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1 Introduction

Let G be a compact connected Lie group and let P be a principal G-bundle over
a connected finite complex B. We denote by G(P), the group of G-equivariant
self-maps of P covering the identity map on B. G(P) is called the gauge group
of P.

For fixed B and G, M.C.Crabb and W.A.Sutherland show as P ranges over
all principal G-bundles with base space B, the number of homotopy types of
G(P) is finite ([2]). Principal SU(n)-bundles over S* are classified by their
second Chern class. Denote by P, the principal SU(n)-bundle over S* with
c2(Py,i) = k. The second author shows in [6] G(Pz ) is homotopy equivalent to
G(Py ) if and only if (12, k) = (12,k’). Therefore when B is S* and G = SU(2),
there are precisely six homotopy types of G(P).

The purpose of this paper is to show the following;:



Theorem 1. G(Ps ) is homotopy equivalent to G(Ps /) if and only if (24, k)
is equal to (24, k).

Theorem 2. If G(P, ) is homotopy equivalent to G(P, &), then (n(n?—1),k) =
(n(n? — 1), K').

Remark 3. In [9] W.A.Sutherland shows if G(P, ) is homotopy equivalent

to G(P k) then (n(n® —1)/(2,n + 1),k) is equal to (n(n® —1)/(2,n + 1), k).
Therefore if n is even, then Theorem 2 is the result of Sutherland. If n is odd,
Theorem 2 is an improvement of [9].

Denote by xp and 7, the base points of S* and BSU(n). Denote by € a
generator of m4(BSU(n)). Note that ke’ is the classifying map of P, . Put

My ={f:S* = BSU()|f ~ ké'}
My, =1{f € My klf(w0) = yo}-
By Atiyah-Bott [1] M, x ~ BG(Py k). Note that M, ~ My ;.
Consider the fibre sequence

hn,k

(*)  G(Pnk) — SU(n) == M} o — My, — BSU(n).

In [SU(n), M;; o] = [£*SU(n), BSU(n)] = [£3SU(n), SU(n)], hnk is equal to
vo(keAlgy(n)) where v is the commutator map and e is a generator of 73(SU(n))
(see Lang [7]).

Define & : [£2"~5CP?,SU(n)] — [£27~2CP?,SU(n)] by &k(a) = yo (ke A )
for a € [X2"5CP2,SU(n)]. In section 2, for odd n, we determine [%2"~2CP?, U(n)]
and show Coker¢, is finite and the order of Coker¢y, is equal to the order of
Coker¢;, if and only if (n(n? — 1), k) is equal to (n(n? — 1),k’). Applying the
functor [X2"~5CP2, | to (), we get an exact sequence

[EQn_5CP2, SU(TL)} o [22”_5((:})2, M;{,O] - [22n_5(CP2, Mmk] — 0,

[227=2CP2, SU(n)]

since [¥2"~°CP2,BSU(n)] = K}(X?"~°CP?) = 0.

Note that (hy, k)« is equal to &. If G(P, k) =~ G(P, i) then (as a set)
[¥275CP?, M,, 1] = [X?""5CP2, M,, x/]. Therefore we get Theorem 2.

Let Mg,o be the 2-connected cover of Mj,. Since SU(3) is 2-connected,
[SU(3),M§’O] — [SU(3), M3 ] is bijective. Note that M:;o is a loop space,
Wj(Mék,o) is finite for any j and hs, = khsz 1. In section 3 we show 24hz; = 0.
If (24,k) = (24, k"), then we construct a homotopy equivalence

K N ~
<k> : M:;)O — M:,O
24
such that (%)24 o (khs1) ~ k'hs 1. Therefore Qngk ~ QMg’k/ if (24,k) =
(24, K"). Then we show G(Ps ;) ~ S! x QMs, and prove Theorem 1.



2 The group [ 2CP? U(n)]

In this section we assume n is odd. Put W,, = U(c0)/U(n) and consider the
fibre sequence

QU(c0) 25 QW,, — U(n) — U(c0) 5 W

Since (W,,)2"F3) ~ §20+1 y, ¢2"+3 where 7 is the generator of ma, (S T1).
Denote a generator of H?"*4(K(Z,2n +1)) by € and consider the 2-stage Post-
nikov system

E - K(Z,2n+1) 5 K(Z,2n + 4).

Let = be the generator of H2"*1(W,,) = Z. Since H>"*4(W,,) = 0, z has a
lift
z: W, — F,

such that Z is a (2n + 3)-equivalence. Therefore if dim X < 2n + 2, then
0z, [X,QW,] — [X,QF)]

is an isomorphism. Define a homomorphism \ : [X, QW,,| — H?"(X)®H?*" 2(X)
by AMa) = (a*(az,), a*(azni2)), where as, and as, 12 are generators of H2"(QW,,)
H?2"P2(QW,,) 2 Z and « € [X, QW,]. If X = 22" ~2CP2, we have the following:

~d

Lemma 2.1. If X = ¥2"72CP? X : [X,QW,] — H?"(X)® H*"*"2(X) is monic
and ImA\ = {(a,b)|a = b mod 2}.

Lemma 2.2. If X = X?"72CP?, ImA\ o (Qr), is generated by (n!, 1(n + 1)!)
and (0, (n+ 1)1).

Proof. First recall that (7)*(az,) = nlch, and (Q7)*(az2n12) = (n+1)!ch, 1.
Denote by &, a generator of K(5?"). K(CP?) = Z[z]/(«3), H*(CP?) = Z[t]/(t)
and chx =t + g Therefore

ch(En-1®z) = ™" P4 (0°" 2 2), ch(Euo1®a®) = o RE

Note that [X,U(c0)] = K(X). Then

Ao (Qm).(€n1E2) = (nl, 3 (n +1))
X0 (Qm). (€0 18a?) = (0, (n+ 1)),

Since K!(£2"~2CP2) = 0, we get
Lemma 2.3. [X2"72CP2,U(n)] = Coker(Q7).,.



Put u = (1,1),v = (0,2) and I = n!. Then

(nl, %(n—k DY = (2L, (n+ 1)) = 2lu + (n; 1) Iy
(0, (n+ 1)) = (0,2(n + 1)1) = (n + 1)lv.
If n = 3 mod 4,

n—3 n—3

20(u + v) = 2lu +

lv = —lv mod Im(Qm).

and therefore

-3
4

20(n + 1) (u+ 2v) = —I(n + 1)v = 0 mod Im(Qr),.

Note that

1(2n + — 11)) = 2u + (TL;1> lv =0 mod Im(Qn),.

Since
n—3

1
‘ 2 nél
(

T2

v = (u+252v) and v’ = (2u+251v) are generators of Im\. Note that the order

of Coker(Q7), = 2(n + 1)I* and we have Coker(Qr). = Z/(n+1)! ® Z/(in!).
Ifl=1mod4

v) = 2lu + <n23> lv = lv mod Im(Q).

n—3

1(2u +

and therefore

-3
(n+ 1)I(2u + o v) = (n+ 1)lv = 0 mod Im(Qn),.
Note that 1
2l(u + o v) = 0 mod Im(Q7)..
Since s
1= 2 2 ’

u' = 2u+ %v and v’ = u+ ”T_lv are generators of ImA. Note that the order of
Coker(Qr), = 2(n+1)I? and we have Coker(Qr), = Z/ (3(n + 1)!) @ Z/(n!).

Z/(n+ 1) @®Z/(3n!) if n=23mod 4

Th 2.4. [¥?"72CP?,U(n)] =
eorem [ Un)] {Z/ (%(n + 1)!) @®Z/n!  ifn=1mod 4.



Consider the Samelson product
& : [E?"7°CP?, U(n)] — [£*"72CP?,U(n)]
given by &(a) = v o (ke A a). Note that [£*"~°CP?, U(n)] = K(X2~1CP?).
The basis of K(X2""2CP?) X Z B Z is &,_2®7,&,_2®2%. Put L = (n —2)\.
Cn1(€n_2®x) = Lo*" 4, en(€n_2®x) = %(n —1)Lo*" 42
cn_l(gn_2®x2) =0, cn(ﬁn_2®x2) =(n-— 1)Lcr2”*4t2

Let a; be the adjoint of &,_2®z7 (j = 1,2). For a : ¥*"°CP? — U(n), put
& =4 o (e A @), where 7 is the lift of v constructed in [4].

Note that
H*(Un)) = N\ (o(c1), -+ ,0(cn)).

and

Fi(az) = Y ole) @o(cy).

i+j=n—1

Using the method in [4], we have

&*(a2n+2) - Z U(Ci) ®0’(Cj).

i+j=n

Therefore A(61) = (L, 3(n—1)L) and A(G2) = (0, (n—1)L). If n = 3 mod 4
then v = v/ —2u/. Put o = ao+(n—1)a; then & = Lv/ and & = 3(n—1)Lv'.
If n =1 mod 4 then v = 20" —u/. Put o, = as + (n—1)ay then a4 = %Lu’ and

a4, = (n — 1)Lv'. Therefore we have

Lemma 2.5. The order of Cokeréy is equal to
1
§(n —2)!(n(n?* = 1),k) - (n—1)!(n, k)

Corollary 2.6. The order of Coker¢y, is equal to the order of Cokeré¢y if and
only if (n(n? —1),k) = (n(n? — 1), k).

3 Proof of Theorem 1
Consider the cofibering

Stk s5Cp?  n1SU(3).
Since Y°CP? is 6-connected, the suspension map

%% : [sM, 2°CP?] — {S'!,£°CP?}



is an isomorphism (see [10]). Note that ¥°°(k) = 0 (see [5]). Therefore k =
0,$4SU(3) ~ B5CP? v S'? and

[£4SU(3), BSU(3)] = [SPCP?, BSU(3)] @ m12(BSU(3)) (1)
=~ [24CP?, SU(3)] @ m11(SU(3)) (2)
>~ 724 Z/3® Z/4, (3)

where 711 (SU(3)) & Z/4 (see [8]). Therefore we have:
Lemma 3.1. 24(7y o (e A lgy(g))) = 0.

Let X be a connected loop space, * its base point, 1 : X x X — X its loop
multiplication and ¢ : X — X its homotopy inverse. For an integer n define
self map n: X — X as follows: 0 =%,1=1x,n=po((n—1) x 1x) o A for
a positive integer n. If n < 0 then n = v o (—n). Let Y be a finite complex
and @ : Y — X. In the group [Y,X], na is represented by n o a. For a
prime p, consider the localization I,y : X — X(,). For amap f: X — X,
there exists a map f,) : X(,) — X(p) satisfying fe,) ol = lpy o f. fip) is
unique up to homotopy. X, is a loop space and [(,) is a loop map. In X(,),
ney =~ n. If (n,p) =1, n: Xy — X() is a homotopy equivalence. For
(%) € Zy ((a,b) =1,(b,p) =1)), b: X,y — X(p) is a homotopy equivalence,
and define (¢) =aob™!. If (a,p) = 1, (%) is a homotopy equivalence.

Lemma 3.2. Let k, k' and d be non zero integers satisfying (k,d) = (k¥',d). If
m;(X) is finite for any j and da = 0, then there exists a homotopy equivalence

/
(k) X - X
k d

satisfying k' o o =~ (’%)d okoa.

Proof. For an integer n # 0 and n = p"¢®--- is the factorization into prime
powers, we define v,(n) = r. Define hy, : X(,) — X(p,) by

- {(’;) if v, (d) > v (k)
"ok, () < vk
and h =[]

P

k/;z Since vp((k,d)) = min(v,(k),vp(d)), if v,(d) > vp(k), then
k

)
vp(d) > vp(k') and v, (k") = vp(k). The order of [y o ko a is a power of p. If
vp(d) < vp(k) then v,(d) < v, (k) and therefore [,y o koo ~ [y ok’ o v > 0.
Consider I = (J]lp)) 0o A : X — IIX(,. [ is a homotopy equivalence. Put

(’%)d =["lohol. We need only show holokoa ~ lok'ow or hpyolpyokoa ~

lipyo k' o
If v, (d) > v,(k)

hipyolpyokoa ~ hyyokolyyon ~ k'okflokol(p)ooz ~ k'olyyoa ~ ) ok oo



If vp(d) < vp(k), hpy = 1x(p) and we have
hip) o lpy ok 0 @ = gy 0 lp) o k' 0 0.

Therefore (%)d okoa~koa. (%)d is clearly a homotopy equivalence. [

Now we can prove Theorem 1. Since BSU(3) is 3-connected My, ~ M3, —
M3, is 2-equivalence. Note that 71 (M3 ,) = 75(BSU(3)) = 0 and ma(M3,) =
m6(BSU(3)) = Z. Denote the generators of H*(Ms ;) = H?(Mj ) = Z by by and
bl, respectively. The homotopy fibre of bo and b, are denoted by M37k and Mé:o
respectively. Therefore QM3 ;. is the universal covering of QM3 ~ Gs ;. Since
m1(Gs.k) = Z, Ga i = St x QMs ;.. Note that p, : [SU(3), M3 o] — [SU(3), M3,
is a bijection where p : Mg’o — M3 is the projection. Therefore there exists
fL37k : SU(3) — M;O such that p o fz37k ~ hg and Qngk is the homotopy fibre
of iz37k. iLng is unique up to homotopy and ilg,]g ~ k’ilg)l. Since 24h3; = 0,
24hs, = 0. Mg,o is a loop space and wj(M;;O) is finite for any j. Now by
Lemma 3.2 we get if (24, k) = (24, k') then QMsj, ~ QMs s, and Theorem 1 is

proven.
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