proof of) Theorem 21.9 (See (21.17).
We remark that f there is our F .)

Hess(F)
.
= k(r)gM .

In this way we can check Assumptions 23.1. Assumption 23.2 follows
from Bishop-Gromov inequality in this case. We thus can apply The-
orem 23.14 and prove Theorem 23.11. §

We next explain a idea of proof of Theorem 23.6. Let ((X, dX), x) =
limpGH

i→1(Mi, xi) with (Mi, xi) ∈ Sn(1, v). We suppose that a tangent
cone TxX = limpGH

i→1((X, ridX), x) is not a cone.
Then there exists δ, R, ρ (and a subsequence of ri which we denote

by the same symbold) such that

dGH(Ax(δ, R; (X, ridX)), Ao(δ, R; CY )) > ρ

for and cone CY . We can take ji →1 such that

dGH(Axji
(δ, R; (Mji , rigMji

)), Ao(δ, R; CY )) > ρ/2.(23.34)

for and cone CY . We now claim that
Vol(Sxji

(δ/ri, (Mji , gMji
)))

Vol(S0(δ/ri, Rn))

> (1 + ≤)
Vol(Sxji

(R/ri, (Mji , gMji
)))

Vol(S0(R/ri, Rn))
,

(23.35)

for ≤ independent of i. In fact, if (23.35) does not hold, then we can
apply the argument of the first half of the proof of Theorem 22.5 (1)
to (Axji

(δ, R; (Mji , rigMji
) and using Theorem 23.14 we can show that

(23.34) does not holds.
Now it is easy to deduce a contradiction from (23.35). By taking

a subsequence we may assume that δ/ri > R/ri+1. Then (23.35) and
Bishop-Gromov inequality implies

Vol(Sxji
(R/ri, (Mji , gMji

)))

Vol(S0(R/ri, Rn))

> (1 + ≤)i−1
Vol(Sxj1

(R/r1, (Mj1 , gMj1
)))

Vol(S0(R/r1, Rn))
.

(23.36)

This is a contradiction since the left hand side is bounded as i →
1. §

In [31], Cheeger-Colding studied a convergence of eigenvalue of Laplace
operator using the result eplained so far. We state their result (without
outline of the proof) here.

We start with a simple example to illustrate that measured Hausdorff
convergence is related to the eigen value of Laplace operator. Let us
consider T 2 = S1 × S2 with Riemannian metric gf

≤ = dt2 + ≤2f(t)2ds2.



METRIC RIEMANNIAN GEOMETRY 125

Here f : S1 → R+. We assume
∫

fdt = 1. As we mentioned before
the limit of (T 2, gf

≤ ) with respect to the measured Hausdorff topology
is S1 with standard metric and measure fdt. The Dirichlet integral on
(T 2, gf

≤ ) is

D(h, h) = ≤

∫
f(t)

((
dh

dt

)2

+
1

≤f(t)

(
dh

ds

)2
)

dtds.

In case we consider eigenvalue of Laplacian which stay bounded as
≤ → 0, it suffices to consider h which is constant along s direction.
Hence we are to consider the bilinear form on L2(S1) defined by

D(h, h) =

∫
f(t)

(
dh

dt

)2

dt.

In [54] the author proved that a similar phenomenon occures in the
situation we discussed in §11. Cheeger-Colding generalized it much
and proved the following Theorem 23.15.

Theorem 23.15 ([31] Theorem 7.9). Let Mi ∈ Sn(D). We assume
that it converges to (X, µ) with respect to the measured Hausdorff topol-
ogy. Then there exists a (unbounded) symmetric bilinear form D on
L2(X, µ) with discrete spectrum ∏0(D) = 0 < ∏1(D) ∑ ∏2(D) ∑ · · ·
such that k-th eigenvalue ∏k(−∆Mi) of Laplace operator (on functions)
on Mi converges to ∏k(D).

Remark 23.11. (1) In case the multiplicity of eigenvalue ∏k(D) is m
then we put ∏k(D) = · · · = ∏k+m−1(D).

(2) The eigenfunction of −∆Mi converges to the eigenfunctions of D
in an appropriate sense.

We finally remark the study of limits of Einstein manifolds (or man-
ifolds with integral bounds of curvature tensor) we discussed in §20 is
improved by [32, 27] etc. Here we restrict ourselves to quote the fol-
lowing Theorems 23.16, 23.17. Let Mi be a sequence of n dimensional
Riemannian manifolds. We consider the following integral bounds of
the curvature for pi ∈ Mi.∫

Bpi (1,Mi)

|RMi|p≠Mi < C(23.37)

where C is independent of i. Let S, Sk be as in Definitions 23.4. Hm

is the m dimensional Hausdorff measure.
We say x ∈ S is (n−4k)-nonexceptional if there exists a tangent cone

TxX which is not isometric to Rn−4k×C(S4k−1/Γ) where Γ Ω O(4k) is
a finite group acting freely on S4k−1. Otherwise x is said to be n− 4k-
exceptional. LetNn−4k Ω Sn−4k be the set of all (n−4k)-nonexceptional
points.
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Theorem 23.16 ([32] Theorems 1.15,1.20, [27] Theorem 6.10). Let
Mi ∈ Sn(1, v) and limpGH

i→1(Mi, pi) = (X, p). We assume (23.37) for
1 ≥ p ≥ n/2 = dim Mi/2.

(1) If p is not an integer then Hn−2p(S) = 0.
(2) The Hausdorff dimension of S is not greater than n− 2p.
(3) If p = 2, then Hn−4(Nn−4) = 0.
(4) If Mi are Kähler and p is an integer then Hn−2p(S ∩Bp(R, X)) <
1 for any R.

We remark that in case n = 2 and Mi are Einstein, Theorem 23.16
(3) is Theorem 20.4.

Theorem 23.17 ([27] Theorem 11.1). In the situation of Theorem
23.16 we have :

(1) If p = 1 then compact subsets of S are n− 2 rectifiable.
(2) If either p = 2k is even an integer then Nn−4k ∩ Bp(R, X) are
N − 4k rectifiable.
(2) Mi are Kähler and p is integer, then S ∩ Bp(R, X) are n − 2p
rectifiable.

We remark that as in 4 dimensional case, if p = 2 and Mi are Ein-
stein, the condition (23.37) can be written in terms of Characteristic
classes and hence is a topological one.

These results is parallel to the corresponding results in (higher di-
mensional) gauge theory [106, 146].
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