Homotopy type of gauge groups of SU(3)-bundles over S^6

by

Hiroaki Hamanaka Department of Natural Science Hyogo University of Education Yashiro, Hyogo 673-1494, JAPAN e-mail: hammer@sci.hyogo-u.ac.jp

and

Akira Kono Department of Mathematics Kyoto University Kyoto 606-8502, JAPAN e-mail: kono@math.kyoto-u.ac.jp

1 Introduction

Let G be a compact Lie group, $\pi : P \to B$ a principal G-bundle over a finite complex B. We denote by $\mathcal{G}(P)$, the group of G-equivariant self-maps covering the identity map of B. $\mathcal{G}(P)$ is called the gauge group of P.

Denote by $P_{n,k}$, the principal SU(n)-bundle over S⁴ with $c_2(P_{n,k}) = k$. In [7], the second author shows $\mathcal{G}(P_{2,k})$ is homotopy equivalent to $\mathcal{G}(P_{2,k'})$ if and only if (12, k) = (12, k'), where (12, k) is the G.C.D. of 12 and k. Recently in [5], we show $\mathcal{G}(P_{3,k}) \simeq \mathcal{G}(P_{3,k'})$ if and only if (24, k) = (24, k'). On the other hand in [2] M.Crabb and W.Sutherland prove as P ranges over all principal G-bundles over B, the number of homotopy types of $\mathcal{G}(P)$ is finite if B is connected and G is a compact connected Lie group. If B is S⁴ and G = SU(2), then there are precisely six homotopy types of $\mathcal{G}([7])$.

The purpose of this paper is to show the following:

Theorem 1.1. Denote by ϵ' a generator of $\pi_6(BSU(3)) \cong \mathbb{Z}$ and by \mathcal{G}_k , the

gauge group of the principal SU(3) bundle over S⁶ classified by $k\epsilon'$. Then $\mathcal{G}_k \simeq \mathcal{G}_{k'}$ if and only if (120, k) = (120, k').

By Atiyah-Bott [1], the classifying space $B\mathcal{G}(P)$ of $\mathcal{G}(P)$ is homotopy equivalent to $\operatorname{Map}_P(B, BG)$, the connected component of maps from B to BG containing the classifying map of P. Consider the fibre sequence

(1.1)
$$\mathcal{G}_k \to \mathrm{SU}(3) \xrightarrow{\alpha_k} \mathrm{Map}_{k\epsilon'}^*(\mathrm{S}^6, \mathrm{BSU}(3)) \to \mathrm{Map}_{k\epsilon'}(\mathrm{S}^6, \mathrm{BSU}(3)) \xrightarrow{e_k} \mathrm{BSU}(3).$$

By Lang [8] $\operatorname{Map}_{k\epsilon'}^*(S^6, BSU(3))$ is homotopy equivalent to $\operatorname{Map}_0^*(S^6, BSU(3))$ and α_k can be identified with $\langle 1_{SU(3)}, k\epsilon \rangle = k \langle 1_{SU(3)}, \epsilon \rangle$ in

 $[\mathrm{SU}(3), \mathbf{Map}_0^*(\mathrm{S}^6, \mathrm{BSU}(3))] \cong [\Sigma^6 \mathrm{SU}(3), \mathrm{BSU}(3)] \cong [\Sigma^5 \mathrm{SU}(3), \mathrm{SU}(3)],$

where ϵ is the adjoint of ϵ' and \langle,\rangle denotes the Samelson product. In §3 we show $\Sigma^6 SU(3) \simeq \Sigma^7 \mathbb{C}P^2 \vee S^{14}$, and therefore

$$[\Sigma^6 SU(3), BSU(3)] \cong [\Sigma^6 \mathbb{C}P^2, SU(3)] \oplus \pi_{13}(SU(3)).$$

In §2 we prove the unstable \tilde{K}^1 -group $[\Sigma^6 \mathbb{CP}^2, \mathrm{SU}(3)]$ is isomorphic to $\mathbb{Z}/120 \oplus \mathbb{Z}/3$ and $|[\Sigma \mathbb{CP}^2, \mathrm{SU}(3)]/G_k| = (120, k)(3, k)$, where $G_k = \{\alpha \in [\Sigma \mathbb{CP}^2, \mathrm{SU}(3)] | \langle \alpha, k\epsilon \rangle = 0\}$. Put $Y = \mathbf{Map}_0^*(\mathbb{S}^6, \mathrm{BSU}(3))$. Y is a loop space and $\pi_j(Y)$ is finite for all j. Since $\pi_{13}(\mathrm{SU}(3)) = \mathbb{Z}/6$, $120\alpha_1 = 0$. By [5], if (120, k) = (120, k') then there exists a self homotopy equivalence h of Y satisfying $h \circ (k\alpha_1) \simeq k'\alpha_1$. Therefore if (120, k) = (120, k') then $\mathcal{G}_k \simeq \mathcal{G}_{k'}$. On the other hand applying the functor $[\Sigma \mathbb{CP}^2,]$ to (1.1), we get if the order of $[\Sigma \mathbb{CP}^2, B\mathcal{G}_k]$ is equal to $[\Sigma \mathbb{CP}^2, B\mathcal{G}_{k'}]$ then (120, k) = (120, k') and prove Theorem 1.1.

2 $[\Sigma^6 \mathbb{C} \mathbb{P}^2, \mathrm{SU}(3)]$

First we determine $[\Sigma^6 \mathbb{C}\mathrm{P}^2, \mathrm{U}(4)]$. Put $X = \Sigma^6 \mathbb{C}\mathrm{P}^2 = \mathrm{S}^8 \cup_{\eta} e^{10}$ where η is the generator of $\pi_9(\mathrm{S}^8) \cong \mathbb{Z}/2$ and $W_4 = \mathrm{U}(\infty)/\mathrm{U}(4)$. Recall that as an algebra

$$H^*(\mathrm{BU}(\infty)) = \mathbb{Z}[c_1, c_2, \ldots]$$

where c_j is the *j*-th universal Chern class and

$$H^*(\mathbf{U}(\infty)) = \bigwedge (x_1, x_3, \ldots)$$

where $x_{2j-1} = \sigma(c_j)$. Consider the projection $\pi : U(\infty) \to W_4$. As an algebra

$$H^*(W_4) = \bigwedge (\bar{x}_9, \bar{x}_{11}, \ldots)$$

and $\pi^*(\bar{x}_{2j+1}) = x_{2j+1}$. Put $a_{2j} = \sigma(\bar{x}_{2j+1})$. a_8 and a_{10} are generators of $H^8(\Omega W_4) \cong H^{10}(\Omega W_4) \cong \mathbb{Z}$. Note that $\operatorname{Sq}^2 \rho \bar{x}_9 = 0$ where ρ is the mod 2 reduction and therefore

$$W_4 \simeq (\mathbf{S}^9 \vee \mathbf{S}^{11}) \cup e^{13} \cup \cdots,$$

$$\Omega W_4 \simeq (\mathbf{S}^8 \vee \mathbf{S}^{10}) \cup e^{12} \cup \cdots.$$

Since $\operatorname{dim} X = 10$, $[X, \Omega W_4] = [X, S^8] \oplus [X, S^{10}]$. Using the fact that η^2 generates $\pi_{10}(S^8) \cong \mathbb{Z}/2$ we get

$$i^* : [X, \mathbf{S}^8] \to [\mathbf{S}^8, \mathbf{S}^8] \cong \mathbb{Z}$$

is monic and $\mathbf{Im}i^* = 2\mathbb{Z}$, where $i : S^8 \subset X$ is the inclusion. Define a homomorphism $\lambda : [X, \Omega W_4] \to H^8(X) \oplus H^{10}(X)$ by $\lambda(\alpha) = (\alpha^* a_8, \alpha^* a_{10})$ for $\alpha \in [X, \Omega W_4]$. Then we have

Lemma 2.1. λ is monic and $Im\lambda = \{(n,m) | n \equiv 0 \mod 2\}$.

Consider the fibre sequence

$$\Omega \mathrm{U}(\infty) \xrightarrow{\Omega \pi} \Omega W_4 \xrightarrow{j} \mathrm{U}(4) \xrightarrow{i} \mathrm{U}(\infty).$$

Put u = (2,5) and v = (0,1). Then $u, v \in \mathbf{Im}\lambda$ and u and v generate $\mathbf{Im}\lambda$.

Lemma 2.2. $Im\lambda \circ (\Omega \pi)_*$ is generated by 12*u* and 120*v*.

Note that as an algebra $H^*(\mathbb{CP}^2) = \mathbb{Z}[t]/(t^3)$ for |t| = 2 and $K^*(\mathbb{CP}^2) = \mathbb{Z}[x]/(x^3)$ where $chx = t + \frac{t^2}{2}$. Therefore $chx^2 = t^2$. Denote by ζ_3 a generator of $\tilde{K}(S^6)$. $\tilde{K}(X)$ is a free abelian group generated by $\zeta_3 \hat{\otimes} x$ and $\zeta_3 \hat{\otimes} x^2$. Since

$$(\Omega\pi)_*(\sigma(x_{2j+1})) = j!ch_j$$

(see [4]) we have

$$(\lambda \circ (\Omega \pi)_*)(\zeta_3 \hat{\otimes} x) = (24, 60),$$
$$(\lambda \circ (\Omega \pi)_*)(\zeta_3 \hat{\otimes} x^2) = (0, 120)$$

and Lemma 2.2 is obtained.

Since $\tilde{K}^1(X) = 0$, we have the following:

Theorem 2.3. $[X, U(4)] \cong \mathbb{Z}/12 \oplus \mathbb{Z}/120.$

Denote the commutator of U(n) by γ and the lift of γ constructed in [4] by $\tilde{\gamma} : U(n) \wedge U(n) \to \Omega W_n$. In [4] using $\tau(\bar{x}_{2n+1}) = c_{n+1}$ we get

$$\tilde{\gamma}^*(a_{2n}) = \sum_{j+k=n-1} x_{2j+1} \otimes x_{2k+1}$$

where τ is the transgression with respect to the fibering

$$W_n \to \mathrm{BU}(n) \to \mathrm{BU}(\infty).$$

Using $\tau(\bar{x}_{2n+3}) \equiv c_{n+2} \mod (c_{n+1})$ we can prove

$$\tilde{\gamma}^*(a_{2n+2}) = \sum_{j+k=n} x_{2j+1} \otimes x_{2k+1}$$

quite similarly.

Denote the inclusion $\Sigma \mathbb{C}P^2 \subset SU(3)$ by κ , a generator of $\pi_5(SU(3))$ by ϵ , the projection $\Sigma \mathbb{C}P^2 \to S^5$ by q and a generator of $H^5(S^5)$ by s. Put $\kappa' = \epsilon \circ q$. Consider the following commutative diagram:

where *i* is the inclusion. Note that $\kappa^*(x_3) = \sigma(t), \kappa^*(x_5) = \sigma(t^2), \kappa'^*(x_3) = 0, \kappa'^*(x_5) = 2\sigma(t^2), \epsilon^*(x_3) = 0$ and $\epsilon^*(x_5) = 2s$. Therefore we have

$$\lambda(\tilde{\gamma} \circ (i \circ \kappa \wedge i \circ \epsilon)) = (2, 2) = \alpha,$$

$$\lambda(\tilde{\gamma} \circ (i \circ \kappa' \wedge i \circ \epsilon)) = (0, 4) = \beta.$$

Since $\alpha + \beta = u + v$ and $4\alpha + 3\beta = 4u$, we have the following:

Lemma 2.4. The subgroup of [X, U(4)] generated by $i \circ \langle \kappa, \epsilon \rangle$ and $i \circ \langle \kappa', \epsilon \rangle$ is isomorphic to $\mathbb{Z}/120 \oplus \mathbb{Z}/3$.

On the other hand consider the exact sequence

(*)
$$\pi_{10}(\mathrm{SU}(3)) \to [X, \mathrm{SU}(3)] \to \pi_8(\mathrm{SU}(3)).$$

Since by [11], $\pi_{10}(\mathrm{SU}(3)) \cong \mathbb{Z}/30$ and $\pi_8(\mathrm{SU}(3)) \cong \mathbb{Z}/12$, the order of $[X, \mathrm{SU}(3)]$ is a divisor of 360. By Lemma 2.4, (*) is a short exact sequence, $i_* : [X, \mathrm{SU}(3)] \to [X, \mathrm{U}(4)]$ is monic and $\mathrm{Im}i_*$ is the subgroup generated by $i \circ \langle \kappa, \epsilon \rangle$ and $i \circ \langle \kappa', \epsilon \rangle$. Therefore we have the following:

Theorem 2.5. As a group $[X, SU(3)] \cong \mathbb{Z}/120 \oplus \mathbb{Z}/3$. $\mathbb{Z}/120$ is generated by $\langle \kappa + \kappa', \epsilon \rangle$ and $\mathbb{Z}/3$ is generated by $\langle 4\kappa + 3\kappa', \epsilon \rangle$.

For an integer k define

$$G_k = \left\{ a \in \left[\Sigma \mathbb{C} \mathbb{P}^2, \mathrm{SU}(3) \right] | \langle a, k\epsilon \rangle = 0 \right\}$$

Since $[\Sigma \mathbb{C}P^2, SU(3)] \cong \tilde{K}(\Sigma \mathbb{C}P^2)$, $[\Sigma \mathbb{C}P^2, SU(3)]$ is generated by κ and κ' . Since $\begin{vmatrix} 1 & 4 \\ 1 & 3 \end{vmatrix} = -1, \kappa + \kappa'$ and $4\kappa + 3\kappa'$ are also generators of $[\Sigma \mathbb{C}P^2, SU(3)]$. Therefore we have the following:

Lemma 2.6. $|[\Sigma \mathbb{CP}^2, \mathrm{SU}(3)]/G_k| = (120, k)(3, k).$

3 Proof of Theorem 1.1

First we show $\Sigma^6 SU(3) \simeq \Sigma^7 \mathbb{CP}^2 \vee S^{14}$. Consider the cofibering

$$S^{13} \xrightarrow{\theta} \Sigma^7 \mathbb{C}P^2 \to \Sigma^6 SU(3).$$

Since $\Sigma^7 \mathbb{C}P^2$ is 8-connected,

$$\Sigma^{\infty} : [S^{13}, \Sigma^7 \mathbb{C}P^2] \to \{S^{13}, \Sigma^7 \mathbb{C}P^2\}$$

is isomorphic (See [11]). Note that $\Sigma^{\infty}(\theta) = 0$, we get $\theta = 0$. Therefore $\Sigma^{6}SU(3) \simeq \Sigma^{7}\mathbb{C}P^{2} \vee S^{14}$ and

$$[\Sigma^{6}SU(3), BSU(3)] \cong [\Sigma^{7}\mathbb{C}P^{2} \vee S^{14}, BSU(3)]$$
$$\cong [\Sigma^{6}\mathbb{C}P^{2}, SU(3)] \oplus \pi_{13}(SU(3))$$
$$\cong \mathbb{Z}/120 \oplus \mathbb{Z}/3 \oplus \mathbb{Z}/6$$

(See [9] and [11]). Put $Y = \Omega_0^6 BSU(3)$. Y is a loop space. Since $\pi_j(Y)$ is finite for any $j, Y = \Pi Y_{(p)}$. For a non zero integer n, the exponent of n at a prime p is denoted by $\nu_p(n)$.

Let k and k' be non zero integers satisfying (120, k) = (120, k'). Define $h_p: Y_{(p)} \to Y_{(p)}$ by

$$h_p = \begin{cases} \left(\frac{k'}{k}\right) & \text{if } \nu_p(k) < \nu_p(120) \\ 1 & \text{if } \nu_p(k) \ge \nu_p(120). \end{cases}$$

Note that if $\nu_p(k) < \nu_p(120)$, then $\nu_p(k) = \nu_p(k')$ and $\left(\frac{k'}{k}\right) \in \mathbb{Z}_{(p)}^{\times}$. h_p is a homotopy equivalence. Put $h = \prod h_p$. $h: Y \to Y$ is a homotopy equivalence. Since $120\alpha_1 = 0$, we have $h \circ (k\alpha_1) \simeq k'\alpha_1$ (for details see [5]). Therefore if (120, k) = (120, k'), then $\mathcal{G}_k \simeq \mathcal{G}_{k'}$. Note that $[\Sigma \mathbb{C}\mathbb{P}^2, BSU(3)] \cong \tilde{K}^0(\Sigma \mathbb{C}\mathbb{P}^2) = 0$. Applying the functor $[\Sigma \mathbb{C}\mathbb{P}^2,]$ to (1.1), we get the following exact commutative diagram:

Since $\operatorname{Im}\alpha_{k*} \cong \operatorname{Coker}(\Omega e_k)_*$ and $\operatorname{Im}(\Omega e_k)_* = G_k$, we have $|[\mathbb{C}\mathrm{P}^2, \mathcal{G}_k]| = 360/((120, k)(3, k))$. Therefore if $\mathcal{G}_k \simeq \mathcal{G}_{k'}$ then (120, k) = (120, k').

References

- M.F.Atiyah and R.Bott, The Yang-Mills equations over Riemann surfaces, Phils. Trans. Ray. Soc. London Ser A., 308 (1982), 523-615.
- [2] M.C.Crabb and W.A.Sutherland, Counting homotopy types of gauge groups, Proc. London. Math. Soc., (3)81(2000), 747-768.
- [3] H.Hamanaka, On [X, U(n)] when $\dim X = 2n + 1$, to appear in J. Math. Kyoto Univ.

- [4] H.Hamanaka and A.Kono, On [X, U(n)] when $\dim X = 2n$, J. Math. Kyoto Univ., 42(2003).
- [5] H.Hamanaka and A.Kono, Unstable K^1 -group $[\Sigma^{2n-2}\mathbb{C}\mathrm{P}^2, \mathrm{U}(n)]$ and homotopy type of certain gauge groups, preprint 2004, http://www.math.kyoto-u.ac.jp/preprint/2004/11.pdf
- [6] R.Kane, The homotopy of Hopf spaces, North-Holland Math. Library 40.
- [7] A.Kono, A note on the homotopy type of certain gauge groups, Proc. Royal Soc. Edinburgh, 117A(1991), 295-297.
- [8] G.E.Lang, The evaluation map and EHP sequence, Pacific J. Math., 44(1973), 201-210.
- [9] H.Matsunaga, The homotopy groups $\pi_{2n+i}(U(n))$ for i = 3, 4 and 5. Mem. Fac. Sci. Kyushu Univ., 15(1961), 72-81.
- [10] W.A.Sutherland, Function spaces related to gauge groups, Proc. Roy. Soc. Edinburgh, 121A(1992), 185-190.
- [11] H.Toda, A survey of homotopy theory, Adv. in Math. 10(1973), 417-455.