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1 Introduction

Let G be a compact Lie group, m : P — B a principal G-bundle over a finite
complex B. We denote by G(P), the group of G-equivariant self-maps covering
the identity map of B. G(P) is called the gauge group of P.

Denote by P, , the principal SU(n)-bundle over S* with ca(P, %) = k. In
[7], the second author shows G(Px ) is homotopy equivalent to G(Ps /) if and
only if (12, k) = (12, k"), where (12, k) is the G.C.D. of 12 and k. Recently in [5],
we show G(Ps ) ~ G(Ps ) if and only if (24, k) = (24,%"). On the other hand
in [2] M.Crabb and W.Sutherland prove as P ranges over all principal G-bundles
over B, the number of homotopy types of G(P) is finite if B is connected and
G is a compact connected Lie group. If B is S* and G = SU(2), then there are
precisely six homotopy types of G ([7]).

The purpose of this paper is to show the following;:

Theorem 1.1. Denote by € a generator of mg(BSU(3)) = Z and by Gy, the



gauge group of the principal SU(3) bundle over S8 classified by ke'. Then G, ~
Gir if and only if (120, k) = (120, k").

By Atiyah-Bott [1], the classifying space BG(P) of G(P) is homotopy equiv-
alent to Mapp(B, BG), the connected component of maps from B to BG con-
taining the classifying map of P. Consider the fibre sequence

(1.1) Gr — SU(3) 2 Mapj. (S BSU(3)) — Map,.. (S, BSU(3)) == BSU(3).

By Lang [8] Mapy,. (S°, BSU(3)) is homotopy equivalent to Map(S°, BSU(3))
and ay, can be identified with <1SU(3), ke> =k <1SU(3), e> in

[SU(3), Map;; (S, BSU(3))] = [2°SU(3), BSU(3)] 2 [£5SU(3), SU(3)),

where € is the adjoint of ¢ and (,) denotes the Samelson product.
In §3 we show X0SU(3) ~ X7CP? v S'*, and therefore

[¥0SU(3), BSU(3)] = [R°CP?,SU(3)] @ m13(SU(3)).

In §2 we prove the unstable K'-group [L6CP2, SU(3)] is isomorphic to Z/120 &

Z/3 and |[[SCP?,SU(3)] /G| = (120, k)(3,k), where G, = {a € [ECP?,SU(3)] | (a, ke) = 0}.
Put Y = Map;(S,BSU(3)). Y is a loop space and 7;(Y) is finite for all j.

Since m3(SU(3)) = Z/6, 120a; = 0. By [5], if (120, k) = (120, %) then there

exists a self homotopy equivalence h of Y satisfying ho (ko) =~ k’ay. Therefore

if (120,%) = (120,%") then Gy ~ Gp/. On the other hand applying the functor

[SCP2, ] to (1.1), we get if the order of [SCP?, BGy] is equal to [ZCP2, BGy/]

then (120, %) = (120, ") and prove Theorem 1.1.

2 [Z6CP2 SU(3)]

First we determine [X5CP?,U(4)]. Put X = £°CP? = S® U,; e!® where 7 is the
generator of mo(S%) = Z/2 and Wy = U(c0)/U(4). Recall that as an algebra

H*(BU(00)) = Zlc1, ca, - - ]

where ¢; is the j-th universal Chern class and

H*(U(0)) = \(z1,23,...)

where z2;_1 = o(c;). Consider the projection 7 : U(co) — Wy. As an algebra

H*(Wy) = /\(fg,ﬁfu, )

and 7T*(J_72j+1) = T2j+1- Put ag; = 0(9_32]'-&-1)- as and ajp are generators of
H8(QW,) = HO(QW,) = Z. Note that Sq*pZg = 0 where p is the mod 2
reduction and therefore
Wy~(S?vsthue3u-- -,
QW ~(S¥vs'9uel?u. .-



Since dimX = 10, [X, QW] = [X, S%] @ [X, S'Y]. Using the fact that n? gener-
ates m10(S®%) = Z/2 we get

it (X, 88— [S8, 8% =7

is monic and Imi* = 2Z, where i : S® C X is the inclusion. Define a ho-
momorphism A : [X,QW,] — H8(X) & H(X) by Aa) = (a*as,a*ayg) for
a € [X,QWy]. Then we have

Lemma 2.1. X is monic and Im\ = {(n,m)|n =0 mod 2}.

Consider the fibre sequence
QU(c0) 25 QW L U(4) 5 U(oo).
Put u = (2,5) and v = (0,1). Then u,v € Im\ and v and v generate ImA.

Lemma 2.2. Im)o (Qn), is generated by 12u and 120v.

Note that as an algebra H*(CP?) = Z[t]/(t?) for |t| = 2 and K*(CP?) =
Z[z]/(x®) where chx =t + % Therefore cha? = t2. Denote by (3 a generator
of K(S%). K(X) is a free abelian group generated by (3&x and (3&z2. Since

(Qm).(o(22541)) = jleh;
(see [4]) we have

(Ao (Qm).) (&) = (24,60),
(Ao (Qm).)(G&a?) = (0,120)

and Lemma 2.2 is obtained.
Since K'(X) = 0, we have the following:

Theorem 2.3. [X,U(4)] = Z/12 ® Z/120.

Denote the commutator of U(n) by v and the lift of v constructed in [4] by
¥ :U(n) AU(n) — QW,. In [4] using 7(Zon11) = Cri1 We get

¥ (a2n) = Z Toj4+1 @ Tkt
Jj+k=n—1

where 7 is the transgression with respect to the fibering
W, — BU(n) — BU(c0).

Using 7(Zan+3) = ¢rt2 mod (¢,41) We can prove

¥ (aznt2) = E Tj41 @ Togy1
Jj+k=n



quite similarly.

Denote the inclusion XCP? C SU(3) by , a generator of 75(SU(3)) by e,
the projection XCP? — S° by ¢ and a generator of H?(S®) by s. Put k¥’ = €oq.
Consider the following commutative diagram:

SU(3) A SU(3) 22 U(4) A U(4) —— QW

| |
v v
SU(3) — U(4)
where i is the inclusion. Note that x*(xz3) = o(t),k*(z5) = o(t?),r" (z3) =
0, (x5) = 20 (%), €*(x3) = 0 and €*(z5) = 2s. Therefore we have
AFo(iokANioe)) =(2,2) =a,
AFo (o nioe) = (0,4) = .
Since oo + = u + v and 4a + 38 = 4u, we have the following:

Lemma 2.4. The subgroup of [X,U(4)] generated by i o (k,€) and io (k' €) is
isomorphic to Z/120 & Z./3.

On the other hand consider the exact sequence
(x) m0o(SU)) — [X,SU3)] — 75(SU(3)).

Since by [11], m10(SU(3)) = Z/30 and 7 (SU(3)) = Z/12, the order of [X, SU(3)]
is a divisor of 360. By Lemma 2.4, () is a short exact sequence, i, : [X,SU(3)] —
[X,U(4)] is monic and Imi, is the subgroup generated by io{x,€) and io (x',
Therefore we have the following:

Theorem 2.5. As a group [X,SU(3)] 2 Z/120 ® Z/3. Z/120 is generated by
(k + K',€) and Z/3 is generated by (4k + 3K’ €).

€).

For an integer k define
Gy, = {a € [ECP?,8U(3)]| (a, ke) = 0} .
Since [YCP2?,SU(3)] = K (XCP?), [£CP?,SU(3)] is generated by « and &’. Since
i
fore we have the following;:

Lemma 2.6. |[SCP?,SU(3)]/G| = (120,k)(3, k).

’ = —1, k++’ and 4k + 3k’ are also generators of [YCP?,SU(3)]. There-

3 Proof of Theorem 1.1
First we show ¥0SU(3) ~ X7CP? v S*. Consider the cofibering

13 2, 27CP? — 26SU(3).



Since £7CP? is 8-connected,
£ : [S",27CP? — {s"?, £CP?}

is isomorphic (See [11]). Note that £°(0) = 0, we get § = 0. Therefore
¥6SU(3) ~ X7CP? v S™ and

[26SU(3), BSU(3)] = [&7CP? v S, BSU(3)]

=~ [29CP?,SU(3)] @ m13(SU(3))
=7/1200Z/3DL/6

(See [9] and [11]). Put Y = Q§BSU(3). Y is a loop space. Since m;(Y) is finite
for any j, Y = I1Y(,. For a non zero integer n, the exponent of n at a prime p
is denoted by v,(n).

Let k and &’ be non zero integers satisfying (120,%) = (120,%’). Define
hp + Y(p) = Y(p) by

- (’%) if v, (k) < 1,(120)
" if 1,(k) > v,(120).

Note that if v,(k) < v,(120), then v,(k) = v,(k’) and (’%) € Z,)- hy is a ho-
motopy equivalence. Put h =1IIh,. h: Y — Y is a homotopy equivalence. Since
120c;; = 0, we have ho (kay) ~ k’a; (for details see [5]). Therefore if (120,k) =
(120, k"), then G ~ Gir. Note that [YCP?, BSU(3)] = K°(XCP?) = 0. Ap-
plying the functor [SCP2, ] to (1.1), we get the following exact commutative
diagram:

@) meP2,5U(3)] 2> [SCP?, Y] — > [SCP2, BG)] — 0.

[X,SU(3 [CP2, Gy]

Since Imay, = Coker(Qey). and Im(Qey). = Gy, we have |[CP2 Gi]| =
360/((120,k)(3,k)). Therefore if G ~ Gy then (120, k) = (120, k).
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