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1 Introduction

Let G be a compact connected Lie group and let P be a principal G-bundle over
a connected finite complex B. We denote by G(P ), the group of G-equivariant
self-maps of P covering the identity map on B. G(P ) is called the gauge group
of P .

For fixed B and G, M.C.Crabb and W.A.Sutherland show as P ranges over
all principal G-bundles with base space B, the number of homotopy types of
G(P ) is finite ([2]). Principal SU(n)-bundles over S4 are classified by their
second Chern class. Denote by Pn,k the principal SU(n)-bundle over S4 with
c2(Pn,k) = k. The second author shows in [6] G(P2,k) is homotopy equivalent to
G(P2,k′) if and only if (12, k) = (12, k′). Therefore when B is S4 and G = SU(2),
there are precisely six homotopy types of G(P ).

The purpose of this paper is to show the following:
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Theorem 1. G(P3,k) is homotopy equivalent to G(P3,k′) if and only if (24, k)
is equal to (24, k′).

Theorem 2. If G(Pn,k) is homotopy equivalent to G(Pn,k′), then (n(n2−1), k) =
(n(n2 − 1), k′).

Remark 3. In [9] W.A.Sutherland shows if G(Pn,k) is homotopy equivalent
to G(Pn,k′) then (n(n2 − 1)/(2, n + 1), k) is equal to (n(n2 − 1)/(2, n + 1), k′).
Therefore if n is even, then Theorem 2 is the result of Sutherland. If n is odd,
Theorem 2 is an improvement of [9].

Denote by x0 and y0, the base points of S4 and BSU(n). Denote by ε′ a
generator of π4(BSU(n)). Note that kε′ is the classifying map of Pn,k. Put

Mn,k = {f : S4 → BSU(n)|f ' kε′}
M∗

n,k = {f ∈ Mn,k|f(x0) = y0}.
By Atiyah-Bott [1] Mn,k ' BG(Pn,k). Note that M∗

n,k ' M∗
n,0.

Consider the fibre sequence

(∗) G(Pn,k) → SU(n)
hn,k−−−→ M∗

n,0 → Mn,k
e−→ BSU(n).

In [SU(n),M∗
n,0] ∼= [Σ4SU(n),BSU(n)] ∼= [Σ3SU(n),SU(n)], hn,k is equal to

γ◦(kε∧1SU(n)) where γ is the commutator map and ε is a generator of π3(SU(n))
(see Lang [7]).

Define ξk : [Σ2n−5CP2,SU(n)] → [Σ2n−2CP2,SU(n)] by ξk(α) = γ ◦ (kε∧α)
for α ∈ [Σ2n−5CP2,SU(n)]. In section 2, for odd n, we determine [Σ2n−2CP2,U(n)]
and show Cokerξk is finite and the order of Cokerξk is equal to the order of
Cokerξk′ if and only if (n(n2 − 1), k) is equal to (n(n2 − 1), k′). Applying the
functor [Σ2n−5CP2, ] to (∗), we get an exact sequence

[Σ2n−5CP2,SU(n)] //

(hn,k)∗ ))SSSSSSSSSSSSSSS
[Σ2n−5CP2,M∗

n,0] //

=

²²

[Σ2n−5CP2,Mn,k] // 0,

[Σ2n−2CP2,SU(n)]

55kkkkkkkkkkkkkk

since [Σ2n−5CP2,BSU(n)] = K1(Σ2n−5CP2) = 0.
Note that (hn,k)∗ is equal to ξk. If G(Pn,k) ' G(Pn,k′) then (as a set)

[Σ2n−5CP2,Mn,k] ∼= [Σ2n−5CP2,Mn,k′ ]. Therefore we get Theorem 2.
Let M̂∗

3,0 be the 2-connected cover of M∗
3,0. Since SU(3) is 2-connected,

[SU(3), M̂∗
3,0] → [SU(3),M∗

3,0] is bijective. Note that M̂∗
3,0 is a loop space,

πj(M̂∗
3,0) is finite for any j and h3,k = kh3,1. In section 3 we show 24h3,1 = 0.

If (24, k) = (24, k′), then we construct a homotopy equivalence
(

k′

k

)

24

: M̂∗
n,0 → M̂∗

n,0

such that
(

k′
k

)
24
◦ (kh3,1) ' k′h3,1. Therefore ΩM̂3,k ' ΩM̂3,k′ if (24, k) =

(24, k′). Then we show G(P3,k) ' S1 × ΩM̂3,k and prove Theorem 1.
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2 The group [Σ2n−2CP2, U(n)]

In this section we assume n is odd. Put Wn = U(∞)/U(n) and consider the
fibre sequence

ΩU(∞) Ωπ−−→ ΩWn → U(n) → U(∞) π−→ Wn.

Since (Wn)(2n+3) ' S2n+1 ∪η e2n+3, where η is the generator of π2n+2(S2n+1).
Denote a generator of H2n+4(K(Z, 2n + 1)) by ε and consider the 2-stage Post-
nikov system

E → K(Z, 2n + 1) ε−→ K(Z, 2n + 4).

Let x be the generator of H2n+1(Wn) ∼= Z. Since H2n+4(Wn) = 0, x has a
lift

x̃ : Wn → E,

such that x̃ is a (2n + 3)-equivalence. Therefore if dimX ≤ 2n + 2, then

Ωx̃∗ : [X, ΩWn] → [X, ΩE]

is an isomorphism. Define a homomorphism λ : [X, ΩWn] → H2n(X)⊕H2n+2(X)
by λ(α) = (α∗(a2n), α∗(a2n+2)), where a2n and a2n+2 are generators of H2n(ΩWn) ∼=
H2n+2(ΩWn) ∼= Z and α ∈ [X, ΩWn]. If X = Σ2n−2CP2, we have the following:

Lemma 2.1. If X = Σ2n−2CP2, λ : [X, ΩWn] → H2n(X)⊕H2n+2(X) is monic
and Imλ = {(a, b)|a ≡ b mod 2}.
Lemma 2.2. If X = Σ2n−2CP2, Imλ ◦ (Ωπ)∗ is generated by (n!, 1

2 (n + 1)!)
and (0, (n + 1)!).

Proof. First recall that (Ωπ)∗(a2n) = n!chn and (Ωπ)∗(a2n+2) = (n + 1)!chn+1.
Denote by ξn a generator of K̃(S2n). K(CP2) = Z[x]/(x3),H∗(CP2) = Z[t]/(t3)
and chx = t + t2

2 . Therefore

ch(ξn−1⊗̂x) = σ2n−2t + (σ2n−2t2/2), ch(ξn−1⊗̂x2) = σ2n−2t2.

Note that [X, U(∞)] = K̃(X). Then

λ ◦ (Ωπ)∗(ξn−1⊗̂x) = (n!,
1
2
(n + 1)!)

λ ◦ (Ωπ)∗(ξn−1⊗̂x2) = (0, (n + 1)!).

Since K̃1(Σ2n−2CP2) = 0, we get

Lemma 2.3. [Σ2n−2CP2,U(n)] ∼= Coker(Ωπ)∗.
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Put u = (1, 1), v = (0, 2) and l = 1
2n!. Then

(n!,
1
2
(n + 1)!) = (2l, (n + 1)l) = 2lu +

(
n− 1

2

)
lv

(0, (n + 1)!) = (0, 2(n + 1)l) = (n + 1)lv.

If n ≡ 3 mod 4,

2l(u +
n− 3

4
v) = 2lu +

n− 3
2

lv ≡ −lv mod Im(Ωπ)∗

and therefore

2l(n + 1)(u +
n− 3

4
v) = −l(n + 1)v ≡ 0 mod Im(Ωπ)∗.

Note that

l(2n +
n− 1

2
v) ≡ 2lu +

(
n− 1

2

)
lv ≡ 0 mod Im(Ωπ)∗.

Since ∣∣∣∣
1 n−3

4
2 n−1

2

∣∣∣∣ =
n− 1

2
− n− 3

2
= 1,

u′ = (u+ n−3
4 v) and v′ = (2u+ n−1

2 v) are generators of Imλ. Note that the order
of Coker(Ωπ)∗ = 2(n + 1)l2 and we have Coker(Ωπ)∗ = Z/(n + 1)!⊕Z/( 1

2n!).
If l ≡ 1 mod 4

l(2u +
n− 3

2
v) = 2lu +

(
n− 3

2

)
lv ≡ lv mod Im(Ωπ)∗

and therefore

(n + 1)l(2u +
n− 3

2
v) ≡ (n + 1)lv ≡ 0 mod Im(Ωπ)∗.

Note that
2l(u +

n− 1
4

v) ≡ 0 mod Im(Ωπ)∗.

Since ∣∣∣∣
2 n−3

2
1 n−1

4

∣∣∣∣ =
n− 1

2
− n− 3

2
= 1,

u′ = 2u+ n−3
2 v and v′ = u+ n−1

4 v are generators of Imλ. Note that the order of
Coker(Ωπ)∗ = 2(n + 1)l2 and we have Coker(Ωπ)∗ = Z/

(
1
2 (n + 1)!

)⊕Z/(n!).

Theorem 2.4. [Σ2n−2CP2,U(n)] =

{
Z/(n + 1)!⊕ Z/( 1

2n!) if n ≡ 3 mod 4
Z/

(
1
2 (n + 1)!

)⊕ Z/n! if n ≡ 1 mod 4.
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Consider the Samelson product

ξk : [Σ2n−5CP2,U(n)] → [Σ2n−2CP2,U(n)]

given by ξk(α) = γ ◦ (kε ∧ α). Note that [Σ2n−5CP2,U(n)] ∼= K̃(Σ2n−4CP2).
The basis of K̃(Σ2n−4CP2) ∼= Z⊕ Z is ξn−2⊗̂x, ξn−2⊗̂x2. Put L = (n− 2)!.

cn−1(ξn−2⊗̂x) = Lσ2n−4t, cn(ξn−2⊗̂x) =
1
2
(n− 1)Lσ2n−4t2

cn−1(ξn−2⊗̂x2) = 0, cn(ξn−2⊗̂x2) = (n− 1)Lσ2n−4t2

Let αj be the adjoint of ξn−2⊗̂xj (j = 1, 2). For α : Σ2n−5CP2 → U(n), put
α̃ = γ̃ ◦ (ε ∧ α), where γ̃ is the lift of γ constructed in [4].

Note that
H∗(U(n)) =

∧
(σ(c1), · · · , σ(cn)) .

and
γ̃∗(a2n) =

∑

i+j=n−1

σ(ci)⊗ σ(cj).

Using the method in [4], we have

γ̃∗(a2n+2) =
∑

i+j=n

σ(ci)⊗ σ(cj).

Therefore λ(α̃1) = (L, 1
2 (n− 1)L) and λ(α̃2) = (0, (n− 1)L). If n ≡ 3 mod 4

then v = v′−2u′. Put α′2 = α2+(n−1)α1 then α̃1 = Lu′ and α̃′2 = 1
2 (n−1)Lv′.

If n ≡ 1 mod 4 then v = 2v′−u′. Put α′2 = α2 +(n− 1)α1 then α̃1 = 1
2Lu′ and

α̃′2 = (n− 1)Lv′. Therefore we have

Lemma 2.5. The order of Cokerξk is equal to

1
2
(n− 2)!(n(n2 − 1), k) · (n− 1)!(n, k)

Corollary 2.6. The order of Cokerξk is equal to the order of Cokerξk′ if and
only if (n(n2 − 1), k) = (n(n2 − 1), k′).

3 Proof of Theorem 1

Consider the cofibering

S11 k−→ Σ5CP2 → Σ4SU(3).

Since Σ5CP2 is 6-connected, the suspension map

Σ∞ : [S11,Σ5CP2] → {
S11,Σ5CP2

}
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is an isomorphism (see [10]). Note that Σ∞(k) = 0 (see [5]). Therefore k =
0,Σ4SU(3) ' Σ5CP2 ∨ S12 and

[Σ4SU(3),BSU(3)] ∼= [Σ5CP2,BSU(3)]⊕ π12(BSU(3)) (1)
∼= [Σ4CP2,SU(3)]⊕ π11(SU(3)) (2)
∼= Z/24⊕ Z/3⊕ Z/4, (3)

where π11(SU(3)) ∼= Z/4 (see [8]). Therefore we have:

Lemma 3.1. 24(γ ◦ (ε ∧ 1SU(3))) = 0.

Let X be a connected loop space, ∗ its base point, µ : X ×X → X its loop
multiplication and ι : X → X its homotopy inverse. For an integer n define
self map n : X → X as follows: 0 = ∗, 1 = 1X , n = µ ◦ ((n − 1) × 1X) ◦∆ for
a positive integer n. If n < 0 then n = ι ◦ (−n). Let Y be a finite complex
and α : Y → X. In the group [Y, X], nα is represented by n ◦ α. For a
prime p, consider the localization l(p) : X → X(p). For a map f : X → X,
there exists a map f(p) : X(p) → X(p) satisfying f(p) ◦ l(p) ' l(p) ◦ f . f(p) is
unique up to homotopy. X(p) is a loop space and l(p) is a loop map. In X(p),
n(p) ' n. If (n, p) = 1, n : X(p) → X(p) is a homotopy equivalence. For(

a
b

) ∈ Z(p) ((a, b) = 1, (b, p) = 1)), b : X(p) → X(p) is a homotopy equivalence,
and define

(
a
b

)
= a ◦ b−1. If (a, p) = 1,

(
a
b

)
is a homotopy equivalence.

Lemma 3.2. Let k, k′ and d be non zero integers satisfying (k, d) = (k′, d). If
πj(X) is finite for any j and dα = 0, then there exists a homotopy equivalence

(
k′

k

)

d

: X → X

satisfying k′ ◦ α '
(

k′
k

)
d
◦ k ◦ α.

Proof. For an integer n 6= 0 and n = prqs · · · is the factorization into prime
powers, we define νp(n) = r. Define hp : X(p) → X(p) by

hp =

{(
k′
k

)
if νp(d) > νp(k)

1X(p) if νp(d) ≤ νp(k)

and h =
∏

p hp. Since νp((k, d)) = min(νp(k), νp(d)), if νp(d) > νp(k), then
νp(d) > νp(k′) and νp(k′) = νp(k). The order of l(p) ◦ k ◦ α is a power of p. If
νp(d) ≤ νp(k) then νp(d) ≤ νp(k′) and therefore l(p) ◦ k ◦ α ' l(p) ◦ k′ ◦ α ' 0.
Consider l = (

∏
l(p)) ◦ ∆ : X → ΠX(p). l is a homotopy equivalence. Put(

k′
k

)
d

= l−1 ◦h◦ l. We need only show h◦ l◦k◦α ' l◦k′ ◦α or h(p) ◦ l(p) ◦k◦α '
l(p) ◦ k′ ◦ α.

If νp(d) > νp(k)

h(p)◦ l(p)◦k◦α ' h(p)◦k◦ l(p)◦α ' k′◦k−1◦k◦ l(p)◦α ' k′◦ l(p)◦α ' l(p)◦k′◦α.
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If νp(d) ≤ νp(k), h(p) = 1X(p) and we have

h(p) ◦ l(p) ◦ k ◦ α ' h(p) ◦ l(p) ◦ k′ ◦ α ' 0.

Therefore
(

k′
k

)
d
◦ k ◦ α ' k′ ◦ α.

(
k′
k

)
d

is clearly a homotopy equivalence.

Now we can prove Theorem 1. Since BSU(3) is 3-connected M∗
3,k ' M∗

3,0 →
M3,k is 2-equivalence. Note that π1(M∗

3,0) ∼= π5(BSU(3)) = 0 and π2(M∗
3,0) ∼=

π6(BSU(3)) = Z. Denote the generators of H2(M3,k) ∼= H2(M∗
3,0) ∼= Z by b2 and

b′2 respectively. The homotopy fibre of b2 and b′2 are denoted by M̂3,k and M̂∗
3,0

respectively. Therefore ΩM̂3,k is the universal covering of ΩM3,k ' G3,k. Since
π1(G3,k) ∼= Z, G3,k ' S1 × ΩM̂3,k. Note that p∗ : [SU(3), M̂∗

3,0] → [SU(3),M∗
3,0]

is a bijection where p : M̂∗
3,0 → M∗

3,0 is the projection. Therefore there exists
ĥ3,k : SU(3) → M̂∗

3,0 such that p ◦ ĥ3,k ' h3,k and ΩM̂3,k is the homotopy fibre
of ĥ3,k. ĥ3,k is unique up to homotopy and ĥ3,k ' kĥ3,1. Since 24h3,1 = 0,
24ĥ3,1 = 0. M̂∗

3,0 is a loop space and πj(M̂∗
3,0) is finite for any j. Now by

Lemma 3.2 we get if (24, k) = (24, k′) then ΩM̂3,k ' ΩM̂3,k′ , and Theorem 1 is
proven.
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