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Abstract

The concern in this paper is to calculate the cohomology algebra degree
less than or equal to 3 of the function space Map(M, BG), where G is
a simply connected compact Lie group and M is a closed orientable 3-
manifold. This gives a simple proof and an improvement of the result [3,
Theorem 1.2].

1 Introduction

Let G be a simply connected compact Lie group and let M denote a closed
orientable 3-manifold. Since BG is 3-connected, any principal G-bundles over
M are trivial. Then we call the gauge group of the trivial G-bundle over M the
gauge group over M and denote it by G. It is well-known that

BG ~ Map(M, BG)

([2]). The cohomology of BG in low dimensions is computed in [3] by making
use of the Eilenberg-Moore spectral sequence and is obtained as:

Theorem A ([3, Theorem 1.2]). Suppose that Torz(Z/2,R) = 0. Let G
be a simply-connected compact Lie group such that the integral cohomology of
BG is torsion free and let M be a closed orientable 3-manifold. We denote
H{(Map(M, BG)) by H'. Then there exists a short eract sequence

0— H(M;R)*" o R™ o H' @ H> % H? — (R/2R)®" — 0,

where o|gigpz is the cup product, r = rankH*(BG) and s = rankH%(BG).
Moreover H is a free R-module for any R, and H? is also free if R is a PID.



The purpose of this paper is to refine Theorem A and to give a simple
proof. Since the attention on the structure of G is not payed in [3], there
are unnecessary assumptions and H‘(Map(M, BG))(i < 3) is not completely
determined in Theorem A. We pay our attention on the structure of G and
we determine the integral cohomology of H!(Map(M, BG))(i < 3) with less
assumptions. It is known that G is the direct product of simply connected
compact simple Lie groups ([5]). Then we reduce Theorem A to the case that
G is a simply connected compact simple Lie group and obtain

Theorem 1.1. Let G be a simply connected compact simple Lie group and Let
M be a closed orientable 3-manifold. We denote H*(Map(M, BG)) by H'. Then
we have:

A i=0
i HY(Q2G) i=1
Hy (M) i=2

HY(O?G) @ Hy(M) & Hi (M) ® H*(Q*°G) i=3

Moreover, the cup product H' @ H?> — H® maps H' @ H? isomorphically onto
the direct summand H'(Q*G) @ Hy(M) C H®.

Remark 1.2. H*(Q%G) is as follows for a simply connected compact simple
Lie group G.

type of G
HY(Q?G) | A/(1>3) C(I1>1) otherwise

i=1 Z Z Z

1= 0 0 0

1=3 7 ZQ 0
g

—
Remark 1.3. Since \/g_1 Sl < RP?4# .- #RP? induces an isomorphism on
mod p cohomology for each odd prime p, Theorem 1.1 in [3] is easily shown
without the assumption that H*(G) is p-torsion free by [4, Proposition 4.2].

2 Approximation of G by infinite loop spaces

Let G be a simply connected compact Lie group. In this section we approximate
G by an infinite loop space in low dimensions.

It is known that G is the direct product of simply connected compact simple
Lie groups. Since simply connected compact simple Lie groups are classified



by their Lie algebras as A;, B, C;, Di(1 > 1), Ei(l = 6,7,8), Fy, Ga, we give an
approximation to each type. Note that the correspondence in low ranks is known
as ([5]):

Ay =By =Cy, Bo=Cy, Dy =A; x Ay, D3 = As.

Proposition 2.1. Let G be a simply connected compact simple Lie group. Then
there exists an infinite loop space B and a 7-equivalence BG — B.

Proof. For G is of type A;(I > 3), there exists a 7T-equivalence BG — BSU.
For G is of type Ci(l > 1), there exists a 7-equivalence BG — BSp. For G
otherwise, we have m;(G) = 0 (i = 1,2,4,5) ([5]). Then a representative of a
generator of H4(BG;Z) = 7Z is a T-equivalence BG — K (Z,4). O

Corollary 2.2. Let M be a 3-dimensional complex. Then we have H*(Map(M, B)) =
H{(Map(M, BG)) (i < 3) , where B is as in Proposition 2.1.

Proof. Let Map,(X,Y) denotes the space of basepoint preserving maps from X
to Y, where X,Y are based spaces.
We consider the following commutative diagram

Wk(Ma'p*(M7BG)) - ﬂ—k?(Map*(M7B))

| y

[S¥ AM,BG] —— [S¥AM,B].

Since the second row is an isomorphism for & < 3 and a surjection for k =
4 by J.H.C. Whitehead theorem, we have Map,(M, BG) — Map,(M,B) is
a 4-equivalence. Consider the following commutative diagram of evaluation
fibrations.

Map, (M, BG) —— Map(M,BG) —— BG

l l l

Map,(M,B) —— Map(M,B) —— B

Since Map, (M, BG) — Map,(M,B) is a 4-equivalence and BG — B is a 7-
equivalence, we obtain Map(M, BG) — Map(M, B) is a 4-equivalence. O

3 Proof of Theorem 1.1

Let G be a simply connected compact simple Lie group. By Proposition 2.1
there exists an infinite loop space B and a 7-equivalence BG — B. Since B is
a homotopy group, we have a homotopy equivalence
Map(M,B) =~ Map,(M,B)xB
fom (Ff7H ),
where * denotes the basepoint of M. Then we compute H*(Map,(M,B)) to
determine H*(Map(M, B)).



Proposition 3.1. We have

H*(Map,(M,B)) = € H'(Map,(M?* B)) ® H'(2°B)
i+j=k

for k < 3, where M? is the 2-skeleton of M.

Proof. Since a closed orientable 3-manifold is parallelizable, the top cell of M is
split off stably ([1]). Actually by Freudenthal suspension theorem the top cell
of M is split off after double suspension. Then we have

Map, (M, B) ~ Map, (M, Q*B*B))
~ Map, (%?M, B*B)
~ Map, (X?*M? v S°, B’°B)
~ Map, (M? Vv S3 B)
=~ Map, (M?,B) x Q°B.

*

Since H*(Q2°B) (k < 3) is either 0 or Z, the proof is completed by Kiinneth
Theorem. O

To compute H!(Map,(M?,B)) (i < 3) we need the following technical
lemma. Let XY, Z be based spaces and f : X — Y be a based map. We
denote Map, (f,1) : Map, (Y, Z) — Map, (X, Z) by f#.

Lemma 3.2. Let X be a based space such that there is a (p+ q+ 1)-equivalence
X > K(Z,p+q) and let | : \/l SP — \/™ SP be a based map. Suppose (f7)*

HI(IT'QPX) — HI(II™QPX) is represented by a matriz A for a certain basis.
Then f : Hp(\/l SP) — H,(\/™ SP) is also represented by A for a suitable basis.

Proof. Consider the following commutative diagram

H,(I™OPX) = T (IMOPX) ——— [\/™ 5774, X] = Hpta(\/™ §p+a)
hur
(f#)*J, (f#)*l l (qu)*l
H,(IOrX) —— 7 (MPX) ——— [\ 'SPy, X] —=— Hrta(\)  spta),
hur
where hur is the Hurewicz homomorphism. Since QX — K(Z,q) is a (¢ + 1)-
equivalence, the proof is completed by taking the dual. O
0 i =
Proposition 3.3. H(Map, (M?,B)) = < Hy(M) i=2
H(M) i=3

Proof. Note the cofibration sequence \/' S! g, V™St — M2 — /' S2, then we
have the fibration

'Q?°B — Map, (M?,B) — I™QB.



We consider the Leray-Serre spectral sequence (E,,d,.) of the fibration above.
Since EY? = HP(II™OB) @ HY(II'Q?B), B is 3-connected and H*(B) = Z,
the non-trivial differential d, : EP? — EPT™4~"+1 (p 4+ ¢ < 4) occurs only
when 7 = 3 and (p,q) = (0,2). Then we obtain H'(Map,(M? B)) = 0. We
determine ds : ES? — E3° to compute H'(Map, (M2, B)) (i = 2,3). Consider
the commutative diagram

Vist L ymst a2\l e?

1| 3 | )
V7St —— VST —— VD2 —— VTS,
then we have the following commutative diagram.

nmoB «—— M? — II'0’B

1] | e
omoB «—— P(IImOB) «—— 1I™O°B

Compare the Leray-Serre spectral sequence of fibrations above, we obtain ds =
r(Sf)#* : EY? — E3Y | where 7 : H2(II™Q?B) — H3(II™OB) is the trans-
gression.

Let A be a matrix which represents ((Xf)#)* : H2(II'Q?B) — H?(II™Q?B).
By Lemma 3.2, (3f), : Ho(\/™ S2) — Hy(\/' 52) is represented by A and so is
fo i Hi(V™SY) — Hy(\/' S'). Then we have the exact sequence

m l
0 — Hy(M?) — Hy(\/ 5Y) 2 Hi(\/ ") — Hi(M?) — 0.
Since H;(M?) = H;(M) (i < 2), we have

H?(Map, (M?,B)) =Ker{ds : Ey” — E3°} = KerA = Hy(M),
H®(Map, (M? ,B)) =Coker{ds : Ey* — E3°} = CokerA = H,(M).

O
Proof of Theorem 1.1. By Corollary 2.2, Proposition 3.1 and Proposition 3.3,
Theorem 1.1 is proved. O
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