Cohomology of the classifying spaces of gauge groups over 3-manifolds in low dimensions

by

Shizuo Kaji Department of Mathematics Kyoto University Kyoto 606-8502, JAPAN e-mail: kaji@math.kyoto-u.ac.jp

Abstract

The concern in this paper is to calculate the cohomology algebra degree less than or equal to 3 of the function space Map(M, BG), where G is a simply connected compact Lie group and M is a closed orientable 3manifold. This gives a simple proof and an improvement of the result [3, Theorem 1.2].

1 Introduction

Let G be a simply connected compact Lie group and let M denote a closed orientable 3-manifold. Since BG is 3-connected, any principal G-bundles over M are trivial. Then we call the gauge group of the trivial G-bundle over M the gauge group over M and denote it by \mathcal{G} . It is well-known that

$$B\mathcal{G} \simeq \operatorname{Map}(M, BG)$$

([2]). The cohomology of $B\mathcal{G}$ in low dimensions is computed in [3] by making use of the Eilenberg-Moore spectral sequence and is obtained as:

Theorem A ([3, Theorem 1.2]). Suppose that $\operatorname{Tor}_{\mathbb{Z}}(\mathbb{Z}/2, R) = 0$. Let G be a simply-connected compact Lie group such that the integral cohomology of BG is torsion free and let M be a closed orientable 3-manifold. We denote $H^i(\operatorname{Map}(M, BG))$ by H^i . Then there exists a short exact sequence

$$0 \to H_1(M; R)^{\oplus r} \oplus R^{\oplus s} \oplus H^1 \otimes H^2 \xrightarrow{\alpha} H^3 \to (R/2R)^{\oplus r} \to 0$$

where $\alpha|_{H^1\otimes H^2}$ is the cup product, $r = \operatorname{rank} H^4(BG)$ and $s = \operatorname{rank} H^6(BG)$. Moreover H^1 is a free R-module for any R, and H^2 is also free if R is a PID. The purpose of this paper is to refine Theorem A and to give a simple proof. Since the attention on the structure of G is not payed in [3], there are unnecessary assumptions and $H^i(\operatorname{Map}(M, BG))(i \leq 3)$ is not completely determined in Theorem A. We pay our attention on the structure of G and we determine the integral cohomology of $H^i(\operatorname{Map}(M, BG))(i \leq 3)$ with less assumptions. It is known that G is the direct product of simply connected compact simple Lie groups ([5]). Then we reduce Theorem A to the case that G is a simply connected compact simple Lie group and obtain

Theorem 1.1. Let G be a simply connected compact simple Lie group and Let M be a closed orientable 3-manifold. We denote $H^i(Map(M, BG))$ by H^i . Then we have:

$$H^{i} \cong \begin{cases} \mathbb{Z} & i = 0\\ H^{1}(\Omega^{2}G) & i = 1\\ H_{2}(M) & i = 2\\ H^{1}(\Omega^{2}G) \otimes H_{2}(M) \oplus H_{1}(M) \oplus H^{3}(\Omega^{2}G) & i = 3 \end{cases}$$

Moreover, the cup product $H^1 \otimes H^2 \to H^3$ maps $H^1 \otimes H^2$ isomorphically onto the direct summand $H^1(\Omega^2 G) \otimes H_2(M) \subset H^3$.

Remark 1.2. $H^*(\Omega^2 G)$ is as follows for a simply connected compact simple Lie group G.

	type of G		
$H^i(\Omega^2 G)$	$A_l (l \ge 3)$	$C_l (l \ge 1)$	otherwise
i = 1	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}
i=2	0	0	0
i = 3	\mathbb{Z}	\mathbb{Z}_2	0

Remark 1.3. Since $\bigvee^{g-1} S^1 \hookrightarrow \mathbb{R}P^2 \# \cdots \# \mathbb{R}P^2$ induces an isomorphism on mod p cohomology for each odd prime p, Theorem 1.1 in [3] is easily shown without the assumption that $H^*(G)$ is p-torsion free by [4, Proposition 4.2].

2 Approximation of G by infinite loop spaces

Let G be a simply connected compact Lie group. In this section we approximate G by an infinite loop space in low dimensions.

It is known that G is the direct product of simply connected compact simple Lie groups. Since simply connected compact simple Lie groups are classified by their Lie algebras as $A_l, B_l, C_l, D_l (l \ge 1), E_l (l = 6, 7, 8), F_4, G_2$, we give an approximation to each type. Note that the correspondence in low ranks is known as ([5]):

$$A_1 = B_1 = C_1, \ B_2 = C_2, \ D_2 = A_1 \times A_1, \ D_3 = A_3.$$

Proposition 2.1. Let G be a simply connected compact simple Lie group. Then there exists an infinite loop space **B** and a 7-equivalence $BG \rightarrow B$.

Proof. For G is of type $A_l (l \geq 3)$, there exists a 7-equivalence $BG \to BSU$. For G is of type $C_l (l \geq 1)$, there exists a 7-equivalence $BG \to BSp$. For G otherwise, we have $\pi_i(G) = 0$ (i = 1, 2, 4, 5) ([5]). Then a representative of a generator of $H^4(BG; \mathbb{Z}) \cong \mathbb{Z}$ is a 7-equivalence $BG \to K(\mathbb{Z}, 4)$.

Corollary 2.2. Let M be a 3-dimensional complex. Then we have $H^i(Map(M, \mathbf{B})) \cong H^i(Map(M, BG))$ $(i \leq 3)$, where **B** is as in Proposition 2.1.

Proof. Let $\operatorname{Map}_*(X, Y)$ denotes the space of basepoint preserving maps from X to Y, where X, Y are based spaces.

We consider the following commutative diagram

$$\pi_k(\operatorname{Map}_*(M, BG)) \longrightarrow \pi_k(\operatorname{Map}_*(M, \mathbf{B}))$$
$$\cong \downarrow \qquad \qquad \cong \downarrow$$
$$[S^k \wedge M, BG] \longrightarrow [S^k \wedge M, \mathbf{B}].$$

Since the second row is an isomorphism for $k \leq 3$ and a surjection for k = 4 by J.H.C. Whitehead theorem, we have $\operatorname{Map}_*(M, BG) \to \operatorname{Map}_*(M, \mathbf{B})$ is a 4-equivalence. Consider the following commutative diagram of evaluation fibrations.

Since $\operatorname{Map}_*(M, BG) \to \operatorname{Map}_*(M, \mathbf{B})$ is a 4-equivalence and $BG \to \mathbf{B}$ is a 7-equivalence, we obtain $\operatorname{Map}(M, BG) \to \operatorname{Map}(M, \mathbf{B})$ is a 4-equivalence.

3 Proof of Theorem 1.1

Let G be a simply connected compact simple Lie group. By Proposition 2.1 there exists an infinite loop space **B** and a 7-equivalence $BG \to \mathbf{B}$. Since **B** is a homotopy group, we have a homotopy equivalence

$$\begin{aligned} \operatorname{Map}(M, \mathbf{B}) &\simeq & \operatorname{Map}_*(M, \mathbf{B}) \times \mathbf{B} \\ f &\mapsto & (f \cdot f(*)^{-1}, f(*)), \end{aligned}$$

where * denotes the basepoint of M. Then we compute $H^*(\operatorname{Map}_*(M, \mathbf{B}))$ to determine $H^*(\operatorname{Map}(M, \mathbf{B}))$.

Proposition 3.1. We have

$$H^{k}(\operatorname{Map}_{*}(M, \mathbf{B})) \cong \bigoplus_{i+j=k} H^{i}(\operatorname{Map}_{*}(M^{2}, \mathbf{B})) \otimes H^{j}(\Omega^{3}\mathbf{B})$$

for $k \leq 3$, where M^2 is the 2-skeleton of M.

Proof. Since a closed orientable 3-manifold is parallelizable, the top cell of M is split off stably ([1]). Actually by Freudenthal suspension theorem the top cell of M is split off after double suspension. Then we have

$$\operatorname{Map}_{*}(M, \mathbf{B}) \simeq \operatorname{Map}_{*}(M, \Omega^{2}B^{2}\mathbf{B}))$$

$$\simeq \operatorname{Map}_{*}(\Sigma^{2}M, B^{2}\mathbf{B})$$

$$\simeq \operatorname{Map}_{*}(\Sigma^{2}M^{2} \lor S^{5}, B^{2}\mathbf{B})$$

$$\simeq \operatorname{Map}_{*}(M^{2} \lor S^{3}, \mathbf{B})$$

$$\cong \operatorname{Map}_{*}(M^{2}, \mathbf{B}) \times \Omega^{3}\mathbf{B}.$$

Since $H^k(\Omega^3 \mathbf{B})$ (k < 3) is either 0 or \mathbb{Z} , the proof is completed by Künneth Theorem.

To compute $H^i(\operatorname{Map}_*(M^2, \mathbf{B}))$ $(i \leq 3)$ we need the following technical lemma. Let X, Y, Z be based spaces and $f : X \to Y$ be a based map. We denote $\operatorname{Map}_*(f, 1) : \operatorname{Map}_*(Y, Z) \to \operatorname{Map}_*(X, Z)$ by $f^{\#}$.

Lemma 3.2. Let X be a based space such that there is a (p+q+1)-equivalence $X \to K(\mathbb{Z}, p+q)$ and let $f : \bigvee^l S^p \to \bigvee^m S^p$ be a based map. Suppose $(f^{\#})^* : H^q(\Pi^l \Omega^p X) \to H^q(\Pi^m \Omega^p X)$ is represented by a matrix A for a certain basis. Then $f_* : H_p(\bigvee^l S^p) \to H_p(\bigvee^m S^p)$ is also represented by A for a suitable basis.

Proof. Consider the following commutative diagram

$$\begin{array}{cccc} H_q(\Pi^m \Omega^p X) & \xrightarrow{\cong} & \pi_q(\Pi^m \Omega^p X) & =& [\bigvee^m S^{p+q}, X] & \xrightarrow{\cong} & H^{p+q}(\bigvee^m S^{p+q}) \\ (f^{\#})_* \downarrow & & (f^{\#})_* \downarrow & & \downarrow & (\Sigma^q f)^* \downarrow \\ H_q(\Pi^l \Omega^p X) & \xrightarrow{\cong} & \pi_q(\Pi^l \Omega^p X) & =& [\bigvee^l S^{p+q}, X] & \xrightarrow{\cong} & H^{p+q}(\bigvee^l S^{p+q}), \end{array}$$

where *hur* is the Hurewicz homomorphism. Since $\Omega^p X \to K(\mathbb{Z}, q)$ is a (q+1)-equivalence, the proof is completed by taking the dual.

Proposition 3.3. $H^{i}(\operatorname{Map}_{*}(M^{2}, \mathbf{B})) \cong \begin{cases} 0 & i = 1 \\ H_{2}(M) & i = 2 \\ H_{1}(M) & i = 3 \end{cases}$

Proof. Note the cofibration sequence $\bigvee^l S^1 \xrightarrow{f} \bigvee^m S^1 \to M^2 \to \bigvee^l S^2$, then we have the fibration

$$\Pi^{l}\Omega^{2}\mathbf{B} \to \operatorname{Map}_{*}(M^{2}, \mathbf{B}) \to \Pi^{m}\Omega\mathbf{B}$$

We consider the Leray-Serre spectral sequence (E_r, d_r) of the fibration above. Since $E_2^{p,q} \cong H^p(\Pi^m \Omega \mathbf{B}) \otimes H^q(\Pi^l \Omega^2 \mathbf{B})$, **B** is 3-connected and $H^4(\mathbf{B}) \cong \mathbb{Z}$, the non-trivial differential $d_r : E_r^{p,q} \to E_r^{p+r,q-r+1}$ $(p+q \leq 4)$ occurs only when r = 3 and (p,q) = (0,2). Then we obtain $H^1(\operatorname{Map}_*(M^2,\mathbf{B})) = 0$. We determine $d_3 : E_3^{0,2} \to E_3^{3,0}$ to compute $H^i(\operatorname{Map}_*(M^2,\mathbf{B}))$ (i = 2,3). Consider the commutative diagram

$$\bigvee^{l} S^{1} \xrightarrow{f} \bigvee^{m} S^{1} \longrightarrow M^{2} \longrightarrow \bigvee^{l} S^{2}$$

$$f \downarrow \qquad 1 \downarrow \qquad \qquad \downarrow \qquad \Sigma f \downarrow$$

$$\bigvee^{m} S^{1} \xrightarrow{1} \bigvee^{m} S^{1} \longrightarrow \bigvee^{m} D^{2} \longrightarrow \bigvee^{m} S^{2},$$

then we have the following commutative diagram.

$$\Pi^{m}\Omega \mathbf{B} \longleftarrow M^{2} \longleftarrow \Pi^{l}\Omega^{2} \mathbf{B}$$

$$\uparrow \qquad \uparrow \qquad (\Sigma f)^{\#} \uparrow$$

$$\Pi^{m}\Omega \mathbf{B} \longleftarrow P(\Pi^{m}\Omega \mathbf{B}) \longleftarrow \Pi^{m}\Omega^{2} \mathbf{B}$$

Compare the Leray-Serre spectral sequence of fibrations above, we obtain $d_3 = \tau(\Sigma f)^{\#*} : E_3^{0,2} \to E_3^{3,0}$, where $\tau : H^2(\Pi^m \Omega^2 \mathbf{B}) \xrightarrow{\cong} H^3(\Pi^m \Omega \mathbf{B})$ is the transgression.

Let A be a matrix which represents $((\Sigma f)^{\#})^* : H^2(\Pi^l \Omega^2 \mathbf{B}) \to H^2(\Pi^m \Omega^2 \mathbf{B})$. By Lemma 3.2, $(\Sigma f)_* : H_2(\bigvee^m S^2) \to H_2(\bigvee^l S^2)$ is represented by A and so is $f_* : H_1(\bigvee^m S^1) \to H_1(\bigvee^l S^1)$. Then we have the exact sequence

$$0 \to H_2(M^2) \to H_1(\bigvee^m S^1) \xrightarrow{A} H_1(\bigvee^l S^1) \to H_1(M^2) \to 0.$$

Since $H_i(M^2) \cong H_i(M)$ $(i \leq 2)$, we have

$$H^{2}(\operatorname{Map}_{*}(M^{2}, \mathbf{B})) \cong \operatorname{Ker}\{d_{3} : E_{3}^{0,2} \to E_{3}^{3,0}\} \cong \operatorname{Ker} A \cong H_{2}(M),$$

$$H^{3}(\operatorname{Map}_{*}(M^{2}, \mathbf{B})) \cong \operatorname{Coker}\{d_{3} : E_{3}^{0,2} \to E_{3}^{3,0}\} \cong \operatorname{Coker} A \cong H_{1}(M).$$

Proof of Theorem 1.1. By Corollary 2.2, Proposition 3.1 and Proposition 3.3, Theorem 1.1 is proved. $\hfill \Box$

Acknowledgements

I would like to thank Akira Kono and Daisuke Kishimoto for their helpful conversation and useful comments.

References

- M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291–310.
- [2] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Phils. Trans. Ray. Soc. London Ser A., 308 (1982), 523-615.
- [3] K. Kuribayashi, Eilenberg-Moore spectral sequence calculation of function space cohomology, manuscripta math., 114 (2004), 305-325.
- [4] J. P. May, Fibrewise localization and completion, Trans. Amer. Math. Soc., 258 (1980), no. 1, 127-146.
- [5] M. Mimura and H. Toda, Topology of Lie groups. I, II, Translated from the 1978 Japanese edition by the authors, Translations of Mathematical Monographs, 91, American Mathematical Society, Providence, RI, 1991.