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1 Introduction

Let k be the real or the complex number or the quaternion, according as d = 1, 2
or 4 and G(n,k) = O(n), U(n) or Sp(n). In [5] the quasi-projective space Qn is
defined as

Qn = Sdn−1 × Sd−1/ ∼,

where ∼ is the equivalence relations

(x, λ) ∼ (xν, ν−1λν) for ν ∈ Sd−1 and (x, 1) ∼ (y, 1).

Then there exists the natural map Qn → G(n,k) and the cell decomposition of
G(n,k) is based on this map ([10]). It is easily seen that Qn = RPn−1 ∪ ∗ for
k = R and Qn = Σ(CPn−1 ∪ ∗) for k = C. In the case that k = H, it was first
announced to be the three fold suspension of HPn−1 ∪ ∗, but it was withdrawn
([11]).

The purpose of this paper is to investigate the L-S category of the stunted
quasi-projective space

Qn,m = Qn/Qm

for k = H. The L-S category is considered as normalized, which, denoted
by cat X, is the least number such that the diagonal map ∆ : X → Xn+1 is
compressed into the fat wedge X [n+1]. Then it is easily seen that cat ΣX = 1.
Let cup X denote the cup-length of X which is the greatest number such that
there exists a multiplicative reduced cohomology theory h̃∗ and the cohomology
classes xi ∈ h̃∗(X) satisfying x1x2 · · ·xn 6= 0. It is well known that

cupX ≤ cat X.

Then we consider cup Qn,m to investigate cat Qn,m. Since Qk −Qk−1 = e4k−1,
the cell decomposition of Qn is

Qn ' S3 ∪ e7 ∪ . . . ∪ e4n−1.

Then H̃∗(Qn,m;Z) is concentrated in the odd dimensions and the product of any
elements in H̃∗(Qn,m;Z) vanishes. Then it is natural to expect cupQn,m = 0.
But it is shown in section 5 that the connective KO-theory of Qn,m has non-
trivial products for suitable n,m. This implies that Qn,m is not even the co-H-
space, still the suspension type for suitable n,m.
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2 Atiyah-Hirzebruch spectral sequence

Let h∗ be a cohomology theory and X be a finite CW-complex. The Atiyah-
Hirzebruch spectral sequence of h∗(X) is the spectral sequence with

Ep,q
1

∼= H∗(X;h∗(point))

converging to h∗(X). In [2] the differential of the second term of the Atiyah-
Hirzebruch spectral sequence for KO-theory is given by

dp,q
1 =





Sq2π2 q ≡ 0 (8)
Sq2 q ≡ −1 (8)
0 otherwise,

where π2 is the modulo 2 reduction. Then we have that the differential of the
second term of the Atiyah-Hirzebruch spectral sequence for ko-theory is

dp,q
1 =





Sq2π2 q ≤ 0, q ≡ 0 (8)
Sq2 q ≤ 0, q ≡ −1 (8)
0 otherwise,

(∗)

where ko denotes the connective KO-theory.
We denote ko∗(point) by ko∗. Recall that

ko∗ ∼= Z[η, x, β]/(2η, η3, ηx, x2 − 4β),

where |η| = −1, |x| = −4, |β| = −8. The next lemma gives tools to compute
the Atiyah-Hirzebruch spectral sequence of ko∗(X) for a special X and is due
to [3].

Lemma 2.1. Let X be a finite CW-complex such that H̃∗(X;Z) is free and
concentrated in even or odd dimension, and dr : Er → Er be the first non-
trivial differential of the Atiyah-Hirzebruch spectral sequence for ko∗(X). Then
we have :

1. r ≡ 2 (8).

2. There exists x ∈ Ep,0
r such that ηx 6= 0 and ηdrx 6= 0.

3 ko-groups of symplectic Stiefel manifolds

In this section we determine the ko∗-group of the symplectic Stiefel manifold

Vn,m = Sp(n)/Sp(m)

by making use of the Atiyah-Hirzebruch spectral sequence.
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Let Gk,l be the symplectic Grassmaniann Sp(k)/Sp(l)× Sp(k − l) and XE

be the Thom complex of a vector bundle E → X. The stable splitting in [8]

Vn,m '
s

n−m∨
q=1

G
Eq

n−m,q

implies that the Atiyah-Hirzebruch spectral sequence of ko∗(Vn,m) splits into
those of ko∗(GEq

n−m,q). Then we consider the Atiyah-Hirzebruch spectral se-
quence of ko∗(GE

k,l) for a vector bundle E → Gk,l to obtain ko∗(Vn,m).
It is well known that

H∗(Gk,l);Z ∼= Z[x1, . . . , xl, y1, . . . , yk−l]/(z1, . . . , zk),

where zi =
∑

j xiyi−j and |xi| = |yi| = 4i. Let E → Gk,l be a vector bundle.
By the Thom isomorphism we have

H∗(GE
k,l;Z) ∼= φEH∗(Gk,l;Z),

where φE is the Thom class of E. Then we have

|a| − |b| ≡ 0 (4)

for any a, b ∈ H∗(GE
k,l;Z). Therefore we have the following by Lemma 2.1 and

(∗).
Proposition 3.1. The Atiyah-Hirzebruch spectral sequence of ko∗(GE

k,l) col-
lapses at the second term.

Corollary 3.1. The Atiyah-Hirzebruch spectral sequence of ko∗(Vn,m) collapses
at the second term.

Since

H∗(Vn,m;Z) ∼=
∧

Z(e4m+3, e4m+7, . . . , e4n−1), |ei| = i,

we have

Gr ko∗(Vn,m) ∼=
∧

ko∗(e4m+3, e4m+7, . . . , e4n−1), |ei| = i,

where Gr ko∗(Vn,m) denotes the associated graded ko∗-algebra of ko∗(Vn,m).
Since Gr ko∗(Vn,m) is a free ko∗-module, the extension of Gr ko∗(Vn,m) to ko∗(Vn,m)
as ko∗-modules is trivial. Let R be a ring and ∆R(x1, . . . , xk) be the R-algebra
whose R-module base is {xi1 · · ·xil

|0 ≤ l ≤ k, i1 < . . . < il}, then we have :

Proposition 3.2.

ko∗(Vn,m) ∼= ∆ko∗(e4m+3, w4m+7, . . . , e4n−1), |ei| = i.
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Remark 3.1. We can set that ei ∈ ko∗(Vn,m) and ei ∈ ko∗(Sp(n)) has the
correspondence by the homomorphism induced from the projection Sp(n) →
Vn,m.

Remark 3.2. The same argument as Proposition 3.2 holds for KO∗(Vn,m). Then
the natural transformation T : ko∗(Vn,m) → KO∗(Vn,m) is monic.

For the last of this section we see the co-algebra structure of ko∗(Sp(n))/(β).

Proposition 3.3. ko∗(Sp(n))/(β) is primitively generated.

Proof. Since H∗(Sp(n);Z) is primitively generated, so is Gr ko∗(Sp(n)). Then
the degree argument completes the proof.

4 Multiplicative structure of ko∗(Vn,m)

Let c : KO∗( · ) → K∗( · ) and r : K∗( · ) → KO∗( · ) be the complexification
and the realization map.

Proposition 4.1. x2 ∈ ηko∗(Vn,m) for any x ∈ ko∗(Vn,m).

Proof. By [4] K∗(Sp(n)) is the exterior algebra. Then we have

c(x2) = 0 for any x ∈ KO∗(Sp(n)).

Since rc = 2, we have

2x2 = 0 for any x ∈ KO∗(Sp(n)).

By Remark 3.2 we have

2x2 = 0 for any x ∈ ko∗(Sp(n)).

By Proposition 3.2 ko∗(Sp(n)) is a free ko∗-algebra. Then the proof is completed
by the argument in Remark 3.1.

Remark 4.1. Theorem 5.4 of [9] yields that the similar argument of Proposition
3.2 and 4.1 holds for KO-theory and m = 0.

We investigate further multiplicative structure of ko∗(Vn,m) by making use
of the projective plane of ΩVn,m. Then we consider ko∗(ΩVn,m).

In [6] it is shown that

H∗(ΩSp(n);Z) ∼= Z[z2, z6, . . . .z4n−2], |zi| = i,

Sq2
∗z4i+2 = z4i,

where z4i is inductively defined as z4i = z2
2i. Then it is easily seen that

H∗(ΩVn,m;Z) ∼=Z[z4m+2, z4m+6, . . . .z4n−2], |zi| = i,

Sq2
∗z4i+2 = z4i.
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Then we have
Sq2(z2

4m+2)
∗ = z∗8m+6

for (z2
4m+2)

∗, z∗8m+6 ∈ H∗(ΩVn,m;Z) and n ≥ 2m+2, where z∗ ∈ H∗(ΩVn,m;Z)
is the Kronecker dual of z ∈ H∗(ΩVn,m;Z). Consider the Atiyah-Hirzebruch
spectral sequence of ko∗(ΩVn,m), then we can assume that z ∈ E∗,0

2 for z ∈
H∗(ΩVn,m;Z). Therefore we have the following by (∗).
Proposition 4.2. η(z2

4m+2)
∗ = 0 in ko∗(ΩVn,m) for n ≥ 2m + 2.

Consider the cofibration

Σ(ΩVn,m ∧ ΩVn,m) → ΣΩVn,m → P2(ΩVn,m),

where P2(ΩVn,m) is the projective plane of ΩVn,m. Then we have the long exact
sequence

→ k̃o
∗−1

(ΩVn,m)
4→ k̃o

∗−1
(ΩVn,m∧ΩVn,m) λ→ ko∗(P2(ΩVn,m)) i→ k̃o

∗
(ΩVn,m) →,

where 4(x) = µ∗(x)− 1× x− x× 1 and µ is the loop multiplication of ΩVn,m.
We see that i and λ satisfy

if i(a) = x, i(b) = y, then λ(x× y) = ab ([7]).

Consider the inclusion of the bottom cell of Vn,m

j : S4m+3 ↪→ ΣΩVn,m ↪→ P2(ΩVn,m)
j′
↪→ B(ΩVn,m) ' Vn,m.

By Proposition 3.2 we see that j∗(e4m+3) generates ko∗(S4m+3). Then we can
assume that

j′∗(e4m+3) = i(z∗4m+2).

If 4(x) = ηz4m+2 × z4m+2, then we have

x = η(z2
4m+2)

∗.

Therefore we have the following by Proposition 4.2.

Theorem 4.1.

ηe2
4m+3 6= 0 for e4m+3 ∈ ko∗(Vn,m) and n ≥ 2m + 2.

Corollary 4.1. e2
4m+3 = ηe8m+7 in ko∗(Vn,m)/(β) for n ≥ 2m + 2.

Proof. It is easily seen that ηe2
4m+3 is primitive in ko∗(Sp(n))/(β) by Proposi-

tion 3.3. Then we have

e2
4m+3 = ηe8m+7 in ko∗(Sp(n))/(β)

by Theorem 4.1 and Proposition 3.3. Then the proof is completed by Remark
3.1.
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5 L-S category of quasi-projective spaces

In this section we consider the L-S category of Qn,m by applying the results in
the previous sections.

By the cell decomposition of Qn,m and Vn,m we have

H∗(Qn,m;Z) ∼= Z[e4m+3, e4m+7, . . . , e4n−1]/(eiej),

and
j∗(ei) = ei

for the natural map j : Qn,m → Vn,m ([11]). Then the Atiyah-Hirzebruch
spectral sequence of ko∗(Qn,m) collapses at the second term by Lemma 2.1 and
the degree reason. Therefore we have the following by Proposition 3.1 and 3.2.

Proposition 5.1.

ko∗(Qn,m) ∼=< e4m+3, e4m+7, . . . , e4n−1 >

as ko∗-modules and
j∗(ei) = ei.

Lemma 5.1.

cupQn,m ≥
{

2 n ≥ 2m + 2
3 n ≥ 4m + 4.

Proof. For n ≥ 2m + 2 we have ηe8m+7 6= 0 (β) by Proposition 5.1. Then, by
Corollary 4.1, we have

e2
4m+3 = ηe8m+7 6= 0 (β)

and this proves the first case. For n ≥ 4m + 4 we have η2e16m+15 6= 0 by
Proposition 5.1. Consider the natural projection Qn,m → Qn,2m, then we have
e2
8m+7 = ηe16m+15 in ko∗(Qn,m)/(β) by Corollary 4.1. Therefore we have

e2
4m+3e8m+7 = ηe2

8m+7 = η2e16m+15 6= 0 (β)

and this proves the second case.

Since cupX ≤ cat X, it is also shown the following in the proof of Lemma
5.1 ([10]).

Corollary 5.1.

cat Sp(n) ≥
{

n + 1, n = 2, 3,

n + 2, n ≤ 4.

Since cup X ≤ cat X, we obtain the lower bounds for catQn,m by Lemma
5.1. We obtain the upper bounds by the next lemma ([1]).

Lemma 5.2. Let X be a (n− 1)-connected CW-complex. Then we have

cat X ≤ dimX

n
.
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Proof. We can assume that the (n− 1)-skeleton of X is a point. Then the kn-
skeleta of Xk+1 and X [k+1] are the same. For dim X ≤ kn the diagonal map
∆ : X → Xk+1 can be compressed into X [k+1] by the cellular approximation
theorem. Therefore the proof is completed.

Finally we obtain catQn,m, for the several cases by Lemma 5.1 and Lemma
5.2.

Theorem 5.1.

cat Qn,m =

{
1 m + 1 ≤ n ≤ 2m + 1
2 2m + 2 ≤ n ≤ 3m + 2

and
cat Qn,m ≥ 3 for n ≥ 4m + 4.

Corollary 5.2. Qn is not the suspension type for n ≥ 2.
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