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1 Introduction

Let k be the real or the complex number or the quaternion, according asd = 1,2
or 4 and G(n,k) = O(n),U(n) or Sp(n). In [5] the quasi-projective space Q,, is
defined as

Qn —_ Sdnfl % Sd*l/ ~,

where ~ is the equivalence relations
(2,\) ~ (zv, v~ \) for v € S471 and (z,1) ~ (y, 1).

Then there exists the natural map @,, — G(n, k) and the cell decomposition of
G(n, k) is based on this map ([10]). It is easily seen that Q,, = RP"~! U x for
k=R and Q, = X(CP" ! Ux) for k = C. In the case that k = H, it was first
announced to be the three fold suspension of HP™~! U x, but it was withdrawn
(1))

The purpose of this paper is to investigate the L-S category of the stunted
quasi-projective space

Qn,m = Qn/Qm

for k = H. The L-S category is considered as mormalized, which, denoted
by cat X, is the least number such that the diagonal map A : X — X"*+! is
compressed into the fat wedge X1, Then it is easily seen that cat X = 1.
Let cup X denote the cup-length of X which is the greatest number such that
there exists a multiplicative reduced cohomology theory h* and the cohomology
classes z; € iL*(X) satisfying 1o - - - x, # 0. It is well known that

cup X < cat X.

Then we consider cup @, », to investigate cat @, . Since Qr — Qr—1 = eth—1,

the cell decomposition of @, is
n~S2Ue’ UL uetrTh

Then H* (Qn.m; Z) is concentrated in the odd dimensions and the product of any
elements in fI*(Qn’m; Z) vanishes. Then it is natural to expect cup Qy m = 0.
But it is shown in section 5 that the connective KO-theory of @y, has non-
trivial products for suitable n, m. This implies that @, ,, is not even the co-H-
space, still the suspension type for suitable n,m.



2 Atiyah-Hirzebruch spectral sequence

Let h* be a cohomology theory and X be a finite CW-complex. The Atiyah-
Hirzebruch spectral sequence of h*(X) is the spectral sequence with

EP? >~ H*(X;h*(point))

converging to h*(X). In [2] the differential of the second term of the Atiyah-
Hirzebruch spectral sequence for K O-theory is given by

Sq*my q=0(8)
=98¢ q=-1()

0 otherwise,

where 75 is the modulo 2 reduction. Then we have that the differential of the
second term of the Atiyah-Hirzebruch spectral sequence for ko-theory is

Sq*ma ¢ <0,g=0(8)
P =48¢  q<0,¢=-1(8) (%)
0 otherwise,

where ko denotes the connective K O-theory.
We denote ko*(point) by ko*. Recall that

ko* = Z[n,x, B/ (2n,n*, nz, 2 — 4B),

where |n| = —1,|z] = —4,|6] = —8. The next lemma gives tools to compute
the Atiyah-Hirzebruch spectral sequence of ko*(X) for a special X and is due
to [3].

Lemma 2.1. Let X be a finite CW-complex such that ﬁ*(X;Z) is free and
concentrated in even or odd dimension, and d. : E. — FE,. be the first non-
trivial differential of the Atiyah-Hirzebruch spectral sequence for ko*(X). Then
we have :

1. r=2 (8).

2. There exists x € EPY such that nx # 0 and nd,z # 0.

3 ko-groups of symplectic Stiefel manifolds

In this section we determine the ko*-group of the symplectic Stiefel manifold

by making use of the Atiyah-Hirzebruch spectral sequence.



Let Gi; be the symplectic Grassmaniann Sp(k)/Sp(l) x Sp(k — ) and X
be the Thom complex of a vector bundle E — X. The stable splitting in [8]

implies that the Atiyah-Hirzebruch spectral sequence of ko*(V;, ) splits into
those of ko™ (GE" ). Then we consider the Atiyah-Hirzebruch spectral se-

n—m,q
quence of ko* (Ggl) for a vector bundle E' — G, ; to obtain ko*(V, .m).
It is well known that

H*(Gk,l)az = Z[xla'"axlayh'"ayk—l]/(’zl?"'azk)y

where z; = Zj x;yi—; and |z;| = |y;| = 4i. Let E — Gy, be a vector bundle.
By the Thom isomorphism we have

H* (G Z) = ¢pH* (G Z),
where ¢ is the Thom class of E. Then we have
la] = [b] =0 (4)

for any a,b € H* (GkEJ; Z). Therefore we have the following by Lemma 2.1 and
().

Proposition 3.1. The Atiyah-Hirzebruch spectral sequence of ko*(GEJ) col-
lapses at the second term.

Corollary 3.1. The Atiyah-Hirzebruch spectral sequence of ko*(V,, ) collapses
at the second term.

Since
H*(Voym; Z) = /\Z(e4m+37€4m+77~--76471—1)’ lei| =1,
we have
Grko*(Vam) = /\ ko* (€4m+3, €amt7y - -y €an—1), |ei| =1,

where Grko*(V,,,) denotes the associated graded ko*-algebra of ko*(Vym).
Since Gr ko*(V,, i) is a free ko*-module, the extension of Gr ko™ (V}, 1) to ko*(V,,,m)
as ko*-modules is trivial. Let R be a ring and Ag(x1,...,2x) be the R-algebra
whose R-module base is {x;, -+ x;,|0 <1 < k,i; < ... <14}, then we have :

Proposition 3.2.

ko™ (Vim) = Akor (€4m+3, Wam+7, - -+ €an—1), |€i] = 1.



Remark 3.1. We can set that e; € ko*(V,,,,) and e; € ko*(Sp(n)) has the
correspondence by the homomorphism induced from the projection Sp(n) —
Vn,nL-

Remark 3.2. The same argument as Proposition 3.2 holds for KO*(V,, ,,,). Then
the natural transformation T' : ko*(V,, 1) — KO*(V,, ) is monic.

For the last of this section we see the co-algebra structure of ko*(Sp(n))/(8).
Proposition 3.3. ko*(Sp(n))/(B) is primitively generated.

Proof. Since H*(Sp(n);Z) is primitively generated, so is Gr ko*(Sp(n)). Then
the degree argument completes the proof. 0

4 Multiplicative structure of ko*(Vn,m)

Let ¢ : KO*(-) —» K*(-) and r : K*(-) — KO*(-) be the complexification
and the realization map.

Proposition 4.1. 2?2 € nko*(V,,m) for any x € ko*(Vim)-
Proof. By [4] K*(Sp(n)) is the exterior algebra. Then we have
c(x?) = 0 for any x € KO*(Sp(n)).
Since rc = 2, we have
222 = 0 for any z € KO*(Sp(n)).
By Remark 3.2 we have
22? = 0 for any = € ko*(Sp(n)).

By Proposition 3.2 ko*(Sp(n)) is a free ko*-algebra. Then the proof is completed
by the argument in Remark 3.1. 0

Remark 4.1. Theorem 5.4 of [9] yields that the similar argument of Proposition
3.2 and 4.1 holds for KO-theory and m = 0.

We investigate further multiplicative structure of ko*(V,,,,) by making use
of the projective plane of QV, ,,. Then we consider ko*(QV,, ).
In [6] it is shown that

H,.(Q2Sp(n); Z) = Z[za, 26, - . . -Zan—2|, |7i] =1,
SQ3Z4i+2 = Z4i,
where z4; is inductively defined as z4; = z%z Then it is easily seen that

H* (QVn,m; Z) gZ[Z4m+2, Z4m+6; - - - 'Z4n72]7 |Z’L‘ = ia

2
Sq 24512 = 245.



Then we have

qu(zimm)* = Z§m+6
for (23,42)% Zamas € H*(QVym; Z) and n > 2m+ 2, where 2* € H*(QV,, ;3 Z)
is the Kronecker dual of z € H,(Q2V,,.m;Z). Consider the Atiyah-Hirzebruch

spectral sequence of ko*(2V,, ), then we can assume that z € ES’O for z €
H*(QVy m; Z). Therefore we have the following by (x).

Proposition 4.2. 1(z3,,,5)* =0 in ko*(QV,, ) for n > 2m + 2.
Consider the cofibration
SV m AQV ) — EQV, 1 — Pa(QV ),

where P>(QV,, ,) is the projective plane of QV, ,,. Then we have the long exact
sequence

— Eo*il(Qme) Sk

-1

(Q‘/n,m/\Qan,?n) i) kO* (PQ(QVn,m)) L ]50* (QVnJrL) -,

where A(z) = p*(z) —1 x x —x x 1 and p is the loop multiplication of QV, ;.
We see that ¢ and A satisfy

if i(a) = x,i(b) =y, then Ma x y) =ab ([7]).

Consider the inclusion of the bottom cell of V,, ,,,

j 1 ST SOV, s Po(QWin) o B(QVim) = Vi

By Proposition 3.2 we see that j*(esm+3) generates ko*(S*™*3). Then we can
assume that

3" (eam+3) = i(Zhma)-
If A(x) = N24m2 X Zam+2, then we have
© = 1(2fmi2)"
Therefore we have the following by Proposition 4.2.
Theorem 4.1.
neierg # 0 for eamys € ko™ (Vi) and n > 2m + 2.
Corollary 4.1. €3, .5 = nesmi7 in ko*(Vym)/(B) for n > 2m+ 2.

Proof. Tt is easily seen that nej,, 4 is primitive in ko*(Sp(n))/(3) by Proposi-
tion 3.3. Then we have

eim+3 = Ne8m+7 in ko*(Sp(n))/(ﬂ)

by Theorem 4.1 and Proposition 3.3. Then the proof is completed by Remark
3.1. O



5 L-S category of quasi-projective spaces

In this section we consider the L-S category of @, ,» by applying the results in
the previous sections.
By the cell decomposition of @y, », and V,, ,,, we have

H*(Qn,ma Z) = Z[€4m+37 Cam+7, - - - 7e4n71]/(6i6]‘);

and
j*(e:) =ei
for the natural map j : Qum — Vim ([11]). Then the Atiyah-Hirzebruch

spectral sequence of ko*(Qy,,m) collapses at the second term by Lemma 2.1 and
the degree reason. Therefore we have the following by Proposition 3.1 and 3.2.

Proposition 5.1.
ko™ (Qn,m) =< €am+3, €4m47y -+, €an—1 >

as ko*-modules and

i (ei) = e
Lemma 5.1.
2 n>2m+2
cup Qn,m = N
PQn, {3 n > 4m + 4.

Proof. For n > 2m + 2 we have negm,+7 # 0 (8) by Proposition 5.1. Then, by
Corollary 4.1, we have

€imis = Nesmir 70 ()
and this proves the first case. For n > 4m + 4 we have n?eigmi15 # 0 by

Proposition 5.1. Consider the natural projection @, m — Qn,2m, then we have
e§m+7 = Ne16m+15 i k0™ (Qn,m)/(8) by Corollary 4.1. Therefore we have

2 2 2
€1m+3€8m+T = N€smi7 = 1 €16m+15 7 0 (3)
and this proves the second case. O

Since cup X < cat X, it is also shown the following in the proof of Lemma
5.1 ([10]).

Corollary 5.1.
n+1l, n=273

cat Sp(n) >
P ){n—i—Z, n < 4.

Since cup X < cat X, we obtain the lower bounds for cat Q) ,», by Lemma
5.1. We obtain the upper bounds by the next lemma ([1]).

Lemma 5.2. Let X be a (n — 1)-connected CW-complex. Then we have
dim X

cat X < .
n




Proof. We can assume that the (n — 1)-skeleton of X is a point. Then the kn-
skeleta of X*t1 and X+ are the same. For dim X < kn the diagonal map
A : X — X1 can be compressed into X+ by the cellular approximation
theorem. Therefore the proof is completed. O

Finally we obtain cat @y, ., for the several cases by Lemma 5.1 and Lemma
5.2.

Theorem 5.1.
1 m4+1<n<2m+1
CathAm:
’ 2 2m+2<n<3m+2

and
cat Qn,m = 3 for n > 4m + 4.

Corollary 5.2. Q,, is not the suspension type for n > 2.
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