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1 Introduction

Let G be a compact Lie group, π : P → B a principal G-bundle over a finite
complex B. We denote by G(P ), the group of G-equivariant self-maps covering
the identity map of B. G(P ) is called the gauge group of P .

Denote by Pn,k, the principal SU(n)-bundle over S4 with c2(Pn,k) = k. In
[7], the second author shows G(P2,k) is homotopy equivalent to G(P2,k′) if and
only if (12, k) = (12, k′), where (12, k) is the G.C.D. of 12 and k. Recently in [5],
we show G(P3,k) ' G(P3,k′) if and only if (24, k) = (24, k′). On the other hand
in [2] M.Crabb and W.Sutherland prove as P ranges over all principal G-bundles
over B, the number of homotopy types of G(P ) is finite if B is connected and
G is a compact connected Lie group. If B is S4 and G = SU(2), then there are
precisely six homotopy types of G ([7]).

The purpose of this paper is to show the following:

Theorem 1.1. Denote by ε′ a generator of π6(BSU(3)) ∼= Z and by Gk, the
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gauge group of the principal SU(3) bundle over S6 classified by kε′. Then Gk '
Gk′ if and only if (120, k) = (120, k′).

By Atiyah-Bott [1], the classifying space BG(P ) of G(P ) is homotopy equiv-
alent to MapP (B,BG), the connected component of maps from B to BG con-
taining the classifying map of P . Consider the fibre sequence

(1.1) Gk → SU(3) αk−−→ Map∗kε′(S
6,BSU(3)) → Mapkε′(S

6,BSU(3)) ek−→ BSU(3).

By Lang [8] Map∗kε′(S
6,BSU(3)) is homotopy equivalent to Map∗0(S

6,BSU(3))
and αk can be identified with

〈
1SU(3), kε

〉
= k

〈
1SU(3), ε

〉
in

[SU(3),Map∗0(S
6,BSU(3))] ∼= [Σ6SU(3),BSU(3)] ∼= [Σ5SU(3),SU(3)],

where ε is the adjoint of ε′ and 〈, 〉 denotes the Samelson product.
In §3 we show Σ6SU(3) ' Σ7CP2 ∨ S14, and therefore

[Σ6SU(3),BSU(3)] ∼= [Σ6CP2,SU(3)]⊕ π13(SU(3)).

In §2 we prove the unstable K̃1-group [Σ6CP2,SU(3)] is isomorphic to Z/120⊕
Z/3 and |[ΣCP2,SU(3)]/Gk| = (120, k)(3, k), where Gk =

{
α ∈ [ΣCP2,SU(3)] | 〈α, kε〉 = 0

}
.

Put Y = Map∗0(S
6,BSU(3)). Y is a loop space and πj(Y ) is finite for all j.

Since π13(SU(3)) = Z/6, 120α1 = 0. By [5], if (120, k) = (120, k′) then there
exists a self homotopy equivalence h of Y satisfying h◦ (kα1) ' k′α1. Therefore
if (120, k) = (120, k′) then Gk ' Gk′ . On the other hand applying the functor
[ΣCP2, ] to (1.1), we get if the order of [ΣCP2, BGk] is equal to [ΣCP2, BGk′ ]
then (120, k) = (120, k′) and prove Theorem 1.1.

2 [Σ6CP2, SU(3)]

First we determine [Σ6CP2,U(4)]. Put X = Σ6CP2 = S8 ∪η e10 where η is the
generator of π9(S8) ∼= Z/2 and W4 = U(∞)/U(4). Recall that as an algebra

H∗(BU(∞)) = Z[c1, c2, . . .]

where cj is the j-th universal Chern class and

H∗(U(∞)) =
∧

(x1, x3, . . .)

where x2j−1 = σ(cj). Consider the projection π : U(∞) → W4. As an algebra

H∗(W4) =
∧

(x̄9, x̄11, . . .)

and π∗(x̄2j+1) = x2j+1. Put a2j = σ(x̄2j+1). a8 and a10 are generators of
H8(ΩW4) ∼= H10(ΩW4) ∼= Z. Note that Sq2ρx̄9 = 0 where ρ is the mod 2
reduction and therefore

W4 '(S9 ∨ S11) ∪ e13 ∪ · · · ,

ΩW4 '(S8 ∨ S10) ∪ e12 ∪ · · · .
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Since dimX = 10, [X, ΩW4] = [X, S8]⊕ [X, S10]. Using the fact that η2 gener-
ates π10(S8) ∼= Z/2 we get

i∗ : [X, S8] → [S8,S8] ∼= Z

is monic and Imi∗ = 2Z, where i : S8 ⊂ X is the inclusion. Define a ho-
momorphism λ : [X, ΩW4] → H8(X) ⊕ H10(X) by λ(α) = (α∗a8, α

∗a10) for
α ∈ [X, ΩW4]. Then we have

Lemma 2.1. λ is monic and Imλ = {(n,m)|n ≡ 0 mod 2}.
Consider the fibre sequence

ΩU(∞) Ωπ−−→ ΩW4
j−→ U(4) i−→ U(∞).

Put u = (2, 5) and v = (0, 1). Then u, v ∈ Imλ and u and v generate Imλ.

Lemma 2.2. Imλ ◦ (Ωπ)∗ is generated by 12u and 120v.

Note that as an algebra H∗(CP2) = Z[t]/(t3) for |t| = 2 and K∗(CP2) =
Z[x]/(x3) where chx = t + t2

2 . Therefore chx2 = t2. Denote by ζ3 a generator
of K̃(S6). K̃(X) is a free abelian group generated by ζ3⊗̂x and ζ3⊗̂x2. Since

(Ωπ)∗(σ(x2j+1)) = j!chj

(see [4]) we have

(λ ◦ (Ωπ)∗)(ζ3⊗̂x) = (24, 60),

(λ ◦ (Ωπ)∗)(ζ3⊗̂x2) = (0, 120)

and Lemma 2.2 is obtained.
Since K̃1(X) = 0, we have the following:

Theorem 2.3. [X, U(4)] ∼= Z/12⊕ Z/120.

Denote the commutator of U(n) by γ and the lift of γ constructed in [4] by
γ̃ : U(n) ∧U(n) → ΩWn. In [4] using τ(x̄2n+1) = cn+1 we get

γ̃∗(a2n) =
∑

j+k=n−1

x2j+1 ⊗ x2k+1

where τ is the transgression with respect to the fibering

Wn → BU(n) → BU(∞).

Using τ(x̄2n+3) ≡ cn+2 mod (cn+1) we can prove

γ̃∗(a2n+2) =
∑

j+k=n

x2j+1 ⊗ x2k+1
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quite similarly.
Denote the inclusion ΣCP2 ⊂ SU(3) by κ, a generator of π5(SU(3)) by ε,

the projection ΣCP2 → S5 by q and a generator of H5(S5) by s. Put κ′ = ε ◦ q.
Consider the following commutative diagram:

SU(3) ∧ SU(3) i∧i //

γ

²²

U(4) ∧U(4)

γ

²²

γ̃ // ΩW4

j

yyrrrrrrrrrr

SU(3)
i

// U(4)

where i is the inclusion. Note that κ∗(x3) = σ(t), κ∗(x5) = σ(t2), κ′∗(x3) =
0, κ′∗(x5) = 2σ(t2), ε∗(x3) = 0 and ε∗(x5) = 2s. Therefore we have

λ(γ̃ ◦ (i ◦ κ ∧ i ◦ ε)) = (2, 2) = α,

λ(γ̃ ◦ (i ◦ κ′ ∧ i ◦ ε)) = (0, 4) = β.

Since α + β = u + v and 4α + 3β = 4u, we have the following:

Lemma 2.4. The subgroup of [X, U(4)] generated by i ◦ 〈κ, ε〉 and i ◦ 〈κ′, ε〉 is
isomorphic to Z/120⊕ Z/3.

On the other hand consider the exact sequence

(∗) π10(SU(3)) → [X, SU(3)] → π8(SU(3)).

Since by [11], π10(SU(3)) ∼= Z/30 and π8(SU(3)) ∼= Z/12, the order of [X, SU(3)]
is a divisor of 360. By Lemma 2.4, (∗) is a short exact sequence, i∗ : [X, SU(3)] →
[X, U(4)] is monic and Imi∗ is the subgroup generated by i◦〈κ, ε〉 and i◦〈κ′, ε〉.
Therefore we have the following:

Theorem 2.5. As a group [X, SU(3)] ∼= Z/120 ⊕ Z/3. Z/120 is generated by
〈κ + κ′, ε〉 and Z/3 is generated by 〈4κ + 3κ′, ε〉.

For an integer k define

Gk =
{
a ∈ [ΣCP2,SU(3)]| 〈a, kε〉 = 0

}
.

Since [ΣCP2,SU(3)] ∼= K̃(ΣCP2), [ΣCP2,SU(3)] is generated by κ and κ′. Since∣∣∣∣
1 4
1 3

∣∣∣∣ = −1, κ+κ′ and 4κ+3κ′ are also generators of [ΣCP2,SU(3)]. There-

fore we have the following:

Lemma 2.6.
∣∣[ΣCP2,SU(3)]/Gk

∣∣ = (120, k)(3, k).

3 Proof of Theorem 1.1

First we show Σ6SU(3) ' Σ7CP2 ∨ S14. Consider the cofibering

S13 θ−→ Σ7CP2 → Σ6SU(3).
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Since Σ7CP2 is 8-connected,

Σ∞ : [S13,Σ7CP2] → {S13,Σ7CP2}
is isomorphic (See [11]). Note that Σ∞(θ) = 0, we get θ = 0. Therefore
Σ6SU(3) ' Σ7CP2 ∨ S14 and

[Σ6SU(3), BSU(3)] ∼= [Σ7CP2 ∨ S14, BSU(3)]
∼= [Σ6CP2,SU(3)]⊕ π13(SU(3))
∼= Z/120⊕ Z/3⊕ Z/6

(See [9] and [11]). Put Y = Ω6
0BSU(3). Y is a loop space. Since πj(Y ) is finite

for any j, Y = ΠY(p). For a non zero integer n, the exponent of n at a prime p
is denoted by νp(n).

Let k and k′ be non zero integers satisfying (120, k) = (120, k′). Define
hp : Y(p) → Y(p) by

hp =

{(
k′
k

)
if νp(k) < νp(120)

1 if νp(k) ≥ νp(120).

Note that if νp(k) < νp(120), then νp(k) = νp(k′) and
(

k′
k

)
∈ Z×(p). hp is a ho-

motopy equivalence. Put h = Πhp. h : Y → Y is a homotopy equivalence. Since
120α1 = 0, we have h◦ (kα1) ' k′α1 (for details see [5]). Therefore if (120, k) =
(120, k′), then Gk ' Gk′ . Note that [ΣCP2, BSU(3)] ∼= K̃0(ΣCP2) = 0. Ap-
plying the functor [ΣCP2, ] to (1.1), we get the following exact commutative
diagram:

(Ωek)∗ // [ΣCP2,SU(3)]
αk∗ // [ΣCP2, Y ] // [ΣCP2, BGk] // 0.

[X, SU(3)] // [CP2,Gk]

Since Imαk∗ ∼= Coker(Ωek)∗ and Im(Ωek)∗ = Gk, we have |[CP2,Gk]| =
360/((120, k)(3, k)). Therefore if Gk ' Gk′ then (120, k) = (120, k′).

References

[1] M.F.Atiyah and R.Bott, The Yang-Mills equations over Riemann surfaces,
Phils. Trans. Ray. Soc. London Ser A., 308 (1982), 523-615.

[2] M.C.Crabb and W.A.Sutherland, Counting homotopy types of gauge
groups, Proc. London. Math. Soc., (3)81(2000), 747-768.

[3] H.Hamanaka, On [X, U(n)] when dimX = 2n + 1, to appear in J. Math.
Kyoto Univ.

5



[4] H.Hamanaka and A.Kono, On [X, U(n)] when dimX = 2n, J. Math. Kyoto
Univ., 42(2003).

[5] H.Hamanaka and A.Kono, Unstable K1-group [Σ2n−2CP2,U(n)]
and homotopy type of certain gauge groups, preprint 2004,
http://www.math.kyoto-u.ac.jp/preprint/2004/11.pdf

[6] R.Kane, The homotopy of Hopf spaces, North-Holland Math. Library 40.

[7] A.Kono, A note on the homotopy type of certain gauge groups, Proc. Royal
Soc. Edinburgh, 117A(1991), 295-297.

[8] G.E.Lang, The evaluation map and EHP sequence, Pacific J. Math.,
44(1973), 201-210.

[9] H.Matsunaga, The homotopy groups π2n+i(U(n)) for i = 3, 4 and 5. Mem.
Fac. Sci. Kyushu Univ., 15(1961), 72-81.

[10] W.A.Sutherland, Function spaces related to gauge groups, Proc. Roy. Soc.
Edinburgh, 121A(1992), 185-190.

[11] H.Toda, A survey of homotopy theory, Adv. in Math. 10(1973), 417-455.

6


