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Abstract. Let X be a projective scheme over a finite field. In this paper,
we consider the asymptotic behavior of the number of effective cycles on X

with bounded degree as it goes to the infinity. By this estimate, we can define

a certain kind of zeta functions associated with groups of cycles. We also
consider an analogue in Arakelov geometry.
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Introduction

Let X be a projective scheme over a finite field Fq. Counting Fqr -valued points
of X is one of classical problems in algebraic geometry. This is equivalent to decide
the number nk of 0-cycles of degree k. Actually, the generating function

Z(t) =
∞∑

k=0

nkt
k

of the sequence {nk}∞k=0 is nothing more than the zeta function of X. As we know,
studies on this zeta function gave great influence on the development of algebraic
geometry. Accordingly, it is very natural to expect a certain kind of generalization
by considering a counting problem of higher dimensional algebraic cycles.
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To proceed with our problem, let us fix an ample line bundle H on X. For
a non-negative integer k, we denote by nk(X,H, l) the number of all effective l-
dimensional cycles V on X with degH(V ) = k, where degH(V ) is the degree of V
with respect to H, which is given by

degH(V ) = deg
(
H ·l · V )

.

In the case where l = 0, since the above zeta function is rational, the asymptotic
behavior of logq nk(X,H, 0) is, roughly speaking, linear with respect to k. However,
if we consider the divisor case, we can easily see that this doesn’t hold in general,
so that the first natural question concerning nk(X,H, l) is to give an estimate of
nk(X,H, l) as k goes to the infinity. Once we know it, we might give a convergent
generating function of {nk(X,H, l)}∞k=0. The following theorem (cf. Corollary 2.2.5
and Proposition 2.2.6), which is one of the main results of this paper, is our answer
for the above question.

Theorem A (Geometric version). (1) If H is very ample, then there is a con-
stant C depending only on l and dimFq

H0(X,H) such that

logq nk(X,H, l) ≤ C · kl+1

for all k ≥ 0.

(2) If l 6= dimX, then lim sup
k→∞

logq nk(X,H, l)
kl+1

> 0.

As an analogue of Weil’s zeta function, if we define a zeta function Z(X,H, l) of
l-dimensional cycles on a polarized scheme (X,H) over Fq to be

Z(X,H, l)(T ) =
∞∑

k=0

nk(X,H, l)T kl+1
,

then, by the above theorem, we can see that Z(X,H, l)(T ) is a convergent power
series at the origin.

Further, using the same techniques, we can estimate the number of rational
points defined over a function field. Let C be a projective smooth curve over Fq

and F the function field of C. Let f : X → C be a morphism of projective varieties
over Fq and L an f -ample line bundle on X. Let Xη be the generic fiber of f . For
x ∈ Xη(F ), we define the height of x with respect to L to be

hL(x) =
(L ·∆x)

deg(∆x → C)
,

where ∆x is the Zariski closure of the image of Spec(F )→ Xη ↪→ X. Then, we can
see that, for a fixed k, there is a constant C such that

#{x ∈ Xη(F ) | [F (x) : F ] ≤ k and hL(x) ≤ h} ≤ qC·h

for all h ≥ 1. Thus, a series ∑

x∈Xη(F ),
[F (x):F ]≤k

q−shL(x)

converges for all s ∈ C with <(s)À 0. This is a local analogue of Batyrev-Manin-
Tschinkel’s height zeta functions.

Moreover, let X → Spec(OK) be a flat and projective scheme over the ring
OK of integers of a number field K and let H be an ample line bundle on X . For
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P ∈ Spec(OK)\{0}, we denote the modulo P reductions of X and H by XP and HP

respectively. Then, as a corollary of our estimates, we can see an infinite product

L(X ,H, l)(s) =
∏

P∈Spec(OK)\{0}
Z(XP ,HP , l)(#κ(P )−s)

converges for all s ∈ C with <(s)À 0, which looks like a generalization of the usual
L-functions.

The next purpose of this paper is to give an analogue in Arakelov geometry.
Let X be a projective arithmetic variety, i.e, a flat and projective integral scheme
over Z. Let H be an ample C∞-hermitian Q-line bundle on X. For a cycle V of
dimension l on X, the arithmetic degree of V is defined by

d̂egH(V ) = d̂eg
(
ĉ1(H)·l |V )

.

For a real number h, we denote by n̂≤h(X,H, l) (resp. n̂hor
≤h(X,H, l)) the number

of effective cycles (resp. horizontal effective cycles) V of dimension l on X with
d̂egH(V ) ≤ h. Then, we have the following analogue (cf. Corollary 5.3.2 and
Theorem 5.4.1).

Theorem B (Arithmetic version). (1) There is a constant C such that

log n̂≤h(X,H, l) ≤ C · hl+1

for all h ≥ 0.

(2) If l 6= dimX, then lim sup
h→∞

log n̂hor
≤h(X,H, l)
hl+1

> 0.

Techniques involving the proof of Theorem B are much harder than the geometric
case, but the outline for the proof is similar to the geometric one. We have also
an estimate of rational points defined over a finitely generated field over Q (cf.
Theorem 6.3.1). Let Zeff

l (X) be the set of effective l-dimensional cycles on X.
Then, as a consequence of Theorem B, we can see that a Dirichlet series

ζ(X,H, l)(s) =
∑

V ∈Zeff
l (X)

exp(−s · d̂egH(V )l+1)

converges for <(s)À 0 (cf. Theorem 7.3.1).

Here let us give a sketch of the proof of Theorem A. A lower estimate of
nk(X,H, l) is not difficult. To keep arguments simple, we only consider its up-
per estimate in the case where l = 1. First of all, we may clearly assume that X is
the n-dimensional projective space. Note that the n-dimensional projective space
is birationally equivalent to the n-times products Xn = (P1

Fq
)n of the projective

line P1
Fq

, so that once we get an upper estimate of the number of one cycles on Xn,
then we can expect our desired result on the projective space, which can be actually
done by using a comparison lemma (cf. Lemma 2.2.2). Why is Xn better than the
projective space for our consideration? In order to use induction on n for the proof,
it is very convenient that there are a lot of morphisms to lower dimensional cases.
In this sense, Xn is a better choice.

Let pn,i : Xn → P1
Fq

be the projection to the i-th factor. Let Hn be a natural

ample line bundle on Xn, i.e., Hn =
⊗n

i=1 p
∗
n,i(OP1Fq (1)). Let Zeff

1 (Xn
pn,i−→ P1

Fq
) be
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the set of effective one cycles on Xn generated by irreducible curves which are flat
over P1

Fq
via pn,i. Then, we can see that

log nk(Xn,Hn, 1) ≤
n∑

i=1

logq #{V ∈ Zeff
1 (Xn

pn,i−→ P1
Fq

) | degHn
(V ) ≤ k}.

Thus, using symmetry, it is sufficient to find a constant Cn with

logq #{V ∈ Zeff
1 (Xn

pn,1−→ P1
Fq

) | degHn
(V ) ≤ k} ≤ Cn · k2 (k À 1).

For simplicity, we set Tn = Zeff
1 (Xn

pn,i−→ P1
Fq

). In order to complete the proof,
we need to see the following properties (1) – (4) for a sequence {T2, T3, . . . , Tn, . . .}

(1) For each n ≥ 2, there is a function hn : Tn → R≥0 satisfying the below (2),
(3) and (4).

(2) For each n ≥ 3, there are maps αn : Tn → Tn−1 and βn : Tn → T2 such
that

hn−1(αn(x)) ≤ hn(x) and h2(βn(x)) ≤ hn(x)
for all x ∈ Tn.

(3) There is a function A : R≥0 × R≥0 → R such that A(s, t) ≤ A(s′, t′) for all
0 ≤ s ≤ s′ and 0 ≤ t ≤ t′ and that, for y ∈ Tn−1 and z ∈ T2,

#{x ∈ Tn | αn(x) = y and βn(x) = z} ≤ A(hn−1(y), h2(z)).

(4) There is a function B : R≥0 → R such that

#{x ∈ T2 | h2(x) ≤ h} ≤ B(h)

for all h ≥ 1.
Actually, hn is given by hn(V ) = degHn

(V ). Let an : Xn → Xn−1 and bn : Xn →
X2 be the morphisms given by an(x1, . . . , xn) = (x1, . . . , xn−1) and bn(x1, . . . , xn) =
(x1, xn) respectively. Moreover, let

αn = (an)∗ : Tn → Tn−1 and βn = (bn)∗ : Tn → T2

be the push-forwards of cycles by an and bn respectively. Then, the property (2)
is almost obvious. Since X2 = P1

Fq
× P1

Fq
, it is easy to see that if we set B(h) =

(1+h)2q(1+h)2 , then the property (4) is satisfied (cf. Proposition 2.1.2). Technically,
it is not easy to see the property (3). For this purpose, we use Lemma 2.1.3.
Consequently if we set A(s, t) = qs·t, then we have (3). By using properties (1) —
(4), we can conclude

#{x ∈ Tn | hn(x) ≤ k} ≤ B(k)k−1A(k, k)k−2 ≤ q7(n−1)k2
.

The sequence {Tn} satisfying (1) — (4) is called a counting system (for details, see
§1.2). This is a very important tool for this paper because we will make several
kinds of counting systems in different contexts. From viewpoint of induction, the
properties (2) and (3) are the inductive steps and the property (4) is the initial step.
In the arithmetic context, the inductive steps are very similar to the geometric case.
However, the initial step is much harder than the geometric case.

The outline of this paper is as follows: This paper consists of the geometric
part (§2 and §3) and the arithmetic part (§4, §5 and §6). As we said before,
the arithmetic part is much harder than the geometric part, so that we strongly
recommend reading the geometric part first. §1 contains notation and conventions
of this paper, the definition of a counting system and key lemmas for counting cycles.
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In §2, we prove Theorem A. In §3, we consider a refined Northcott’s theorem in
the geometric case. §4 contains preliminaries for the proof of Theorem B. In §5, we
consider a counting problem of cycles in the arithmetic case, that is, Theorem B.
§6 contains a refined Northcott’s theorem in the arithmetic case. In §7, we prove
the convergence of several kinds of zeta functions arising from counting cycles.
Appendix A and Appendix B contain Bogomolov plus Lang in terms of a fine
polarization and a weak geometric Northcott’s theorem respectively. Note that §3,
§6, Appendix A and Appendix B are secondary contents of this paper.

Finally, we would like to give hearty thanks to Prof. Mori, Prof. Soulé and Prof.
Wan for their useful comments and suggestions for this paper.

1. General preliminaries

1.1. Notation and Conventions. Here, we introduce notation and conventions
used in this paper.

(1.1.1). For a point x of a scheme X, the residue field at x is denoted by κ(x).

(1.1.2). Let X be a Noetherian scheme. For a non-negative integer l, we denote
by Cl(X) the set of all l-dimensional integral closed subschemes on X. We set

Zl(X) =
⊕

V ∈Cl(X)

ZV, and Zeff
l (X) =

⊕

V ∈Cl(X)

Z≥0V,

where Z≥0 = {z ∈ Z | z ≥ 0}. An element of Zl(X) (resp. Zeff
l (X)) is called an

l-dimensional cycle (resp. l-dimensional effective cycle) on X.
For a subset C of Cl(X), we denote

⊕
V ∈C ZV and

⊕
V ∈C Z≥0V by Zl(X; C) and

Zeff
l (X; C) respectively. In this paper, we consider the following C(U) and C(X/Y )

as a subset of Cl(X); For a Zariski open set U of X, we set

C(U) = {V ∈ Cl(X) | V ∩ U 6= ∅}.
For a morphism f : X → Y of Noetherian schemes with Y irreducible, we set

C(X/Y ) = {V ∈ Cl(X) | f(V ) = Y }.
For simplicity, we denote

Zl(X; C(U)), Zeff
l (X; C(U)), Zl(X; C(X/Y )) and Zeff

l (X; C(X/Y ))

by
Zl(X;U), Zeff

l (X;U), Zl(X/Y ) and Zeff
l (X/Y )

respectively. In order to show the fixed morphism f : X → Y , Zl(X/Y ) and

Zeff
l (X/Y ) are sometimes denoted by Zl(X

f→ Y ) and Zeff
l (X

f→ Y ) respectively.

(1.1.3). Let R be a commutative ring with the unity. Let X be the products of
projective spaces Pn1

R , . . . ,Pnr

R over R, that is,

X = Pn1
R ×R · · · ×R Pnr

R .

Let pi : X → Pni

R be the projection to the i-th factor. For an n-sequence (k1, . . . , kn)
of integers, the line bundle of type (k1, . . . , kn) is given by

n⊗

i=1

p∗i (OPni
R

(ki))
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and it is denoted by OX(k1, . . . , kn). If R is UFD, then, for a divisor D on X, there
is the unique sequence (k1, . . . , kn) of non-negative integers and the unique section
s ∈ H0 (X,OX(k1, . . . , kn)) module R× with div(s) = D. We denote ki by degi(D)
and call it the i-th degree of D. Moreover, for simplicity, we denote

Pn
R ×R · · · ×R Pn

R︸ ︷︷ ︸
r-times

by (Pn
R)r. Note that (Pn

R)0 = Spec(R).

(1.1.4). For a non-negative integer n, we set

[n] =

{
{1, 2, . . . , n} if n ≥ 1
∅ if n = 0.

We assume n ≥ 1. Let us consider the scheme (P1
R)n over R, where R is a com-

mutative ring. Let pi : (P1
R)n → P1

R be the projection to the i-th factor. For a
subset I of [n], we define pI : (P1

R)n → (P1
R)#(I) as follows: If I = ∅, then pI is

the canonical morphism (P1
R)n → Spec(R). Otherwise, we set I = {i1, . . . , i#(I)}

with 1 ≤ i1 < · · · < i#(I) ≤ n. Then, pI = pi1 × · · · × pi#(I) , i.e., pI(x1, . . . , xn) =
(xi1 , . . . , xi#(I)). Note that p{i} = pi.

(1.1.5). Let us fix a basis {X0, . . . , Xn} of H0(Pn
C,O(1)). The Fubini-Study metric

‖ · ‖FS of O(1) with respect to the basis {X0, . . . , Xn} is given by

‖Xi‖FS =
|Xi|√

|X0|2 + · · ·+ |Xn|2
.

For a real number λ, the metric exp(−λ)‖ · ‖FS is denoted by ‖ · ‖FSλ
. Moreover,

the hermitian line bundle (O(1), ‖ · ‖FSλ
) is denoted by OFSλ(1).

If X = (P1
C)

n, then the hermitian line bundle OFSλ(1, . . . , 1) of type (1, . . . , 1)
on X is given by

OFSλ(1, . . . , 1) =
n⊗

i=1

p∗i (O
FSλ(1)),

where pi : X → P1
C is the projection to the i-th factor,

(1.1.6). Let f and g be real valued functions on a set S. We use the notation
‘f ³ g’ if there are positive real numbers a, a′ and real numbers b, b′ such that
g(s) ≤ af(s) + b and f(s) ≤ a′g(s) + b′ for all s ∈ S.

1.2. Counting system. Here let us introduce a counting system. See the intro-
duction to understand how a counting system works for counting cycles.

Let {Tn}∞n=n0
= {Tn0 , Tn0+1, . . . , Tn, . . .} be a sequence of sets. If it satisfies the

following properties (1) – (4), then it is called a counting system.
(1) (the existence of height functions) For each n ≥ n0, there is a function

hn : Tn → R≥0 satisfying the below (2), (3) and (4).
(2) (inductive step) For each n ≥ n0 + 1, there are maps αn : Tn → Tn−1 and

βn : Tn → Tn0 such that

hn−1(αn(x)) ≤ hn(x) and hn0(βn(x)) ≤ hn(x)

for all x ∈ Tn.
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(3) (inductive step) There is a function A : R≥0×R≥0 → R such that A(s, t) ≤
A(s′, t′) for all 0 ≤ s ≤ s′ and 0 ≤ t ≤ t′ and that, for y ∈ Tn−1 and
z ∈ Tn0 ,

#{x ∈ Tn | αn(x) = y and βn(x) = z} ≤ A(hn−1(y), hn0(z)).

(4) (initial step) There is a function B : R≥0 → R and a non-negative constant
t0 such that

#{x ∈ Tn0 | hn0(x) ≤ h} ≤ B(h)

for all h ≥ t0.
Lemma 1.2.1. If {Tn}∞n=n0

is a counting system as above, then

#{x ∈ Tn | hn(x) ≤ h} ≤ B(h)n−n0+1A(h, h)n−n0

for all h ≥ t0.
Proof. For x ∈ Tn with hn(x) ≤ h, by the property (2), we have hn−1(αn(x)) ≤

h and hn0(βn(x)) ≤ h. Thus, by using (3) and (4),

#{x ∈ Tn | hn(x) ≤ h} ≤ #{y ∈ Tn−1 | hn−1(y) ≤ h} ·#{z ∈ Tn0 | hn0(z) ≤ h} ·A(h, h)

≤ #{y ∈ Tn−1 | hn−1(y) ≤ h} ·B(h) ·A(h, h).

Therefore, we get our lemma by using induction on n. 2

1.3. Key lemmas for counting cycles. Here we consider two key lemmas for
counting cycles. The first lemma will be used to see the property (3) in a counting
system.

Lemma 1.3.1. Let X and Y be projective schemes over a field K. Let p : X ×K

Y → X and q : X×K Y → Y be the projection to the first factor and the projection
to the second factor respectively. Let x1, . . . , xs (resp. y1, . . . , yt) be closed points
of X (resp. Y ). Let us fix an effective 0-cycle x =

∑s
i=1 aixi and an effective

0-cycle y =
∑t

j=1 bjyj. Then, the number of effective 0-cycles z on X ×K Y with
p∗(z) = x and q∗(z) = y is less than or equal to 2αX(x)αY (y), where αX(x) =∑s

i=1

√
ai[κ(xi) : K] and αY (y) =

∑t
j=1

√
bj [κ(yj) : K].

Proof. Let zijk’s (k = 1, . . . , lij) be all closed points of Spec(κ(xi) ⊗K κ(yj)).
Then, an effective 0-cycle z on X×K Y with p∗(z) = x and q∗(z) = y can be written
by the form

∑
ijk cijkzijk. Hence,

p∗(z) =
∑

i


∑

j,k

[κ(zijk) : κ(xi)]cijk


xi

and

q∗(z) =
∑

j


∑

i,k

[κ(zijk) : κ(yj)]cijk


 yj .

Thus,
cijk ≤ min {ai, bj} ≤

√
aibj .



8 ATSUSHI MORIWAKI

Therefore, the number N(x, y) of effective 0-cycles z on X ×K Y with p∗(z) = x
and q∗(z) = y is less than or equal to

∏
ij(1 +

√
aibj)lij . Considering the following

commutative diagram:

Spec(κ(xi)⊗K κ(yj))

uullllllllllllll

))RRRRRRRRRRRRRR

Spec(κ(xi))

))RRRRRRRRRRRRRR
Spec(κ(yj))

uullllllllllllll

Spec(K)

we note that

lij ≤ min
{
dimκ(yj)(κ(xi)⊗K κ(yj)),dimκ(xi)(κ(xi)⊗K κ(yj))

}

= min {[κ(xi) : K], [κ(yj) : K]} ≤
√

[κ(xi) : K][κ(yj) : K].

Moreover, 1 + u ≤ 2u for u ∈ {0} ∪ [1,∞). Hence,

N(x, y) ≤
∏

ij

(1 +
√
ai · bj)

√
[κ(xi):K][κ(yj):K]

≤
∏

ij

2
√

ai[κ(xi):K]
√

bj [κ(yj):K] = 2
P

ij

√
ai[κ(xi):K]

√
bj [κ(yj):K].

Thus, we get our lemma. 2

The following lemma will be also used to count cycles.

Lemma 1.3.2. Let π : X ′ → X be a finite morphism of normal integral schemes.
Let Z =

∑n
i=1 aiZi be an effective cycle on X, where Zi’s are integral. Then

the number of effective cycles Z ′ on X ′ with π∗(Z ′) = Z is less than or equal to
2deg(π)

Pn
i=1 ai .

Proof. We denote by α(Z) the number of effective cycles Z ′ onX ′ with π∗(Z ′) =
Z. Let Z ′i1, . . . , Z

′
iti

be all integral subschemes lying over Zi. Then, ti ≤ deg(π).
Let Z ′ be an effective cycle Z ′ on X ′ with π∗(Z ′) = Z. Then, we can set Z ′ =∑n

i=1

∑ti

j=1 aijZij . Since π∗(Z ′) = Z, the number of possible (ai1, . . . , aiti
)’s is at

most (1 + ai)deg(π). Therefore,

α(Z) ≤
n∏

i=1

(1 + ai)deg(π).

Here note that 1 + u ≤ 2u for u ∈ {0} ∪ [1,∞). Hence we get our lemma. 2

2. Counting cycles in the geometric case

The main purpose of this section is to find a universal upper bound of the number
of effective cycles with bounded degree on the projective space over a finite field
(cf. Theorem 2.2.1), namely,
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Fix non-negative integers n and l. Then, there is a constant C(n, l)
depending only on n and l such that the number of effective l-
dimensional cycles on Pn

Fq
with degree k is less than or equal to

qC(n,k)kl+1
.

The plan for the proof of the above theorem is the following: As we described in
the introduction, first we consider a similar problem on the products (P1

Fq
)n of the

projective line. The advantage of (P1
Fq

)n is that it has a lot of morphisms, so that
induction on its dimension works well. In §2.1, we estimate the number of cycles on
(P1
Fq

)n. In §2.2, we prove the above result. Especially, we compare the number of
cycles on Pn

Fq
with the number of cycles on (P1

Fq
)n in terms of the natural birational

map Pn
Fq

99K (P1
Fq

)n.

2.1. Cycles on (P1
Fq

)n. Here we consider the following proposition. An idea of the
proof can be found in the introduction.

Proposition 2.1.1. There is a constant C(n, l) depending only n and l such that

#{V ∈ Zeff
l ((P1

Fq
)n) | degO(P1)n (1,...,1)(V ) ≤ h} ≤ qC(n,l)·hl+1

for all h ≥ 1.

First, let us begin with the case of divisors, which gives the initial step in a
counting system.

Proposition 2.1.2. Let k1, . . . , kn be non-negative integers. Then

#{D ∈ Diveff((P1
Fq

)n) | degi(D) ≤ ki ∀i = 1, . . . , n} ≤ q
Qn

i=1(ki+1) − 1
q − 1

·
n∏

i=1

(ki + 1).

Proof. In the following, the symbol D is an effective divisor on (P1
Fq

)n.

# {D | degi(D) ≤ ki (∀i)} =
∑

0≤e1≤k1,...,0≤en≤kn

# {D | degi(D) = ei (∀i)}

=
∑

0≤e1≤k1,...,0≤en≤kn

q(e1+1)···(en+1) − 1
q − 1

≤ (k1 + 1) · · · (kn + 1)
q(k1+1)···(kn+1) − 1

q − 1
2

Let us start the proof of Proposition 2.1.1. First we assume l = 0. Let us see

#{V ∈ Zeff
0 ((P1

Fq
)n) | deg(V ) ≤ h} ≤ q3nh

for h ≥ 1. We prove this by induction on n. If n = 1, then our assertion follows
from Proposition 2.1.2, so that we assume n > 1. Let q : (P1

Fq
)n → (P1

Fq
)n−1 be the

projection given by q(x1, . . . , xn) = (x1, . . . , xn−1). For a fixed W ∈ Zeff
0 ((P1

Fq
)n−1),

let us estimate the number of {V ∈ Zeff
0 ((P1

Fq
)n) | q∗(V ) = W}. We set W =∑e

i=1 aiyi. For V ∈ Zeff
0 ((P1

Fq
)n) with q∗(V ) = W , let V = V1 + · · · + Ve be

the decomposition of effective 0-cycles with q∗(Vi) = aiyi (i = 1, . . . , e). Then,
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Vi ∈ Zeff
0 (P1

κ(yi)
) and the degree of Vi in P1

κ(yi)
is ai. Thus, the possible number of

Vi is less than or equal to #(κ(yi))3ai . Thus,

#{V ∈ Zeff
0 ((P1

Fq
)n) | q∗(V ) = W} ≤

e∏

i=1

#(κ(yi))3ai =
e∏

i=1

q3[κ(yi):Fq ]ai = q3 deg(W ).

Therefore, since deg(V ) = deg(q∗(V )), using the hypothesis of induction,

#{V ∈ Zeff
0 ((P1

Fq
)n) | deg(V ) ≤ h} ≤ #{W ∈ Zeff

0 ((P1
Fq

)n−1) | deg(W ) ≤ h} · q3h

≤ q3(n−1)h · q3h = q3nh.

Next we assume l ≥ 1. For a subset I of [n] = {1, . . . , n} with #(I) = l, let us
consider the morphism pI : (P1

Fq
)n → (P1

Fq
)l (for the definition of pI , see (1.1.4)).

We denote by Zeff
l ((P1

Fq
)n pI→ (P1

Fq
)l) the set of effective cycles on (P1

Fq
)n generated

by l-dimensional subvarieties which dominates (P1
Fq

)l via pI (cf. (1.1.2)). Then, it
is easy to see that

Zeff
l ((P1

Fq
)n) =

∑

I⊆[n],#(I)=l

Zeff
l ((P1

Fq
)n pI→ (P1

Fq
)l).

Thus, since

#({I | I ⊆ [n],#(I) = l}) =
(
n

l

)
≤ 2n,

it is sufficient to see that there is a constant C ′(n, l) depending only on n and l
such that

{V ∈ Zeff
l ((P1

Fq
)n pI→ (P1

Fq
)l) | degH(V ) ≤ h} ≤ qC′(n,l)hl+1

for all h ≥ 1. By re-ordering the coordinate of (P1
Fq

)n, we can find an automorphism

ι : (P1
Fq

)n → (P1
Fq

)n

with π[l] · ι = πI and ι∗(O(P1)n(1, . . . , 1)) = O(P1)n(1, . . . , 1). Thus, we may assume
that I = [l]. We denote p[l] by p. Let pi : (P1

Fq
)n → P1

Fq
be the projection to the

i-th factor. For n ≥ l + 1, we set

Tn = Zeff
l ((P1

Fq
)n p→ (P1

Fq
)l)

and hn(V ) = degO(1,...,1)(V ) for V ∈ Tn. We would like to see that {Tn}∞n=l+1 is
a counting system. Let an : (P1

Fq
)n → (P1

Fq
)n−1 and bn : (P1

Fq
)n → (P1

Fq
)l+1 be

morphisms given by an = p[n−1] and bn = p[l]∪{n}, namely,

an(x1, . . . , xn) = (x1, . . . , xn−1) and bn(x1, . . . , xn) = (x1, . . . , xl, xn).

Here, αn : Tn → Tn−1 and βn : Tn → Tl+1 are given by

αn(V ) = (an)∗(V ) and βn(V ) = (bn)∗(V ).

Then, since

O(P1)n(1, . . . , 1) = (an)∗(O(P1)n−1(1, . . . , 1))⊗ p∗n(OP1(1))

and

O(P1)n(1, . . . , 1) = (bn)∗(O(P1)l+1(1, . . . , 1))⊗
n−1⊗

j=l+1

p∗j (OP1(1)),
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it is easy to see that hn−1(αn(V )) ≤ hn(V ) and hl+1(βn(V )) ≤ hn(V ). Note that
the diagram

(P1
Fq

)n

an

zzuuuuuuuuu
bn

$$IIIIIIIII

(P1
Fq

)n−1

p[l] $$IIIIIIIII
(P1
Fq

)l+1

p[l]zzuuuuuuuuu

(P1
Fq

)l

is a fiber product. Thus, by the following Lemma 2.1.3, if we set A(s, t) = qst,
then, for y ∈ Tn−1 and z ∈ Tl+1,

#{x ∈ Tn | αn(x) = y, βn(x) = z} ≤ A(hn−1(y), hl+1(z)).

Here,

{D ∈ Tl+1 | hl+1(D) ≤ h} ⊆ {D ∈ Tl+1 | degi(D) ≤ h for all i = 1, . . . , l + 1}.
Thus, by Proposition 2.1.2, if we set B(h) = (1 + h)l+1q(1+h)l+1

, then

#{D ∈ Tl+1 | hl+1(D) ≤ h} ≤ B(h).

Hence, we obtain a counting system {Tn}∞n=l+1. Therefore, by Lemma 1.2.1,

#{x ∈ Tn | hn(x) ≤ h} ≤ B(h)n−lA(h, h)n−l−1

= (1 + h)(n−l)(l+1)q(n−l)(1+h)l+1
q(n−l−1)h2

≤ q(n−l)(l+1)hq(n−l)(2h)l+1
q(n−l−1)h2 ≤ q(n−l)(2l+1+l+2)hl+1

for all h ≥ 1. 2

Lemma 2.1.3. Let f : X → S and g : Y → S be morphisms of projective schemes
over Fq. We assume that S is integral and of dimension l. Let p : X ×S Y → X
and q : X ×S Y → Y be the projections to the first factor and the second factor
respectively. Fix D ∈ Zeff

l (X/S) and E ∈ Zeff
l (Y/S) (for the definition of Zeff

l (X/S)
and Zeff

l (Y/S), see (1.1.2)).

(1) Assume l ≥ 1. Let A1, . . . , Al be nef line bundles on X, B1, . . . , Bl nef line
bundle on Y , and C1, . . . , Cl nef line bundles on S such that Ai⊗f∗(Ci)⊗−1

and Bi ⊗ g∗(Ci)⊗−1 are nef for all i and that deg(C1 · · ·Cl) > 0. Then,

logq

(
#

{
V ∈ Zeff

l (X ×S Y/S) | p∗(V ) = D and q∗(V ) = E
})

≤ min

{
deg(A1 · · ·Al ·D) deg(B1 · · ·Bl · E)

deg (C1 · · ·Cl)
2 ,

√
θ(D)θ(E) deg(A1 · · ·Al ·D) deg(B1 · · ·Bl · E)

deg (C1 · · ·Cl)

}
,

where θ(D) (resp. θ(E)) is the number of irreducible components of Supp(D)
(resp. Supp(E)).
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(2) Assume l = 0, so that S = Spec(Fqr ) for some positive integer r. Then,

logq

(
#

{
V ∈ Zeff

0 (X ×S Y/S) | p∗(V ) = D and q∗(V ) = E
})

≤ min

{
deg(D) deg(E)

r2
,

√
θ(D)θ(E) deg(D) deg(E)

r

}
.

Proof. (1) We set D =
∑s

i=1 aiDi and E =
∑t

j=1 bjEj . Then,

(2.1.3.1) deg(A1 · · ·Al ·D) =
s∑

i=1

ai deg(A1 · · ·Al ·Di)

≥
s∑

i=1

ai deg(f∗(C1) · · · f∗(Cl) ·Di)

=
s∑

i=1

ai deg(Di → S) deg(C1 · · ·Cl).

In the same way,

(2.1.3.2) deg(B1 · · ·Bl · E) ≥
t∑

j=1

bj deg(Ej → S) deg(C1 · · ·Cl).

Thus,
deg(A1 · · ·Al ·D)

deg(C1 · · ·Cl)
≥

s∑

i=1

√
ai deg(Di → S)

and
deg(B1 · · ·Bl · E)

deg(C1 · · ·Cl)
≥

t∑

j=1

√
bj deg(Ej → S).

Moreover, note that
√
n
√
x1 + · · ·+ xn ≥ √x1 + · · ·+√xn.

Thus, the above inequalities (2.1.3.1) and (2.1.3.2) imply
√
sdeg(A1 · · ·Al ·D)

deg(C1 · · ·Cl)
≥

s∑

i=1

√
ai deg(Di → S)

and √
tdeg(B1 · · ·Bl · E)

deg(C1 · · ·Cl)
≥

t∑

j=1

√
bj deg(Ej → S).

Therefore, considering X, Y and X ×S Y over the generic point of S, Lemma 1.3.1
implies our assertion.

(2) We set D =
∑s

i=1 aixi and E =
∑t

j=1 bjyj . Then,

deg(D) =
s∑

i=1

ai[κ(xi) : Fq] = r
s∑

i=1

ai[κ(xi) : Fqr ]

and

deg(E) =
t∑

j=1

bj [κ(yj) : Fq] = r
t∑

j=1

bj [κ(yj) : Fqr ].
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Thus, in the same way as in (1), we get our assertion. 2

2.2. Cycles on a projective variety over a finite field. In this subsection, we
consider the main problem of this section.

Theorem 2.2.1. There is a constant C(n, l) depending only on n and l such that

#
(
{V ∈ Zeff

l (Pn
Fq

) | degO(1)(V ) ≤ h)}
)
≤ qC(n,l)·hl+1

for all h ≥ 1.

Let us begin with a lemma.

Lemma 2.2.2. Let F be a field. Let φ : Pn
F 99K (P1

F )n be the birational map given
by

(X0 : . . . : Xn) 7→ (X0 : X1)× · · · × (X0 : Xn).
Let Σ be the boundary of Pn

F , that is, Σ = {X0 = 0}. Let Zeff
l (Pn

F ;Pn
F \ Σ) be the

set of effective cycles generated by l-dimensional subvarieties T on Pn
F with T 6⊆ Σ

(cf. (1.1.2)). For V ∈ Zeff
l (Pn

F ;Pn
F \ Σ), we denote by V ′ the strict transform of V

by φ. Then,

nl deg
(OPn

F
(1)·l · V ) ≥ deg

(
O(P1F )n(1, . . . , 1)·l · V ′

)

for all V ∈ Zeff
l (Pn

F ;Pn
F \ Σ).

Proof. Let Y (⊆ Pn
F × (P1

F )n) be the graph of the rational map φ : Pn
F 99K

(P1
F )n. Let µ : Y → Pn

F and ν : Y → (P1
F )n be the morphisms induced by the

projections Pn
F × (P1

F )n → Pn
F and Pn

F × (P1
F )n → (P1

F )n respectively. Here we
claim that there is an effective Cartier divisor E on Y such that (1) µ(E) ⊆ Σ and
(2) µ∗(O(n)) = ν∗(O(1, . . . , 1))⊗OY (E). Let Yi (⊆ Pn

F × P1
F ) be the graph of the

rational map Pn
F 99K P1

F given by

(X0 : · · · : Xn) 7→ (X0 : Xi).

Let µi : Yi → Pn
F and νi : Yi → P1

F be the morphisms induced by the projections
Pn

F × P1
F → Pn

F and Pn
F × P1

F → P1
F respectively. Let πi : (P1

F )n → P1
F be the

projection to the i-th factor. Moreover, let hi : Y → Yi be the morphism induced by
id×πi : Pn

F × (P1
F )n → Pn

F ×P1
F . Consequently, we have the following commutative

diagram:
Y

µ

¨¨²²
²²
²²
²²
²²
²²
²²
²

hi

²²

ν

""EEEEEEEE

Yi

µi
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ

νi !!CC
CC

CC
CC

C (P1
F )n

πi

²²
Pn

F P1
F

Note that µi : Yi → Pn
F is the blowing-up by the ideal sheaf Ii generated by X0 and

Xi. Thus there is an effective Cartier divisor Ei on Yi with IiOYi = OYi(−Ei) and
µ∗i (OPn(1))⊗OYi(−Ei) = ν∗i (OP1(1)). Thus if we set E =

∑n
i=1 h

∗
i (Ei), then

µ∗(O(n)) = ν∗(O(1, . . . , 1))⊗OY (E).

Hence we get our claim.
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For V ∈ Zeff
l (Pn

F ;Pn
F \ Σ), let V ′′ be the strict transform of V by µ. Then, by

using the projection formula,

deg
(O(n)·l · V )

= deg
(
µ∗(O(n))·l · V ′′) .

Moreover, by the following Sublemma 2.2.3,

deg
(
µ∗(O(n))·l · V ′′) ≥ deg

(
ν∗(O(1, . . . , 1))·l · V ′′)

Thus, using the projection formula for ν, we get our lemma because ν∗(V ′′) = V ′.
2

Sublemma 2.2.3. Let X be a projective variety over a field F and L1, . . . , Ldim X ,
M1, . . . ,Mdim X nef line bundles on X. If Li ⊗M⊗−1

i is pseudo-effective for i =
1, . . . , n, then

deg(L1 · · ·Ldim X) ≥ deg(M1 · · ·Mdim X).

Proof. We set Ei = Li ⊗M⊗−1
i . Then

deg(L1 · · ·Ldim X) = deg(M1 · · ·Mdim X)

+
dim X∑

i=1

deg(M1 · · ·Mi−1 · Ei · Li+1 · · ·Ldim X).

Thus, we get our lemma. 2

Let us start the proof of Theorem 2.2.1. We prove this theorem by induction on
n. Let us consider the birational map Pn

Fq
99K (P1

Fq
)n given by

φ : (X0 : · · · : Xn) 7→ (X0 : X1)× · · · × (X0 : Xn).

We set U = Pn
Fq
\ {X0 = 0}. For V ∈ Zeff

l (Pn
Fq

;U), we denote by V ′ the strict
transform of V by φ. Then, by Lemma 2.2.2,

nl degO(1)(V ) ≥ degO(1,...,1)(V
′).

Moreover, note that if V ′1 = V ′2 for V1, V2 ∈ Zeff
l (Pn

Fq
;U), then V1 = V2. Therefore

#{V ∈ Zeff
l (Pn

Fq
;U) | degO(1)(V ) ≤ h}

≤ #{V ′ ∈ Zeff
l ((P1

Fq
)n) | degO(1,...,1)(V

′) ≤ nlh}.
Here, by Proposition 2.1.1, there is a constant C ′(n, l) depending only n and l such
that

#{V ′ ∈ Zeff
l ((P1

Fq
)n) | degO(1,...,1)(V

′) ≤ k} ≤ qC′(n,l)kl+1
.

Hence, we have

(2.2.4) #{V ∈ Zeff
l (Pn

Fq
;U) | degO(1)(V ) ≤ h} ≤ qC′(n,l)nl(l+1)hl+1

.

On the other hand, since Pn
Fq
\ U ' Pn−1

Fq
,

#{V ∈ Zeff
l (Pn

Fq
) | degO(1)(V ) ≤ h}
≤ #{V ∈ Zeff

l (Pn
Fq

;U) | degO(1)(V ) ≤ h}
·#{V ∈ Zeff

l (Pn−1
Fq

) | degO(1)(V ) ≤ h}
Thus, using the hypothesis of induction, if we set C(n, l) = C(n−1, l)+nl(l+1)C ′(n, l),
then we have our theorem. 2
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Corollary 2.2.5. Let X be a projective variety over a finite field Fq and H a very
ample line bundle on X. Then, for every integer l with 0 ≤ l ≤ dimX, there is a
constant C depending only on l and dimFq H

0(X,H) such that

#{V ∈ Zeff
l (X) | degH(V ) ≤ h} ≤ qChl+1

Proof. Since H is very ample, there is an embedding ι : X → Pn
Fq

with
ι∗(O(1)) = H, where n = dimFq

H0(X,H)−1. Thus, it follows from Theorem 2.2.1.
2

Finally, let us consider a lower estimate of the number of effective cycles with
bounded degree.

Proposition 2.2.6. Let X be a projective variety over a finite field Fq and H an
ample line bundle on X. Then, for every integer l with 0 ≤ l < dimX,

lim sup
h→∞

log #
({V ∈ Zeff

l (X) | degH(V ) = k})

kl+1
> 0.

Proof. Take (l + 1)-dimensional subvariety Y of X. Then,

#
(
{V ∈ Zeff

l (Y ) | degH|Y (V ) = k}
)
≤ #

({V ∈ Zeff
l (X) | degH(V ) = k}) .

Thus, we may assume l = dimX − 1. Here, note that

|H⊗m| ⊆ {D ∈ Zeff
d−1(X) | degH(D) = m(Hd)}

and

#|H⊗m| = qdimFq H0(X,H⊗m) − 1
q − 1

,

where d = dimX. Since H is ample, dimFq
H0(X,H⊗m) = O(md). Thus we get

our proposition. 2

3. A refinement of Northcott’s theorem in the geometric case

Let K be a function field of a projective curve over Fq and K the algebraic
closure of K. Let X be a projective variety over K. Northcott’s theorem says us
that, for any k and h, the set

{x ∈ X(K) | [K(x) : K] ≤ k, h(x) ≤ h}
is finite, where h(x) is a height function arising from an ample line bundle on X.
For a fixed k, we would like to ask the asymptotic behavior of the number of the
above set as h goes to ∞. In this section, we consider it in more general contexts.
Let d be an integer with d ≥ 1 and let B be a d-dimensional projective variety over
Fq. Let H be a nef and big line bundle on B. Let X be a projective variety over
Fq and f : X → B a surjective morphism over Fq. Let L be a nef line bundle on
X. The main result of this section is the following:

If Lη is ample on Xη (the generic fiber of f), then, for a fixed k,
there is a constant C such that the number of effective l-dimensional
cycles in Zeff

l (X/B) with deg(L·l−d
η · Vη) ≤ k and

deg(L·l−d+1 · f∗(H)·d−1 · V ) ≤ h
is less than or equal to qC·hd

for all h ≥ 1, where deg(L·l−d
η · Vη) is

the intersection number on Xη.
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§3.1 contains a preliminary for the above result, where we prove a special case.
In §3.2, the above theorem is proved and we treat a consequence in §3.3.

3.1. A variant of Proposition 2.1.1. Here we would like to consider a variant
of Proposition 2.1.1, which is a special case of the main theorem of this section.

Proposition 3.1.1. Let d, l and n be positive integers with d ≤ l ≤ n. Let
p[d] : (P1

Fq
)n → (P1

Fq
)d be the morphism given in (1.1.4), i.e., p[d](x1, . . . , xn) =

(x1, . . . , xd). Let pi : (P1
Fq

)n → P1
Fq

be the projection to the i-th factor. We set

Ln =
⊗n

i=1 p
∗
i (O(1)) and Hn =

⊗d
i=1 p

∗
i (O(1)). Then, for a fixed k, there is a

constant C such that

#
{
V ∈ Zeff

l ((P1
Fq

)n p[d]→ (P1
Fq

)d)
∣∣∣∣

deg(L·l−d
n ·H ·d

n · V ) ≤ k,
deg(L·l−d+1

n ·H ·d−1
n · V ) ≤ h

}
≤ qC·hd

for all h ≥ 1.

Proof. We set
Σ = {I | [d] ⊆ I ⊆ [n],#(I) = l}.

Then,

Zeff
l ((P1

Fq
)n p[d]→ (P1

Fq
)d) =

∑

I∈Σ

Zeff
l ((P1

Fq
)n pI→ (P1

Fq
)l).

Thus, it is sufficient to show that there is a constant C ′ such that

#
{
V ∈ Zeff

l ((P1
Fq

)n pI→ (P1
Fq

)l)
∣∣∣∣

deg(L·l−d
n ·H ·d

n · V ) ≤ k,
deg(L·l−d−1

n ·H ·d−1
n · V ) ≤ h

}
≤ qC′·hd

for all h ≥ 1. Re-ordering the coordinate of (P1
Fq

)n, we may assume that I = [l].
We denote pI by p. Let an : (P1

Fq
)n → (P1

Fq
)n−1 and bn : (P1

Fq
)n → (P1

Fq
)l+1 be mor-

phisms given by an = p[n−1] and bn = p[l]∪{n}, i.e., an(x1, . . . , xn) = (x1, . . . , xn−1)
and bn(x1, . . . , xn) = (x1, . . . , xl, xn). Then,

(3.1.1.1)





a∗n(Ln−1)⊗ p∗n(O(1)) = Ln

b∗n(Ll+1)⊗
⊗n−1

i=l+1 p
∗
i (O(1)) = Ln

a∗n(Hn−1) = Hn

b∗n(Hl+1) = Hn

Here, for n ≥ l + 1, we set

Tn = {V ∈ Zeff
l ((P1

Fq
)n p→ (P1

Fq
)l) | deg(L·l−d

n ·H ·d
n · V ) ≤ k}.

Let hn : Tn → R be a map given by hn(V ) = deg(L·l−d+1
n · H ·d−1

n · V ). Then,
by (3.1.1.1), we have maps αn : Tn → Tn−1 and βn : Tn → Tl+1 given by
αn(V ) = (an)∗(V ) and βn(V ) = (bn)∗(V ). Moreover, hn−1(αn(V )) ≤ hn(V ) and
hl+1(βn(V )) ≤ hn(V ) for all V ∈ Tn. As in Lemma 2.1.3, we denote by θ(V ) the
number of irreducible components of a cycle V . Then, for V ∈ Tn, it is easy to see
that θ(V ) ≤ k. Further,

p∗(Hl) = Hn and p∗(Ll)⊗
n⊗

i=l+1

p∗i (O(1)) = Ln.
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Thus, by Lemma 2.1.3, for D ∈ Tn−1 and E ∈ Tl+1,

logq #{V ∈ Tn | αn(V ) = D,βn(V ) = E}

≤
k
√

deg(L·l−d+1
n−1 ·H ·d−1

n−1 ·D) deg(L·l−d+1
l+1 ·H ·d−1

l+1 · E)

deg
(
L·l−d+1

l ·H ·d−1
l

) .

Thus, if we set A(x, y) = qk
√

xy, then

#{V ∈ Tn | αn(V ) = D,βn(V ) = E} ≤ A(hn−1(D), hl+1(E)).

Here let us estimate #{D ∈ Tl+1 | hl+1(D) ≤ h}. In this case, D is a divisor on
(P1
Fq

)l+1. Thus,

deg(L·l−d
l+1 ·H ·d

l+1 ·D) = d!(l − d)!(degd+1(D) + · · ·+ degl+1(D))

and

deg(L·l−d+1
l+1 ·H ·d−1

l+1 ·D) = (d− 1)!(l − d+ 1)!(deg1(D) + · · ·+ degl+1(D)).

Therefore, degi(D) ≤ h for 1 = 1, . . . d and degj(D) ≤ k for j = d + 1, . . . , l + 1.
Hence, by Proposition 2.1.2, if we set B(h) = qC1·hd

for some constant C1, then

#{D ∈ Tl+1 | hl+1(D) ≤ h} ≤ B(h)

for h ≥ 1.

Gathering the above observations, we can see that {Tn}∞n=l+1 is a counting sys-
tem. Thus, by Lemma 1.2.1,

#{V ∈ Tn | hn(V ) ≤ h} ≤ B(h)n−lA(h, h)n−l−1 ≤ q(n−l)C1·hd+k(n−l−1)h.

for h ≥ 1. Hence, we get our proposition. 2

3.2. Northcott’s type theorem in the geometric case. In this subsection, we
prove the main theorem of this section. First, let us recall our situation.

Let B be a d-dimensional projective variety over Fq. We assume that d ≥ 1. Let
H be a nef and big line bundle on B. Let X be a projective variety over Fq and
f : X → B a surjective morphism over Fq. Let L be a nef line bundle on X. In the
following, the subscript η of an object on X means its restriction on the generic
fiber of f : X → B.

Theorem 3.2.1. If Lη is ample, then, for a fixed k, there is a constant C such
that

#
{
V ∈ Zeff

l (X/B)
∣∣∣∣

deg(L·l−d
η · Vη) ≤ k,

deg(L·l−d+1 · f∗(H)·d−1 · V ) ≤ h
}
≤ qC·hd

for all h ≥ 1.

Proof. In this proof, we consider the estimate of the number of cycles in the
following cases:

(A) X, B, f : X → B, L and H are given as follows: B = (P1
Fq

)d and X =
(P1
Fq

)d × (P1
Fq

)e = (P1
Fq

)d+e. Let pi : B → P1
Fq

be the projection to the
i-th factor. Similarly, let qj : X → P1

Fq
be the projection to the j-th

factor. f : X → B is given the natural projection q1 × · · · × qd, namely,
f(x1, . . . , xd+e) = (x1, . . . , xd). Moreover, H = p∗1(O(1)) ⊗ · · · ⊗ p∗d(O(1))
and L = q∗d+1(O(1))⊗ · · · ⊗ q∗d+e(O(1)).
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(B) B and H are arbitrary. X = B × (P1
Fq

)e, f : X → B is given by the
projection to the first factor and L = q∗(O(1, . . . , 1)). Here q : X → (P1

Fq
)e

is the natural projection.
(C) B and H are arbitrary. X = B × Pe

Fq
, f : X → B is given the natural

projection and L = q∗(O(1)). Here q : X → Pe
Fq

is the natural projection.
(D) X, B, f : X → B, L and H are arbitrary.

Let us start the estimate of the number of cycles in each case.

Step 1: First let us consider the case (A). We set L̃ =
⊗d+e

i=1 q
∗
i (O(1)) Then,

since L̃ = L⊗ f∗(H), we can see

deg(L̃·l−d · f∗(H)·d · V ) = deg(L·l−d · f∗(H)·d · V ) = d! deg(L·l−d
η · Vη)

and

d̂eg(L̃·l−d+1 · f∗(H)·d−1 · V )

= d̂eg(L·l−d+1 · f∗(H)·d−1 · V ) + (l − d+ 1) deg(L·l−d · f∗(H)·d · V ).

Thus, in this case, our assertion of the theorem follows from Proposition 3.1.1.

Step 2: Next let us consider the case (B). By virtue of Noether’s normalization
theorem, there is a dominant rational map B 99K (P1

Fq
)d. Let the following diagram

B′

ν

ÄÄ¡¡
¡¡

¡¡
¡¡ ν′

""EE
EE

EE
EE

B (P1
Fq

)d

be the graph of the rational map B 99K (P1
Fq

)d. Here we set X ′ = B′ × (P1
Fq

)e,
B′′ = (P1

Fq
)d and X ′′ = (P1

Fq
)d × (P1

Fq
)e. Let f ′ : X ′ → B′, q′ : X ′ → (P1

Fq
)e,

f ′′ : X ′′ → (P1
Fq

)d, and q′′ : X ′′ → (P1
Fq

)e be the natural projections. Moreover, we
set L′ = q′∗(O(1, . . . , 1)) and L′′ = q′′∗(O(1, . . . , 1)).

Let α : Zeff
l (X/B)→ Zeff

l (X ′/B′) be a homomorphism given by the strict trans-
form in terms of ν × id : X ′ → X. Further, let β : Zeff

l (X ′/B′)→ Zeff
l (X ′′/B′′) be

the homomorphism given by the push forward (ν′ × id)∗ of cycles. Since H is nef
and big, there is a positive integer a such that

H0(B′, ν∗(H)⊗a ⊗ ν′∗(O(−1, . . . ,−1))) 6= 0.

Then, by Sublemma 2.2.3,

ad−1 deg(L·l−d+1 · f∗(H)·d−1 · V )

= ad−1 deg((ν × id)∗(L)·l−d+1 · (ν × id)∗(f∗(H))·d−1 · α(V ))

= deg(L′·l−d+1 · f ′∗(ν∗(H)⊗a)·d−1 · α(V ))

≥ deg(L′·l−d+1 · f ′∗(ν′∗(O(1, . . . , 1))·d−1 · α(V ))

= deg(L′′·l−d+1 · f ′′∗(O(1, . . . , 1))·d−1 · β(α(V ))).
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Moreover,

deg(L·l−d+1
η · Vη) = deg(L′·l−d+1

η′ · α(V )η′)

= deg(L′′·l−d+1
η′′ · β(α(V ))η′′),

where the subscripts η′ and η′′ means the restrictions of objects to the generic fibers
f ′ and f ′′ respectively.

For a fixed V ′′ ∈ Zeff
l (X ′′/B′′), we claim that

logq #{V ′ ∈ Zeff
l (X ′/B′) | β(V ′) = V ′′} ≤ deg(ν′) deg(L′′l−d+1

η′′ · V ′′η′′).

Let B′′0 be the maximal Zariski open set of B′′ such that ν′ is finite over B′′0 . We
set B′0 = ν′−1(B′′0 ). Then, the natural homomorphisms

Zeff
l (X ′/B′)→ Zeff

l (X ′
0/B

′
0) and Zeff

l (X ′′/B′′)→ Zeff
l (X ′′

0 /B
′′
0 )

are bijective, where X ′
0 = B′0 × (P1

Fq
)e and X ′′

0 = B′′0 × (P1
Fq

)e. Thus, by virtue of
Lemma 1.3.2, if we set V ′′ =

∑
i aiWi, then

logq #{V ′ ∈ Zeff
l (X ′/B′) | β(V ′) = V ′′} ≤ deg(ν′)

∑

i

ai.

On the other hand,∑

i

ai ≤
∑

i

ai deg(L′′l−d+1
η′′ ·Wiη′′) = deg(L′′l−d+1

η′′ · V ′′η′′).

Therefore, we get our claim.

Hence, by the above observations and Step 1, we have our case.

Step 3: Let us consider the case (C). We prove our theorem in this case by
induction on e. If e = l − d, then our assertion is obvious. Thus we assume that
e > l − d. Let the following diagram

Y
µ

~~~~
~~

~~
~~

ν

""DD
DD

DD
DD

Pe
Fq

(P1
Fq

)e

be the graph of the rational map Pe
Fq

99K (P1
Fq

)e given by

(X0 : · · · : Xe) 7→ (X0 : X1)× · · · × (X0 : Xe).

Then, as in Lemma 2.2.2, there is an effective Cartier divisor E on Y such that
µ(E) ⊂ {X0 = 0} and µ∗(O(e)) = ν∗(O(1, . . . , 1))⊗OY (E). Here we set X ′ = B×
(P1
Fq

)e and L′ = q′∗(O(1, . . . , 1)), where q′ : X → (P1
Fq

)e is the natural projection.
Moreover, f ′ : X ′ → B is given by the natural projection. Then, for

V ∈ Zeff
l (X;X \B × {X0 = 0}),

by Sublemma 2.2.3,

el−d+1 deg(L·l−d+1 · f∗(H)·d−1 · V )

= deg((µ× id)∗(L⊗e)·l−d+1 · (µ× id)∗f∗(H)·d−1 · V ′)
≥ deg((ν × id)∗(L′)·l−d+1 · (ν × id)∗f ′∗(H)·d−1 · V ′)
= deg(L′·l−d+1 · f ′∗(H)·d−1 · (ν × id)∗(V ′)),
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where V ′ is the strict transform of V by µ× id. Further,

el−d deg(L·l−d
η · Vη) = deg((µ× id)∗(L⊗e)·l−d

η′′ · V ′η′′)
≥ deg((ν × id)∗(L′)·l−d

η′′ · V ′η′′)
= deg(L′·l−d

η′ · (ν × id)∗(V ′)η′),

where η′ and η′′ means the restriction of objects on X ′ and B × Y to the generic
fibers X ′ → B and B × Y → B respectively. Here B × {X0 = 0} ' B × Pe−1

Fq
.

Thus, by hypothesis of induction and Step 2, we have our case.

Step 4: Finally we consider the case (D) (general case). Clearly we may assume
that Lη is very ample. Thus, there are a positive integer e and a subvariety X ′ of
B × Pe

Fq
with the following properties:

(1) Let f ′ : X ′ → B (resp. q : X ′ → Pe
Fq

) be the projection to the first factor
(resp. the second factor). There is a non-empty Zariski open set B0 of
B such that f−1(B0) is isomorphic to f ′−1(B0) over B0. We denote this
isomorphism by ι.

(2) If we set L′ = q∗(O(1)), then L|f−1(B0)
= ι∗

(
L′|f ′−1(B0)

)
.

Let
X ′′

µ

}}||
||

||
|| µ′

!!CC
CC

CC
CC

X

f !!B
BB

BB
BB

B X ′

f ′}}{{
{{

{{
{{

B

be the graph of the rational map induced by ι. We denote f · µ = f ′ · µ′ by f ′′. By
the property (2),

f ′′∗ (µ∗(L)⊗ µ′∗(L′⊗−1)) 6= 0.
Thus, we can find an ample line bundle A on B such that

H0(X ′′, µ∗(L⊗ f∗(A))⊗ µ′∗(L′⊗−1)) 6= 0.

Let us choose a non-zero element s of

H0(X ′′, µ∗(L⊗ f∗(A))⊗ µ′∗(L′⊗−1)).

Since f ′′(Supp(div(s)) 6= B, by Sublemma 2.2.3,

deg((L⊗ f∗(A))·l−d+1 · f∗(H)·d−1 · V )

= deg(µ∗(L⊗ f∗(A))·l−d+1 · µ∗f∗(H)·d−1 · V ′)
≥ deg(µ′∗(L′)·l−d+1 · µ′∗f ′∗(H)·d−1 · V ′)
= deg(L′·l−d+1 · f ′∗(H)·d−1 · µ′∗(V ′)),

where V ′ is the strict transform of V by µ. Moreover,

deg((L⊗ f∗(A))·l−d+1 · f∗(H)·d−1 · V ) =

deg(L·l−d+1 · f∗(H)·d−1 · V )

+ (l − d+ 1) deg(A ·H ·d−1) deg(L·l−d
η · Vη).
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Therefore, by Step 3, we get our theorem. 2

3.3. Geometric height functions defined over a finitely generated field
over Fq. Here we consider a consequence of Theorem 3.2.1. Let K be a finitely
generated field over Fq with d = tr.degFq

(K) ≥ 1. Let X be a projective variety
over K and L a line bundle on X. Here we fix a projective variety B and a nef and
big line bundle H on B such that the function field of B is K. We choose a pair
(X ,L) with the following properties:

(1) X is a projective variety over Fq and there is a morphism f : X → B over
Fq such that X is the generic fiber of f .

(2) L is a Q-line bundle on X (i.e., L ∈ Pic(X ) ⊗ Q) such that L|X coincides
with L in Pic(X)⊗Q.

The pair (X ,L) is called a model of (X,L).
For x ∈ X(K), let ∆x be the closure of the image of Spec(K) x−→ X ↪→ X .

Then, the height function of (X,L) with respect to (B,H) and (X ,L) is defined by

h
(B,H)
(X ,L) (x) =

deg(L · f∗(H)d−1 ·∆x)
[K(x) : K]

.

It is not difficult to see that if (X ′,L′) is another model of (X,L), then there is a
constant C such that

|h(B,H)
(X ,L) (x)− h

(B,H)
(X ′,L′)(x)| ≤ C

for all x ∈ X(K) (cf. [6, the proof of Proposition 3.3.3]). Thus, the height function
is uniquely determined modulo bounded functions. In this sense, we denote the class
of h(B,H)

(X ,L) modulo bounded functions by h(B,H)
L (x). As a corollary of Theorem 3.2.1,

we have the following.

Corollary 3.3.2. Let hL be a representative of h(B,H)
L . If L is ample, then, for a

fixed k, there is a constant C such that

{x ∈ X(K) | hL(x) ≤ h, [K(x) : K] ≤ k} ≤ qC·hd

for all h ≥ 1.

Proof. Since L is ample, we can find a model (X ,L) of (X,L) such that L is nef
(cf. Step 4 of Theorem 3.2.1). Thus, our assertion follows from Theorem 3.2.1. 2

4. Preliminaries for the arithmetic case

In this section, we prepare notation and results for considering cycles in the
arithmetic case. In this case, we use Arakelov intersection theory instead of the
usual geometric intersection theory. §4.1 and §4.2 contain notation in Arakelov
geometry and the proofs of miscellaneous results. In §4.3, we introduce several
kinds of norms of polynomials and compare each norm with another one, which is
useful to count divisors in (P1

Z)
n.
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4.1. Arakelov geometry. Here we fix notation in Arakelov geometry (for details,
see [6]). In this paper, a flat and quasi-projective integral scheme over Z is called an
arithmetic variety. If it is smooth over Q, then it is said to be generically smooth.

Let X be a generically smooth arithmetic variety. A pair (Z, g) is called an
arithmetic cycle of codimension p if Z is a cycle of codimension p and g is a current
of type (p− 1, p− 1) on X(C). We denote by Ẑp(X) the set of all arithmetic cycles
on X. We set

ĈH
p
(X) = Ẑp(X)/∼,

where ∼ is the arithmetic linear equivalence.
Let L = (L, ‖·‖) be a C∞-hermitian line bundle onX. Then, the homomorphism

ĉ1(L)· : ĈH
p
(X)→ ĈH

p+1
(X)

arising from L is define by

ĉ1(L) · (Z, g) =
(
div(s) on Z, [− log(‖s‖2Z)] + c1(L) ∧ g) ,

where s is a rational section of L|Z and [− log(‖s‖2Z)] is a current given by φ 7→
− ∫

Z(C)
log(‖s‖2Z)φ.

Here we assume that X is projective. Then we can define the arithmetic degree
map

d̂eg : ĈH
dim X

(X)→ R
by

d̂eg

(∑

P

nPP, g

)
=

∑

P

nP log(#(κ(P ))) +
1
2

∫

X(C)

g.

Thus, if C∞-hermitian line bundles L1, . . . , Ldim X are given, then we can get the
number

d̂eg
(
ĉ1(L1) · · · ĉ1(Ldim X)

)
,

which is called the arithmetic intersection number of L1, . . . , Ldim X .

Let X be a projective arithmetic variety. Note that X is not necessarily gener-
ically smooth. Let L1, . . . , Ldim X be C∞-hermitian line bundles on X. Choose a
birational morphism µ : Y → X such that Y is a generically smooth projective
arithmetic variety. Then, we can see that the arithmetic intersection number

d̂eg
(
ĉ1(µ∗(L1)) · · · ĉ1(µ∗(Ldim X))

)

does not depend on the choice of the generic resolution of singularities µ : Y → X.
Thus, we denote this number by

d̂eg
(
ĉ1(L1) · · · ĉ1(Ldim X)

)
.

Let f : X → Y be a morphism of projective arithmetic varieties. Let L1, . . . , Lr

be C∞-hermitian line bundles on X, and M1, . . . ,Ms C
∞-hermitian line bundles

on Y . If r+s = dimX, then the following formula is called the projection formula:

(4.1.1) d̂eg
(
ĉ1(L1) · · · ĉ1(Lr) · ĉ1(f∗(M1)) · · · ĉ1(f∗(Ms))

)

=





0 if s > dimY

deg((L1)η · · · (Lr)η)d̂eg(ĉ1(M1) · · · ĉ1(Ms)) if s = dimY and r > 0
deg(f)d̂eg(ĉ1(M1) · · · ĉ1(Ms)) if s = dimY and r = 0,
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where the subscript η means the restriction of line bundles to the generic fiber of
f : X → Y .

Let L1, . . . , Ll be C∞-hermitian line bundles on a projective arithmetic va-
riety X. Let V be an l-dimensional integral closed subscheme on X. Then,
d̂eg

(
ĉ1(L1) · · · ĉ1(Ll) |V

)
is defined by

d̂eg
(
ĉ1(L1

∣∣
V

) · · · ĉ1(Ll

∣∣
V

)
)
.

Note that if V is lying over a prime p with respect to X → Spec(Z), then

d̂eg
(
ĉ1(L1) · · · ĉ1(Ll) |V

)
= log(p) deg(L1|V · · · Ll|V ).

Moreover, for an l-dimensional cycle Z =
∑

i niVi on X, d̂eg
(
ĉ1(L1) · · · ĉ1(Ll) |Z

)
is given by ∑

i

nid̂eg
(
ĉ1(L1) · · · ĉ1(Ll) |Vi

)
.

Let f : X → Y be a morphism of projective arithmetic varieties. Let M1, . . . ,M l

be C∞-hermitian line bundles on Y . Then, as a consequence of (4.1.1), we have

(4.1.2) d̂eg
(
ĉ1(f∗(M1)) · · · ĉ1(f∗(M l)) |Z

)
= d̂eg

(
ĉ1(M1) · · · ĉ1(M l) | f∗(Z)

)

for all l-dimensional cycles Z on X.

4.2. The positivity of C∞-hermitian Q-line bundles. Here let us introduce
several kinds of the positivity of a C∞-hermitian Q-line bundle. Let X be a projec-
tive arithmetic variety and P̂ic(X) the set of isometric classes of C∞-hermitian line
bundles on X. An element of P̂ic(X)⊗Q is called a C∞-hermitian Q-line bundle.
For a C∞-hermitian Q-line bundle L on X, we consider the following kinds of the
positivity of L. In the following, let d be a positive integer with L

⊗d ∈ P̂ic(X)
(Note that the following definitions do not depend on the choice of d).
•ample: We say L is ample if L is ample on X, c1(L) is positive form on

X(C), and there is a positive number n such that L⊗dn is generated by the set
{s ∈ H0(X,L⊗dn) | ‖s‖sup < 1}.
•nef: We say L is nef if c1(L) is a semipositive form on X(C) and, for all

one-dimensional integral closed subschemes Γ of X, d̂eg
(
ĉ1(L) |Γ) ≥ 0.

•big: L is said to be big if rkZH0(X,L⊗dm) = O(mdim XQ) and there is a non-
zero section s of H0(X,L⊗dn) with ‖s‖sup < 1 for some positive integer n.
•QQQ-effective: L is said to be Q-effective if there is a positive integer n and a

non-zero s ∈ H0(X,L⊗dn) with ‖s‖sup ≤ 1.
•pseudo-effective: L is said to be pseudo-effective if there are (1) a sequence

{Ln}∞n=1 of Q-effective C∞-hermitian Q-line bundles, (2) C∞-hermitian Q-line bun-
dles E1, . . . , Er and (3) sequences {a1,n}∞n=1, . . . , {ar,n}∞n=1 of rational numbers such
that

ĉ1(L) = ĉ1(Ln) +
r∑

i=1

ai,nĉ1(Ei)

in ĈH
1
(X) ⊗ Q and limn→∞ ai,n = 0 for all i, in other words, L is the limit of

Q-effective C∞-hermitian Q-line bundles. If L1⊗L⊗−1

2 is pseudo-effective for C∞-
hermitian Q-line bundles L1, L2 on X, then we denote this by L1 % L2.
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•of surface type: L is said to be of surface type if there are a morphism
φ : X → X ′ of projective arithmetic varieties and a C∞-hermitian Q-line bundle
L
′
on X ′ such that dimX ′

Q = 1 (i.e. X ′ is a projective arithmetic surface), L
′
is

nef and big, and that φ∗(L
′
) = L in P̂ic(X)⊗Q.

In the following, we consider three lemmas which will be used later.

Lemma 4.2.3. Let X be a projective arithmetic variety. Then, we have the fol-
lowing.

(1) Let L1, . . . , Ldim X ,M1, . . . ,Mdim X be nef C∞-hermitian Q-line bundles on
X. If Li ⊗M⊗−1

i is pseudo-effective for every i, then

d̂eg
(
ĉ1(L1) · · · ĉ1(Ldim X)

) ≥ d̂eg
(
ĉ1(M1) · · · ĉ1(Mdim X)

)
.

(2) Let V be an effective cycle of dimension l and let L1, . . . , Ll,M1, . . . ,M l

be nef C∞-hermitian Q-line bundles on X such that, for each i, there is
a non-zero global section si ∈ H0(X,Li ⊗M⊗−1

i ) with ‖si‖sup ≤ 1. Let
V =

∑
j ajVj be the irreducible decomposition as a cycle. If si|Vj

6= 0 for
all i, j, then

d̂eg
(
ĉ1(L1) · · · ĉ1(Ll) |V

) ≥ d̂eg
(
ĉ1(M1) · · · ĉ1(M l) |V

)
.

Proof. (1) This lemma follows from [6, Proposition 2.3] and the following for-
mula:

d̂eg
(
ĉ1(L1) · · · ĉ1(Ldim X)

)
= d̂eg

(
ĉ1(M1) · · · ĉ1(Mdim X)

)
+

dim X∑

i=1

d̂eg
(
ĉ1(M1) · · · ĉ1(M i−1) · ĉ1(Li ⊗M⊗−1

i ) · ĉ1(Li+1) · · · ĉ1(Ldim X)
)
.

(2) This is a consequence of (1). 2

Next let us consider the following technical formula.

Lemma 4.2.4. Let X be a projective arithmetic variety and d an integer with 1 ≤
d ≤ dimX. Let X1, . . . , Xd be projective arithmetic surfaces (i.e. 2-dimensional
projective arithmetic varieties) and φi : X → Xi (i = 1, . . . , d) surjective mor-
phisms. Let L1, . . . , Ld be C∞-hermitian Q-line bundles on X1, . . . , Xd respectively
with deg((Li)Q) > 0 (i = 1, . . . , d), and let Hd+1, . . . ,Hdim X be C∞-hermitian
Q-line bundles on X. We set Hi = φ∗i (Li) (i = 1, . . . , d) and H =

⊗d
i=1Hi. Then,

d̂eg
(
ĉ1(H)·d · ĉ1(Hd+1) · · · ĉ1(Hdim X)

)

= d!d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) · ĉ1(Hd+1) · · · ĉ1(Hdim X)

)

+
d!
2

∑

i 6=j

d̂eg
(
ĉ1(Li)·2

)
deg

(∏
l 6=j

1≤l≤d
(Hl)Q · (Hd+1)Q · · · (Hdim X)Q

)

deg((Li)Q)
,

where the subscript Q means the restriction to the generic fiber XQ of X → Spec(Z).
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Proof. First of all,

d̂eg
(
ĉ1(H)·d · ĉ1(Hd+1) · · · ĉ1(Hdim X)

)

=
∑

a1+···+ad=d
a1≥0,...,ad≥0

d!
a1! · · · ad!

d̂eg
(
ĉ1(H1)·a1 · · · ĉ1(Hd)·ad · ĉ1(Hd+1) · · · ĉ1(Hdim X)

)
.

Claim 4.2.4.1. If (a1, . . . , ad) 6= (1, . . . , 1) and

d̂eg

(
d∏

l=1

ĉ1(H l)·al · ·ĉ1(Hd+1) · · · ĉ1(Hdim X)

)
6= 0,

then there are i, j ∈ {1, . . . , d} such that ai = 2, aj = 0 and al = 1 for all l 6= i, j.

Clearly, al ≤ 2 for all l. Thus, there is i with ai = 2. Suppose that aj = 2 for
some j 6= i. Then,

d̂eg

(
d∏

l=1

ĉ1(H l)·al · ·ĉ1(Hd+1) · · · ĉ1(Hdim X)

)

= d̂eg


ĉ1(φ∗i (Li))·2 · ĉ1(φ∗j (Lj))·2 ·

d∏

l=1,l 6=i,j

ĉ1(H l)·al · ĉ1(Hd+1) · · · ĉ1(Hdim X)


 .

Thus, using the projection formula with respect to φi,

d̂eg


ĉ1(φ∗i (Li))·2 · ĉ1(φ∗j (Lj))·2 ·

d∏

l=1,l 6=i,j

ĉ1(H l)·al · ĉ1(Hd+1) · · · ĉ1(Hdim X)




= d̂eg(ĉ1(Li)·2) deg


φ∗j (Lj)·2ηi

·
d∏

l=1,l 6=i,j

(Hl)·al
ηi
· (Hd+1)ηi

· · · (Hdim X)ηi


 ,

where ηi means the restriction of line bundles to the generic fiber of φi. Here (Xj)Q
is projective curve. Thus, we can see

deg


φ∗j (Lj)·2ηi

·
d∏

l=1,l 6=i,j

(Hl)·al
ηi
· (Hd+1)ηi

· · · (Hdim X)ηi


 = 0.

This is a contradiction. Hence, we get our claim.

By the above claim, it is sufficient to see that

d̂eg


ĉ1(φ∗i (Li))·2 ·

d∏

l=1,l 6=i,j

ĉ1(H l) · ĉ1(Hd+1) · · · ĉ1(Hdim X)




=
d̂eg

(
ĉ1(Li)·2

)
deg

(∏
l 6=j

1≤l≤d
(Hl)Q · (Hd+1)Q · · · (Hdim X)Q

)

deg((Li)Q)
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By the (arithmetic) projection formula with respect to φi,

d̂eg


ĉ1(φ∗i (Li))·2 ·

d∏

l=1,l 6=i,j

ĉ1(H l) · ĉ1(Hd+1) · · · ĉ1(Hdim X)




= d̂eg
(
ĉ1(Li)·2

)
deg




∏

l 6=i,j
1≤l≤d

(Hl)ηi · (Hd+1)ηi · · · (Hdim X)ηi


 .

Moreover, using the (geometric) projection formula with respect to φi again,

deg




∏

l 6=j
1≤l≤d

(Hl)Q · (Hd+1)Q · · · (Hdim X)Q




= deg((Li)Q) deg




∏

l 6=i,j
1≤l≤d

(Hl)ηi
· (Hd+1)ηi

· · · (Hdim X)ηi


 .

Thus, we get our lemma. 2

Finally let us consider the following technical lemma.

Lemma 4.2.5. Let φ : Pn
Z 99K (P1

Z)
n be the birational map given by

(X0 : . . . : Xni) 7→ (X0 : X1)× · · · × (X0 : Xn).

Let Σ be the boundary of Pn
Z, that is, Σ = {X0 = 0}. Let B be a projective

arithmetic variety and H1, . . . ,Hd nef C∞-hermitian line bundles on B, where
d = dimBQ. Let Zeff

l (Pn
Z ×B; (Pn

Z \Σ)×B) be the set of effective cycles generated
by l-dimensional integral closed subschemes T with T ∩ ((Pn

Z \ Σ)×B) 6= ∅ (cf.
(1.1.2)). For V ∈ Zeff

l (Pn
Z ×B; (Pn

Z \Σ)×B), we denote by V ′ the strict transform
of V by φ × id : Pn

Z × B 99K (P1
Z)

n × B. Let us fix a non-negative real number λ.
Then,

nl−dd̂eg
(
ĉ1(p∗(OFSλ(1)))·l−d · ĉ1(q∗(H1)) · · · ĉ1(q∗(Hd)) |V

)

≥ d̂eg
(
ĉ1(p′

∗(OFSλ(1, . . . , 1)))·l−d · ĉ1(q′∗(H1)) · · · ĉ1(q′∗(Hd)) |V ′
)

for all V ∈ Zeff
l (Pn

Z×B; (Pn
Z \Σ)×B), where p : Pn

Z×B → Pn
Z and p′ : (P1

Z)
n×B →

(P1
Z)

n (resp. q : Pn
Z × B → B and q′ : (P1

Z)
n × B → B) are the projections to the

first factor (the second factor). Note that in the case d = 0, we do not use the nef
C∞-hermitian line bundles H1, . . . ,Hd.

Proof. Let Y (⊆ Pn
Z×(P1

Z)
n) be the graph of the rational map φ : Pn

Z 99K (P1
Z)

n.
Let µ : Y → Pn

Z and ν : Y → (P1
Z)

n be the morphisms induced by the projections.
Here we claim the following:

Claim 4.2.5.1. There are an effective Cartier divisor E on Y , a non-zero section
s ∈ H0(Y,OY (E)) and a C∞-metric ‖ · ‖E of OY (E) such that

(1) div(s) = E, µ(E) ⊆ Σ,
(2) µ∗(OFSλ(1))⊗n = ν∗(OFSλ(1, . . . , 1))⊗ (OY (E), ‖ · ‖E), and that
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(3) ‖s‖E(x) ≤ 1 for all x ∈ Y (C).

Let Yi (⊆ Pn
Z × P1

Z) be the graph of the rational map Pn
Z 99K P1

Z given by

(X0 : · · · : Xn) 7→ (X0 : Xi).

Let µi : Yi → Pn
Z and νi : Yi → P1

Z be the morphisms induced by the projections
Pn
Z × P1

Z → Pn
Z and Pn

Z × P1
Z → P1

Z respectively. Let πi : (P1
Z)

n → P1
Z be the

projection to the i-th factor. Moreover, let hi : Y → Yi be the morphism induced
by id×πi : Pn

Z×(P1
Z)

n → Pn
Z×P1

Z. Consequently, we have the following commutative
diagram:

Y

µ

¨¨²²
²²
²²
²²
²²
²²
²²
²

hi

²²

ν

""DD
DD

DD
DD

Yi

µi
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ

νi
!!CC

CC
CC

CC
C (P1

Z)
n

πi

²²
Pn
Z P1

Z

Note that Yi is the blowing-up by the ideal sheaf Ii generated by X0 and Xi.
Thus there is an effective Cartier divisor Ei on Yi with IiOYi = OYi(−Ei) and
µ∗i (OPn(1))⊗OYi(−Ei) = ν∗i (OP1(1)). Let si be the canonical section of OYi(Ei).
We choose C∞-metric ‖ · ‖i of OYi

(Ei) with

µ∗i (OPn(1), ‖ · ‖FSλ
) = ν∗i (OP1(1), ‖ · ‖FSλ

)⊗ (OYi
(Ei), ‖ · ‖i).

Let (T0 : T1) be a coordinate of P1
Z. Then, µ∗i (X0) = ν∗i (T0)⊗ si. Thus,

exp(−λ)|X0|√
|X0|2 + · · ·+ |Xn|2

=
exp(−λ)|T0|√
|T0|2 + |T1|2

‖si‖i,

which implies

‖si‖i =

√
|X0|2 + |Xi|2√

|X0|2 + · · ·+ |Xn|2
because X0T1 = XiT0. Therefore, ‖si‖i(xi) ≤ 1 for all xi ∈ Yi(C). We set E =∑n

i=1 h
∗
i (Ei) and give a C∞-metric ‖ · ‖E to OY (E) with

(OY (E), ‖ · ‖E) =
n⊗

i=1

h∗i (OYi
(Ei), ‖ · ‖i).

Thus, if we set s = h∗1(s1)⊗ · · · ⊗ h∗n(sn), then s ∈ H0(Y,OY (E)), div(s) = E and
‖s‖E(x) ≤ 1 for all x ∈ Y (C). Moreover, we have

µ∗(OFSλ(1))⊗n = ν∗(OFSλ(1, . . . , 1))⊗ (OY (E), ‖ · ‖E).

Hence we get our claim.

For V ∈ Zeff
l (Pn

Z × B; (Pn
Z \ Σ) × B), let V ′′ be the strict transform of V by

µ × id : Y × B → Pn
Z × B. Let p′′ : Y × B → Y and q′′ : Y × B → B be the
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projections to the first factor and the second factors respectively. Then, by using
the projection formula,

d̂eg
(
ĉ1(p∗(OFSλ(n)))·l−d · ĉ1(q∗(H1)) · · · ĉ1(q∗(Hd)) |V

)

= d̂eg
(
ĉ1(p′′

∗(µ∗(OFSλ(n))))·l−d · ĉ1(q′′∗(H1)) · · · ĉ1(q′′∗(Hd)) |V ′′
)
.

Moreover, by virtue of (2) of Lemma 4.2.3,

d̂eg
(
ĉ1(p′′

∗(µ∗(OFSλ(n))))·l−d · ĉ1(q′′∗(H1)) · · · ĉ1(q′′∗(Hd)) |V ′′
)

≥ d̂eg
(
ĉ1(p′′

∗(ν∗(OFSλ(1, . . . , 1))))·l−d · ĉ1(q′′∗(H1)) · · · ĉ1(q′′∗(Hd)) |V ′′
)

Thus, using the projection formula for ν × id : Y × B → (P1
Z)

n × B, we get our
lemma because (ν × id)∗(V ′′) = V ′. 2

4.3. Comparisons of norms of polynomials. In this subsection, we introduce
several kinds of norms of polynomials and compare each norm with another one.

Let Sn = C[z1, . . . , zn] be the ring of n-variable polynomials over C. We define
norms |f |∞ and |f |2 of f =

∑
i1,...,in

ai1,...,in
zi1
1 · · · zin

n ∈ Sn as follows:

|f |∞ = max
i1,...,in

{|ai1,...,in |} and |f |2 =
√ ∑

i1,...,in

|ai1,...,in |2.

Moreover, the degree of f with respect to the variable zi is denoted by degi(f).
First of all, we have obvious inequalities:

(4.3.1) |f |∞ ≤ |f |2 ≤
√

(deg1(f) + 1) · · · (degn(f) + 1)|f |∞.
We set

S(d1,...,dn)
n = {f ∈ Sn | degi(f) ≤ di (∀i = 1, . . . , n)}.

Note that

(4.3.2) dimC S(d1,...,dn)
n = (d1 + 1) · · · (dn + 1).

For f1, . . . , fl ∈ Sn, we set

(4.3.3) v(f1, . . . , fl) = exp
(∫

Cn

log
(
max

i
{|fi|}

)
ω1 ∧ · · · ∧ ωn

)
,

where ωi’s are the (1, 1)-forms on Cn given by

ωi =
√−1dzi ∧ dz̄i

2π(1 + |zi|2)2 .

Let us begin with the following proposition.

Proposition 4.3.4. For f1, . . . , fl ∈ S(d1,...,dn)
n , we have the following.

(1) maxi{|fi|∞} ≤ 2d1+···+dnv(f1, . . . , fl).
(2) v(f1, . . . , fl) ≤

√
2

d1+···+dn
√

(|f1|2)2 + · · ·+ (|fl|2)2.
Proof. (1) Since

max
i

{∫

Cn

log (|fi|)ω1 ∧ · · · ∧ ωn

}
≤

∫

Cn

log
(
max

i
{|fi|}

)
ω1 ∧ · · · ∧ ωn,

(1) is a consequence of [6, Lemma 4.1].
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For the proof of (2), we set

D0 = {z ∈ C | 0 < |z| < 1} and D1 = {z ∈ C | 1 < |z|}.
Then,

∫

Cn

log
(
max

i
{|fi|}

)
ω1 ∧ · · · ∧ ωn

=
∑

(ε1,...,εn)∈{0,1}n

∫

Dε1×···×Dεn

log
(
max

i
{|fi|}

)
ω1 ∧ · · · ∧ ωn.

For ε = (ε1, . . . , εn) ∈ {0, 1}n, let us consider a holomorphic map

ϕε : D0 × · · · × D0 → Dε1 × · · · × Dεn

given by ϕε(z1, . . . , zn) = (zι(ε1)
1 , . . . , z

ι(εn)
n ), where ι : {0, 1} → {−1, 1} is a map

given by ι(0) = 1 and ι(1) = −1. Then, since ϕ∗ε (ω1 ∧ · · · ∧ ωn) = ω1 ∧ · · · ∧ ωn,
∫

Dε1×···×Dεn

log
(
max

i
{|fi|}

)
ω1 ∧ · · · ∧ ωn

=
∫

Dn
0

log
(
max

i
{|fi(z

ι(ε1)
1 , . . . , zι(εn)

n )|}
)
ω1 ∧ · · · ∧ ωn.

Here we can find fi,ε ∈ S(d1,...,dn)
n such that

fi(z
ι(ε1)
1 , . . . , zι(εn)

n ) =
fi,ε(z1, . . . , zn)
zε1d1
1 · · · zεndn

n

and |fi|2 = |fi,ε|2. Note that
∫

Dn
0

log(|zi|)ω1 ∧ · · · ∧ ωn = − log(2)
2n

for all i. Therefore,
∫

Dε1×···×Dεn

log
(
|max

i
{|fi|}|

)
ω1 ∧ · · · ∧ ωn

=
∫

Dn
0

log
(
max

i
{|fi,ε|}

)
ω1 ∧ · · · ∧ ωn −

n∑

i=1

εidi

∫

Dn
0

log(|zi|)ω1 ∧ · · · ∧ ωn

=
∫

Dn
0

log
(
max

i
{|fi,ε|}

)
ω1 ∧ · · · ∧ ωn +

log(2)
2n

n∑

i=1

εidi.

Thus, we have
∫

Cn

log
(
max

i
{|fi|}

)
ω1 ∧ · · · ∧ ωn

=
∑

ε∈{0,1}n

∫

Dn
0

log
(
max

i
{|fi,ε|}

)
ω1 ∧ · · · ∧ ωn + log(

√
2)(d1 + · · ·+ dn).
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Hence, by the lemma below (Lemma 4.3.5), we can conclude
∫

Cn

log
(
max

i
{|fi|}

)
ω1 ∧ · · · ∧ ωn

≤
∑

ε∈{0,1}n

log
(√

(|f1|2)2 + · · ·+ (|fl|2)2
)

2n
+ log(

√
2)(d1 + · · ·+ dn)

= log
(√

(|f1|2)2 + · · ·+ (|fl|2)2
)

+ log(
√

2)(d1 + · · ·+ dn).

2

Lemma 4.3.5. For all f1, . . . , fl ∈ Sn,

exp

(∫

Dn
0

log
(
max

i
{|fi|}

)
(2ω1) ∧ · · · ∧ (2ωn)

)
≤

√
(|f1|2)2 + · · ·+ (|fl|2)2.

Proof. Let us begin with the following sublemma:

Sublemma 4.3.6. Let M be a differential manifold and Ω a volume form on M
with

∫
M

Ω = 1. Let ϕ : R→ R be a C∞-function with ϕ′′ ≥ 0. Let u be a real valued
function on M . If u and ϕ(u) are integrable on M , then ϕ

(∫
M
uΩ

) ≤ ∫
M
ϕ(u)Ω.

Proof. We set c =
∫

M
uΩ. Since the second derivative of ϕ is non-negative, we

can see
(x− c)ϕ′(c) ≤ ϕ(x)− ϕ(c)

for all x ∈ R. Therefore, we get∫

M

(u− c)ϕ′(c)Ω ≤
∫

M

(ϕ(u)− ϕ(c))Ω.

On the other hand, the left hand side of the above inequality is zero, and the right
hand side is

∫
M
ϕ(u)Ω− ϕ(c). Thus, we have our desired inequality. 2

Let us go back to the proof of Lemma 4.3.5. Applying the above lemma to the
case ϕ = exp,

exp

(∫

Dn
0

log
(
max

i
{|fi|2}

)
(2ω1) ∧ · · · ∧ (2ωn)

)

≤
∫

Dn
0

max
i

{|fi|2
}

(2ω1) ∧ · · · ∧ (2ωn)

≤
∫

Dn
0

∑

i

|fi|2(2ω1) ∧ · · · ∧ (2ωn)

We set fi =
∑

e1,...,en
a
(i)
e1,...,enz

e1
1 · · · zen

n for all i. Then

∑

i

∫

Dn
0

|fi|2(2ω1) ∧ · · · ∧ (2ωn) =

∑

i

∑
e1,...,en,
e′1,...,e′n

a(i)
e1,...,en

a
(i)
e′1,...,e′n

∫

Dn
0

ze1
1 z̄1

e′1 · · · zen
n z̄n

e′n(2ω1) ∧ · · · ∧ (2ωn).
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It is easy to see that∫

Dn
0

ze1
1 z̄1

e′1 · · · zen
n z̄n

e′n(2ω1) ∧ · · · ∧ (2ωn) = 0

if (e1, . . . , en) 6= (e′1, . . . , e
′
n). Moreover,

∫

Dn
0

|z1|2e1 · · · |zn|2en(2ω1) ∧ · · · ∧ (2ωn) =
(∫

D0

|z1|2e12ω1

)
· · ·

(∫

D0

|zn|2en2ωn

)
.

Thus, it is sufficient to see that
∫

D0

|z|2e

√−1dz ∧ dz̄
π(1 + |z|2)2 ≤ 1

for all e ≥ 0. We set z = r exp(2π
√−1θ), then

∫

D0

|z|2e

√−1dz ∧ dz̄
π(1 + |z|2)2 =

∫ 1

0

4r2e+1

(1 + r2)2
dr =

∫ 1

0

2te

(t+ 1)2
dt

If e = 0, then the above integral is 1. Further if e ≥ 1, then
∫ 1

0

2te

(t+ 1)2
dt ≤

∫ 1

0

2tedt =
2

e+ 1
≤ 1.

2

Next let us consider the following proposition, which tells us the behavior of the
norm | · |∞ by the product of two polynomials.

Proposition 4.3.7. For f, g ∈ C[z1, . . . , zn],

|f · g|∞ ≤ |f |∞ · |g|∞ ·
n∏

i

(1 + min{degi(f),degi(g)}).

Proof. For I ∈ (Z≥0)n, the i-th entry of I is denoted by I(i). A partial order
‘≤’ on (Z≥0)n is defined as follows:

I ≤ J def⇐⇒ I(i) ≤ J(i) for all i = 1, . . . , n

Moreover, for I ∈ Zn
≥0, the monomial zI(1)

1 · · · zI(n)
n is denoted by zI .

Let us fix two non-zero polynomials

f =
∑

I∈(Z≥0)n

aIz
I and g =

∑

I∈(Z≥0)n

bIz
I .

We set I1 = (deg1(f), . . . ,degn(f)), I2 = (deg1(g), . . . ,degn(g)) and

d =
n∏

i

(1 + min{degi(f),degi(g)}).

First, we note that, for a fixed I ∈ Zn
≥0,

#{(J, J ′) ∈ Zn
≥0 × Zn

≥0 | J + J ′ = I, J ≤ I1 and J ′ ≤ I2} ≤ d.
On the other hand,

f · g =
∑

I




∑

J+J′=I
J≤I1,J ′≤I2

aJbJ′


 zI .
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Thus,

|f · g|∞ ≤ max
I





∑

J+J′=I
J≤I1,J ′≤I2

|aJbJ′ |




≤ max

I





∑

J+J′=I
J≤I1,J ′≤I2

|f |∞|g|∞




≤ d|f |∞|g|∞

2

For f ∈ C[z1, . . . , zn], we denote by lci(f) the coefficient of the highest terms of
f as a polynomial of zi, that is, if we set

f = anz
n
i + · · ·+ a0 (ai ∈ C[z1, . . . , zi−1, zi+1, . . . , zn], an 6= 0),

then lci(f) = an. Note that lci(0) = 0 and

lci : C[z1, . . . , zn]→ C[z1, . . . , zi−1, zi+1, . . . , zn].

For an element σ of the n-th symmetric group Sn, we set

lcσ(f) = lcσ(n) ◦ · · · ◦ lcσ(1)(f).

Then we have the following proposition, which gives a lower bound of v(f).

Proposition 4.3.8. For a non-zero f ∈ C[z1, . . . , zn],
∫

Cn

log(|f |)ω1 ∧ · · · ∧ ωn ≥ max
σ∈Sn

{log(| lcσ(f)|)}.

In particular, if f ∈ Z[z1, . . . , zn], then
∫

Cn

log(|f |)ω1 ∧ · · · ∧ ωn ≥ 0.

Proof. Changing the order of variables, it is sufficient to see that
∫

Cn

log(|f |)ω1 ∧ · · · ∧ ωn ≥ log(| lcn ◦ · · · ◦ lc1(f)|).

We prove this by induction on n. First we assume n = 1. Then, for f = α(z −
c1) · · · (z − cl),

∫

C
log(|f |)ω1 = log |α|+ 1

2

l∑

i=1

log(1 + |ci|2) ≥ log |α|.

Next we consider a general n. By the hypothesis of induction, we can see that
∫

Cn−1
log(|f |)ω1 ∧ · · · ∧ ωn−1 ≥ log | lcn−1 ◦ · · · ◦ lc1(f)|

as a function with respect to zn. Thus,
∫

Cn

log(|f |)ω1 ∧ · · · ∧ ωn ≥
∫

C
log | lcn−1 ◦ · · · ◦ lc1(f)|ωn ≥ log | lcn ◦ · · · ◦ lc1(f)|.

2
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5. Counting cycles in the arithmetic case

In this section, we consider an arithmetic analogue of §2. Actually, we prove the
following:

Let X be a projective arithmetic variety and H an ample C∞-
hermitian line bundle on X. Then, there is a constant C such that
the number of l-dimensional cycles V with d̂eg(ĉ1(H) |V ) ≤ h is
less than or equal to exp(C · hl+1) for all h ≥ 1.

A scheme for the proof of the above theorem is similar to the geometric case (cf.
§2). However, some parts are much harder than the geometric case. Especially,
upper and lower estimates of the number of divisors on (P1

Z)
n are difficult, so that

we treat them in the separate subsection §5.1. This upper estimate gives rise to
the initial step of a counting system for cycles on (P1

Z)
n. Once we get this, we can

obtain the upper estimate of cycles on (P1
Z)

n similarly, which is treated in §5.2.
As in §2.2, the results on (P1

Z)
n can be generalized to estimates on an arbitrary

arithmetic variety, which is considered in §5.3 and §5.4.

5.1. Counting arithmetic divisors. Here let us consider several problems con-
cerning the number of arithmetic divisors with bounded arithmetic degree. Let us
begin with the following proposition.

Proposition 5.1.1. Let us fix a positive real number λ, a subset I of {1, . . . , n}
and a function α : I → Z≥0. For a divisor D on (P1

Z)
n, we set

δλ(D) = d̂eg(ĉ1(p∗1(O
FSλ(1))) · · · ĉ1(p∗n(OFSλ(1))) |D),

where pi : (P1
Z)

n → P1
Z is the projection to the i-th factor. Then, there is a constant

C(λ, α) depending only on λ and α : I → Z such that

#
{
D ∈ Zeff

n ((P1
Z)

n) | δλ(D) ≤ h and degi(D) ≤ α(i) for all i ∈ I}

≤ exp
(
C(λ, α) · hn+1−#(I)

)

for h ≥ 1. (Note that in the case where I = ∅, no condition on deg1(D), . . . ,degn(D)
is posed.)

Proof. Fix a basis {Xi, Yi} of H0(P1
Z,O(1)) of the i-th factor of

(
P1
Z
)n. We de-

note by Z[X1, Y1, . . . , Xn, Yn](k1,...,kn) the set of homogeneous polynomials of multi-
degree (k1, . . . , kn). Then,

H0

(
(P1
Z)

n,
n⊗

i=1

p∗i (O(ki))

)
= Z[X1, Y1, . . . , Xn, Yn](k1,...,kn).

Let D be an effective divisor on (P1
Z)

n with degi(D) = ki (i = 1, . . . , n). Then there
is

P ∈ Z[X1, Y1, . . . , Xn, Yn](k1,...,kn) \ {0}
with div(P ) = D. Let us evaluate

d̂eg

(
ĉ1(p∗1(O

FSλ(1))) · · · ĉ1(p∗n(OFSλ(1))) · ĉ1
(

n⊗

i=1

p∗i (O
FS0(ki))

))
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in terms of P . Since d̂eg
(
ĉ1

(
OFS0

P1Z (1)
)2

)
= 1/2, we can see

(λ+ 1/2)(k1 + · · ·+ kn) = δλ(D)−
∫

(P1C)n

log ‖P‖FS0ω1 ∧ · · · ∧ ωn,

where ωi = p∗i (c1(O
FS

(1))) (i = 1, . . . , n). We set p(x1, . . . , xn) = P (x1, 1, . . . , xn, 1).
Then,

‖P‖FS0 =
|p|

(1 + x2
1)k1/2 · · · (1 + x2

n)kn/2
.

Note that
∫

(P1C)n

log
(
(1 + x2

1)
k1/2 · · · (1 + x2

n)kn/2
)
ω1 ∧ · · · ∧ ωn =

n∑

i=1

ki

2
.

Thus,

(5.1.1.1)
∫

(P1C)n

log |p|ω1 ∧ · · · ∧ ωn = δλ(D)− λ(k1 + · · ·+ kn).

On the other hand, by Proposition 4.3.4,

log |P |∞ = log |p|∞ ≤ log(2)(deg1(p) + · · ·+ degn(p)) +
∫

(P1C)n

log |p|ω1 ∧ · · · ∧ωn

≤ log(2)(k1 + · · ·+ kn) +
∫

(P1C)n

log |p|ω1 ∧ · · · ∧ ωn,

where |P |∞ is the maximal of the absolute values of coefficients of P . Thus,

(5.1.1.2) log |P |∞ ≤ δλ(D) + (k1 + · · ·+ kn)(log 2− λ).

We assume that δλ(D) ≤ h. Then, since it follows from Proposition 4.3.8 that
∫

(P1C)n

log |p|ω1 ∧ · · · ∧ ωn ≥ 0,

(5.1.1.1) implies

(5.1.1.3) k1 + · · ·+ kn ≤ h/λ.
Moreover, using (5.1.1.2), if λ ≤ log 2, then

log |P |∞ ≤ h+ (k1 + · · ·+ kn)(log 2− λ) ≤ h+
h

λ
(log 2− λ) =

h log 2
λ

.

Thus, if we set

g(h, λ) =

{
exp(h log 2/λ) if 0 < λ ≤ log 2
exp(h) if λ > log 2,

then

(5.1.1.4) |P |∞ ≤ g(h, λ).

Therefore,

#{P ∈ Z[X1, Y1, . . . , Xn, Yn](k1,...,kn) \ {0} | δλ(div(P )) ≤ h}
≤ (2g(h, λ) + 1)(k1+1)···(kn+1)
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Hence if we set

Nα(h) = #{D ∈ Zeff
n ((P1

Z)
n) | δλ(D) ≤ h and degi(D) ≤ α(i) for all i ∈ I},

then we can see

Nα(h) ≤
∑

k1+···+kn≤h/λ
ki≤α(i)(∀i∈I)

(2g(h, λ) + 1)(k1+1)···(kn+1)

≤ (h/λ+ 1)l−#(I)

(∏

i∈I

(α(i) + 1)

)
(2g(h, λ) + 1)(h/λ+1)n−#(I) Q

i∈I(α(i)+1)
.

Note that in the case where I = ∅, the number
∏

i∈I(α(i)+1) in the above inequality
is treated as 1. Thus, we get our lemma. 2

Next we consider a lower estimate of the number of divisors, which is not easy
because no member of a linear system has the same arithmetic degree.

Proposition 5.1.2. Let us fix a positive real number λ. For a divisor D on (P1
Z)

n,
we set

δλ(D) = d̂eg(ĉ1(p∗1(O
FSλ(1))) · · · ĉ1(p∗n(OFSλ(1))) |D),

where pi : (P1
Z)

n → P1
Z is the projection to the i-th factor. Let x1, . . . , xs be closed

points of (P1
Z)

n. Then, we have

lim sup
h→∞

log #{D ∈ Diveff((P1
Z)

n) | δλ(D) ≤ h and xi 6∈ Supp(D) for all i}
hn+1

> 0.

Moreover, if n ≥ 1, then

lim sup
h→∞

log #{D ∈ Diveff
hor((P1

Z)
n) | δλ(D) ≤ h and xi 6∈ Supp(D) for all i}

hn+1
> 0,

where Diveff
hor((P1

Z)
n) is the set of all effective divisors on (P1

Z)
n generated by prime

divisors flat over Z.

Proof. Let us fix a coordinate {Xi, Yi} of the i-th factor of (P1
Z)

n. Then, note
that

⊕

k1≥0,...,kn≥0

H0

(
(P1
Z)

n,

n⊗

i=1

p∗i (O(ki))

)
= Z[X1, Y1, . . . , Xn, Yn].

We set l = 4
∏

i #(κ(xi)). Then, l = 0 in κ(xi) for all i. Since H =
⊗n

i=1 p
∗
i (O(1))

is ample, there is a positive integer k0 with H1((P1
Z)

n,H⊗k0⊗mx1⊗· · ·⊗mxs
) = 0,

where mxi
is the maximal ideal at xi. Thus, the homomorphism

H0((P1
Z)

n,H⊗k0)→
s⊕

i=1

H⊗k0 ⊗ κ(xi)

is surjective. Hence, there is P0 ∈ H0((P1
Z)

n,H⊗k0) with P0(xi) 6= 0 for all i.
Clearly, we may assume that P0 is primitive as a polynomial in Z[X1, Y1, . . . , Xn, Yn].

For m ≥ 1 and Q ∈ H0((P1
Z)

n,H⊗mk0), we set αm(Q) = Pm
0 + lQ. Note that

αm(Q)(xi) 6= 0 for all i. Thus, we get a map

φm : H0((P1
Z)

n,H⊗mk0)→ {D ∈ Diveff((P1
Z)

n) | xi 6∈ Supp(D) for all i}
given by φm(Q) = div(αm(Q)). Here we claim that φm is injective. Indeed, if
φm(Q) = φm(Q′), then αm(Q) = αm(Q′) or αm(Q) = −αm(Q′). Clearly, if
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αm(Q) = αm(Q′), then Q = Q′, so that we assume αm(Q) = −αm(Q′). Then
Pm

0 = −2
∏

i #(κ(xi))(Q + Q′). Since P0 is primitive, so is Pm
0 . This is a contra-

diction.
We set d = (1 + k0)n. Let us choose a positive number c with

c ≥ max {log(2d|P0|∞), (λ+ 1)k0n} .

Claim 5.1.2.1. If |Q|∞ ≤ exp(cm)
2l

, then δλ(φm(Q)) ≤ 2cm.

We set p0 = P0(x1, 1, . . . , xn, 1) and q = Q(x1, 1, . . . , xn, 1). Then

αm(Q)(x1, 1, . . . , xn, 1) = pm
0 + lq.

By (5.1.1.1) in the proof of Proposition 5.1.1,

δλ(φm(Q)) = λk0mn+
∫

(P1C)n

log |pm
0 + lq|ω1 ∧ · · · ∧ ωn.

Thus, using (2) of Proposition 4.3.4 and (4.3.1),

δλ(φm(Q)) ≤ λk0mn+
k0mn

2
log 2 +

n log(1 + k0m)
2

+ log |pm
0 + lq|∞

≤ (λ+ 1)k0nm+ log |pm
0 + lq|∞.

On the other hand, using Lemma 4.3.7 and exp(c) ≥ 2d|p0|∞,

|pm
0 + lq|∞ ≤ dm−1|p0|m∞ + l|q|∞ ≤ (d|p0|∞)m + l|Q|∞ ≤ (d|p0|∞)m +

exp(cm)
2

≤ exp(cm)
2m

+
exp(cm)

2
≤ exp(cm).

Therefore, since c ≥ (λ+ 1)k0n, we have

δλ(φm(Q)) ≤ (λ+ 1)k0nm+ cm ≤ cm+ cm = 2cm.

Let us go back to the proof of our proposition. SinceH0
(
(P1
Z)

n,
⊗n

i=1 p
∗
i (O(k0m)

)
is a free abelian group of rank (1 + k0m)n,

#

{
Q ∈ H0

(
(P1
Z)

n,
n⊗

i=1

p∗i (O(k0m))

)∣∣∣∣|Q|∞ ≤
exp(cm)

2l

}

=
(

1 + 2
[
exp(cm)

2l

])(1+k0m)n

≥
(

1 +
[
exp(cm)

2l

])(1+k0m)n

≥
(

exp(cm)
2l

)(1+k0m)n

.

Therefore, by the above claim,

log #{D ∈ Diveff((P1
Z)

n) | δλ(D) ≤ 2cm and xi 6∈ Supp(D) for all i}
≥ (1 + k0m)n(cm− log(2l)).

Thus, we get the first assertion.
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From now, we assume n > 0. We denote by D(h) (resp. Dhor(h)) the set

{D ∈ Diveff((P1
Z)

n) | δλ(D) ≤ h and xi 6∈ Supp(D) for all i}
(
resp. {D ∈ Diveff

hor((P1
Z)

n) | δλ(D) ≤ h and xi 6∈ Supp(D) for all i}
)
.

For D ∈ D(h), let D = Dhor + Dver be the unique decomposition such that Dhor

is horizontal over Z and Dver is vertical over Z. Note that δλ(D) = δλ(Dhor) +
δλ(Dver), δλ(Dhor) ≥ 0 and δλ(Dver) ≥ 0. Thus, δλ(Dhor) ≤ h and δλ(Dver) ≤ h.
Therefore, we have a map

βh : D(h)→ Dhor(h)
given by βh(D) = Dhor. Since βh(D) = D for D ∈ Dhor(h), βh is surjective. Here
let us consider a fiber β−1

h (D) forD ∈ Dhor(h). First of all, an elementD′ ∈ β−1
h (D)

has a form
D′ = D + div(n) (n ∈ Z \ {0}).

Since δλ(div(n)) = log |n| ≤ h, we can see that #β−1
h (D) ≤ exp(h). Thus,

#D(h) =
∑

D∈Dhor(h)

#β−1
h (D) ≤

∑

D∈Dhor(h)

exp(h) = exp(h) ·#Dhor(h).

Hence, we get

lim sup
h→∞

log #Dhor(h)
hn+1

> 0.

2

Remark 5.1.3. In Proposition 5.1.2, we set H
λ

=
⊗n

i=1 p
∗
i (O

FSλ(1)). Then, using
Lemma 4.2.4, we can see

d̂eg
H

λ(D) = n!

(
δλ(D) +

1 + 4λ
4

n∑

i=1

degi(D)

)
.

Moreover, using Lemma 4.3.8 and (5.1.1.1),

λ
n∑

i=1

degi(D) ≤ δλ(D).

Thus,

d̂eg
H

λ(D) ≤ (8λ+ 1)n!
4λ

δλ(D).

Hence, Proposition 5.1.2 implies that if n ≥ 1, then

lim sup
h→∞

log #{D ∈ Diveff
hor((P1

Z)
n) | d̂eg

H
λ(D) ≤ h, xi 6∈ Supp(D) (∀i)}

hn+1
> 0.

5.2. Arithmetic cycles on the products of P1
Z. In this subsection, we consider

the number of cycles on (P1
Z)

n. First, let us consider horizontal cycles.

Proposition 5.2.1. Let us fix a positive real number λ. Let pi : (P1
Z)

n → P1
Z be

the projection to the i-th factor. We set H
λ

=
⊗n

i=1 p
∗
i (O

FSλ(1)). For 1 ≤ l ≤ n,
we denote by Zeff

l,hor((P1
Z)

n) the set of all effective cycles on (P1
Z)

n generated by l-
dimensional integral closed subschemes of (P1

Z)
n which dominate Spec(Z) by the

canonical morphism (P1
Z)

n → Spec(Z). Then, there is a constant C such that

#{V ∈ Zeff
l,hor((P1

Z)
n) | d̂eg

H
λ(V ) ≤ h} ≤ exp(C · hl+1)
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for all h ≥ 1.

Proof. We set Σ = {I | I ⊆ [n],#(I) = l − 1}. Then, it is easy to see that

Zeff
l,hor((P1

Z)
n) =

∑

I∈Σ

Zeff
l ((P1

Z)
n pI→ (P1

Z)
l−1),

where pI is the morphism given in (1.1.4). Thus, it is sufficient to show that there
is a constant C ′ such that

#{V ∈ Zeff
l ((P1

Z)
n pI→ (P1

Z)
l−1) | d̂eg

H
λ(V ) ≤ h} ≤ exp(C ′ · hl+1)

for all h ≥ 1. By re-ordering the coordinate of (P1
Z)

n, we may assume that I = [l−1].
We denote p[l−1] by p. We set

Tn = Zeff
l ((P1

Z)
n p→ (P1

Z)
l−1).

Let us see that {Tn}∞n=l is a counting system. First we define hn : Tn → R≥0 to be

hn(V ) = d̂eg
H

λ(V ).

Let an : (P1
Z)

n → (P1
Z)

n−1 and bn : (P1
Z)

n → (P1
Z)

l be the morphisms given by
an = p[n−1] and bn = p[l−1]∪{n}. Then, we have maps αn : Tn → Tn−1 and
βn : Tn → Tl defined by αn(V ) = (an)∗(V ) and βn(V ) = (bn)∗(V ). Here, it is easy
to see that

hn−1(αn(V )) ≤ hn(V ) and hl(βn(V )) ≤ hn(V )

for all V ∈ Tn. Moreover, by the following Lemma 5.2.2, if we set

el =

{
d̂eg

(
ĉ1(⊗l−1

i=1p
∗
i (O

FSλ(1)))
)

on (P1
Z)

l−1 if l ≥ 2

d̂eg(ĉ1(Z, exp(−λ)| · |)) on Spec(Z) if l = 1

and

A(s, t) = exp
(
s · t
el

)
,

then
#{x ∈ Tn | αn(x) = y, βn(x) = z} ≤ A(hn−1(y), hl(z))

for all y ∈ Tn−1 and z ∈ Tl. Further, by Proposition 5.1.1, if we set

B(h) = exp(C ′′ · hl+1)

for some constant C ′′, then

{x ∈ T1 | h1(x) ≤ h} ≤ B(h)

for all h ≥ 1. Thus, we can see that {Tn}∞n=l is a counting system. Therefore, by
virtue of Lemma 1.2.1, we get our proposition. 2

Lemma 5.2.2. Let f : X → S and g : Y → S be morphisms of projective arithmetic
varieties. We assume that S is of dimension l ≥ 1. Let A1, . . . , Al be nef C∞-
hermitian line bundles on X, B1, . . . , Bl nef C∞-hermitian line bundles on Y ,
and C1, . . . , Cl nef C∞-hermitian line bundles on S such that Ai ⊗ f∗(Ci)⊗−1

and Bi ⊗ g∗(Ci)⊗−1 are nef for all i and that d̂eg
(
ĉ1(C1) · · · ĉ1(Cl)

)
> 0. Let

p : X ×S Y → X and q : X ×S Y → Y be the projections to the first factor and
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the second factor respectively. Fix D ∈ Zeff
l (X/S) and E ∈ Zeff

l (Y/S) (for the
definition of Zeff

l (X/S) and Zeff
l (Y/S), see (1.1.2)). Then,

log
(
#

{
V ∈ Zeff

l (X ×S Y/S) | p∗(V ) = D and q∗(V ) = E
})

≤ min

{
d̂eg(ĉ1(A1) · · · ĉ1(Al) |D)d̂eg(ĉ1(B1) · · · ĉ1(Bl) |E)

d̂eg
(
ĉ1(C1) · · · ĉ1(Cl)

)2 ,

√
θ(D)θ(E)d̂eg(ĉ1(A1) · · · ĉ1(Al) |D)d̂eg(ĉ1(B1) · · · ĉ1(Bl) |E)

d̂eg
(
ĉ1(C1) · · · ĉ1(Cl)

)



 ,

where θ(D) (resp. θ(E)) is the number of irreducible components of Supp(D) (resp.
Supp(E)).

Proof. We set D =
∑s

i=1 aiDi and E =
∑t

j=1 bjEj . Then,

(5.2.2.1) d̂eg(ĉ1(A1) · · · ĉ1(Al) |D) =
∑

i

aid̂eg(ĉ1(A1) · · · ĉ1(Al) |Di)

≥
s∑

i=1

aid̂eg(ĉ1(f∗(C1)) · · · ĉ1(f∗(Cl)) |Di)

=
s∑

i=1

ai deg(Di → S)d̂eg(ĉ1(C1) · · · ĉ1(Cl))).

In the same way,

(5.2.2.2) d̂eg(ĉ1(B1) · · · ĉ1(Bl) |E) ≥
t∑

j=1

bj deg(Ej → S)d̂eg(ĉ1(C1) · · · ĉ1(Cl)).

Thus, in the same way as in Lemma 2.1.3, we have our assertion. 2

Next we consider vertical cycles.

Proposition 5.2.3. Let Zeff
l,ver((P1

Z)
n) be the set of effective cycles on (P1

Z)
n gen-

erated by l-dimensional integral subschemes which are not flat over Z. Then, there
is a constant B(n, l) depending only on n and l such that

#{V ∈ Zeff
l,ver((P1

Z)
n) | d̂egO(1,...,1)(V ) ≤ h} ≤ exp

(
B(n, l) · hl+1

)

for h ≥ 1.

Proof. For simplicity, we denote (P1
Z)

n andO(1, . . . , 1) byX andH respectively.
Let π : X → Spec(Z) be the canonical morphism. Let k be a positive integer and
k =

∏
i p

ai
i the prime decomposition of k. We set Xpi

= π−1([pi]). Then,

#{V ∈ Zeff
l,ver(X) | d̂egH(V ) = log(k)}

=
∏

i

#{Vi ∈ Zeff
l,ver(X) | π(Vi) = [pi] and degH|Xp

i

(Vi) = ai}.

Let C ′(n, l) be a constant as in Proposition 2.1.1. We set

C ′′(n, l) = max{C ′(n, l), 1/ log(2)}.
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Note that C ′′(n, l) log(p) ≥ 1 for all primes p. Thus,

log #{V ∈ Zeff
l,ver(X) | d̂egH(V ) = log(k)} ≤

∑

i

C ′′(n, l) log(pi)al+1
i

≤
(∑

i

C ′′(n, l) log(pi)ai

)l+1

= C ′′(n, l)l+1 log(k)l+1.

Therefore,

#{V ∈ Zeff
l,ver(X) | d̂egH(V ) ≤ h} ≤

[exp(h)]∑

k=1

#{V ∈ Zeff
l,ver(X) | d̂egH(V ) = log(k)}

≤
[exp(h)]∑

k=1

exp
(
C ′′(n, l)l+1 log(k)l+1

)

≤ exp(h) · exp
(
C ′′(n, l)l+1hl+1

)

= exp
(
C ′′(n, l)l+1hl+1 + h

)

Thus, we get the proposition. 2

By using Proposition 5.2.1 and Proposition 5.2.3, we have the following:

Theorem 5.2.4. For all non-negative integers l and n with 0 ≤ l ≤ n, there is a
constant C such that

#{V ∈ Zeff
l ((P1

Z)
n) | d̂eg

H
λ(V ) ≤ h} ≤ exp(C · hl+1)

for all h ≥ 1.

5.3. A upper estimate of cycles with bounded arithmetic degree. Here let
us consider the following theorem, which is one of the main results of this paper.

Theorem 5.3.1. Let us fix a positive real number λ. For all non-negative integers
l with 0 ≤ l ≤ dimX, there is a constant C such that

#{V ∈ Zeff
l (Pn

Z) | d̂egOFSλ (1)
(V ) ≤ h} ≤ exp(C · hl+1)

for all h ≥ 1.

Proof. Let us consider the birational map φ : Pn
Z 99K (P1

Z)
n given by

(X0 : · · · : Xn) 7→ (X0 : X1)× · · · × (X0 : Xn).

We set U = Pn
Z \ {X0 = 0}. Let Zeff

l (Pn
Z;U) be the set of effective cycles generated

by l-dimensional closed integral subschemes T with T ∩ U 6= ∅ (cf. (1.1.2)). For
V ∈ Zeff

l (Pn
Z;U), we denote by V ′ the strict transform of V by φ. Then, by applying

Lemma 4.2.5 in the case B = Spec(Z),

nld̂egOFSλ (1)
(V ) ≥ degOFSλ (1,...,1)

(V ′).

Moreover, if V ′1 = V ′2 for V1, V2 ∈ Zeff
l (Pn

Fq
;U), then V1 = V2. Therefore,

(5.3.1.1) #{V ∈ Zeff
l (Pn

Z;U) | d̂egOFSλ (1)
(V ) ≤ h}

≤ #{V ′ ∈ Zeff
l ((P1

Z)
n) | d̂egOFSλ (1,...,1)

(V ′) ≤ nlh}.
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On the other hand, since Pn
Z \ U ' Pn−1

Z ,

(5.3.1.2) #{V ∈ Zeff
l (Pn

Z) | d̂egOFSλ (1)
(V ) ≤ h}

≤ #{V ∈ Zeff
l (Pn

Z;U) | d̂egOFSλ (1)
(V ) ≤ h}

·#{V ∈ Zeff
l (Pn−1

Z ) | d̂egOFSλ (1)
(V ) ≤ h}

Thus, using (5.3.1.1), (5.3.1.2), Theorem 5.2.4 and the hypothesis of induction, we
have our theorem. 2

Corollary 5.3.2. Let X be a projective arithmetic variety and H an ample C∞-
hermitian line bundle on X. For all non-negative integers l with 0 ≤ l ≤ dimX,
there is a constant C such that

#{V ∈ Zeff
l (X) | d̂egH(V ) ≤ h} ≤ exp(C · hl+1)

for all h ≥ 1.

Proof. Since X is projective over Z, there is an embedding ι : X ↪→ Pn
Z over

Z. We fix a positive real number λ. Then, there is a positive integer a such that
H
⊗a ⊗ ι∗(OFSλ(−1)) is ample. Thus,

ald̂egH(V ) ≥ d̂eg
ι∗(OFSλ (1))

(V )

for all V ∈ Zeff
l (X). Hence, our assertion follows from Theorem 5.3.1. 2

5.4. A lower estimate of cycles with bounded arithmetic degree. Here we
consider the lower bound of the number of cycles.

Theorem 5.4.1. Let X be a projective arithmetic variety and H an ample C∞-
hermitian line bundle on X. Then, for 0 ≤ l < dimX,

lim sup
h→∞

log #{V ∈ Zeff
l (X) | d̂egH(V ) ≤ h}
hl+1

> 0.

Moreover, if 0 < l < dimX, then

lim sup
h→∞

log #{V ∈ Zeff
l,hor(X) | d̂egH(V ) ≤ h}

hl+1
> 0.

Proof. Choose a closed integral subscheme Y of X such that dimY = l + 1
and Y is flat over Z. First, we assume that l = 0. Then, the canonical morphism
π : Y → Spec(Z) is finite. For n ∈ Z \ {0},

d̂eg(π∗(div(n))) = deg(π)d̂eg(div(n)) = deg(π) log |n|.
Thus,

#{V ∈ Zeff
0 (Y ) | d̂eg(V ) ≤ h} ≥ #{π∗(div(n)) | n ∈ Z \ {0} and deg(π) log |n| ≤ h}.

Note that

π∗(div(n)) = π∗(div(n′)) =⇒ div(n) = div(n′) =⇒ n = ±n′.
Thus,

#{π∗(div(n)) | n ∈ Z \ {0} and deg(π) log |n| ≤ h} = [exp(h/deg(π))] .
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Therefore,

lim sup
h→∞

log #{V ∈ Zeff
0 (X) | d̂eg(V ) ≤ h}

h
> 0.

From now on, we assume that l > 0. Since

#{D ∈ Diveff
hor(Y ) | d̂egH(D) ≤ h} ⊆ #{V ∈ Zeff

l,hor(X) | d̂egH(V ) ≤ h},
we may assume that dimX = l + 1.

Let us take a birational morphism µ : X ′ → X of projective arithmetic varieties
such that there is a generically finite morphism ν : X ′ → (P1

Z)
n, where n = dimXQ.

We set A =
⊗n

i=1 p
∗
i (O

FSλ(1)) on (P1
Z)

n for some positive real number λ. Let us
choose a positive rational number a such that there is a non-zero section s ∈
H0(X ′, ν∗(A)⊗a⊗µ∗(H)⊗−1) with ‖s‖sup ≤ 1 (cf. [6, Proposition 2.2]). Let X0 be
a Zariski open set of X such that µ is an isomorphism over X0. Moreover, let B
be the non-flat locus of ν. Let

(X ′ \ µ−1(X0)) ∪ Supp(div(s)) ∪B = Z1 ∪ · · · ∪ Zr

be the irreducible decomposition. Choose a closed point zi of Zi \
⋃

j 6=i Zj for each
i. Then, by Proposition 5.1.2 and Remark 5.1.3,

lim sup
h→∞

log #{D′ ∈ Diveff
hor((P1

Z)
n) | d̂egA(D′) ≤ h, ν(zi) 6∈ Supp(D′) (∀i)}

hn+1
> 0.

Let D′ be an element of Diveff
hor((P1

Z)
n) with ν(zi) 6∈ Supp(D′) for all i. First,

we claim that ν∗(D′) is horizontal over Z. Assume the contrary, that is, ν∗(D′)
contains a vertical irreducible component Γ. Then, ν∗(Γ) = 0, which implies Γ ⊆ B.
Thus, there is zi with zi ∈ Γ. Hence,

zi ∈ Supp(ν∗(D′)) = ν−1(Supp(D′)),

which contradicts the assumption ν(zi) 6∈ Supp(D′).
By the above claim, we can consider a map

φ : {D′ ∈ Diveff
hor((P1

Z)
n) | ν(zi) 6∈ Supp(D) for all i} → Diveff

hor(X)

given by φ(D′) = µ∗(ν∗(D′)). Here we claim that φ is injective. We assume that
φ(D′1) = φ(D′2). Since zi 6∈ Supp(ν∗(D′ε)) for ε = 1, 2 and all i, no component of
ν∗(D′ε) is contained in X ′ \ µ−1(X0). Thus, we have ν∗(D′1) = ν∗(D′2). Hence

deg(ν)D′1 = ν∗(ν∗(D′1)) = ν∗(ν∗(D′2)) = deg(ν)D′2.

Therefore, D′1 = D′2.
Let D′ be an element of Diveff

hor((P1
Z)

n) with ν(zi) 6∈ Supp(D′) for all i. Since no
component of ν∗(D′) is contained in Supp(div(s)), we can see

d̂egH(φ(D′)) = d̂egµ∗(H)(ν
∗(D′)) ≤ d̂egν∗(A)⊗a(ν∗(D′))

= and̂egν∗(A)(ν
∗(D′)) = an deg(ν)d̂egA(D′).

Thus

#{D′ ∈ Diveff
hor((P1

Z)
n) | d̂egA(D′) ≤ h and ν(zi) 6∈ Supp(D) for all i}

≤ #{D ∈ Diveff
hor(X) | d̂egH(D) ≤ deg(ν)anh}.

Therefore, we get our theorem. 2
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6. A refinement of Northcott’s theorem in the arithmetic case

In this section, we consider an arithmetic analogue of §3. In some sense, this is
an original case because Northcott’s theorem was proved first over a number field.
Here we treat a more general case, namely, diophantine geometry over a field K of
finite type over Q. For this purpose, we need a polarization of K, as we introduced
in [6]. In §6.1, we explain it and also introduce a fine polarization of K, which
guarantees the richness of the height function induced from this polarization (cf.
§6.2, especially, Proposition 6.2.2.1). In §6.3, we prove the following main result of
this section:

Let f : X → B be a morphism of projective arithmetic varieties.
Let Xη be the generic fiber of f : X → B. Let H1, . . . ,Hd be a fine
polarization of B, where d = dimBQ. Let L be a nef C∞-hermitian
line bundle on X such that L is ample on the generic fiber Xη of
f : X → B. For an integer l with d+1 ≤ l ≤ dimX, let Zeff

l (X/B)
be the set of effective cycles on X generated by integral closed l-
dimensional subschemes Γ on X with f(Γ) = B. Then, for a fixed
k, there is a constant C such that the number of elements V of
Zeff

l (X/B) with deg(L·l−d−1
Xη

· VXη
) ≤ k and

d̂eg
(
ĉ1(L)·l−d · ĉ1(f∗(H1)) · · · ĉ1(f∗(Hd)) · V

) ≤ h
is less than or equal to exp(C · hd+1) for all h ≥ 1.

6.1. A polarization of a finitely generated field over Q. Some details of this
subsection can be found in [6]. Let K be a finitely generated field over Q with
d = tr.degQ(K), and let B be a projective arithmetic variety such that K is the
function field of B. Here we fix notation.
•polarization: A collection B = (B;H1, . . . ,Hd) of B and nef C∞-hermitian

Q-line bundles H1, . . . ,Hd on B is called a polarization of K.
•big polarization: A polarization B = (B;H1, . . . ,Hd) is said to be big if

H1, . . . ,Hd are nef and big.
•fine polarization: A polarization B = (B;H1, . . . ,Hd) is said to be fine

if there are a generically finite morphism µ : B′ → B of projective arithmetic
varieties, and C∞-hermitian Q-line bundles L1, . . . , Ld on B′ such that L1, . . . , Ld

are of surface type (see §4.2 for its definition), µ∗(Hi) % Li for all i, and that
L1 ⊗ · · · ⊗ Ld is nef and big.

The concept of a fine polarization seems to be technical and complicated, but it
gives rise to a good arithmetic height function (cf. Proposition 6.2.2.1).

Let us consider the following proposition.

Proposition 6.1.1. If a polarization B = (B;H1, . . . ,Hd) is fine, then there are
generically finite morphisms µ : B′ → B and ν : B′ → (P1

Z)
d with the following

property: for any real number λ, there are positive rational numbers a1, . . . , ad such
that

µ∗(Hi) % ν∗(q∗i (OFSλ(1)))⊗ai

for all i = 1, . . . , d, where qi : (P1
Z)

d → P1
Z is the projection to the i-th factor.

Proof. By the definition of fineness, there are a generically finite morphism
µ : B′ → B of projective arithmetic varieties, morphisms φi : B′ → Bi (i = 1, . . . , d)
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of projective arithmetic varieties, and nef and big C∞-hermitian Q-line bundles Qi

on Bi (i = 1, . . . , d) such that Bi’s are arithmetic surfaces, µ∗(Hi) % φ∗i (Qi) for all
i, and that φ∗1(Q1)⊗ · · ·⊗φ∗d(Qd) is nef and big. Here, there are dominant rational
maps ψi : Bi 99K P1

Z for i = 1, . . . , d. Replacing B′ and Bi’s by their suitable
birational models, we may assume ψi’s are morphisms. Let ν : B′ → (P1

Z)
d be a

morphism given by ν(x) = (ψ1(φ1(x)), . . . , ψd(φd(x))). Let us fix a real number
λ. Then, since Qi is nef and big, there is a positive rational number ai with
Qi % ψ∗i (OFSλ(1))⊗ai . Thus,

µ∗(Hi) % φ∗i (Qi) % φ∗i (ψ
∗
i (OFSλ(1)))⊗ai = ν∗(q∗i (OFSλ(1)))⊗ai .

Finally, we need to see that ν is generically finite. For this purpose, it is sufficient
to see that ν∗(q∗1(O(1))⊗ · · ·⊗ q∗d(O(1))) is nef and big on B′Q. Indeed, we can find
a positive rational number a such that ψ∗i (O(1)) ⊗ Q⊗−a

i is ample over (Bi)Q for
all i. Thus,

d⊗

i=1

φ∗i (ψ
∗
i (O(1))⊗Q⊗−a

i ) = ν∗
(

d⊗

i=1

q∗i (O(1))

)
⊗

(
d⊗

i=1

φ∗i (Qi)

)⊗−a

is semiample on B′Q. Hence, ν∗(q∗1(O(1)) ⊗ · · · ⊗ q∗d(O(1))) is nef and big because
φ∗1(Q1)⊗ · · · ⊗ φ∗d(Qd) is nef and big. 2

Finally we would like to give a simple and sufficient condition for the fineness
of a polarization. Let k be a number field, and Ok the ring of integer in k. Let
B1, . . . , Bl be projective and flat integral schemes over Ok whose generic fibers
over Ok are geometrically irreducible. Let Ki be the function field of Bi and di

the transcendence degree of Ki over k. We set B = B1 ×Ok
· · · ×Ok

Bl and d =
d1+· · ·+dl. Then, the function field ofB is the quotient field ofK1⊗kK2⊗k· · ·⊗kKl,
which is denoted by K, and the transcendence degree of K over k is d. For each
i (i = 1, . . . , l), let Hi,1, . . . ,Hi,di

be nef and big C∞-hermitian Q-line bundles on
Bi. We denote by qi the projection B → Bi to the i-th factor. Then, we have the
following.

Proposition 6.1.2. A polarization B of K given by

B =
(
B; q∗1(H1,1), . . . , q∗1(H1,d1), . . . , q

∗
l (H l,1), . . . , q∗l (H l,dl

)
)

is fine. In particular, a big polarization is fine.

Proof. Since there is a dominant rational map Bi 99K
(
P1
Z
)di by virtue of

Noether’s normalization theorem, we can find a birational morphism µi : B′i → Bi

of projective integral schemes over Ok and a generically finite morphism νi : B′i →(
P1
Z
)di . We set B′ = B′1×Ok

· · ·×Ok
B′l, µ = µ1×· · ·×µl and ν = ν1×· · ·×νl. Note

that OFSλ(1) is ample on P1
Z for a λ > 0. Then, since µ∗i (Hi,j) is big, there is a pos-

itive integer ai,j with µ∗i (Hi,j)⊗ai,j % ν∗i
(
p∗j

(
OFSλ(1)

))
(cf. [6, Proposition 2.2]),

that is, µ∗i (Hi,j) % ν∗i
(
p∗j

(
OFSλ(1)⊗1/ai,j

))
. Thus, we get our proposition. 2

6.2. Height functions over a finitely generated field. First, we give the defi-
nition of height functions (for details, see [6]).
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6.2.1. The definition of height functions. Let K be a finitely generated field over Q
with d = tr.degQ(K), and let B = (B;H1, . . . ,Hd) be a polarization of K. Let X
be a geometrically irreducible projective variety over K and L an ample line bundle
on X. Let us take a projective integral scheme X over B and a C∞-hermitian Q-
line bundle L on X such that X is the generic fiber of X → B and L is equal to LK

in Pic(X) ⊗ Q. The pair (X ,L) is called a model of (X,L). Then, for x ∈ X(K),
we define hB

(X ,L)(x) to be

hB
(X ,L)

(x) =
d̂eg

(
ĉ1(L) ·∏d

j=1 ĉ1(f
∗(Hj)) |∆x

)

[K(x) : K]
,

where ∆x is the Zariski closure in X of the image of Spec(K) → X ↪→ X , and
f : X → B is the canonical morphism. By virtue of [6, Corollary 3.3.5], if (X ′,L′)
is another model of (X,L) over B, then there is a constant C with

|hB
(X ,L)(x)− hB

(X ′,L′)(x)| ≤ C

for all x ∈ X(K). Hence, we have the unique height function hB
L modulo the set of

bounded functions. In the case where X = Pn
K , if we set

hB
nv(x) =

∑

Γ is a prime
divisor on B

max
i
{− ordΓ(φi)}d̂eg

(
ĉ1(H1) · · · ĉ1(Hd) |Γ

)

+
∫

B(C)

log
(
max

i
{|φi|}

)
c1(H1) ∧ · · · ∧ c1(Hd)

for x = (φ0 : · · · : φn) ∈ Pn(K), then hB
O(1) = hB

nv +O(1) on Pn(K).

6.2.2. The similarity of height functions. Here we consider the following proposi-
tion, which tells us that height functions arising from fine polarizations are similar.

Proposition 6.2.2.1. Let X be a geometrically irreducible projective variety over
K, and L an ample line bundle on X. Let B and B

′
be fine polarizations of K.

Then hB
′

L ³ hB
′

L on X(K) (For the notation ³, see (1.1.6)).

Proof. First we do a general observation. Let B be a projective arithmetic
variety with d = dimBQ. Let H1, . . . ,Hd be C∞-hermitian Q-line bundles of
surface type on B. By its definition, for each i, there are a morphism φi : B → Bi

of flat and projective integral schemes over Z and a C∞-hermitian Q-line bundle
Li on Bi such that dim(Bi)Q = 1, Li is nef and big, and that φ∗i (Li) = Hi in
P̂ic(B)⊗Q. We set H =

⊗d
i=1Hi and

λi = exp

(
− d̂eg(ĉ1(Li)2)

deg((Li)Q)

)
.

Let K be the function field of B. Here we consider several kinds of polarizations of
K as follows:




B0 = (B;H, . . . ,H),
B1 = (B;H1, . . . ,Hd),
Bi,j = (B;H1, . . . ,Hj−1, (OB , λi| · |can),Hj+1, . . . ,Hd) for i 6= j.
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Let X be a geometrically irreducible projective variety over K, and L an ample line
bundle on X. Let (X ,L) be a model of (X,L) over B. Then, for all x ∈ X(K),

(6.2.2.2) hB0

(X ,L)
(x) = d!hB1

(X ,L)
(x) +

d!
2

∑

i 6=j

h
Bi,j

(X ,L)
(x).

Indeed, by Lemma 4.2.4,

hB0

(X ,L)
(x) = d!hB1

(X ,L)
(x)+

d!
2

∑

i 6=j

d̂eg(ĉ1(Li)2) deg
(
LQ ·

∏d
l=1,l 6=j f

∗φ∗l (Ll)Q · (∆x)Q
)

deg((Li)Q)[K(x) : K]
,

where f : X → B is the canonical morphism. Moreover,

h
Bi,j

(X ,L)
(x) =

− log(λi)
∫

∆x(C)

c1(L) ∧
d∧

l=1,l 6=j

c1(f∗φ∗l (Ll))

[K(x) : K]
.

On the other hand,

∫

∆x(C)

c1(L) ∧
∧

l=1,l 6=j

c1(π∗φ∗l (Ll)) = deg


LQ ·

d∏

l=1,l 6=j

f∗φ∗l (Ll)Q · (∆x)Q


 .

Thus, we obtain

h
Bi,j

(X ,L)
(x) =

d̂eg(ĉ1(Li)2) deg
(
LQ ·

∏d
l=1,l 6=j f

∗φ∗l (Ll)Q · (∆x)Q
)

deg((Li)Q)[K(x) : K]
.

Therefore, we get (6.2.2.2).

Using (6.2.2.2), we can find a constant C such that

(6.2.2.3) hB0
L (x) ≤ ChB1

L (x) +O(1)

for all x ∈ X(K) because there is a positive integer m such that

H
⊗m

j % (OB , λi| · |can)

for every i, j.

Let us start the proof of Proposition 6.2.2.1. It is sufficient to see that there are
a positive real number a and a real number b such that hB

L ≤ ahB
′

L + b. We set B =
(B;H1, . . . ,Hd) and B

′
= (B′;H

′
1, . . . ,H

′
d). Since B

′
is fine, by Proposition 6.1.1,

there are generically finite morphisms µ′ : B′′ → B′ and ν : B′′ → (
P1
Z
)d of flat and

projective integral schemes over Z, and nef and big C∞-hermitian Q-line bundles
L1, . . . , Ld on P1

Z such that µ′∗(H
′
i) % ν∗(p∗i (Li)) for all i, where pi :

(
P1
Z
)d → P1

Z is
the projection to the i-th factor. Changing B′′ if necessarily, we may assume that
there is a generically finite morphism µ : B′′ → B.

Let us consider polarizations

B1 = (B′′;µ∗(H1), . . . , µ∗(Hd)) and B
′
1 = (B′′;µ′∗(H

′
1), . . . , µ

′∗(H
′
d))

and compare hB with hB1 (resp. hB
′

with hB
′
1). By virtue of the projection

formula, we may assume that B = B′ = B′′ and µ = µ′ = id.
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We set H = ν∗
(⊗d

l=1 p
∗
l (Ll)

)
. Then, (B;H, . . . ,H) is a big polarization. Thus,

by [6, (5) of Proposition 3.3.7], there is a positive integer b1 such that

hB
L ≤ b1h(B;H,...,H)

L +O(1).

Moreover, by (6.2.2.3), we can find a positive constant b2 with

h
(B;H,...,H)
L ≤ b2h(B;ν∗p∗1(L1),...,ν

∗p∗d(Ld))
L +O(1).

On the other hand, since H
′
i % ν∗(p∗i (Li)) for all i,

h
(B;ν∗p∗1(L1),...,ν

∗p∗d(Ld))
L ≤ h(B;H1,...,Hd)

L +O(1).

Hence, we get our proposition. 2

6.3. Northcott’s type theorem in the arithmetic case. The purpose of this
subsection is to prove the following theorem, which is a kind of refined Northcott’s
theorem.

Theorem 6.3.1. Let f : X → B be a morphism of projective arithmetic varieties.
Let K be the function field of B. Let H1, . . . ,Hd be a fine polarization of B, where
d = dimBQ. Let L be a nef C∞-hermitian line bundle on X such that LK is
ample. For an integer l with d+ 1 ≤ l ≤ dimX, as in (1.1.2), let Zeff

l (X/B) be the
set of effective cycles on X generated by integral closed l-dimensional subschemes
Γ on X with f(Γ) = B. We denote by Zeff

l (X/B, k, h) the set of effective cycle
V ∈ Zeff

l (X/B) with deg(L·l−d−1
K · VK) ≤ k and

d̂eg
(
ĉ1(L)·l−d · ĉ1(f∗(H1)) · · · ĉ1(f∗(Hd)) |V

) ≤ h.
Then, for a fixed k, there is a constant C such that

#Zeff
l (X/B, k, h) ≤ exp(C · hd+1)

for all h ≥ 1.

Let us begin with a variant of Proposition 5.2.1.

Proposition 6.3.2. Let us fix a positive real number λ. Let n and d be non-
negative integers with n ≥ d + 1. Let p[d] : (P1

Z)
n → (P1

Z)
d be the morphism

as in (1.1.4). Let pi : (P1
Z)

n → P1
Z be the projection to the i-th factor. For an

integer l with d+ 1 ≤ l ≤ n, we denote by Zeff
l ((P1

Z)
n/(P1

Z)
d) the set of all effective

cycles on (P1
Z)

n generated by l-dimensional integral closed subschemes of (P1
Z)

n

which dominate (P1
Z)

d by p[d]. We set

d̂eg[d](V ) = d̂eg


ĉ1(L)·l−d ·

d∏

j=1

ĉ1(p∗j (O
FSλ(1)))

∣∣∣∣ V



for V ∈ Zeff
l ((P1

Z)
n/(P1

Z)
d), where L =

⊗n
i=1 p

∗
i (O

FSλ(1)). (Note that d̂eg[0](V )

is given by d̂eg
(
ĉ1(L)·l |V )

.) Let K be the function field of (P1
Z)

d. For V ∈
Zeff

l ((P1
Z)

n/(P1
Z)

d), we denote by degK(V ) the degree of V in the generic fiber of
π : (P1

Z)
n → (P1

Z)
d with respect to O(P1K)n−d(1, . . . , 1). Then, for a fixed k, there is

a constant C such that

#{V ∈ Zeff
l ((P1

Z)
n/(P1

Z)
d) | d̂eg[d](V ) ≤ h and degK(V ) ≤ k} ≤ exp(C · hd+1)

for all h ≥ 1.
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Proof. We set
Σ = {I | [d] ⊆ I ⊆ [n],#(I) = l − 1}.

Then, it is easy to see that

Zeff
l ((P1

Z)
n/(P1

Z)
d) =

∑

I∈Σ

Zeff
l ((P1

Z)
n pI→ (P1

Z)
l−1).

Thus, it is sufficient to see that, for each I, there is a constant C ′ such that

#{V ∈ Zeff
l ((P1

Z)
n pI→ (P1

Z)
l−1) | d̂eg[d](V ) ≤ h and degK(V ) ≤ k} ≤ exp(C ′ · hd+1)

for all h ≥ 1. By changing the coordinate, we may assume that I = [l − 1]. Here
we denote pI by p. For n ≥ l, we set

Tn = {V ∈ Zeff
l ((P1

Z)
n p→ (P1

Z)
l−1) | degK(V ) ≤ k}.

Let an : (P1
Z)

n → (P1
Z)

n−1 and bn : (P1
Z)

n → (P1
Z)

l be morphisms given by an =
p[n−1] and bn = p[l−1]∪{n}. Then, since

(an)∗K(O(P1K)n−d−1(1, . . . , 1))⊗ p∗n(OP1K (1)) = O(P1K)n−d(1, . . . , 1)

and

(bn)∗K(O(P1K)l−d(1, . . . , 1))⊗
n−1⊗

i=l

p∗i (OP1K (1)) = O(P1K)n−d(1, . . . , 1),

we have maps αn : Tn → Tn−1 and βn : Tn → Tl given by αn(V ) = (an)∗(V ) and
βn(V ) = (bn)∗(V ). Moreover, we set

hn(V ) = d̂eg[d](V )

for V ∈ Tn. Then, it is easy to see that

hn−1(αn(V )) ≤ hn(V ) and hl(βn(V )) ≤ hn(V )

for all V ∈ Tn. Note that

k ≥ degK(V ) ≥ θ(V ) = the number of irreducible components of V .

Here we set el as follows: if l ≥ 2 and d ≥ 1, then

el = d̂eg


ĉ1

(
l−1⊗

i=1

p∗i (O
FSλ(1))

)·l−d d∏

i=1

ĉ1(p∗i (O
FSλ(1)))


 on (P1

Z)
l−1;

if l ≥ 2 and d = 0, then

el = d̂eg


ĉ1

(
l−1⊗

i=1

p∗i (O
FSλ(1))

)·l
 on (P1

Z)
l−1;

if l = 1, then

el = d̂eg(ĉ1(Z, exp(−λ)| · |)) on Spec(Z).

Moreover, we set

A(s, t) =
k
√
s · t
el

.

Then, by Lemma 5.2.2,

#{x ∈ Tn | αn(x) = y, βn(x) = z} ≤ A(hn−1(y), hl(z))
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for all x ∈ Tn−1 and y ∈ Tl. Further, in the case where n = l,

degK(V ) = degd+1(V ) + · · ·+ degn(V ).

Therefore, by Proposition 5.1.1, there is a constant C ′′ such that

#{x ∈ Tl | hl(x) ≤ h} ≤ exp(C ′′ · hd+1)

for all h ≥ 1. Hence, by Lemma 1.2.1, there is a constant C ′ such that

#{x ∈ Tn | hn(V ) ≤ h} ≤ exp(C ′ · hd+1)

for all h ≥ 1. Thus, we get our assertion. 2

Let us start the proof of Theorem 6.3.1. First, we claim the following:

Claim 6.3.2.1. Let H
′
1, . . . ,H

′
d be nef C∞-hermitian Q-line bundles on B with

H
′
i % Hi for all i. If the assertion of the theorem holds for H1, . . . ,Hd, then so

does for H
′
1, . . . ,H

′
d.

By virtue of Lemma 4.2.3,

d̂eg
(
ĉ1(L)·l−d · ĉ1(f∗(H ′

1)) · · · ĉ1(f∗(H
′
d)) |V

)

≥ d̂eg
(
ĉ1(L)·l−d · ĉ1(f∗(H1)) · · · ĉ1(f∗(Hd)) |V

)

for all V ∈ Zeff
l (X/B). Thus, we get our claim.

Next we claim the following:

Claim 6.3.2.2. We assume that the generic fiber of f : X → B is geometrically
irreducible. Let µ : B′ → B be a generically finite morphism of projective arithmetic
varieties. Let X ′ be the main part of X ×B B

′, i.e., X ′ is the Zariski closure of the
generic fiber X ×B B

′ → B′ in X ×B B
′. Let f ′ : X ′ → B′ and µ′ : X ′ → X be the

induced morphisms by the projections X×BB
′ → B′ and X×BB

′ → X respectively.
Then, the assertion of the theorem holds for f : X → B, L and H1, . . . ,Hd if and
only if so does for f ′ : X ′ → B′, µ′∗(L) and µ∗(H1), . . . , µ∗(Hd).

First of all, note that the following diagram is commutative.

X ′ µ′−−−−→ X

f ′
y

yf

B′ −−−−→
µ

B

Thus, for V ′ ∈ Zeff
l (X ′/B′), we have

(6.3.2.3) d̂eg
(
ĉ1(µ′

∗(L))·l−d · ĉ1(f ′∗(µ∗(H1))) · · · ĉ1(f ′∗(µ∗(Hd))) |V ′
)

= d̂eg
(
ĉ1(L)·l−d · ĉ1(f∗(H1)) · · · ĉ1(f∗(Hd)) |µ′∗(V )

)

and

(6.3.2.4) deg(µ′∗(L)·l−d−1
K′ · V ′K′) = deg(L·l−d−1

K · µ′∗(V ′)K),

where K ′ is the function field of B′.
First we assume that the assertion of the theorem holds for f : X → B, L and

H1, . . . ,Hd. Then, by using (6.3.2.3) and (6.3.2.4), it is sufficient to see that, for a
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fixed V ∈ Zeff
l (X/B), the number of effective cycles V ′ on X ′ with µ′∗(V

′) = V is
less than or equal to

exp
(
deg(µ′) deg

(
L·l−d−1

K · VK

))
.

For, let V =
∑
eiVi be the irreducible decomposition. Then by Lemma 1.3.2, the

above number is less than or equal to exp(deg(µ′)
∑
ei). On the other hand, we

can see ∑
ei ≤

∑

i

ei deg
(
L·l−d−1

K · (Vi)K

)
= deg

(
L·l−d−1

K · VK

)
.

Next we assume that the assertion of the theorem holds for f ′ : X ′ → B′, µ′∗(L)
and µ∗(H1), . . . , µ∗(Hd). In this case, by using (6.3.2.3) and (6.3.2.4), it is sufficient
to construct a homomorphism

µ′? : Zl(X/B)→ Zl(X ′/B′)

with µ′∗(µ
′?(V )) = deg(µ′)V . Let B0 be the locus of points of B over which

µ : B′ → B and f : X → B are flat. Here we set X0 = f−1(B0), B′0 = µ−1(B0) and
X ′

0 = f ′−1(B′0). Then, we can see that X ′
0 = X0 ×B0 B

′
0 by [5, Lemma 4.2]. Thus,

µ′0 = µ′|X′
0

is flat. For V ∈ Zeff
l (X/B), no component of Supp(V ) is contained in

X \X0. Hence, µ′?(V ) is defined by the Zariski closure of µ′0
∗(V |X0

).

Here, let us consider a case where X = Pn
Z ×Z B, f is the natural projection

X → B and L = p∗(OFS1

Pn
Z

(1)), where p : X → Pn
Z is the natural projection. Since

the polarization H1, . . . ,Hd is fine, by Proposition 6.1.1, there are generically finite
morphisms µ : B′ → B and ν : B′ → (

P1
Z
)d of projective arithmetic varieties, and

positive rational numbers a1, . . . , ad such that µ∗(Hi) % ν∗(r∗i (OFS1

P1Z (ai))) for all i,

where ri :
(
P1
Z
)d → P1

Z is the projection to the i-th factor.

B
µ←−−−− B′ ν−−−−→ (P1

Z)
d ri−−−−→ P1

Z

We set X ′ = Pn
Z ×Z B′, B′′ = (P1

Z)
d and X ′′ = Pn

Z ×Z B′′. Let p′ : X ′ → Pn
Z

and p′′ : X ′′ → Pn
Z be the projections to the first factor and f ′ : X ′ → B′ and

f ′′ : X ′′ → B′′ the projections to the last factor. Here we claim the following.

Claim 6.3.2.5. The assertion of the theorem holds for f ′′ : X ′′ → B′′, L
′′

and
r∗1(OFS1

P1Z (1)), . . . , r∗d(OFS1

P1Z (1)), where L
′′

= p′′∗(OFS1

Pn
Z

(1)).

Fixing l, we prove this lemma by induction on n. If n = l − d − 1, then the
assertion is trivial, so that we assume n > l − d − 1. Let ψ : Pn

Z 99K (P1
Z)

n be the
rational map given by

(X0 : · · · : Xn) 7→ (X0 : X1)× · · · × (X0 : Xn).

We set φ = ψ×id : Pn
Z×B′′ 99K (P1

Z)
n×B′′ and U = (Pn

Z\{X0 = 0})×B′′. Moreover,
let g : Y = (P1

Z)
n×B′′ → B′′ be the natural projection, and si : Y = (P1

Z)
n+d → P1

Z
the projection to the i-th factor. We set

M =
n⊗

i=1

s∗i (O
FS1(1)).
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For V ∈ Zeff
l (X ′′/B′′;U) (i.e. V ∈ Zeff

l (X ′′/B′′) and any component of Supp(V )
is not contained in X ′′ \ U), let V ′ be the strict transform of V via φ. Then,
Lemma 4.2.5 and Lemma 2.2.2,

n(l−d)d̂eg
(
ĉ1(L

′′
)·l−d · ĉ1(f ′′∗(r∗1(OFS1(1)))) · · · ĉ1(f ′′∗(r∗d(OFS1(1)))) |V

)

≥ d̂eg
(
ĉ1(M)·l−d · ĉ1(g∗(r∗1(OFS1(1)))) · · · ĉ1(g∗(r∗d(OFS1(1)))) |V ′

)

and

n(l−d−1) deg(L′′l−d−1
K′′ · VK′′) ≥ deg(M l−d−1

K′′ · V ′K′′),

where K ′′ is the function field of B′′. Moreover, if we set

M
′
=

n+d⊗

i=1

s∗i (O
FS1(1)) = M ⊗

n+d⊗

i=n+1

s∗i (O
FS1(1)),

then

d̂eg
(
ĉ1(M

′
)·l−d · ĉ1(g∗(r∗1(OFS1(1)))) · · · ĉ1(g∗(r∗d(OFS1(1)))) |V ′

)

= d̂eg
(
ĉ1(M)·l−d · ĉ1(g∗(r∗1(OFS1(1)))) · · · ĉ1(g∗(r∗d(OFS1(1)))) |V ′

)

+ (l − d)d deg(M ·l−d−1
K′′ · V ′K′′)d̂eg

(
ĉ1(OFS1(1))2

)
.

On the other hand, {X0 = 0}×B = Pn−1
Z ×B. Thus, by the hypothesis of induction

and Proposition 6.3.2, we have our claim.

Therefore, gathering Claim 6.3.2.1, Claim 6.3.2.2 and Claim 6.3.2.5, we have our
assertion in the case where X = Pn

Z ×Z B.

Finally let us consider the proof of the theorem in a general case. Replacing
L by a positive multiple of it, we may assume that LK is very ample. Thus we
have an embedding φ : XK ↪→ Pn

K with φ∗(O(1)) = LK . Let X ′ be the Zariski
closure of XK in Pn

Z ×Z B and f ′ : X ′ → B the induced morphism. Let p :

Pn
Z ×Z B → Pn

Z be the projection to the first factor and L
′

= p∗(OFS1(1))
∣∣∣
X′

.

Then there are birational morphisms µ : Z → X and ν : Z → X ′ of projective
arithmetic varieties. We set g = f · µ = f ′ · ν. Let A be an ample line bundle
on B such that g∗(µ∗(L) ⊗ ν∗(L′)⊗−1) ⊗ A is generated by global sections. Thus
there is a non-zero global section s ∈ H0(Z, µ∗(L) ⊗ ν∗(L′)⊗−1 ⊗ g∗(A)). Since
(µ∗(L)⊗ ν∗(L′)⊗−1)K = OXK

, we can see that f(div(s)) ( B. We choose a metric
of A with ‖s‖ ≤ 1. For V ∈ Zeff

l (X/B), let V1 be the strict transform of V by µ
and V ′ = ν∗(V1). Then,

d̂eg
(
ĉ1(µ∗(L⊗ f∗(A))·l+1 · ĉ1(g∗(H1)) · · · ĉ1(g∗(Hd)) |V1

)

= d̂eg
(
ĉ1(L)·l+1 · ĉ1(f∗(H1)) · · · ĉ1(f∗(Hd)) |V

)

+ (l + 1) deg(Ll
K · VK)d̂eg

(
ĉ1(A) · ĉ1(H1) · · · ĉ1(Hd)

)



52 ATSUSHI MORIWAKI

Moreover,

d̂eg
(
ĉ1(µ∗(L⊗ f∗(A))·l+1 · ĉ1(g∗(H1)) · · · ĉ1(g∗(Hd)) |V1

)

≥ d̂eg
(
ĉ1(ν∗L

′
)·l+1 · ĉ1(g∗(H1)) · · · ĉ1(g∗(Hd)) |V1

)

= d̂eg
(
ĉ1(L

′
)·l+1 · ĉ1(f ′∗(H1)) · · · ĉ1(f ′∗(Hd)) |V ′

)

Thus, we may assume that there is an embedding X ↪→ Pn
Z ×Z B and L =

p∗(OFS1(1)). Therefore we get our Theorem. 2

6.4. The number of rational points over a finitely generated field. In this
subsection, we would like to prove the following two theorems.

Theorem 6.4.1. Let K be a finitely generated field over Q, and B a fine polariza-
tion of K. Let X be a projective variety over K and L an ample line bundle on X.
Then

#{x ∈ X(K) | hB
L (x) ≤ h} ≤ exp(C · hd+1)

for all h ≥ 0, where d = tr.degQ(K).

Theorem 6.4.2. Let K be a finitely generated field over Q and B a fine polarization
of K. Then,

lim sup
h→∞

log #{x ∈ Pn(K) | hB
O(1)(x) ≤ h}

hd+1
> 0,

where d = tr.degQ(K).

Theorem 6.4.1 is a consequence of Theorem 6.3.1. Let us consider the proof of
Theorem 6.4.2. If we set d = tr.degQ(K), then there is a subfield Q(z1, . . . , zd)
such that K is finite over Q(z1, . . . , zd). Let B1 be the standard polarization of
Q(z1, . . . , zd) as in the following Lemma 6.4.3. Then, by Lemma 6.4.3,

lim sup
h→∞

log #{x ∈ Pn(Q(z1, . . . , zd)) | hB1
O(1)(x) ≤ h}

hd+1
> 0.

Let B
K

1 be the polarization of K induced by B1. Then,

[K : Q(z1, . . . , zd)]hB1
O(1)(x) = h

B
K
1

O(1)(x) +O(1)

for all x ∈ Pn(K). Moreover, by Proposition 6.2.2.1, hB
K
1

O(1) ³ hB
O(1). Thus, we get

our theorem. 2

Lemma 6.4.3. Let us consider the polarization

B1 = (
(
P1
Z
)d

; p∗1(O
FS1

P1Z (1)), . . . , p∗d(O
FS1

P1Z (1)))

of Q(z1, . . . , zd), where pi :
(
P1
Z
)d → P1

Z is the projection to the i-th factor. The
polarization B1 is called the standard polarization of Q(z1, . . . , zd). Then, we have
the following:

lim sup
h→∞

log #{x ∈ Pn(Q(z1, . . . , zd)) | hB1
nv (x) ≤ h}

hd+1
> 0.
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(See §6.2 for the definition of hB1
nv .)

Proof. We set Hi = p∗i (O
FS1

P1Z (1)) for i = 1, . . . , d. Clearly, it is sufficient to
consider the case n = 1, that is, rational points of P1. Let ∆∞ be the closure of
∞ ∈ P1

Q in P1
Z. We set ∆(i)

∞ = p∗i (∆∞). Then

(6.4.3.1) d̂eg
(
ĉ1(H1) · · · ĉ1(Hd) |∆(i)

∞
)

= 1

Let P be a Q(z1, . . . , zd)-valued point of P1. Then, there are f0, f1 ∈ Z[z1, · · · , zd]
such that f0 and f1 are relatively prime and P = (f0 : f1). Thus, by (6.4.3.1)

hB1
nv (P ) =

∑

i

max{degi(f0),degi(f1)}

+
∫

(P1)d

log (max{|f0|, |f1|}) c1(H1) ∧ · · · ∧ c1(Hd).

Let a be a positive number with 1− 2da > 0. We set

S(h) = {f ∈ Z[z1, . . . , zd] | v(1, f) ≤ exp((1− da)h) and degi(f) ≤ [ah] for all i} .
(See (4.3.3) for the definition v.)

First we claim that hB1
nv ((1 : f)) ≤ h for all f ∈ S(h). If f = 0, then the assertion

is obvious. We assume that f 6= 0. Then,

hB1
nv ((1 : f)) =

d∑

i=1

degi(f) + log(v(1, f)) ≤ d[ah] + (1− da)h ≤ h.

Next we claim that

|f |∞ ≤ exp((1− 2ad)h)√
2

=⇒ v(1, f) ≤ exp((1− ad)h).

For this purpose, we may assume that f 6= 0. Moreover, note that
√

1 + x2 ≤ √2x
for x ≥ 1. Thus, using (4.3.1) and Proposition 4.3.4,

v(1, f) ≤
√

2
d[ah]

√
1 + |f |22 ≤

√
2
√

2
dah|f |2 ≤

√
2
√

2
dah

(1 + [ah])d/2|f |∞

≤
√

2 exp(dah/2) exp(dah/2)|f |∞ ≤
√

2 exp(dah)
exp((1− 2ad)h)√

2
= exp((1− ad)h).

By the second claim,

#S(h) ≥
(

1 + 2
[
exp((1− 2ad)h)√

2

])([ah]+1)d

≥
(

exp((1− 2ad)h)√
2

)(ah)d

≥ exp((1− 2ad)h− 1)(ah)d

= exp(ad(1− 2ad)hd+1 − adhd).

Thus, we get our lemma by the first claim. 2

7. The convergence of Zeta functions of algebraic cycles

In this section, we would like to propose a kind of zeta functions arising from
the number of algebraic cycles. First let us consider a local case, i.e., the case over
a finite field.
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7.1. The local case. Let X be a projective variety over a finite field Fq and H an
ample line bundle on X. For a non-negative integer k, we denote by nk(X,H, l) the
number of all effective l-dimensional cycles V on X with degH(V ) = k. We define a
zeta function Z(X,H, l) of l-dimensional cycles on a polarized scheme (X,H) over
Fq to be

Z(X,H, l)(T ) =
∞∑

k=0

nk(X,H, l)T kl+1
.

Then, we have the following:

Theorem 7.1.1. Z(X,H, l)(T ) is a convergent power series at the origin.

Proof. First note that nmlk(X,H⊗m, l) = nk(X,H, l). Moreover, if we choose
m > 0 with H⊗m very ample, then, by Corollary 2.2.5, there is a constant C with
nk(X,H⊗m, l) ≤ qCkl+1

. Thus,

nk(X,H, l) = nmlk(X,H⊗m, l) ≤ qC′kl+1
,

where C ′ = Cml(l+1). Therefore, if |qC′T | < 1, then
∞∑

k=0

nk(X,H, l)|T kl+1 | ≤
∞∑

k=0

|qC′T |kl+1 ≤
∞∑

k=0

|qC′T |k =
1

1− |qC′T | .

Thus, we get our theorem. 2

See Remark 7.4.2 for Wan’s zeta functions. Next, let us consider height zeta
functions in the local case, which is a local analogue of Batyrev-Manin-Tschinkel’s
height zeta functions (cf. [1]).

Theorem 7.1.2. Let K be a finitely generated field over a finite field Fq with
d = tr.degFq

(K) ≥ 1. Let X be a projective variety over K and L a ample line
bundle on X. Let hL be a representative of the class of height functions associated
with (X,L) as in 3.3. Then, for a fixed k, a series

∑

x∈X(K),
[K(x):K]≤k

q−s(hL(x))d

converges absolutely and uniformly on the compact set in {s ∈ C | <(s) > C} for
some C.

Proof. We set

Xn = {x ∈ X(K) | n− 1 < hL(x) ≤ n and [K(x) : K] ≤ k}
for n > 1 and

X1 = {x ∈ X(K) | hL(x) ≤ 1 and [K(x) : K] ≤ k}.
Then, by Corollary 3.3.2, there is a constant C such that #(Xn) ≤ qCnd

for all
n ≥ 1. Hence,

∑

x∈X(K),
[K(x):K]≤k

|q−s(hL(x))d | =
∞∑

n=1

∑

x∈Xn

q−<(s)(hL(x))d

≤
∞∑

n=1

qCnd

q−<(s)nd

=
∞∑

n=1

(
q−(<(s)−C)

)nd

.
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Thus, we have our assertion. 2

7.2. The global case. Let K be a number field and OK the ring of integers in K.
Let f : X → Spec(OK) be a flat and projective scheme over OK and H an f -ample
line bundle on X. For P ∈ Spec(OK) \ {0}, we denote by XP the fiber of f at P .
Here let us consider an infinite product

L(X,H, l)(s) =
∏

P∈Spec(OK)\{0}
Z(XP ,HP , l)(#(κ(P ))−s)

for s ∈ C. Then, we have the following:

Theorem 7.2.1. There is a constant C such that the infinite product L(X,H, l)(s)
converges absolutely and uniformly on the compact set in {s ∈ C | <(s) > C}.

Proof. Since Z(XP ,H
⊗n
P , l)(q−s) = Z(XP ,HP , l)(q−snl(l+1)

), replacing H by
H⊗n for some positive number n, we may assume that H is very f -ample. For
non-negative integer k, we set

nk(XP ,HP , l) = #{V ∈ Zeff
l (XP ) | degHP

(V ) = k}.
Then,

Z(XP ,HP , l)(#(κ(P ))−s) = 1 +
∞∑

k=1

nk(XP ,HP , l)#(κ(P ))−skl+1
.

We denote
∑∞

k=1 nk(XP ,HP , l)#(κ(P ))−skl+1
by uP (s). We set N = rk(f∗(H))−1.

Then, for each P , we have an embedding ιP : XP ↪→ PN
κ(P ) with ι∗P (O(1)) = HP .

Thus, by Theorem 2.2.1, there is a constant C depending only on l and N with
nk(XP ,HP , l) ≤ κ(P )Ckl+1

for all k ≥ 1. Thus, for s ∈ C with <(s) > C + 1,

|uP (s)| ≤
∞∑

k=1

#(κ(P ))Ckl+1
#(κ(P ))−<(s)kl+1

=
∞∑

k=1

#(κ(P ))−(<(s)−C)kl+1

≤
∞∑

l=1

#(κ(P ))−(<(s)−C)l =
#(κ(P ))−(<(s)−C)

1−#(κ(P ))−(<(s)−C)
≤ #(κ(P ))−(<(s)−C).

Therefore, we have
∑

P∈Spec(OK)\{0}
|uP (s)| ≤

∑

P∈Spec(OK)\{0}
#(κ(P ))−(<(s)−C)

=
∑

p : prime

∑

P∈Spec(OK)
P∩Z=pZ

#(κ(P ))−(<(s)−C)

≤ [K : Q]
∑

p : prime

p−(<(s)−C) ≤ [K : Q]ζ(<(s)− C).

Hence, we get our theorem by the criterion of the convergence of infinite products.
2
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7.3. The arithmetic case. Next let us consider an analogue in Arakelov geometry.
Let X be a projective arithmetic variety and H an ample C∞-hermitian Q-line
bundle on X . For an effective cycle V of l-dimension, the norm of V is defined by

NH(V ) = exp
(
d̂egH(V )l+1

)
.

Then, the zeta function of (X ,H) for cycles of dimension l is defined by

ζ(X ,H, l)(s) =
∑

V ∈Zeff
l (X )

NH(V )−s

Theorem 7.3.1. There is a constant C such that the above ζ(X ,H, l)(s) converges
absolutely and uniformly on the compact set in {s ∈ C | <(s) > C}.

Proof. We denote Zeff
l (X ,H, h) the set of all l-dimensional effective cycles on

X with d̂egH(V ) ≤ h. By Corollary 5.3.2, there is a constant C such that

#
(
Zeff

l (X ,H, h)) ≤ exp(C · hl+1)

for all h ≥ 1. We choose a positive constant C ′ with

exp(C · (h+ 1)l+1) ≤ exp(C ′ · hl+1)

for all h ≥ 1. Moreover, for a real number x, we set [x] = max{n ∈ Z | n ≤ x}.
Note that if k = [d̂egH(V )], then k ≤ d̂egH(V ) < k + 1. Thus, for s ∈ C with
<(s) > C ′,

∑

V ∈Zeff
l (X )

∣∣NH(V )−s
∣∣ =

∞∑

k=0

∑

V ∈Zeff
l (X )

[ddegH(V )]=k

|NH(V )|−<(s)

≤
∞∑

k=0

#(Zeff
l (X ,H, k + 1)) exp(kl+1)−<(s)

≤
∞∑

k=0

exp(C · (k + 1)l+1) exp(kl+1)−<(s)

≤ exp(C) +
∞∑

k=1

exp(−(<(s)− C ′))kl+1

≤ exp(C) +
exp(−(<(s)− C ′))

1− exp(−(<(s)− C ′)) .

Thus, we get our theorem. 2

7.4. Remarks. Here let us discuss remarks of the previous zeta functions. The
first one is the abscissa of convergence of zeta functions.

Remark 7.4.1. Let I be an index set and {λi}i∈I a sequence of real numbers such
that the set I(t) = {i ∈ I | λi ≤ t} is finite for every real number t. Then the
abscissa σ0 of convergence of the Dirichlet series

∑

i∈I

exp(−λis) = lim
t→∞

∑

i∈I(t)

exp(−λis)
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is given by

σ0 = lim sup
t→∞

log (#(I(t)))
t

.

Let X be a projective scheme over Fq and H an ample line bundle on X. More-
over, let X be a projective arithmetic variety and H an C∞-hermitian line bundle
on X . We denote by σ0(X,H, l) (resp. σ0(X ,H, l)) the abscissa of convergence of
Z(X,H, l)(q−s) (resp. ζ(X ,H, l)(s)). Then, σ0(X,H, l) and σ0(X ,H, l) are given
by

σ0(X,H, l) = lim sup
h→∞

logq #
({V ∈ Zeff

l (X) | degH(V ) ≤ h})

hl+1

and

σ0(X ,H, l) = lim sup
h→∞

log #
(
{V ∈ Zeff

l (X ) | d̂egH(V ) ≤ h}
)

hl+1

respectively.
For example, letX be an n-dimensional projective scheme over Fq with Pic(X) =

Z ·H, where H is ample. Then,

σ0(X,H, n− 1) =
1

deg(Hn)n−1n!
.

Remark 7.4.2. Let X be a projective variety over a finite field Fq and H an ample
line bundle on X. As before, the number of all effective l-dimensional cycles V on
X with degH(V ) = k is denoted by nk(X,H, l). In [10], Wan defined a zeta function
Z̃(X,H, l) by

Z̃(X,H, l)(T ) =
∞∑

k=0

nk(X,H, l)T k.

He proved Z̃(X,H, l)(T ) is p-adically analytic and proposed several kinds of con-
jectures. Of course, Z̃(X,H, l)(T ) is never analytic as C-valued functions if 0 < l <

dimX. In order to get classical analytic functions, we need to replace T k by T kl+1
.

Remark 7.4.3. Let θ(T ) be a theta function given by

θ(T ) =
∑

k∈Z
T k2

= 1 + 2
∞∑

k=1

T k2
.

Let p be a prime number. Virtually, the typical p-local zeta function for 1-dimensional
cycles might be

Zp(T ) = θ(pT ) =
∑

k∈Z
pk2

T k2
.

Here let us consider
l(s) =

∏

p : prime

Zp(p−s).

Then, we can see

l(s)−1 =
∞∏

m=1

ζ(2m(s− 1))ζ(2(2m− 1)(s− 1))2

ζ((2m− 1)(s− 1))2
,
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where ζ(s) is the Riemann-zeta function. This formula follows from Jacobi’s triple
product formula:

θ(T ) =
∞∏

m=1

(1− T 2m)(1 + T 2m−1)2

Appendix A. Bogomolov plus Lang in terms of a fine polarization

In this appendix, we show that the main results in [6] and [7] hold even if a
polarization is fine.

Theorem A.1 ([6, Theorem 4.3]). We assume that the polarization B is fine. Let
X be a geometrically irreducible projective variety over K, and L an ample line
bundle on X. Then, for any number M and any positive integer e, the set

{x ∈ X(K) | hB
L (x) ≤M, [K(x) : K] ≤ e}

is finite.

Theorem A.2 ([7, Theorem A]). We assume that the polarization B is fine. Let
A be an abelian variety over K, and L a symmetric ample line bundle on A. Let

〈 , 〉BL : A(K)×A(K)→ R
be a paring given by

〈x, y〉BL =
1
2

(
ĥB

L (x+ y)− ĥB
L (x)− ĥB

L (x)
)
.

For x1, . . . , xl ∈ A(K), we denote det
(
〈xi, xj〉BL

)
by δB

L (x1, . . . , xl).

Let Γ be a subgroup of finite rank in A(K) (i.e., Γ ⊗ Q is finite-dimensional),
and X a subvariety of AK . Fix a basis {γ1, . . . , γn} of Γ⊗Q. If the set

{x ∈ X(K) | δB
L (γ1, . . . , γn, x) ≤ ε}

is Zariski dense in X for every positive number ε, then X is a translation of an
abelian subvariety of AK by an element of

Γdiv = {x ∈ A(K) | nx ∈ Γ for some positive integer n}.
The proof of Theorem A.1 and Theorem A.2: Here, let us give the proof

of Theorem A.1, Theorem A.2. Theorem A.1 is obvious by [6, Theorem 4.3] and
Proposition 6.2.2.1, or Theorem 6.3.1. Theorem A.2 is a consequence of [7], Propo-
sition 6.2.2.1 and the following lemma.

Lemma A.3. Let V be a vector space over R, and 〈 , 〉 and 〈 , 〉′ be two inner
products on V . If 〈x, x〉 ≤ 〈x, x〉′ for all x ∈ V , then det (〈xi, xj〉) ≤ det (〈xi, xj〉′)
for all x1, . . . , xn ∈ V .

Proof. If x1, . . . , xn are linearly dependent, then our assertion is trivial. Oth-
erwise, it is nothing more than [4, Lemma 3.4]. 2

Remark A.4. In order to guarantee Northcott’s theorem, the fineness of a polar-
ization is crucial. The following example shows us that even if the polarization is
ample in the geometric sense, Northcott’s theorem does not hold in general.

Let k = Q(
√

29), ε = (5 +
√

29)/2, and Ok = Z[ε]. We set

E = Proj
(
Ok[X,Y, Z]/(Y 2Z +XY Z + ε2Y Z2 −X3)

)
.
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Then, E is an abelian scheme over Ok. Thus, as in the proof of [6, Proposition 3.1.1],
we can construct a nef C∞-hermitian line bundle H on E such that [2]∗(H) = H

⊗4

and Hk is ample on Ek, c1(H) is positive on E(C), and that d̂eg
(
ĉ1(H)2

)
= 0. Let

K be the function field of E. Then, B = (E;H) is a polarization of K. Here we
claim that Northcott’s theorem dose not hold for the polarization (E,H) of K.

Let pi : E ×Ok
E → E be the projection to the i-th factor. Then, considering

p2 : E ×Ok
E → E, (E ×Ok

E, p∗1(H)) gives rise to a model of (EK ,HK). Let Γn

be the graph of [2]n : E → E, i.e., Γn = {([2]n(x), x) | x ∈ E}. Moreover, let xn be
a K-valued point of EK arising from Γn. Then, if we denote the section E → Γn

by sn, then

hB
HK

(xn) = d̂eg
(
p∗1(H) · p∗2(H) · Γn

)
= d̂eg

(
s∗n(p∗1(H)) · s∗n(p∗2(H))

)

= d̂eg
(
([2]n)∗(H) ·H)

= d̂eg
(
H
⊗4n

·H
)

= 4nd̂eg
(
H ·H)

= 0.

On the other hand, xn’s are distinct points in EK(K).

Appendix B. Weak geometric Northcott’s theorem

In §3, we worked over a finite field, so that we can prove Northcott’s type theorem
in general. However, if we consider it over an algebraically closed field of charac-
teristic zero, Northcott’s type theorem does not hold in general. Nevertheless, we
have the following weak form.

Proposition B.1. Let X be a smooth projective variety over an algebraically closed
field k of characteristic zero, C a smooth projective curve over k, and f : X → C
a surjective morphism whose generic fiber is geometrically irreducible. Let L be an
ample line bundle on X. If deg(f∗(ωn

X/C)) > 0 for some n > 0, then, for any
number A, the set

{∆ | ∆ is a section of f : X → C with (L ·∆) ≤ A}
is not dense in X.

Proof. Let us begin with the following lemma.

Lemma B.2. Let f : X → Y be a surjective morphism of smooth projective vari-
eties over an algebraically closed field k of characteristic zero. If there are a projec-
tive smooth algebraic variety T over k and a dominant rational map φ : T ×k Y 99K
X over Y , then the double dual f∗(ωn

X/Y )∨∨ of f∗(ωn
X/Y ) is a free OY -sheaf for all

n ≥ 0.

Proof. Let A be a very ample line bundle on T . If dimT > dim f and T1 is
a general member of |A|, then φ|T1×Y : T1 × Y 99K X still dominates X. Thus,
considering induction on dimT , we may assume that dimT = dim f .

Let µ : Z → T ×Y be a birational morphism of smooth projective varieties such
that ψ = φ · µ : Z → X is a morphism. Then, ψ is generically finite. Thus, there
is a natural injection ψ∗(ωX/Y ) ↪→ ωZ/Y . Hence, ψ∗(ωn

X/Y ) ↪→ ωn
Z/Y for all n > 0.

Therefore,
ωn

X/Y ↪→ ψ∗(ψ∗(ωn
X/Y )) ↪→ ψ∗(ωn

Z/Y ).

Applying f∗ to the above injection, we have

f∗(ωn
X/Y ) ↪→ f∗(ψ∗(ωn

Z/Y )).
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Further, letting p be the natural projection p : T × Y → Y ,

f∗(ψ∗(ωn
Z/Y )) = p∗(µ∗(ωn

Z/Y )) = p∗(ωn
T×Y/Y ) = H0(T, ωn

T )⊗k OY .

Thus, f∗(ωn
X/Y )∨∨ is a subsheaf of the free sheaf H0(T, ωn

T )⊗k OY .
Here we claim

(B.2.1)
(
c1

(
f∗(ωn

X/Y )∨∨
)
·Hd−1

)
≥ 0,

where H is an ample line bundle on Y and d = dimY . This is an immediate
consequence of weak positivity of f∗(ωn

X/Y )∨∨ due to Viehweg [9]. We can however
conclude our claim by a weaker result of Kawamata [3], namely deg(f∗(ωn

X/Y )) ≥ 0
if dimY = 1. For, considering complete intersections by general members of |Hm|
(mÀ 0), we may assume dimY = 1.

We can find a projection α : H0(T, ωn
T )⊗kOY → O⊕rn

Y such that rn = rk f∗(ωn
X/Y )∨∨

and the composition

f∗(ωn
X/Y )∨∨ ↪→ H0(T, ωn

T )⊗k OY
α−→ O⊕rn

Y

is injective. Therefore, since f∗(ωn
X/Y )∨∨ is reflexive, the above homomorphism is

an isomorphism by (B.2.1). 2

Let us go back to the proof of Proposition B.1. Let Homk(C,X) be a scheme con-
sisting of morphisms from C to X. Then, there is a morphism α : Homk(C,X)→
Homk(C,C) given by α(s) = f · s. We set Sec(f) = α−1(idC). Then, there is a
natural morphism β : Sec(f)× C → X given by β(s, y) = s(y). Since L is ample,

{∆ | ∆ is a section of f : X → C with (L ·∆) ≤ A}
is a bounded family, so that there are finitely many connected components

Sec(f)1, . . . ,Sec(f)r

of Sec(f) such that, for all sections ∆ with (L · ∆) ≤ A, there is s ∈ Sec(f)i for
some i with ∆ = s(C). On the other hand, by Lemma B.2, Sec(f)i × C → X is
not a dominant morphism for every i. Thus, we get our proposition. 2

References

[1] V. V. Batyrev and Yu. Manin, Sur le nombre de points rationnels de hauteur bornée des
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