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ABSTRACT. Let X be a projective scheme over a finite field. In this paper,
we consider the asymptotic behavior of the number of effective cycles on X
with bounded degree as it goes to the infinity. By this estimate, we can define
a certain kind of zeta functions associated with groups of cycles. We also
consider an analogue in Arakelov geometry.
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of X is one of classical problems in algebraic geometry. This is equivalent to decide
the number ny of 0-cycles of degree k. Actually, the generating function

of the sequence {n;}72, is nothing more than the zeta function of X. As we know,
studies on this zeta function gave great influence on the development of algebraic
geometry. Accordingly, it is very natural to expect a certain kind of generalization
by considering a counting problem of higher dimensional algebraic cycles.
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To proceed with our problem, let us fix an ample line bundle H on X. For
a non-negative integer k, we denote by ny(X, H,l) the number of all effective I-
dimensional cycles V' on X with degy (V) = k, where degy; (V) is the degree of V
with respect to H, which is given by

degy (V) =deg (H'-V).

In the case where | = 0, since the above zeta function is rational, the asymptotic
behavior of log,, n (X, H,0) is, roughly speaking, linear with respect to k. However,
if we consider the divisor case, we can easily see that this doesn’t hold in general,
so that the first natural question concerning ny(X, H,1) is to give an estimate of
nk(X, H,1) as k goes to the infinity. Once we know it, we might give a convergent
generating function of {ny(X, H,1)}32,. The following theorem (cf. Corollary 2.2.5
and Proposition 2.2.6), which is one of the main results of this paper, is our answer
for the above question.

Theorem A (Geometric version). (1) If H is very ample, then there is a con-
stant C depending only on | and dimg, H°(X, H) such that

log, (X, H,1) < C- EiFL
for all k > 0.
(2) Ifl # dim X, then limsup

k—o00

log, nx (X, H,1)

kl+1 > 0.

As an analogue of Weil’s zeta function, if we define a zeta function Z(X, H,1) of
l-dimensional cycles on a polarized scheme (X, H) over F, to be

Z(X,H)(T) =Y me(X, H,1)T*",
k=0
then, by the above theorem, we can see that Z(X, H,1)(T) is a convergent power
series at the origin.

Further, using the same techniques, we can estimate the number of rational
points defined over a function field. Let C' be a projective smooth curve over F,
and F' the function field of C'. Let f : X — C be a morphism of projective varieties
over F; and L an f-ample line bundle on X. Let X, be the generic fiber of f. For

x € X, (F), we define the height of & with respect to L to be
~ deg(A, — C)’

where A, is the Zariski closure of the image of Spec(F) — X, — X. Then, we can
see that, for a fixed k, there is a constant C' such that

#{r € X,(F) | [F(z): F] <k and hr(z) < h} < %"
for all A > 1. Thus, a series
Z q—shL(z)

zeX,(F),
[F(z):F<k

hL(LU)

converges for all s € C with R(s) > 0. This is a local analogue of Batyrev-Manin-
Tschinkel’s height zeta functions.

Moreover, let X — Spec(Og) be a flat and projective scheme over the ring
Ok of integers of a number field K and let H be an ample line bundle on X. For
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P € Spec(Ok )\ {0}, we denote the modulo P reductions of X and H by Xp and Hp
respectively. Then, as a corollary of our estimates, we can see an infinite product

LEHD) = [ 2@ He D#A(P)™)
PeSpec(Ok)\{0}
converges for all s € C with R(s) > 0, which looks like a generalization of the usual
L-functions.

The next purpose of this paper is to give an analogue in Arakelov geometry.
Let X be a projective arithmetic variety, i.e, a flat and projective integral scheme
over Z. Let H be an ample C*-hermitian Q-line bundle on X. For a cycle V of
dimension [ on X, the arithmetic degree of V' is defined by

deggr (V) = deg (&(H)"| V).

~hor

For a real number h, we denote by fi<, (X, H,1) (resp. n, (X, H,I)) the number
of effective cycles (resp. horizontal effective cycles) V' of dimension ! on X with

d/e\gﬁ(V) < h. Then, we have the following analogue (cf. Corollary 5.3.2 and
Theorem 5.4.1).

Theorem B (Arithmetic version). (1) There is a constant C' such that
logvep (X, H,1) < C - At
for all h > 0. o
log ﬁ%‘)hr(X, H,l)

(2) Ifl #dim X, then limsup ]

h—oo

> 0.

Techniques involving the proof of Theorem B are much harder than the geometric
case, but the outline for the proof is similar to the geometric one. We have also
an estimate of rational points defined over a finitely generated field over Q (cf.
Theorem 6.3.1). Let ZfT(X) be the set of effective I-dimensional cycles on X.
Then, as a consequence of Theorem B, we can see that a Dirichlet series

CXH)(s)= Y exp(—s-degg(V)™)
VeZztt(X)

converges for £(s) > 0 (cf. Theorem 7.3.1).

Here let us give a sketch of the proof of Theorem A. A lower estimate of
n,(X, H,1) is not difficult. To keep arguments simple, we only consider its up-
per estimate in the case where [ = 1. First of all, we may clearly assume that X is
the n-dimensional projective space. Note that the n-dimensional projective space
is birationally equivalent to the n-times products X,, = (]P’]lqu)" of the projective
line IP’]%“I, so that once we get an upper estimate of the number of one cycles on X,
then we can expect our desired result on the projective space, which can be actually
done by using a comparison lemma (cf. Lemma 2.2.2). Why is X,, better than the
projective space for our consideration? In order to use induction on n for the proof,
it is very convenient that there are a lot of morphisms to lower dimensional cases.
In this sense, X, is a better choice.

Let ppq : Xp — ]P’Ilpq be the projection to the i-th factor. Let H,, be a natural

ample line bundle on X,,, i.e., H, = @, p;i(Op%q (1)). Let Z§%(X,, g IP’]qu) be



4 ATSUSHI MORIWAKI

the set of effective one cycles on X,, generated by irreducible curves which are flat
over IF’]%Q via py ;. Then, we can see that

n
logng(Xn, Hny, 1) < Zlogq #{V e zo%(x,, 8 IP’]%«q) | degyy, (V) < K}
i=1
Thus, using symmetry, it is sufficient to find a constant C,, with

log, #{V € Z{%(X,, "5 Pk ) | degyy (V) <k} < Cr- k2 (k> 1)

For simplicity, we set T, = Z§% (X, P P%q). In order to complete the proof,

we need to see the following properties (1) — (4) for a sequence {T5,T5,..., Ty, ...}

(1) For each n > 2, there is a function h,, : T, — R>¢ satisfying the below (2),
(3) and (4).

(2) For each n > 3, there are maps «a,, : T, — T,,—1 and B, : T,, — T» such
that

hn-1(om(x)) < hn(z) and  he(Ba(z)) < hn(z)

for all z € T,,.

(3) There is a function A : R>g X R>¢ — R such that A(s,t) < A(s',¢") for all
0<s<s and 0 <t <t and that, for y € T),_1 and z € T5,

#{xeT, | an(x) =y and B,(z) = 2z} < A(hn-1(y), h2(2)).
(4) There is a function B : R>¢ — R such that
#{x € Tz | ha(x) < h} < B(h)

for all h > 1.
Actually, h,, is given by h, (V) = degy (V). Let ay, : X,y — X1 and b, : X, —
X be the morphisms given by a, (21, ...,2,) = (1,...,2Zn—1) and b, (21, ...,2,) =

(z1,x,) respectively. Moreover, let
an=(an)s : Tn = Tnor and By = (bn)e: T, — T

be the push-forwards of cycles by a,, and b,, respectively. Then, the property (2)
is almost obvious. Since Xy = IP’[%-Q X P]%-q, it is easy to see that if we set B(h) =

(1—|—h)2q(1"’h)27 then the property (4) is satisfied (cf. Proposition 2.1.2). Technically,
it is not easy to see the property (3). For this purpose, we use Lemma 2.1.3.
Consequently if we set A(s,t) = ¢**, then we have (3). By using properties (1) —
(4), we can conclude

#{x €Ty | hn(z) <k} < B(k)F YAk, k)P 2 < "= DF,

The sequence {T,,} satisfying (1) — (4) is called a counting system (for details, see
§1.2). This is a very important tool for this paper because we will make several
kinds of counting systems in different contexts. From viewpoint of induction, the
properties (2) and (3) are the inductive steps and the property (4) is the initial step.
In the arithmetic context, the inductive steps are very similar to the geometric case.
However, the initial step is much harder than the geometric case.

The outline of this paper is as follows: This paper consists of the geometric
part (§2 and §3) and the arithmetic part (§4, §5 and §6). As we said before,
the arithmetic part is much harder than the geometric part, so that we strongly
recommend reading the geometric part first. §1 contains notation and conventions
of this paper, the definition of a counting system and key lemmas for counting cycles.
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In §2, we prove Theorem A. In §3, we consider a refined Northcott’s theorem in
the geometric case. §4 contains preliminaries for the proof of Theorem B. In §5, we
consider a counting problem of cycles in the arithmetic case, that is, Theorem B.
86 contains a refined Northcott’s theorem in the arithmetic case. In §7, we prove
the convergence of several kinds of zeta functions arising from counting cycles.
Appendix A and Appendix B contain Bogomolov plus Lang in terms of a fine
polarization and a weak geometric Northcott’s theorem respectively. Note that §3,
86, Appendix A and Appendix B are secondary contents of this paper.

Finally, we would like to give hearty thanks to Prof. Mori, Prof. Soulé and Prof.
Wan for their useful comments and suggestions for this paper.

1. GENERAL PRELIMINARIES

1.1. Notation and Conventions. Here, we introduce notation and conventions
used in this paper.

(1.1.1). For a point z of a scheme X, the residue field at z is denoted by x(x).

(1.1.2). Let X be a Noetherian scheme. For a non-negative integer I, we denote
by C;(X) the set of all [-dimensional integral closed subschemes on X. We set

Z(X)= @ zv, and Z(X)= P ZxV,
Vel (X) Vel (X)

where Z>o = {z € Z | 2 > 0}. An element of Z;(X) (resp. ZfT(X)) is called an
I-dimensional cycle (vesp. l-dimensional effective cycle) on X.

For a subset C of C;(X), we denote @y, .o ZV and Py, Z>oV by Z;(X;C) and
Z#1(X;C) respectively. In this paper, we consider the following C(U) and C(X/Y)
as a subset of C;(X); For a Zariski open set U of X, we set

CU)=A{V eC(X)|VNU +# 0}.

For a morphism f : X — Y of Noetherian schemes with Y irreducible, we set

CX/)Y)={VeaX)|f(V)=Y}
For simplicity, we denote
Zi(X;C(U)), ZM(X;C(U)), Zu(X;C(X/Y)) and Z{"(X;C(X/Y))
by
Z(X;U), Z™(X;U), Z(X/)Y) and Zf(X)Y)
respectively. In order to show the fixed morphism f : X — Y, Z;(X/Y) and
Zf1(X/Y) are sometimes denoted by Z;(X L y) and ZH (X L Y) respectively.
(1.1.3). Let R be a commutative ring with the unity. Let X be the products of
projective spaces Py, ..., Py over R, that is,
X :Prél XR--- XRP%T.
Let p; : X — P’ be the projection to the i-th factor. For an n-sequence (ki, ..., ky,)
of integers, the line bundle of type (k1,...,ky) is given by

®p3(0pgi (ki)
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and it is denoted by Ox (k1,. .., k). If R is UFD, then, for a divisor D on X, there
is the unique sequence (k1, ..., k,) of non-negative integers and the unique section
s€ H°(X,0x(ky,..., k,)) module R* with div(s) = D. We denote k; by deg;(D)
and call it the i-th degree of D. Moreover, for simplicity, we denote
P?’% XR " XR P%
—_————
r-times

by (P%)". Note that (P%)° = Spec(R).
(1.1.4). For a non-negative integer n, we set

L2, n) ifn>1
[n]—{@ ifn=0.

We assume n > 1. Let us consider the scheme (P%)™ over R, where R is a com-
mutative ring. Let p; : (PL)" — P} be the projection to the i-th factor. For a
subset I of [n], we define pr : (PL)" — (PL)#() as follows: If I = (), then p; is
the canonical morphism (Py)" — Spec(R). Otherwise, we set I = {iy,..., i)}
with 1 <y < -+ <iggy <n. Then, pr = pi, X - X Diy, i€, pr(T,. ., 20) =
(Tiys - +»Tiy ;). Note that pgsy = p;.

(1.1.5). Let us fix a basis { Xy, ..., X, } of HY(P#, O(1)). The Fubini-Study metric
I - |lrs of O(1) with respect to the basis {Xy,...,X,} is given by

| Xi]
VPGP
For a real number A, the metric exp(—MA)|| - ||lrs is denoted by || - ||rs,. Moreover,
the hermitian line bundle (O(1), | - |rs, ) is denoted by O > (1).

If X = (P{)", then the hermitian line bundle 6FSX(1, ..., 1) of type (1,...,1)
on X is given by

[ Xillps =

n
—~Fs « ~FS
07 (1,....,1)=Qp; (0 (1)),
i=1
where p; : X — P{ is the projection to the i-th factor,
(1.1.6). Let f and g be real valued functions on a set S. We use the notation
‘f < ¢ if there are positive real numbers a,a’ and real numbers b, such that
g(s) <a ()+bandf()§ag()+b’f0ralls€S.
1.2. Counting system. Here let us introduce a counting system. See the intro-
duction to understand how a counting system works for counting cycles.
Let {T0}5Z 0y = {Tno» Tnot1s- -+ T, - - -} be a sequence of sets. If it satisfies the

following properties (1) — (4), then it is called a counting system.
(1) (the existence of height functions) For each n > ng, there is a function
hy, : T, — R satisfying the below (2), (3) and (4).
(2) (inductive step) For each n > ng + 1, there are maps «,, : T, — T;,—1 and
Bp : T, — T, such that
hn-1(an(z)) < hn(z) and  hyo(Be(2)) < ha(2)

for all z € T,,.
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(3) (inductive step) There is a function A : R>o x R>¢ — R such that A(s,t) <
A(s',t') for all 0 < s < ¢’ and 0 < t < t' and that, for y € T;,_1 and
z € Ty,

#{r €T, | an(z) =y and Bu(z) = 2} < A(hn-1(y), hny(2)).
(4) (initial step) There is a function B : R>g — R and a non-negative constant
to such that
#{x € Tpy | hny(z) < h} < B(h)
for all A > tg.

Lemma 1.2.1. If {T},};%,, is a counting system as above, then
#{3;‘ eT, | hn(gp) < h} < B(h)n_”"'HA(h, h)n—no
for all h > to.

Proof. For x € T,, with h,(x) < h, by the property (2), we have h,,_1 (o, (z)) <
h and hp, (B (x)) < h. Thus, by using (3) and (4),

#H{z € Tn | ha(z) Sh} <3y € Tnoa [ hna(y) < h}-#{z € Thy | hao(2) < h}- A(h, h)
< #{y €Th ‘ hn—l(y) < h} ! B(h) ' A(ha h)

Therefore, we get our lemma by using induction on n. O

1.3. Key lemmas for counting cycles. Here we consider two key lemmas for
counting cycles. The first lemma will be used to see the property (3) in a counting
system.

Lemma 1.3.1. Let X and Y be projective schemes over a field K. Let p : X Xk
Y —>Xandq: X xgY — Y be the projection to the first factor and the projection
to the second factor respectively. Let x1,...,xs (resp. y1,...,y) be closed points
of X (resp. Y). Let us fix an effective O-cycle x = Y ;_, a;x; and an effective
0-cycle y = Z; 1 b5y5. Then, the number of effective 0-cycles z on X xg Y with

(Z) = x and q*( ) =y is 1688 than or equal to ZO‘X(I)O‘Y@ where 04X( ) =
ZZ 1 W and ay (y) = ijl W

Proof. Let zi’s (k=1,...,1;;) be all closed points of Spec(k(z;) @k £(y;))-
Then, an effective O-cycle z on X x Y with p.(2) = z and ¢.(z) = y can be written

by the form Zijk CijkZijk- Hence,

i J.k

and
=D Do IkCzise) = wlys)lenn | s
J i,k

Thus,

Cijk S min {(li, bJ} S \/ aibj.
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Therefore, the number N(z,y) of effective 0-cycles z on X X Y with p.(2) = x
and ¢.(z) = y is less than or equal to J[;;(1+ /a;b;)lis. Considering the following
commutative diagram:

Spec(k(x;) @k k(y;))

/\

Spec(k Spec(ri(y;))

\/

Spec(K
we note that
lij < min {dimy ) (5(2;) @k K(Y;)), dimga,) (5(2:) @k K(y;))}
= min {[w(z:) : K, [5(y;) - KT} < \/[(2:) < K]ls(yy) : K]
Moreover, 1+ u < 2% for u € {0} U [1, 00). Hence,

< H 2\/%['@(9671)11(]\/51 [s(y): K] — 92245 Vails(w:):K]4/b; [#(y;): K]
i
Thus, we get our lemma. O

The following lemma will be also used to count cycles.

Lemma 1.3.2. Let 7 : X' — X be a finite morphism of normal integral schemes.
Let Z = Y1 | a;Z; be an effective cycle on X, where Z;’s are integral. Then

the number of effective cycles Z' on X' with w.(Z') = Z is less than or equal to
gdeg(m) 327, ai

Proof.  We denote by a(Z) the number of effective cycles Z’ on X’ with 7, (Z') =
Z. Let Zjy,...,Z}; be all integral subschemes lying over Z;. Then, ¢; < deg(n).
Let Z' be an effective cycle Z’ on X' with n.(Z') = Z. Then, we can set Z' =
Dy ijl a;jZ;;. Since m,(Z') = Z, the number of possible (a1, ...,a;,)’s is at
most (1 + a;)98(™) . Therefore,

ﬁ 1+ a;) deg(m

Here note that 1 +u < 2% for v € {0} U[1,00). Hence we get our lemma. O

2. COUNTING CYCLES IN THE GEOMETRIC CASE

The main purpose of this section is to find a universal upper bound of the number
of effective cycles with bounded degree on the projective space over a finite field
(cf. Theorem 2.2.1), namely,
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Fix non-negative integers n and I. Then, there is a constant C(n, ()
depending only on n and [ such that the number of effective I-
dimensional cycles on ]P’ﬁ%q with degree k is less than or equal to
qC(n,k)kHl.
The plan for the proof of the above theorem is the following: As we described in
the introduction, first we consider a similar problem on the products (]P’}Fq)” of the
projective line. The advantage of (]PIqu)” is that it has a lot of morphisms, so that

induction on its dimension works well. In §2.1, we estimate the number of cycles on
(]P’%q)”. In §2.2, we prove the above result. Especially, we compare the number of

cycles on IP{FLQ with the number of cycles on (]P’]ll?q )™ in terms of the natural birational
map Py --» (IP’]%-q)".

2.1. Cycles on (]P’D%q)". Here we consider the following proposition. An idea of the

proof can be found in the introduction.

Proposition 2.1.1. There is a constant C(n,l) depending only n and 1 such that
#{V € Zi"((Pg,)") | dego

for all h > 1.

n.l)-hit1
(1) (V) S B} < gC00h

First, let us begin with the case of divisors, which gives the initial step in a
counting system.
Proposition 2.1.2. Let kq, ..., k, be non-negative integers. Then

QI (ki)

-1 'H(ki+1)~

i=1

#{D € Div"((P,)") | deg;(D) < k; Vi=1,...,n} <

Proof. In the following, the symbol D is an effective divisor on (P]}q)".

#{D | deg;(D) < k; (Vi)} = > #1{D | deg,(D) = e; (Vi)}

0<e1<k1,...,0<en<kn

- ¥
0<e1<ka,...,0<en <kn
q(k1+1)(krz+l) — 1

e +(entl) _

< (k1 +1)--(kn+1)

qg—1

Let us start the proof of Proposition 2.1.1. First we assume [ = 0. Let us see
#{V e Z5"((B5,)") | deg(V) < h} < ¢*™"
for h > 1. We prove this by induction on n. If n = 1, then our assertion follows
from Proposition 2.1.2, so that we assume n > 1. Let ¢ : (P%-q)" — (IP’Hl;q)”_1 be the
projection given by q(z1,...,2,) = (21,...,2,-1). Forafixed W € Z§T((Pg )"~1),
let us estimate the number of {V € ZSH((IF’]}q)") | ¢.(V) = W} We set W =
> aiy;. For V e ZSH((IP’}F(I)”) with ¢.(V) = W, let V.= V3 +--- + V. be
the decomposition of effective 0-cycles with ¢.(V;) = a;y; (i = 1,...,e). Then,
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V; € Zs% (Pi(yi)) and the degree of V; in Pi(yi) is ;. Thus, the possible number of

V; is less than or equal to #(x(y;))3%. Thus,

#{V € Z§M(Pr,)") | 4(V) = W} < [T #(w(y))*er = [[ ¢*tr)Falen = g2 e,
i=1

i=1
Therefore, since deg(V) = deg(q.(V)), using the hypothesis of induction,
#{V € Z5"((Ps,)") | deg(V)) < h} < #{W € Z5"((P5,)" ") | deg(W) < h} - ¢*"
< q3(n71)h . q3h — anh.

Next we assume [ > 1. For a subset I of [n] = {1,...,n} with #(I) =, let us
consider the morphism py : (]P’]%q)” — (P%q)l (for the definition of py, see (1.1.4)).

We denote by Zfﬂ((P]}q)" 2 (IP’]}q)l) the set of effective cycles on (]P’]%‘q)" generated

by [-dimensional subvarieties which dominates (IF’]%q)l via pr (cf. (1.1.2)). Then, it
is easy to see that

ZN (@) = Y (@) ().
1€ A (D)=t

Thus, since
n

#rrcmam=m- (7)<,

it is sufficient to see that there is a constant C’(n,l) depending only on n and I
such that

n

’ 141
{Ve fof((]PH{,q)n L2 (p%q)l) | degy (V) < B} < g€ (mbh
)

for all h > 1. By re-ordering the coordinate of (IP]}Q , we can find an automorphism

. 1 \n 1 \n
L (]P)IFQ) - (PFq)

with 7 - ¢ = mr and *(Opryn (1,...,1)) = OE1)=(1,...,1). Thus, we may assume
that I = [[]. We denote py; by p. Let p; : (P]%,q)" — Pﬂl;q be the projection to the
i-th factor. For n > [+ 1, we set

T, = Z{"((PE,)" = (Pg,)")
and hy, (V) = dego,.. 1) (V) for V € T,,. We would like to see that {T5,}72,,, is
a counting system. Let a, : (Pg )" — (Pg )"~' and b, : (Pg )" — (P )™ be
morphisms given by a,, = pp,,—1) and b, = pjufn}, namely,

an(z1,...,xy) = (21,...,2p—1) and by(z1,...,z,) = (z1,..., 2, Ty).
Here, o, : T;, — T,—1 and Gy, : T;, — Tj41 are given by
an(V) = (an)«(V) and  S3,(V) = (bn):(V).
Then, since
O(pl)n(l, ey 1) = (an)*(O(ﬂml)n—l (1, ey 1)) ® p:(O]pl (1))

and
n—1

Oy (L. 1) = (0,) (O (L,..., 1)) © Q) pi(Opi (1)),

j=I+1
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it is easy to see that h,—_1(an(V)) < hp(V) and b1 (8,(V)) < h, (V). Note that

the diagram
1 \n
(B},
1
]
(Pg

)
(Pz,)"*!
S, A

is a fiber product. Thus, by the following Lemma 2.1.3, if we set A(s,t) = ¢,
then, for y € T,,—1 and z € Tj41,

#{ZL’ € Tn | an<x) =Y, /Bn(x) = Z} < A(hnfl(y)vhlJrl(Z))'

X
(P, )"~
U

Here,
(D€ Tisy | hisr(D) < b} C{D € Ty | deg,(D) < hforall i =1,...,1+1}.
Thus, by Proposition 2.1.2, if we set B(h) = (1 + h)l+1q(1+h)l+1, then
#{D € Tiy1 | us1(D) < h} < B(h).

Hence, we obtain a counting system {7},}7°, ;. Therefore, by Lemma 1.2.1,
#{x € Ty | hn(x) <h} < B(R)" ' A(h,h)" !

=1+ h)(n—l)(l+1)q(n—l)(1+h)l+1q(n—z—1)h2

< =DV (=DE™ ((n=l=DR? £ (=)@ HHDRT

for all h > 1. O

Lemma 2.1.3. Let f: X — S and g: Y — S be morphisms of projective schemes
over Fy. We assume that S is integral and of dimension l. Letp: X xgY — X
and q : X XgY — Y be the projections to the first factor and the second factor
respectively. Fiz D € Zf%(X/S) and E € ZfE(Y/S) (for the definition of Zf(X/9)
and ZFE(Y/S), see (1.1.2)).
(1) Assumel > 1. Let Ay,...,A; be nef line bundles on X, By,..., B} nef line
bundle onY , and C1, . .., C) nef line bundles on S such that A;@ f*(C;)®~*
and B; ® g*(C;)®~! are nef for all i and that deg(Cy ---Cy) > 0. Then,

log, (#{V € Z{™(X x5 Y/S) | p.(V) = D and q.(V) = E})
< min{deg(Al -+A;-D)deg(B1---B; - E)

deg(C’l--«Cl)2 ’
V/0(D)0(E)deg(A; -+ A; - D)deg(By -+~ B - E)
deg (Cy---C)) ’

where (D) (resp. O(E)) is the number of irreducible components of Supp(D)
(resp. Supp(E)).
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(2) Assumel =0, so that S = Spec(Fyr) for some positive integer r. Then,
log, (# {V = ZSH(X xsY/S) | ps(V)=D and q*(V = E})
< min { deg(D) deg(E \/9 E) deg(D) deg(F) } .
r

2 r

Proof. (1) Weset D=>""_,a;D; and E = 2221 b;E;. Then,
(2.1.3.1) deg(Ay---A;-D) =Y a;deg(Ay--- A D)
> " a;deg(f*(C1) -+ £*(C1) - Dy)
i=1

= Zai deg(D; — S)deg(Cy --- ().

In the same way, -

(2.1.3.2) deg(By---B;- E) > ibj deg(E; — S)deg(Cy ---Cy).
i=1

Thus, ] .

and

deg(Bl
> \/bj deg(E; — S).
deg(cl Z e(E; =
Moreover, note that

VNa e B > T T,

Thus, the above inequalities (2.1.3.1) and (2.1.3.2) imply

A
\/sdeg( 1° >Z /—azdegD =g

deg(Ch - -

tdeg(By - Bi-E) _ by dea(E; = 9)
> b;deg(E; — S).
\/ deg(Cy---C)) 71‘2::1 j deg(E; — 5)
Therefore, considering X, Y and X xgY over the generic point of S, Lemma 1.3.1
implies our assertion.

(2) Weset D =37 | a;z; and E = Z;Zl bjy;. Then,

deg(D) = Zai[n(xi) :Fyl = TZai[ﬁ(xi) :F

and

and

deg(E) = Z bilk(y;) 1 Fq] = erj [k(y;) : F
j=1
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Thus, in the same way as in (1), we get our assertion. O

2.2. Cycles on a projective variety over a finite field. In this subsection, we
consider the main problem of this section.

Theorem 2.2.1. There is a constant C(n,l) depending only on n and l such that
# ({V € Z"(P2,) | degon) (V) < h)}) < g0
for all h > 1.
Let us begin with a lemma.

Lemma 2.2.2. Let F be a field. Let ¢ : P% --» (PL)™ be the birational map given
by

(Xo:oo .0 Xn)— (Xo: X1) x - x (Xo : Xp).
Let X be the boundary of P, that is, ¥ = {Xo = 0}. Let ZFE(P2; P\ X) be the
set of effective cycles generated by l-dimensional subvarieties T on P with T ¢ X
(cf. (1.1.2)). For V € ZtH (P, PR\ X), we denote by V' the strict transform of V
by ¢. Then,

n' deg (Opp (1)" V) > deg (O(P;)n(l, 1)t V/)
for all V € ZT (B BT\ 3).

Proof. Let Y (C P x (PL)™) be the graph of the rational map ¢ : P --»
(PL)". Let p:Y — P% and v : Y — (PL)™ be the morphisms induced by the
projections P% x (PL)" — P% and P% x (PL)" — (PL)" respectively. Here we
claim that there is an effective Cartier divisor F on Y such that (1) u(E) C ¥ and
(2) w*(O(n)) =v*(O(1,...,1)) @ Oy (E). Let V; (C P x PL) be the graph of the
rational map P% --» P} given by

(XO : Xn) — (X()Xz)
Let p; : Y; = Prand v; 1 Y; — P}? be the morphisms induced by the projections
P x PL — P% and P% x PL — PL respectively. Let m; : (PL)" — PL be the
projection to the i-th factor. Moreover, let h; : Y — Y; be the morphism induced by

id xm; : P x (PL)" — P7% x PL. Consequently, we have the following commutative
diagram:

Y
l£\<\
oY (B
2 P,

Note that p; : Y; — P% is the blowing-up by the ideal sheaf I; generated by X, and
X;. Thus there is an effective Cartier divisor F; on Y; with I;OQy, = Oy,(—E;) and
wi(Opn (1)) ® Oy, (—E;) = v} (Op1(1)). Thus if we set E =) | h¥(E;), then

W (O(n) = v*(O(1, .., 1)) & Oy (B).

Hence we get our claim.
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For V € ZfE(PR; P\ X), let V' be the strict transform of V by p. Then, by
using the projection formula,

deg (O(n)"- V) = deg (u*(O(n))*- V") .
Moreover, by the following Sublemma 2.2.3,
deg (1*(O(n))" - V") > deg (v*(O(1,..., 1))t - V")
Thus, using the projection formula for v, we get our lemma because v, (V") = V'.

O

Sublemma 2.2.3. Let X be a projective variety over a field F and L1, . .., Laim x,
My, ..., Mgim x nef line bundles on X. If L; ® Mf@_1 is pseudo-effective for i =
1,...,n, then

deg(L1 -+ Laim x) > deg(M1 - - - Maim x)-

Proof. Weset E; = L; ® Mz@_l. Then
deg(L1 - - - Laim x) = deg(Mj - - - Maim x)

dim X
+ Z deg(My -+~ Mi—1- E; - Lit1 - Laim x)-
i=1

Thus, we get our lemma. O

Let us start the proof of Theorem 2.2.1. We prove this theorem by induction on
n. Let us consider the birational map Py --» (P%q)” given by

@ (Xo::Xp)— (Xo: X1) x - x (Xo: Xp).
We set U = Py \ {Xo = 0}. For V € ZfH(IP’]’F’q;U), we denote by V' the strict
transform of V' by ¢. Then, by Lemma 2.2.2,
n' dego() (V) = degoq,. 1) (V).
Moreover, note that if V{ = V4 for V1,15 € Zleff(]P’gq; U), then V; = V4. Therefore

#{V € Z;"(P},:U) | degoqr) (V) < h}
< #{V' € Z;*((Ps,)") | degoq,...1) (V') < n'h}.
Here, by Proposition 2.1.1, there is a constant C’(n,!) depending only n and [ such
that

kl+1

#{(V' € Ze(BE)") | degor, 1) (V') < K} < ¢&' (D)

Hence, we have
(224) #{V € Z(BY,:U) | desgoqy) (V) < B} < g 0"
On the other hand, since qu \U ~ ]p}?q—l7

LU+ pl+1

#{V € Z7T(PR) | degoqy(V) < h}
<#{V e Z7"( ¥, U) [ dego(ny (V) < h}
#H{V € ZiT (P 1) | degor) (V) < h}

Thus, using the hypothesis of induction, if we set C'(n,1) = C(n—1,1)+n!t+DC" (n, 1),
then we have our theorem. O
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Corollary 2.2.5. Let X be a projective variety over a finite field F, and H a very
ample line bundle on X. Then, for every integer | with 0 <1 < dim X, there is a
constant C' depending only on | and dimg, H°(X, H) such that

#{V € ZW(X) | deg (V) < h} < ¢“""

Proof. Since H is very ample, there is an embedding ¢ : X — qu with

*(O(1)) = H, where n = dimp, H°(X, H)—1. Thus, it follows from Theorem 2.2.1.
O

Finally, let us consider a lower estimate of the number of effective cycles with
bounded degree.

Proposition 2.2.6. Let X be a projective variety over a finite field Fy and H an
ample line bundle on X. Then, for every integer | with 0 <l < dim X,
log# ({V € Z{™(X) | degy (V) = k})

kli+1 > 0.

lim sup
h—o0

Proof. Take (I + 1)-dimensional subvariety Y of X. Then,
#({V € Z87(Y) | deg (V) = k}) < # ({V € Zi7(X) | degu(V) = k}) .

Thus, we may assume [ = dim X — 1. Here, note that
[H®™ C{D € Zi,(X) | degy (D) = m(H?)}

and o(x. 1)
dimp, HO(X,H®™
m q 4 ’ -1
#|HE™| = :
q—1
where d = dim X. Since H is ample, dimg, H%(X, H®™) = O(m®). Thus we get
our proposition. O

3. A REFINEMENT OF NORTHCOTT’S THEOREM IN THE GEOMETRIC CASE

Let K be a function field of a projective curve over F, and K the algebraic
closure of K. Let X be a projective variety over K. Northcott’s theorem says us
that, for any k£ and h, the set

{re X(K)|[K(z): K] <k, h(z) <h}

is finite, where h(z) is a height function arising from an ample line bundle on X.
For a fixed k, we would like to ask the asymptotic behavior of the number of the
above set as h goes to co. In this section, we consider it in more general contexts.
Let d be an integer with d > 1 and let B be a d-dimensional projective variety over
F,. Let H be a nef and big line bundle on B. Let X be a projective variety over
F, and f : X — B a surjective morphism over Fy. Let L be a nef line bundle on
X. The main result of this section is the following:

If L, is ample on X,, (the generic fiber of f), then, for a fixed k,
there is a constant C' such that the number of effective [-dimensional
cycles in Z(X/B) with deg(L,\~*-V,) < k and

deg(L-lfdJrl . f*(H)'d71 . V) S h
is less than or equal to qc'hd for all h > 1, where deg(L',f’d -Vy) is
the intersection number on X,.
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83.1 contains a preliminary for the above result, where we prove a special case.
In §3.2, the above theorem is proved and we treat a consequence in §3.3.

3.1. A variant of Proposition 2.1.1. Here we would like to consider a variant
of Proposition 2.1.1, which is a special case of the main theorem of this section.

Proposition 3.1.1. Let d, | and n be positive integers with d < | < n. Let
Pl - (IP’]%q)” — (}P’Ilgq)d be the morphism given in (1.1.4), i.e., pig(z1,...,2n) =
(1,...,2q). Let p; : (P%q)" — IP’I%-Q be the projection to the i-th factor. We set

L, = Q._, p;(0()) and H, = ®?:1p;‘((9(1)). Then, for a fized k, there is a
constant C' such that

eff 1 \n Pld] 1 \d dEg(L.riid : Hnd : V) < k’ C-he
#{vezm,r ™ @)n| 98 E LA ASh ) <
for all h > 1.

Proof. We set
Y =A{I|[d CICIn],#I) =1}
Then,
Zi*(Bg,)" ™ (BE)T) = Y 27" (BE,)" 2 (BE,)):
Iex
Thus, it is sufficient to show that there is a constant C’ such that

deg(Li=¢. H.V) <k, ’pd
g( n n ) < Sth

eff 1 \n PI 1\
# {V € Zy" ((Pg,)" = (Pr,)") deg(L1=4-1 a1y < py

for all h > 1. Re-ordering the coordinate of (]P’%q)"7 we may assume that I = [l].
We denote pr by p. Let ay, : (P%q)" — (P]%-q)"_l and b, : (P%q)" — (IE"]%-q)l‘|r1 be mor-

phisms given by a, = pj,—1] and b, = pyugnys i-e., an(21,. .., 20) = (21, .., Tp_1)
and b, (z1,...,2,) = (x1,...,21,%,). Then,
a:L(Ln—l) ®p2(0(1)) = Lin

L
by (Lip1) @ @i p(O(1) = Ly,
:L(anl) =H,
b (Hyy1) = H,

(3.1.1.1)

S

Here, for n > [+ 1, we set
T, ={V € Z"((PL,)" 5 (Pp,)") | deg(L; - H,'- V) < k}.

Let hy, : T, — R be a map given by h, (V) = deg(L!=*1 . H;4=1 . V). Then,
by (3.1.1.1), we have maps «a, : T, — Tn—1 and G, : T,, — T;41 given by
an(V) = (an)«(V) and B, (V) = (by)«(V). Moreover, hy,—1(an(V)) < h,(V) and
his1(Bn(V)) < hyp(V) for all V € T,,. As in Lemma 2.1.3, we denote by 6(V) the
number of irreducible components of a cycle V. Then, for V' € T, it is easy to see
that (V') < k. Further,

P (H) = H, and p'(L)® Q) pi(OQ)) = L.
1=l+1
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Thus, by Lemma 2.1.3, for D € T,,_; and E € T}y,
log, #{V € T, | an(V) = D, B (V) = E}
k\/deg(L'Tf:(fH H*' - D)deg(L ™ - Hi{1' - E)
< .

+1 +1
deg (Lil7d+1 . Hl-dfl)

Thus, if we set A(z,y) = ¢*V*¥, then
#{V €T, | an(v) = D,ﬁn(V) = E} < A(hn—l(D)ahl+1(E))-

Here let us estimate #{D € Tj4;1 | hy4+1(D) < h}. In this case, D is a divisor on
(]P’Ilpq)l“. Thus,

deg(Lil+_1d : Hli1 D) = d\(l — d)!/(degy 1 (D) + -+ deg; 1 1(D))
and
deg(L - H4T - D) = (d— 1)!(1 — d + 1)!(deg, (D) + - - + deg 1 (D)).
Therefore, deg;(D) < h for 1 =1,...d and deg;(D) < k for j =d+1,...,1+ 1.
Hence, by Proposition 2.1.2, if we set B(h) = qcl'hd for some constant C, then
#{D € Tiy1 | it1(D) < h} < B(h)
for h > 1.

Gathering the above observations, we can see that {7, }72,; ; is a counting sys-
tem. Thus, by Lemma 1.2.1,

#{V cT, | hn(V) < h} < B(h)nflA(h’h)nflfl < q(nfl)Cyhdij(nflfl)h.

for h > 1. Hence, we get our proposition. O

3.2. Northcott’s type theorem in the geometric case. In this subsection, we
prove the main theorem of this section. First, let us recall our situation.

Let B be a d-dimensional projective variety over F,. We assume that d > 1. Let
H be a nef and big line bundle on B. Let X be a projective variety over F, and
f + X — B a surjective morphism over ;. Let L be a nef line bundle on X. In the
following, the subscript n of an object on X means its restriction on the generic
fiber of f: X — B.

Theorem 3.2.1. If L, is ample, then, for a fived k, there is a constant C such
that

off deg(L;\=*-V,) <k, C-hd
# {V € Zl (X/B) deg(L~l—d+l . f*(H)d—l . V) S h S q
for all h > 1.

Proof. In this proof, we consider the estimate of the number of cycles in the

following cases:

(A) X, B, f: X — B, L and H are given as follows: B = (P%q)d and X =
(]P’%q)d X (IP’}Fq)e = (IP’]}q)d+e. Let p; : B — }P’]%q be the projection to the
i-th factor. Similarly, let ¢; : X — P]%-q be the projection to the j-th
factor. f : X — B is given the natural projection g1 X --- X gq, namely,
f(@1,.. . Tate) = (z1,...,24). Moreover, H = pi(O(1)) ® --- @ p5(O(1))
and L = q3,,(0(1)) ® -+ ® g3, (0O(1)).
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(B) B and H are arbitrary. X = B x (Py )% f : X — B is given by the
projection to the first factor and L = ¢*(O(1,...,1)). Here ¢ : X — (IE”]%Tq)e

is the natural projection.
(C) B and H are arbitrary. X = B X Pg,. f + X — B is given the natural

projection and L = ¢*(O(1)). Here ¢ : X — IPg, is the natural projection.
(D) X, B, f: X — B, L and H are arbitrary.

Let us start the estimate of the number of cycles in each case.

Step 1: First let us consider the case (A). We set L= ®f;e ¢ (O(1)) Then,
since L =L ® f*(H), we can see

deg(L'=" - f*(H)™ - V) = deg(L'~" - f*(H)" - V) = dides(Li =" - V)
and
deg(L' - fr(H) 1 V)
= deg(L . f(HY 1 V) + (I — d+ 1) deg(L=%- f*(H) - V).
Thus, in this case, our assertion of the theorem follows from Proposition 3.1.1.

Step 2: Next let us consider the case (B). By virtue of Noether’s normalization
theorem, there is a dominant rational map B --» (]P’]%q)d. Let the following diagram

B/
B (Pg,)*

be the graph of the rational map B --» (]P’Ilpq)d. Here we set X' = B’ x (]P’Ilgq)e,
B” = (P, )" and X" = (P} )? x (PL )" Let f': X' — B, ¢ : X' — (B} )",
f"e X" — (Pg )%, and ¢” : X" — (Py )° be the natural projections. Moreover, we
set L' =¢*(O(1,...,1)) and L” = ¢"*(O(1,...,1)).

Let o : Zf(X/B) — Zf™(X'/B’) be a homomorphism given by the strict trans-
form in terms of v x id : X’ — X. Further, let 8 : Z¢%(X'/B’) — Z (X" /B") be
the homomorphism given by the push forward (v' x id). of cycles. Since H is nef
and big, there is a positive integer a such that

HY(B',v*(H)®* @ " (O(~1,...,—1))) #0.
Then, by Sublemma 2.2.3,
a®tdeg(L'M . fr(H) T V)
= a® ! deg((v x id)" (L)'~ <u><1d> (f*(H)) =t a(V))
= deg(L"" £ (v (H)B) T (V)
> deg(L" T (0@, 1) (V)
= deg(L"" "1 (0(1, >>d L Ba(V))).
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Moreover,
d— d—d+1
deg(Lnl . Vi) = deg(L/n, " ~a(V)y)
d—d+1
= deg(L",, + B(a(V))yr),

where the subscripts ” and 1"/ means the restrictions of objects to the generic fibers
f" and f" respectively.
For a fixed V" € Z(X"/B"), we claim that

log, #{V" € ZiMX' /B | B(V) =V"} < deg(v')deg(L”ﬁYT,dJr1 V).

,,7//
Let Bj be the maximal Zariski open set of B” such that v/ is finite over Bj. We
set B = Z//_I(B(/)/). Then, the natural homomorphisms

ZiM(X'/B') — Z;"(Xg/Bg) and  ZP(X"/B") — Z{"(X{/ By)
are bijective, where X, = B], x (P]%q)e and X = Bj x (}P’}Fq)e. Thus, by virtue of
Lemma 1.3.2, if we set V" =" a;W;, then
log, #{V' € Z™(X'/B') | (V') = V"} < deg(v Zal

On the other hand,
Zai < Zai deg(L”i,T,d+1 Wign) = deg(L"l . )

Therefore, we get our claim.
Hence, by the above observations and Step 1, we have our case.
Step 3: Let us consider the case (C). We prove our theorem in this case by

induction on e. If e = [ — d, then our assertion is obvious. Thus we assume that
e > | — d. Let the following diagram

/\

1 e
P]Fq
be the graph of the rational map P --» (IP>1 )¢ given by

(Xo:-:Xe) — (XO X1) x o x (X Xe).
Then, as in Lemma 2.2.2, there is an effective Cartier divisor E on Y such that
w(E) C {Xo =0} and p*(O(e)) = v*(O(1,...,1)) @ Oy (E). Here we set X' = B x
(]P’Iqu)e and L' = ¢'*(O(1,...,1)), where ¢ : X — (}P’]}Tq)e is the natural projection.
Moreover, f': X’ — B is given by the natural projection. Then, for
Ve ZT(X; X\ B x {Xo = 0)),
by Sublemma 2.2.3,
el deg(LdHL . pr(H Y41 y)

— deg(( x id)" (L&) =01 (u x id)* f* (H) 41 - V)

> deg((v x id)" (L)'= - (v x id)* " () 4= V)

= deg(L" T fU(H) T (v xid) (V)

)
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where V' is the strict transform of V' by u x id. Further,
el=d deg(th*d Vi) = deg((p x id)*(L®e)'nl,7d Vo)
> deg((v x id)* (L)L - V)
=deg(L') " (v x i) (V)y),

where 1’ and 1" means the restriction of objects on X’ and B X Y to the generic
fibers X’ — B and B x Y — B respectively. Here B x {Xg = 0} ~ B x ]P’[?;l.
Thus, by hypothesis of induction and Step 2, we have our case.

Step 4: Finally we consider the case (D) (general case). Clearly we may assume
that L, is very ample. Thus, there are a positive integer e and a subvariety X’ of
B x ]P’ﬁq with the following properties:

(1) Let f': X" — B (resp. ¢: X' — PP§,) be the projection to the first factor
(resp. the second factor). There is a non-empty Zariski open set By of
B such that f~1(B,) is isomorphic to f~"(By) over By. We denote this
isomorphism by .

(2) If we set L' = ¢*(O(1)), then L,y p ) =" (L’|f,,1(30)).
Let

X//
N
X X'
N
B

be the graph of the rational map induced by ¢. We denote f-u = f'-u’ by f”. By
the property (2),

V(L) @ Wt (L) # 0.
Thus, we can find an ample line bundle A on B such that

HOX", (L@ f*(A) @ " (L'°7) #0.
Let us choose a non-zero element s of
HO (X", (L@ f*(4) @ " (L'7).
Since f”(Supp(div(s)) # B, by Sublemma 2.2.3,
deg((L @ f*(A))'" " f(H) V)
= deg(u" (L ® f*(A)" - pf(H) V)
> deg(p/" (L)'= p" f1(H) V)
= deg(L" T H) T WL (V),
where V' is the strict transform of V' by u. Moreover,
deg((L® f*(A))1=41 . f*(H) 41 . V) =
deg(L1 . po(HY 4LV
+(I—d+1)deg(A- H* ") deg(L, =" V).
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Therefore, by Step 3, we get our theorem. O

3.3. Geometric height functions defined over a finitely generated field
over F,. Here we consider a consequence of Theorem 3.2.1. Let K be a finitely
generated field over F, with d = tr. deg]Fq(K) > 1. Let X be a projective variety
over K and L a line bundle on X. Here we fix a projective variety B and a nef and
big line bundle H on B such that the function field of B is K. We choose a pair
(X, L) with the following properties:

(1) X is a projective variety over F, and there is a morphism f : X — B over
F, such that X is the generic fiber of f.
(2) L is a Q-line bundle on X (i.e., £ € Pic(X) ® Q) such that L], coincides
with L in Pic(X) ® Q.
The pair (X, £) is called a model of (X, L).
For z € X(K), let A, be the closure of the image of Spec(K) — X — X.
Then, the height function of (X, L) with respect to (B, H) and (X, £) is defined by

(B.H) (z) = deg(L- f*(H)T1-A,)
(X,£) [K(z) : K] '

It is not difficult to see that if (X’, L) is another model of (X, L), then there is a
constant C such that

|h(B JH) ) h(B H)

(x.c) (@) = C

for all # € X(K) (cf. [6, the proof of Proposition 3.3.3]). Thus, the height function
is umquely determined modulo bounded functions. In this sense, we denote the class

(BH)( )

of h( pe z:)) modulo bounded functions by A . As a corollary of Theorem 3.2.1,

we have the following.

Corollary 3.3.2. Let hy be a representative of hSLB’H). If L is ample, then, for a
fixed k, there is a constant C' such that

{r e X(K) | h(x) < h,[K(z) : K] < k} < ¢
for all h > 1.

Proof. Since L is ample, we can find a model (X, £) of (X, L) such that L is nef
(cf. Step 4 of Theorem 3.2.1). Thus, our assertion follows from Theorem 3.2.1. O

4. PRELIMINARIES FOR THE ARITHMETIC CASE

In this section, we prepare notation and results for considering cycles in the
arithmetic case. In this case, we use Arakelov intersection theory instead of the
usual geometric intersection theory. §4.1 and §4.2 contain notation in Arakelov
geometry and the proofs of miscellaneous results. In §4.3, we introduce several
kinds of norms of polynomials and compare each norm with another one, which is
useful to count divisors in (P})".
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4.1. Arakelov geometry. Here we fix notation in Arakelov geometry (for details,
see [6]). In this paper, a flat and quasi-projective integral scheme over Z is called an
arithmetic variety. If it is smooth over Q, then it is said to be generically smooth.

Let X be a generically smooth arithmetic variety. A pair (Z,g) is called an
arithmetic cycle of codimension p if Z is a cycle of codimension p and g is a current
of type (p—1,p—1) on X (C). We denote by ZP(X) the st of all arithmetic cycles
on X. We set - R

CH' (X) = Z7(X) /~,

where ~ is the arithmetic linear equivalence.

Let L = (L, ||-]|) be a C°°-hermitian line bundle on X. Then, the homomorphism

a(D)-: CH (X) — CH " (X)
arising from L is define by
a(L) - (Z,9) = (div(s) on Z, [~ log(||s|%)] + e1(L) A g)

where s is a rational section of L[, and [—log(]|s[|%)] is a current given by ¢ —

~ [y og(llsl2)e.
Here we assume that X is projective. Then we can define the arithmetic degree

map
——dim X

deg:CH  (X)—>R
by

. 1
deg (Z npPp, 9) = EP:HP log(#(x(P))) + 5 /X(C)g

P
Thus, if C*°-hermitian line bundles L1, ..., Lgim x are given, then we can get the
number

deg (El(fl) s 'El(fdimx)) )
which is called the arithmetic intersection number of L1,...,Laim x-
Let X be a projective arithmetic variety. Note that X is not necessarily gener-
ically smooth. Let Lq,..., Lgim x be C°°-hermitian line bundles on X. Choose a

birational morphism g : Y — X such that Y is a generically smooth projective
arithmetic variety. Then, we can see that the arithmetic intersection number

deg (21 (1" (T1)) -+ 21 (1" (Laimm x)))

does not depend on the choice of the generic resolution of singularities p: Y — X.
Thus, we denote this number by

deg (@1(L1) -+ & (Laimx)) -

Let f: X — Y be a morphism of projective arithmetic varieties. Let Ly, ..., L,
be C'°°-hermitian line bundles on X, and M,..., My C*°-hermitian line bundles
onY. If r4s = dim X, then the following formula is called the projection formula:

(4.1.1) deg (&(L1) - &(Ly) - (f*(My)) & (£~ (M)
0 if s>dimY
= deg((Ll/)Q~ (Ly)y)deg(ei(My)---c1 (M) if s=dimY and 7 >0
deg(f)deg(ci(Mq)---c1(Msy)) if s=dimY and r =0,
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where the subscript 7 means the restriction of line bundles to the generic fiber of
f:X->Y.

Let Li,...,L; be C*®-hermitian line bundles on a projective arithmetic va-
riety X. Let V be an [-dimensional integral closed subscheme on X. Then,
deg (¢1(L1)---€1(Ly) | V) is defined by

deg @(Tal,) @ (Tal,) -

Note that if V' is lying over a prime p with respect to X — Spec(Z), then
deg (21(Th) - @1(L) | V) = log(p) deg( Luly, -~ Luly)-

Moreover, for an [-dimensional cycle Z = Y. n;V; on X, d/eg (c(Ly)--a(Ly)] 2)
is given by

D nideg (&1(Ln) @ (L) | Vi)

Let f: X — Y be a morphism of projective arithmetic varieties. Let M, ..., M,
be C'*°-hermitian line bundles on Y. Then, as a consequence of (4.1.1), we have

(4.1.2)  deg (&u(f*(M))--- @ (f* (M) | Z) = deg (&1(My) - -- e (My) | £.(2))

for all I-dimensional cycles Z on X.

4.2. The positivity of C°°-hermitian Q-line bundles. Here let us introduce
several kinds of the positivity of a C°>°-hermitian Q-line bundle. Let X be a projec-
tive arithmetic variety and 151\(:(X ) the set of isometric classes of C*°-hermitian line
bundles on X. An element of 151\(:(X ) ® Q is called a C*°-hermitian Q-line bundle.
For a C*°-hermitian Q-line bundle L on X, we consider the following kinds of the
positivity of L. In the following, let d be a positive integer with % e ﬁ:(X )
(Note that the following definitions do not depend on the choice of d).

eample: We say L is ample if L is ample on X, c;(L) is positive form on
X (C), and there is a positive number n such that L®9" is generated by the set
{s € HO(X, L&) | [|s]lsup < 1}

enef: We say L is nef if ¢;(L) is a semipositive form on X (C) and, for all
one-dimensional integral closed subschemes I' of X, deg (a(L)|T) >o0.

ebig: L is said to be big if rky, HO(X, L®%™) = O(m¥™Xe) and there is a non-
zero section s of HO(X, L®9") with ||s|sup < 1 for some positive integer n.

oQ-effective: L is said to be Q-effective if there is a positive integer n and a
non-zero s € H(X, L®") with ||s/|sup < 1.

epseudo-effective: L is said to be pseudo-effective if there are (1) a sequence
{L,}5°, of Q-effective C°°-hermitian Q-line bundles, (2) C°°-hermitian Q-line bun-
dles E1,. .., E, and (3) sequences {a1 ,}2°1,. .., {a,,}5, of rational numbers such
that

I
El (f) = El (Zn) + Z ai,na (El)
i=1
—1 _
in CH (X) ® Q and lim, . a;, = 0 for all ¢, in other words, L is the limit of

Q-effective C*°-hermitian Q-line bundles. If L; ®f;® s pseudo-effective for C'*°-
hermitian Q-line bundles L, L» on X, then we denote this by L, = Lo.
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eof surface type: L is said to be of surface type if there are a morphism
¢ : X — X' of projective arithmetic varieties and a C°°-hermitian Q-line bundle

T’ on X’ such that dim Xg =1 (i.e. X'is a projective arithmetic surface), T’ is
nef and big, and that ¢* (f) =Lin 1;1\(;(X) ® Q.

In the following, we consider three lemmas which will be used later.
Lemma 4.2.3. Let X be a projective arithmetic variety. Then, we have the fol-
lowing.

(1) Let Ly, ..., Laim x, M1, ..., Maim x be nef C>®-hermitian Q-line bundles on
X. IfL;® M;@_l 1s pseudo-effective for every i, then

deg (@1(L1) -+ @ (Laim x)) > deg (@ (M) - - & (Maim x)) -

(2) Let V be an effective cycle of dimension | and let Ly,..., Ly, My,..., M,
be nef C°°-hermitian Q-line bundles on X such that, for each i, there is
a non-zero global section s; € HO(X,L; ® M®™Y) with ||s;|jsup < 1. Let
V = Zj a;V; be the irreducible decomposition as a cycle. If 5i|vj # 0 for
all i,7, then

deg (@ (T1)---a1(T) |V) > deg (& (3L) --- & (3}) | V') .

Proof. (1) This lemma follows from [6, Proposition 2.3] and the following for-
mula:

deg (¢1(L1) &1 (Laim x)) = deg (61(M1) - @1 (Maimm x)) +
dim X

—_— o — = —®—-1. . = =
Z deg (CI(MI) a(Mizr) el ® M;@ ) Cu(Lig1) - Cl(LdimX)) .
i=1
(2) This is a consequence of (1). O

Next let us consider the following technical formula.

Lemma 4.2.4. Let X be a projective arithmetic variety and d an integer with 1 <
d < dimX. Let Xy,...,Xq be projective arithmetic surfaces (i.e. 2-dimensional
projective arithmetic varieties) and ¢; : X — X; (i = 1,...,d) surjective mor-
phisms. Let Ly, ...,Lq be C*®-hermitian Q-line bundles on X1, ..., X4 respectively
with deg((Li)g) > 0 (i = 1,...,d), and let Hyy1,..., Hamx be C°°-hermitian
Q-line bundles on X. We set H; = ¢7(L;) (i=1,...,d) and H = ®§l=1 H;. Then,

deg (@H) e (Hagr) - & (Haim x))
= dideg (& (F11) -+ @1 (Ha) - @ (Has) -+ & (Haim x))

Jl deg (€1(L;)?) deg (Hliﬁd(m)@ (Ha+1)g (Hdimx)@)

2 deg((L:)) |

where the subscript Q means the restriction to the generic fiber X of X — Spec(Z).
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Proof. First of all,

deg (€1(H) - &1 (Har) -+ &1 (Haim x))

d—— = ~ ~ ~
= E ————deg (G1(H1)™ - &1 (Ha) " - &1 (Hg41) -+ C1(Haim x)) -
a1! ce ad!
a1+-+ag=d
0120, .00 >0

Claim 4.2.4.1. If (a1,...,aq) # (1,...,1) and
—_— d JR— — J—
deg (H&(Hl)'al ~e1(Hagr) - ’51(Hdimx)> # 0,
1=1
then there are i,j € {1,...,d} such that a; =2, a; =0 and a; =1 for all L # 4, j.

Clearly, a; < 2 for all [. Thus, there is ¢ with a; = 2. Suppose that a; = 2 for
some j # i. Then,

d
deg (H&(Hz)’“‘ 1 (Hagr) - 'El(HdimX)>

d
=deg | @(e}(T)* @@} I a@y™ -51(Hd+1)---51(HdimX)) :

I=1,l#1i,5

Thus, using the projection formula with respect to ¢;,

d
deg | 21(¢7 (L) - @ (@(Ly))* - T[] @E@)™ -e(Ha)- e (Haim x)
I=1,1i.

1=1,l#1,5

d
= deg(@ (L) *)deg | 6Ly - T (HOyt - (Hara)y, - (Haim x)y )
(X;)

where 7; means the restriction of line bundles to the generic fiber of ¢;. Here
is projective curve. Thus, we can see

J

d
deg ; H Hd+1) . (HdimX)n,; = 0
1=1,l#1,j

This is a contradiction. Hence, we get our claim.

By the above claim, it is sufficient to see that

d
deg | a(or(@))2 ] @ ) &(Harr) & (Haimx)

1=1,1%i,j
deg (&1 (L)) deg (leéid(Hl)@ (Hasr)g - (Hdimxm)
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By the (arithmetic) projection formula with respect to ¢;,

d
deg | 1(¢}(Ls))? ¢i(Hy) - &1(Hayr) - ¢ (Hdim x)
I=1,0%i,j

= deg (¢1(L:)?) deg | [ (Hou, - (Has1)n, - (Haim X,

l#i,j
1<1<d

Moreover, using the (geometric) projection formula with respect to ¢; again,

deg | T (Ha- (Has)e - (Haim x)o

I#)
1<1<d
= deg((Li)g)deg [ [] (Hi)n - (Hag1)n, -+ (Haim x),
I#i,j
1<i<d
Thus, we get our lemma. O

Finally let us consider the following technical lemma.

Lemma 4.2.5. Let ¢ : P} --» (P})™ be the birational map given by

(X() : an)l—>(XOX1) X X (Xoxn)
Let ¥ be the boundary of Py, that is, ¥ = {Xo = 0}. Let B be a projective
arithmetic variety and Hy, ..., Hq nef C*-hermitian line bundles on B, where

d = dim Bg. Let ZF% (P2 x B; (P4 \ X) x B) be the set of effective cycles generated
by l-dimensional integral closed subschemes T with T N ((PE\X) x B) # 0 (cf.
(1.1.2)). For V € Z1(PE x B; (P2 \ X) x B), we denote by V' the strict transform
of V by ¢ x id : PI x B --» (PL)" x B. Let us fix a non-negative real number \.
Then,

nl=tdeg (2(p" (@ (1)) -1 (q* () -+ @ (a" (Ha) | V)

FS*(L LoD ( ) e (Hy)) | V’)

for all V € ZEE (P2 x B; (PE\X) x B), where p : P2 x B — P2 and p’ : (P})" x B —
(PL)" (resp. ¢ : P} x B — B and ¢' : (P})" x B — B) are the projections to the
first factor (the second factor). Note that in the case d = 0, we do not use the nef
C -hermitian line bundles Hy, ..., Hg.

Proof. LetY (C P% x (P})™) be the graph of the rational map ¢ : P2 --» (P1)".
Let p: Y — P2 and v: Y — (PL)" be the morphisms induced by the projections.
Here we claim the following:

> deg (a1(p" (O

Claim 4.2.5.1. There are an effective Cartier divisor E on'Y, a non-zero section
s € H(Y,Oy(E)) and a C*®-metric || - ||g of Oy (E) such that
(1) div(s) = E, u(E) C %,

—FS\

(2) w(O

(1) = * (0 (1,...,1)) @ (Oy(E), | - |), and that
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(3) |Islle(x) <1 for all x € Y(C).

Let Y; (C P2 x P}) be the graph of the rational map P% --+ P} given by
(Xo:- X)) — (Xo: Xy).

Let p; : Y; — P2 and v; : Y; — PL be the morphisms induced by the projections
P2 x PL — P2 and P} x PL — Pl respectively. Let m; : (PL)" — PL be the
projection to the i-th factor. Moreover, let h; : Y — Y; be the morphism induced
by id xm; : P4 x (P},)™ — Py xP}. Consequently, we have the following commutative
diagram:

Note that Y; is the blowing-up by the ideal sheaf I; generated by Xy and Xj;.
Thus there is an effective Cartier divisor F; on Y; with I;Oy, = Oy,(—E;) and
1 (Opn (1)) ® Oy, (—E;) = v} (Op1(1)). Let s; be the canonical section of Oy, (E;).
We choose C*°-metric || - ||; of Oy, (F;) with
i (Opn (1), [ - lpsy) = vi (Opr (1), [| - lesy) @ (O, (Ei), | - o)
Let (Tp : T1) be a coordinate of PL. Then, u}(Xo) = v} (Ty) ® s;. Thus,
exp(=A)|Xo| _ exp(=A)|To|
VIXoP+ -+ X2 VLGP +T

|2||Sz'||i»

which implies
VIXo? + | X5
VIXoP 4+ [ X
because XoT7 = X;Ty. Therefore, ||s;]:(xz;) < 1 for all z; € Y;(C). We set E =
S hI(E;) and give a C*°-metric || - ||z to Oy (E) with

i=1""%

sill: =

Oy (E), |- II5) = @) hi (O, (Ei). || - ).
=1

Thus, if we set s = hi(s1) ® -+ ® hl(sn), then s € HO(Y, Oy (E)), div(s) = E and
Isllg(z) <1 for all z € Y(C). Moreover, we have

p(O (1) = (0 (1, 1) @ (Oy (B), || - |1g).

Hence we get our claim.

For V € Zf (P2 x B;(PE \ ¥) x B), let V" be the strict transform of V by
uxid: Y xB - P2 xB. Let p” : Y xB — Y and ¢" : Y x B — B be the
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projections to the first factor and the second factors respectively. Then, by using
the projection formula,

3oz (810" (0" (u))) g () - -3ila" (Fa) | V)

= deg (&1(p"" (@ ()~ @alq" (Hy)) - a(g" (Ha) | V")

Moreover, by virtue of (2) of Lemma 4.2.3,

deg (&1(p"" (u" (@ ()"~ -2a(q" (H1)) - E1(q”" (Ha)) | V")
-~FSx

> dog (21" (0" @ (1, ) Ealg” () B0 () | V")

Thus, using the projection formula for v x id : Y x B — (P%)™ x B, we get our
lemma because (v x id), (V") = V". O

4.3. Comparisons of norms of polynomials. In this subsection, we introduce
several kinds of norms of polynomials and compare each norm with another one.

Let S, = Cl[z1,...,2,] be the ring of n-variable polynomials over C. We define
norms |f|e and |f|z of f = Zil i aihm,inzil <o zin € S, as follows:

> lai

i1,enyin

.....

|floo = max {[a;,,. 4.} and [fla=
115-50n

Moreover, the degree of f with respect to the variable z; is denoted by deg,(f).
First of all, we have obvious inequalities:

(4.3.1) [floo < |fl2 < V/(degy () + 1) -+~ (deg, (f) + 1) floo-
We set

Sldiedn) — (£ G | deg;(f) <d; (Vi=1,...,n)}.
Note that
(4.3.2) dime S{dn) = (dy 4 1) --- (d, + 1).

For f1,..., fi € S,, we set

433) ol s =ex ([ tog (maxllA) or ncee )
Ccn 1
where w;’s are the (1, 1)-forms on C" given by

vV 71d2’1 A dZi
Wi = — 55 -
2m(1 + |z%)?

Let us begin with the following proposition.

Proposition 4.3.4. For f1,...,f; € S,(ldl""’d"), we have the following.
(1) max;{|filoo} < 20FFu(fr . fr).
(@) o(fr, o f) < V2T ORR - ()
Proof. (1) Since

m?x{/(cn log (| fi]) w1 /\~--/\wn} < /Cn log (mlax{|fz|}> Wi A A wp,

(1) is a consequence of [6, Lemma 4.1].
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For the proof of (2), we set
Dy={2€C|0<|z|]<1} and Dy ={z€C|1<]|z|}.

Then,

/ log (max{|fi\}) w1 A Awn
Cn g
= / log (max{|fz|}) Wi A Awp.
(517 >5rt)€{0 1}72 D- 1% Den
For € = (€1,...,€,) € {0,1}", let us consider a holomorphic map
@e:Dgx - xDyg —=De x--- xDe,
given by @e(z1,...,2n) = (24, 24)), where ¢ : {O, 1} — {—1,1} is a map
given by ¢(0) =1 and (1) = —1. Then since @i (w1 A+ Awp) =wi A+ Awp,

/ log (max{|fi|}) Wi A Awy,
De, X+ XDep ?

= / log (max{|fi(zi(€1), . .,z;(e"))|}) Wi A Awy.
Dr K3

0

(d17 ) n)

Here we can find f; . € Sh such that
. L(El) L(gn) _ fi,e(zlv .. 7Zn)
fl(zl ,.,.,Zn )7 Z;ldl"'z'rindn
and | fil2 = | fi,e|l2. Note that
log(2
| tozon n -, = 252
o

for all 4. Therefore,

/ tog (Jma{1fil} ) wn A -+ Ay
De, X+ xD g

XDen

:/ log (max{\fi,e|}) wl/\~-~/\wn—Zeidi/ log(|zi|)wi A -+ Awp
Dy v Dy

— / log (max{|fi,€|}) Wi A Awpy + log(2) z": €:d;.
61, 1

O
Thus, we have
/ log (max{|fi\}) w1 A Awpy
Cn
= > / log max{|f”|}) Wi A Awy +log(V2)(dy + -+ dy).

ec{0,1}n
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Hence, by the lemma below (Lemma 4.3.5), we can conclude
/ log (max{|fi|})w1/\~-/\wn
cr i

1 112)2 + - -- 2)2
- Z Og(\/(|f)2‘: +(|fl|))+10g(\/§)(d1+---+dn)

e€{0,1}n

= log (VA7 -+ (fil2)%) +log(V2)(ds + -+ +dy,).

Lemma 4.3.5. For all f1,..., fi € Sy,

€xp (/Dg log (mftxﬂfi\}) (2wi) A+ A (an)> < V(A2 + -+ (fi]2)2

Proof. Let us begin with the following sublemma:

Sublemma 4.3.6. Let M be a differential manifold and 0 a volume form on M
with [,, @ =1. Let ¢ : R — R be a C*°-function with ¢" > 0. Letu be a real valued
function on M. If u and @(u) are integrable on M, then ¢ ([, uQ) < [,, ¢(w)Q.

Proof. Weset ¢c= [ €2, Since the second derivative of ¢ is non-negative, we
can see

(z = c)¢'(c) < p(x) — (c)
for all x € R. Therefore, we get

| w-ap@as< [ (-l

M
On the other hand, the left hand side of the above inequality is zero, and the right
hand side is [}, ¢(u)Q — ¢(c). Thus, we have our desired inequality. O

Let us go back to the proof of Lemma 4.3.5. Applying the above lemma to the
case p = exp,

exp </]D)" log (m;ax{|fi|2}) (2w1) A+ A (2wn)>
< /D max {|f1|2} (2w1) A -+ A (2wy)
i
< [ STIRE@) A (200)
o i
We set f; = Zel,m’en a(eil)w,enzfl -+ z&n for all 4. Then
S [ 1) A A (20n) =

D ai?,.u,enai?,...,e/ /Dnzflzaell~'~Z$;"z;f'”(2w1)A"'/\(an)-
0]

n
i €1,---,€n,
’ ’
€15:€n
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It is easy to see that
/ zflz_lell 22 (2w1) A A (2wy) = 0
DG

if (e1,...,en) # (€1,...,€.,). Moreover,

/ |21]% - |22 (2w1) A -+ A (2wy) = (/ |z12512w1) (/ |zn|26"2wn) }
D, Do Do

n
0

Thus, it is sufficient to see that
2|2 vV—1ldz NdZz <1
n, (1 +]2?)?
for all e > 0. We set z = rexp(2my/—160), then

V—1Idz A dz /1 42t _/1 2t
o ( o (t

|Z|2e N2 22 M= 2
Do m(1+2]?) 1+72) +1)

If e = 0, then the above integral is 1. Further if e > 1, then
1 1
2t¢ 2
/ ——dt < / 2tedt = <1
o (t+1)2 0 e+1

Next let us consider the following proposition, which tells us the behavior of the
norm | - | by the product of two polynomials.

dt

O

Proposition 4.3.7. For f,g € Clz1,...,2,],

n

£+ gloo < [Floo - 19loo - [ J(1 + min{deg; (f), deg,(9)})-
Proof. For I € (Z>o)"™, the i-th entry of I is denoted by I(i). A partial order
‘<’ on (Z>o)™ is defined as follows:

I<J & 1@ <J@) foralli=1,....n

SO (Y

Moreover, for I € Z%,, the monomial z{ is denoted by z!.

Let us fix two non-zero polynomials
f= Z arz! and ¢= Z bzt
I€(Zxo0)™ I€(Zzo)™

We set I = (degy(f), - -, deg,(f)), 12 = (degy(g), - .-, deg, (9)) and
d= H(l + min{deg,(f), deg;(9)}).

First, we note that, for a fixed I € Z%,
#{(J,J) € Z5g X 23y | J+J =1, J<Iand J < I} <d.
On the other hand,

f-9= Z Z ayby 2.

1 J+J'=I
J<IL,J'<Iy
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Thus,

|f -9l SmIaX Z lasby| Smlax Z [floolglos ¢ < dlfloclgloc
J+J =1 J4T =1

J<I,J' <y J<I,J' <1y
O

For f € Clz1,..., zy], we denote by lc;(f) the coefficient of the highest terms of
f as a polynomial of z;, that is, if we set

f=anzl'+--4+ap (a; €Clz1,...,2i—1,Zit1s- - 2n), an £ 0),
then lc;(f) = an. Note that lc;(0) = 0 and
le; : Clza, ..oy 2n] = Clza, .o oy Zic1, Zigk 1y - - -y 20
For an element o of the n-th symmetric group &,,, we set

lca'(f) = lca(n) ©--+0 lca(l)(f)'
Then we have the following proposition, which gives a lower bound of v(f).

Proposition 4.3.8. For a non-zero f € Clzy,...,2,],

[ tow(17a A+ A = max log(1ea ().

n

In particular, if f € Z|z1, ..., 2], then

/ log(|fw1 A -+ Awy > 0.

Proof. Changing the order of variables, it is sufficient to see that

/n log(|f)w1 A -+ Awy >log(|1le, 00+ 0ley (f)])-

We prove this by induction on n. First we assume n = 1. Then, for f = a(z —
a)--(z—a),

l
1
[ Tos(1 s = tog ol + 5 31081+ ) > log]al.

i=1

Next we consider a general n. By the hypothesis of induction, we can see that

/ log(|fDwi A+ Awp—1 > log|le,—q1 0ol (f)]
(Cnfl

as a function with respect to z,. Thus,

/ log(\f|)w1/\-~-/\wn2/log|1cn,1o-~-olc1(f)|wnZlog|lcno---olc1(f)|.
cn o

O
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5. COUNTING CYCLES IN THE ARITHMETIC CASE

In this section, we consider an arithmetic analogue of §2. Actually, we prove the

following:

Let X be a projective arithmetic variety and H an ample C*-

hermitian line bundle on X. Then, there is a . constant C such that

the number of I-dimensional cycles V with deg(¢,(H)|V) < h is

less than or equal to exp(C - h'*1) for all h > 1.
A scheme for the proof of the above theorem is similar to the geometric case (cf.
§2). However, some parts are much harder than the geometric case. Especially,
upper and lower estimates of the number of divisors on (P})" are difficult, so that
we treat them in the separate subsection §5.1. This upper estimate gives rise to
the initial step of a counting system for cycles on (P5)™. Once we get this, we can
obtain the upper estimate of cycles on (P1)" similarly, which is treated in §5.2.
As in §2.2, the results on (PL)™ can be generalized to estimates on an arbitrary
arithmetic variety, which is considered in §5.3 and §5.4.

5.1. Counting arithmetic divisors. Here let us consider several problems con-
cerning the number of arithmetic divisors with bounded arithmetic degree. Let us
begin with the following proposition.

Proposition 5.1.1. Let us fix a positive real number X\, a subset I of {1,...,n}
and a function o : I — Z>q. For a divisor D on (PL)", we set
— _, . AFS ~ « ~FS
IN(D) = deg(1(p1(O (1))@ (pr (O (1) | D),

where p; : (]P’%)” — P} is the projection to the i-th factor. Then, there is a constant
C(A\, @) depending only on X\ and « : I — Z such that

#{D € ZZ((P})"™) | 6x(D) < h and deg;(D) < a(i) for all i € I}

< exp (C()\, a) - h"+1_#(1)>

for h > 1. (Note that in the case where I = (), no condition on deg, (D), ...,deg, (D)
is posed.)

Proof. Fix a basis {X;,Y;} of H(PL, O(1)) of the i-th factor of (]P’%)n. We de-
note by Z[X1,Y1, ..., X,,, ¥, ](k1--kn) the set of homogeneous polynomials of multi-
degree (k1,...,ky). Then,

H° ((P%)"@p:(c’)(ki))) = Z[X1, Y1, ... Xy, V] Rk,
=1

Let D be an effective divisor on (P})" with deg;(D) = k; (i =1,...,n). Then there
is

P € Z[X1,Y1,..., Xy, Yy ]Frkn)\ {0}
with div(P) = D. Let us evaluate

deg (51@1‘(0“*(1») RO ) @ <®p:(0“°<ki>>>>

=1
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. == (=FS, 2
in terms of P. Since deg | ¢; (O]P% (1)) =1/2, we can see

(0 1/2) (k1 4+ k) = 62(D) —/ log |[P||syn A -+ A wn,
(]P’(l;)n

—FS

where w; = pf(c1 (O ~(1))) i =1,...,n). Weset p(z1,...,z,) = P(z1,1,...
Then,
|

P = .

H ||FSo (1 _i_x%)kl/g . (1 +$%)k”/2
Note that

/ log ((1 + x%)kl/Q .. (1 + xi)kn/Q) WA Awy, = Z .
()™ o 2
Thus,
(5.1.1.1) / log [plwr A -+  Awy = 6A(D) = Ak1 + -+ - + kn).
EL"

On the other hand, by Proposition 4.3.4,

log |Ploc = 10g [plos < l0g(2)(deg (p) + - -+ deg, (p)) + / log [plus A+ -

@)

s10g<2>(k1+~-~+kn>+/
(PL)"

where | P|y is the maximal of the absolute values of coefficients of P. Thus,

(5.1.1.2) log |Ploc < 02(D) + (k1 + -+ + ky)(log2 — N).

71:”7 1)'

AN

log [plwi A -+ Awp,

We assume that (D) < h. Then, since it follows from Proposition 4.3.8 that

/ log [plwr A -+ Awy >0,
(B

(5.1.1.1) implies
(5.1.1.3) ki+--+ky <h/A
Moreover, using (5.1.1.2), if A <log2, then

log |Ploc < h+ (k1 +---+ky,)(log2—X) <h+ ;(log2—/\) 5

Thus, if we set

exp(hlog2/X) if 0 < A <log2
g(h,A)z{ (hios2/)

exp(h) if A >log2,
then
(5.1.1.4) |P|oo < g(h, N).
Therefore,

H#{P € Z[X1,Y1,..., X, Yy ] Frokn) \ {0} | 65 (div(P)) < h}

_ hlog?2

< (2g(h, A) + 1) D ot D)
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Hence if we set
No(h) = #{D € Z:T((PL)") | 6x(D) < h and deg;(D) < (i) for all i € I},
then we can see

Nah)y< 3" (29(h,A) + 1)ttt D)

Kyt thop <h/A
ki<a(i)(Viel)

< (h/A+1)i=#D) <H(a(i) + 1)) (2g(h, A) + 1) BT O e (a1
iel

Note that in the case where I = (), the number [ ], ;(a(i)+1) in the above inequality

is treated as 1. Thus, we get our lemma. O

Next we consider a lower estimate of the number of divisors, which is not easy
because no member of a linear system has the same arithmetic degree.

Proposition 5.1.2. Let us fiz a positive real number \. For a divisor D on (P})™,
we set

— __, . =FS ~ , % AFS
A(D) = deg(&1(p1(O (1))@ (p (O (1) | D),
where p; : (P5)™ — PL is the projection to the i-th factor. Let x1,..., x5 be closed

points of (P1)™. Then, we have

log #{D € Div?((P})") | 6x(D) < h and z; ¢ Supp(D) for all 7} =0

lim sup s

h—o0

Moreover, if n > 1, then

log #{D € Divi (PL)") | 6x(D) < h and z; & Supp(D) for all i} 50
thrl 9

lim sup
h—o0

where DiviT (PL)") is the set of all effective divisors on (PL)" generated by prime
divisors flat over Z.

Proof. Let us fix a coordinate {X;,Y;} of the i-th factor of (P})". Then, note
that

n

b & ((Pé)"’®pﬁ(0(ki))> =Z[X1,Y1,. .., Xp, Yol
k1>0,....kn >0 i=1

We set | = 4T, #(k(x;)). Then, | =0 in s(x;) for all 7. Since H = @, p; (O(1))

is ample, there is a positive integer ko with H*((PL)", H®* @m,, @ --®@m,, ) =0,

where m,, is the maximal ideal at x;. Thus, the homomorphism

HO((BL), Bo) — @) O & (e
i=1

is surjective. Hence, there is Py € HO((PL)", H®*) with Py(x;) # 0 for all i.
Clearly, we may assume that P is primitive as a polynomial in Z[ X1, Y7, ..., X,,, Y,

For m > 1 and Q € HO((P})", H®™ ), we set a,,(Q) = P* +1Q. Note that
am(Q)(x;) # 0 for all i. Thus, we get a map

G HO(PL)™, HZ™k0) - {D € Div™ ((PL)") | z; & Supp(D) for all i}

given by ¢,,(Q) = div(a,,(Q)). Here we claim that ¢,, is injective. Indeed, if
Odm(Q) = om(Q'), then apn(Q) = an(Q’) or an(Q) = —an(Q’). Clearly, if
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am(Q) = an(Q’), then Q = @', so that we assume @, (Q) = —;,(Q’). Then
P = 2], #(x(2:))(Q + Q). Since Py is primitive, so is Pg*. This is a contra-
diction.

We set d = (1 + ko)™. Let us choose a positive number ¢ with

¢ > max {log(2d| Py|oo ), (A + 1)kon} .

Claim 5.1.2.1. If|Q|o < %

We set pg = Py(x1,1,...,2,,1) and ¢ = Q(x1,1,...,2,,1). Then
am(@Q) (1,1, ..., wp, 1) = pg' +1g.
By (5.1.1.1) in the proof of Proposition 5.1.1,

, then 0x(dm(Q)) < 2cm.

Ir(dm(Q)) = Akgmn —|—/ ) log [pg" + lglwi A -+ A wy,.
(F)"

C

Thus, using (2) of Proposition 4.3.4 and (4.3.1),

nlog(1l 4 kom m
% +10g |p0 +lQ|<x>

k
I (Pm(Q)) < Megmn + % log 2 +
< (A + 1)konm + log [pg" + 1q|oo-
On the other hand, using Lemma 4.3.7 and exp(c) > 2d|po|co,

exp(cm)

exp(cm)  exp(em)
- 2m 2
Therefore, since ¢ > (A + 1)kon, we have

< exp(cem).

oA (@) < (A4 Dkonm + em < em + em = 2cm.

Let us go back to the proof of our proposition. Since H° ((P%)", R p; (O(kom))
is a free abelian group of rank (1 + kom)™,

4 {Q € H° ((P%)"7®pf(0(k(>m))> ’|Q°° eXPZ(ZM)}
i=1

(14+kom)™
- (12 emtem)

IN

21

(1+kom)™
= (e [5))

- exp(cm) (1+k0m)".
- 21

Therefore, by the above claim,
log #{D € Div*T((P})") | 6x(D) < 2em and z; & Supp(D) for all i}
> (14 kom)™(em — log(20)).

Thus, we get the first assertion.
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From now, we assume n > 0. We denote by D(h) (resp. Dhor(h)) the set
{D e Div*T((PL)") | 6x(D) < h and z; & Supp(D) for all i}
(resp. {D e DiviT (PL)") | 0x(D) < h and z; & Supp(D) for all z}) .

For D € D(h), let D = Dy + Dyer be the unique decomposition such that Dyer
is horizontal over Z and Dy, is vertical over Z. Note that dx(D) = dx(Dnor) +
Ix(Dyer); Ox(Dhor) = 0 and dy(Dyer) = 0. Thus, 0x(Dhor) < h and dx(Dyer) < h.
Therefore, we have a map
ﬂh . D(h) — Dhor(h)

given by Oy (D) = Dyo,. Since 8,(D) = D for D € Dy, (h), By is surjective. Here
let us consider a fiber 3, ' (D) for D € Dyor(h). First of all, an element D’ € 3, (D)
has a form

D'=D+div(n) (neZ\{0}).
Since 6, (div(n)) = log |n| < h, we can see that #/3; ' (D) < exp(h). Thus,

#D(h) = > #8,' (D)< D exp(h) = exp(h) - #Dnox (h).

De&Dhor(h) DeDyor(h)
Hence, we get
. IOg #Dhor(h)
lllirisotip — > 0.

O

Remark 5.1.3. In Proposition 5.1.2, we set T = R, i (@FSA

i1 D (1)). Then, using
Lemma 4.2.4, we can see

(Te;gﬁA(D) =n! ((5,\(D) + ! _24)\ Zdegi(D)> :

Moreover, using Lemma 4.3.8 and (5.1.1.1),

AY " degy(D) < 6x(D).

Thus,
— (8A+ 1)n!
degﬁk (D) < T(SA(D)-
Hence, Proposition 5.1.2 implies that if n > 1, then

log #{D € Divi (P1)") | degzp» (D) < h, x; ¢ Supp(D) (i)}

e > 0.

lim sup

h—o0

5.2. Arithmetic cycles on the products of P}. In this subsection, we consider
the number of cycles on (PL)". First, let us consider horizontal cycles.

Proposition 5.2.1. Let us fiz a positive real number . Let p; : (PL)" — PL be
the projection to the i-th factor. We set o= &, pf (@Fsk(l)). For1<Il<nmn,
we denote by Zﬁfhfor((IP’%)") the set of all effective cycles on (PL)"™ generated by I-
dimensional integral closed subschemes of (P4)™ which dominate Spec(Z) by the
canonical morphism (PL)"™ — Spec(Z). Then, there is a constant C' such that

#{V € Ziho (PL)") | degppa (V) < h} < exp(C- h*Y)
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for all h > 1.

Proof. We set ¥ ={I|I C[n],#(I)=1—1}. Then, it is easy to see that
Ziher(PR)") = Y Z{T((B)" & (PR)' ),
Iex

where p; is the morphism given in (1.1.4). Thus, it is sufficient to show that there
is a constant C’ such that

#{V e ZsT((PL)" 5 (PL)!7Y) | degpn (V) < h} < exp(C - R

for all h > 1. By re-ordering the coordinate of (P%)™, we may assume that I = [[—1].
We denote pj;_1; by p. We set

T, = Z5"((Bp)" = (P)' ™).
Let us see that {T},}>°, is a counting system. First we define h,, : T;, — R>¢ to be
ha(V) = deggn (V).

Let a, : (P})" — (PL)"~! and b, : (PL)" — (P})! be the morphisms given by
an = Pin—1) and b, = py_1ju{n}- Then, we have maps o, : T, — T,,—1 and
Bn : T, — T; defined by o, (V) = (an)«(V) and B,(V) = (by)«(V). Here, it is easy
to see that

hn—1(a, (V) < h, (V) and hi(Bn(V)) < hp(V)

for all V' € T;,. Moreover, by the following Lemma 5.2.2, if we set

deg (@(2/Z1p; (@ (1)) on (PL)' 1 if 1> 2
€ =5 —
deg(¢1(Z,exp(—=A)| - |)) on Spec(Z) ifi=1
and
A(s,t) = exp (St> )
€l
then

#Hz e T | an(z) =y, 0n(2) = 2} < A(hn-1(y), lu(2))
for all y € T;,—1 and z € T;. Further, by Proposition 5.1.1, if we set
B(h) = exp(C” - B!T1h)
for some constant C”, then
{z €Ty | hi(z) <h} < B(h)

for all h > 1. Thus, we can see that {T,}5°, is a counting system. Therefore, by
virtue of Lemma 1.2.1, we get our proposition. O

Lemma 5.2.2. Let f: X — S andg:Y — S be morphisms of projective arithmetic
varieties. We assume that S is of dimension | > 1. Let Ay, ..., A; be nef C>-
hermitian line bundles on X, Bi,...,B; nef C>®-hermitian line bundles on Y,
and Cy,...,C; nef C®-hermitian line bundles on S such that A; @ f*(C;)®~!
and B; ® g*(C;)®~! are nef for all i and that deg (ci(C1)---a(Cy)) > 0. Let
p: XxsY - X and q: X xgY — Y be the projections to the first factor and
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the second factor respectively. Fiz D € Zf%(X/S) and E € ZfE(Y/S) (for the
definition of Z¢%(X/S) and ZfE(Y/S), see (1.1.2)). Then,

log (#{V € Z{"(X x5 Y/S) | p(V) = D and q.(V) = E})
{c’le\g@ml)-- #1(4)| D)deg(@(B)) - (By) | E)
deg (&(C1)---a1(C)”
VOD)(E)deg(e (A) - & (A) | D)deg(@ (By) - -1 (B) | E)
deg (&1(Ch)--- & (C)))

< min )

where O(D) (resp. O(E)) is the number of irreducible components of Supp(D) (resp.
Supp(E)).

Proof. Weset D =57, a;D; and F = 22:1 b;E;. Then,

(5.22.1) deg(éi(Ay)-+-&1(A) | D) =Y aideg(@(Ar) -1 (A) | D;)

%

> Y aideg(@(f(Ch)) - @ (£(C) | Dy)
=1

=" a;deg(D; — S)deg(e1(C1) -+ @1(C1))).

i=1

In the same way,

t
(5.2.2.2) deg(¢y(By)---&(B) | E) > Z - deg(E; — S)deg(c1(Ch) -+ &1 (C))).
Thus, in the same way as in Lemma 2.1.3, we have our assertion. O

Next we consider vertical cycles.

Proposition 5.2.3. Let ZfT_ ((PL)") be the set of effective cycles on (PL)"™ gen-

l,ver
erated by l-dimensional mtegml subschemes which are not flat over Z. Then, there

is a constant B(n,l) depending only on n and l such that
#HV € ZT (BL)") | deggy, 1y (V) < h} < exp (B(n,1) - W'+
for h > 1.

Proof.  For simplicity, we denote (P%)™ and O(1,...,1) by X and H respectively.
Let 7 : X — Spec(Z) be the canonical morphism. Let k be a positive integer and
k =TI, p{" the prime decomposition of k. We set X, = 7~ *([p;]). Then,

#{V € Z5%(X) | degz(V) = log(k)}
= H#{V € 7 (X) | 7(Vi) = [pi] and deg gy (Vi) = ai}.

Let C'(n,l) be a constant as in Proposition 2.1.1. We set
C"(n,l) = max{C’(n,1),1/log(2)}.
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Note that C”(n,1)log(p) > 1 for all primes p. Thus,
log #{V € Z.(X) | deg(V) = log(k)} < D C"(n,1) log(p;)al+!

3

I+1
< <Z " (n,1) log(pi)m')

= C"(n,1)* 1 log (k).

Therefore,
- [exp(h)] -
#{V € Ze(X) | degr (V) <h} < ) #{V € Zi1e(X) | degzr(V) = log(k)}
k=1
[exp(h)]
< 3 exp (€ (n, ) log(k)H)
k=1
< exp(h) - exp (C”(n, 1)1 R!TT)
=exp (C"(n, ) TTAITY + 1)
Thus, we get the proposition. O

By using Proposition 5.2.1 and Proposition 5.2.3, we have the following:

Theorem 5.2.4. For all non-negative integers | and n with 0 <1 < n, there is a
constant C' such that

#{V € Zs((BL)") | degzpr (V) < h} < exp(C - h*1)
for all h > 1.

5.3. A upper estimate of cycles with bounded arithmetic degree. Here let
us consider the following theorem, which is one of the main results of this paper.

Theorem 5.3.1. Let us fix a positive real number X. For all non-negative integers
Il with 0 <[ <dim X, there is a constant C such that

#{V € Z;(P3) | deggrs, (V) < h} < exp(C - hH)
for all h > 1.
Proof. Let us consider the birational map ¢ : P§ --» (P1)" given by
(Xo:-:Xpn)— (Xo: X1) x - x (Xo: Xp).

We set U = P2\ {Xo = 0}. Let Zf(P2; U) be the set of effective cycles generated
by I-dimensional closed integral subschemes T' with TN U # @ (cf. (1.1.2)). For
V € Zf%(P2; U), we denote by V' the strict transform of V by ¢. Then, by applying
Lemma 4.2.5 in the case B = Spec(Z),

n'deggrs, ) (V) = deggrs, ) (V).
Moreover, if V] = Vj for V1, V5 € fof(]P’{F’q; U), then V; = V5. Therefore,

(5.3.1.1) #{V e ZtT(Py;U) | deggrs, ;) (V) < h}

<H#{V' € Z(P)") | deggrssy (V) < n'h}.

)
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On the other hand, since P} \ U ~ P}~ ",
(5:312) #{V € Z7"(Py) | deggrs, ) (V) < h}
< #{V € Z"(P}; U) | deggrs, (V) < h}
AV € Zi (B | deggrs, (V) <

Thus, using (5.3.1.1), (5.3.1.2), Theorem 5.2.4 and the hypothesis of induction, we
have our theorem. O

FS)y (1)

Corollary 5.3.2. Let X be a projective arithmetic variety and H an ample C>-
hermitian line bundle on X. For all non-negative integers | with 0 < [ < dim X,
there is a constant C such that

#{V € ZT(X) | degg(V) < h} < exp(C - hiT1)
for all h > 1.

Proof. Since X is projective over Z, there is an embedding ¢ : X — P over
Z. We fix a positive real number A. Then, there is a positive integer a such that

7 ® L*(@FSA(—I)) is ample. Thus,

T (V) 2 T8, a1y (V)

(075X (1))

for all V € Zf(X). Hence, our assertion follows from Theorem 5.3.1. O

5.4. A lower estimate of cycles with bounded arithmetic degree. Here we
consider the lower bound of the number of cycles.

Theorem 5.4.1. Let X be a projective arithmetic variety and H an ample C>-
hermitian line bundle on X. Then, for 0 <l < dim X,

Jlos #(V € 2500 | degg (V) < b}

lim su RS

h— o0

Moreover, if 0 <l < dim X, then

log #{V € Zf, (X) | degz(V) < h}
Rl+1 >

lim sup 0.

h—o0

Proof. Choose a closed integral subscheme Y of X such that dimY =141
and Y is flat over Z. First, we assume that [ = 0. Then, the canonical morphism
7Y — Spec(Z) is finite. For n € Z \ {0},

deg(m*(div(n))) = deg(r)deg(div(n)) = deg() log |n|.

Thus,
#{V € 25" (V) | deg(V)) < h} > #{m"(div(n)) | n € Z\ {0} and deg(r)log |n| < h}.
Note that
7*(div(n)) = 7*(div(n’)) = div(n) =div(n’) = n=+n'.
Thus,
#{x (div(n)) | n € Z\, {0} and deg(r)log |n] < h} = [exp(h/ deg(r))].
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Therefore,
1 ZeF(X) | deg(V) <
s BV € A1) [ dem(V) <)
h—oo

From now on, we assume that [ > 0. Since

#{D € Divih (V) | degzz(D) < h} C #{V € ZE .(X) | degz(V) < h},

we may assume that dim X =1+ 1.

Let us take a birational morphism u : X’ — X of projective arithmetic varieties
such that there is a generically finite morphism v : X’ — (P})", where n = dim Xg.
We set A =@, p; (6FSA(1)) on (PL)" for some positive real number \. Let us
choose a positive rational number a such that there is a non-zero section s €
HO(X" v*(A)® @ u*(H)®™1) with ||s|lsup < 1 (cf. [6, Proposition 2.2]). Let X, be
a Zariski open set of X such that p is an isomorphism over Xy. Moreover, let B
be the non-flat locus of v. Let

(X'\ (X)) USupp(div(s))UB = Z, U---U Z,

be the irreducible decomposition. Choose a closed point z; of Z; \ U ki Z; for each
1. Then, by Proposition 5.1.2 and Remark 5.1.3,

log #{D' € Divi5 (PL)") | degz(D") < h, v(z;) & Supp(D') (¥i)}

o > 0.

lim sup
h—o0

Let D' be an element of DiviT ((PL)") with v(z;) ¢ Supp(D’) for all i. First,
we claim that v*(D’) is horizontal over Z. Assume the contrary, that is, v*(D’)
contains a vertical irreducible component I'. Then, v, (I") = 0, which implies T" C B.
Thus, there is z; with z; € I'. Hence,

2 € Supp(v*(D')) = v~ (Supp(D")),
which contradicts the assumption v(z;) ¢ Supp(D’).
By the above claim, we can consider a map

¢ {D/ € Dlvhor(( ) ) | V(ZZ) ¢ Supp( ) for all Z} - Dlvhor(X)

given by ¢(D’) = u.(v*(D’)). Here we claim that ¢ is injective. We assume that
o(D}) = ¢(Dj). Since z; ¢ Supp(v*(D.)) for e = 1,2 and all i, no component of
v*(D!) is contained in X'\ u~!(Xy). Thus, we have v*(D}) = v*(D}). Hence
deg(v) Dy = va(v"(D1)) = vu(v"(D3)) = deg(v) D5.
Therefore, D] = Dj,.
Let D’ be an element of Div{T ((PL)") with v(z;) & Supp(D’) for all i. Since no
component of v*(D’) is contained in Supp(div(s)), we can see
degg(¢(D')) = deg,,. g7, (v* (D)) < deg,. )20 (V" (D))

= a"deg,. () (" (D)) = a” deg(v)deg5(D').

Thus
#{D’ € Div{T ((PL)") | degA( "Y < h and v(z;) & Supp(D) for all i}
< #{D € Divil (X) | deg(D) < deg(v)a"h}.

Therefore, we get our theorem. O
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6. A REFINEMENT OF NORTHCOTT’S THEOREM IN THE ARITHMETIC CASE

In this section, we consider an arithmetic analogue of §3. In some sense, this is
an original case because Northcott’s theorem was proved first over a number field.
Here we treat a more general case, namely, diophantine geometry over a field K of
finite type over Q. For this purpose, we need a polarization of K, as we introduced
in [6]. In §6.1, we explain it and also introduce a fine polarization of K, which
guarantees the richness of the height function induced from this polarization (cf.
§6.2, especially, Proposition 6.2.2.1). In §6.3, we prove the following main result of
this section:

Let f: X — B be a morphism of projective arithmetic varieties.
Let X, be the generic fiber of f : X — B. Let Hy,..., Hgy be a fine
polarization of B, where d = dim Bg. Let L be a nef C*°-hermitian
line bundle on X such that L is ample on the generic fiber X, of
f: X — B. For an integer [ with d+1 <1 < dim X, let Z{(X/B)
be the set of effective cycles on X generated by integral closed [-
dimensional subschemes I' on X with f(I') = B. Then, for a fixed
k, there is a constant C such that the number of elements V' of
Zy%(X/B) with deg(Ly ™" - Vx,) <k and

deg (@(D)™ - @ (f* () - (Ha)) - V) < h
is less than or equal to exp(C - h@*!) for all h > 1.

6.1. A polarization of a finitely generated field over Q. Some details of this
subsection can be found in [6]. Let K be a finitely generated field over Q with
d = tr.degy(K), and let B be a projective arithmetic variety such that K is the
function field of B. Here we fix notation.

epolarization: A collection B = (B; Hy,...,H,) of B and nef C*-hermitian
Q-line bundles H1,...,Hq on B is called a polarization of K.

ebig polarization: A polarization B = (B;Hy,...,Hy) is said to be big if
Hi,...,Hg are nef and big.

efine polarization: A polarization B = (B;Hy,...,Hy) is said to be fine
if there are a generically finite morphism u : B’ — B of projective arithmetic
varieties, and C'*°-hermitian Q-line bundles L1, ..., Lg on B’ such that L,..., Ly
are of surface type (see §4.2 for its definition), pu*(H;) 27 L; for all i, and that
L1 ®---® Lg is nef and big.

The concept of a fine polarization seems to be technical and complicated, but it
gives rise to a good arithmetic height function (cf. Proposition 6.2.2.1).

Let us consider the following proposition.

Proposition 6.1.1. If a polarization B = (B; Hy,...,Hg) is fine, then there are

generically finite morphisms p : B' — B and v : B — (PL)? with the following

property: for any real number X\, there are positive rational numbers a1, ..., aq such
—FS\

that
pr(H;) 2 v (q; (O 77 (1))
foralli=1,...,d, where q; : (PL)? — P} is the projection to the i-th factor.

Proof. By the definition of fineness, there are a generically finite morphism
i : B — B of projective arithmetic varieties, morphisms ¢; : B — B; (i = 1,...,d)
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of projective arithmetic varieties, and nef and big C'°°-hermitian Q-line bundles Q;
on B; (i=1,...,d) such that B;’s are arithmetic surfaces, u*(H;) 2z ¢7(Q;) for all
i, and that ¢7(Q,) ® - ® ¢5(Q,) is nef and big. Here, there are dominant rational
maps ¥; : B; --» Pl for i = 1,...,d. Replacing B’ and B;’s by their suitable
birational models, we may assume 1);’s are morphisms. Let v : B’ — (]P’%)d be a
morphism given by v(z) = (¥1(¢1(x)), ..., Ya(da(x))). Let us fix a real number
A. Then, since @, is nef and big, there is a positive rational number a; with
Qi 2 ¥ (0" (1)#. Thus,
* (T * () * **FS aii***FS a;
W (Hi) 2 67(Q0) 2 97 (i (0 7(1)))% = v (g (077 (1))) %™
Finally, we need to see that v is generically finite. For this purpose, it is sufficient
to see that v* (¢ (O(1)) ® - - - ® ¢;(O(1))) is nef and big on By,. Indeed, we can find

a positive rational number a such that 1 (O(1)) ® Q¥ * is ample over (B;)g for
all 7. Thus,

d d d ®-a
Qi (wro1) @ QP = v’ <® qf(O(l))) ® <® ¢?(Qi)>

i=1

is semiample on Bp. Hence, v*(¢7(O(1)) ® - -+ ® ¢;(O(1))) is nef and big because
d1(Q1) ® - ® ¢5(Qq) is nef and big. O

Finally we would like to give a simple and sufficient condition for the fineness
of a polarization. Let k be a number field, and Oy, the ring of integer in k. Let
By, ..., B; be projective and flat integral schemes over Oy whose generic fibers
over Oy are geometrically irreducible. Let K; be the function field of B; and d;
the transcendence degree of K; over k. We set B = B; X, -+ X0, Bi and d =
dy+- - -+d;. Then, the function field of B is the quotient field of K1 ®;Ko®y- - - Qi K,
which is denoted by K, and the transcendence degree of K over k is d. For each
i(i=1,...,0),let H;1,...,H;q, be nef and big C°°-hermitian Q-line bundles on
B;. We denote by ¢; the projection B — B; to the i-th factor. Then, we have the
following.

Proposition 6.1.2. A polarization B of K given by
B= (Ba QT(FLl)v veey QT(Fl,dl)a e ,ql*(ﬁl,l)a cey QT(FMZ))

is fine. In particular, a big polarization is fine.

. . . . d; .

Proof. Since there is a dominant rational map B; ---+ (IP’%) by virtue of
Noether’s normalization theorem, we can find a birational morphism p; : B} — B;
of projective integral schemes over Oy, and a generically finite morphism v; : B, —

d;
(]P’%) . Weset B’ = B{ X0, %0, B}, p = p1 X---x py and v = v1 X - - - X ;. Note

that O > (1) is ample on P}, for a A > 0. Then, since u} (H; ;) is big, there is a pos-
itive integer a; ; with p}(H; ;)®% = v} (p;k (@FSA(I))> (cf. [6, Proposition 2.2]),

that is, puf (H; ;) 2 v} (p; (@Fsk(l)@/‘“’f)). Thus, we get our proposition. O

6.2. Height functions over a finitely generated field. First, we give the defi-
nition of height functions (for details, see [6]).
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6.2.1. The definition of height functions. Let K be a finitely generated field over Q
with d = tr.degg(K), and let B = (B; Hy,..., H4) be a polarization of K. Let X
be a geometrically irreducible projective variety over K and L an ample line bundle
on X. Let us take a projective integral scheme X over B and a C'*°-hermitian Q-
line bundle £ on X such that X is the generic fiber of X — B and L is equal to Lx
in Pic(X) ® Q. The pair (X, £) is called a model of (X, L). Then, for z € X(K),
we define h(BX,E) (z) to be
~ deg (&1(L) - TI_y & (£ (H,)) | A )

B [K(x): K] ’

where A, is the Zariski closure in X of the image of Spec(K) — X — X, and
f : X — B is the canonical morphism. By virtue of [6, Corollary 3.3.5], if (X, L)
is another model of (X, L) over B, then there is a constant C' with

1y 2y (@) = hr o1y (@)] < C

for all z € X (K). Hence, we have the unique height function h? modulo the set of
bounded functions. In the case where X = P%, if we set

hoo(@)= Y max{—ordr(¢;)}deg (¢1(H) - @1(Ha) | T)
I' is a prime
divisor on B

+/B(C) log (max{|il}) e1 (1) A+ A ex (Ha)

for o = (g : -+ : o) € P(K), then h3 ;) = hB, + O(1) on P"(K).

6.2.2. The similarity of height functions. Here we consider the following proposi-
tion, which tells us that height functions arising from fine polarizations are similar.

Proposition 6.2.2.1. Let X be a geometrically irreducible projective variety over
K, and L an ample line bundle on X. Let B and B be fine polarizations of K.

Then hfl = hfl on X (K) (For the notation <, see (1.1.6)).

Proof. First we do a general observation. Let B be a projective arithmetic
variety with d = dim Bg. Let Hy,...,Hg be C*-hermitian Q-line bundles of
surface type on B. By its definition, for each i, there are a morphism ¢; : B — B;
of flat and projective integral schemes over Z and a C°°-hermitian Q-line bundle

L; on B; such that dim(B;)g = 1, L; is nef and big, and that ¢}(L;) = H; in
Pic(B) ® Q. We set H = ®?:1 H; and

oy [ deB@ ()
N p( deg((Ln@))'

Let K be the function field of B. Here we consider several kinds of polarizations of
K as follows:

Bo = (B:H, ..., ),

By = (B;Hy,...,Hyg),

B;j=(B;Hy,....,Hj_1,(0B,\i| * |lcan)s Hj41,..., Hq) fori#j.
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Let X be a geometrically irreducible projective variety over K, and L an ample line
bundle on X. Let (X, L) be a model of (X, L) over B. Then, for all z € X(K),

— = d'~— B,

B _ B Bi

(6.2.2.2) hiy (@) = b 2 (@) + 5 ; ey (@)-
1]

Indeed, by Lemma 4.2.4,

5, B dl = AB@ (L)) deg (Lo [Ty iy 191 Lo~ (As)o)
thZ) (z) = d!thf) (”“")JFE ; deg((L;)g)[K () : K] ’

where f : X — B is the canonical morphism. Moreover,
p— d —
—log(\;) /A o a@)n N\ alf e @)

Ei,j _ l=17l5ﬁ.7
hxp (@) = [K(z): K]

On the other hand,

d
Awﬁ““ N\ et ei@y) =deg (Lo [] £oi@e- (Ao

1=1,1#] I=1,1#]

Thus, we obtain
5, deg(@(L)?)deg (Lo TTyisy /07 La - (Au)g)
@) = deg(L)o)[K (@) : K] '

Therefore, we get (6.2.2.2).
Using (6.2.2.2), we can find a constant C' such that

(6.2.2.3) hbo(2) < ChBY (z) + O(1)

for all x € X(K) because there is a positive integer m such that
=&
Hj " ,-é (OBv)‘2| : ‘can)

for every i, j.

Let us start the proof of Proposition 6.2.2.1. It is sufficient to see that there are
a positive real number a and a real number b such that h? < ah? +b. We set B =
(B;Hy,...,Hy) and B = (B’;Fll, . ,F;). Since B is fine, by Proposition 6.1.1,
there are generically finite morphisms p' : B” — B’ and v : B” — (}P’%)d of flat and
projective integral schemes over Z, and nef and big C'°°-hermitian Q-line bundles
L1,...,Lq on PL such that /" (H,) = v*(p:(L;)) for all i, where p; : (]P’%)d — Pl is
the projection to the i-th factor. Changing B” if necessarily, we may assume that
there is a generically finite morphism u : B” — B.

Let us consider polarizations

By = (B";p*(Hy),....u"(Hy)) and By = (B"yp/"(Hy),.... 1" (Hy))

and compare hP with hB1 (resp. KB with hFl). By virtue of the projection
formula, we may assume that B = B’ = B” and p = p/ = id.
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We set H = v* (®?:1 D} (ZZ)) Then, (B; H, ..., H) is a big polarization. Thus,
by [6, (5) of Proposition 3.3.7], there is a positive integer b; such that
h? < blth;H,A..,H) o).
Moreover, by (6.2.2.3), we can find a positive constant by with

h(LB;ﬁ"”’ﬁ) < thgB;V*PT(f1)7-~»7V*P§(Zd)) + O(l)

On the other hand, since H, = v*(p:(L;)) for all i,

h(LBW*PT(Zl)w--aV*PZ(Zd)) S hiB;Flw-de) +O(1)
Hence, we get our proposition. O

6.3. Northcott’s type theorem in the arithmetic case. The purpose of this
subsection is to prove the following theorem, which is a kind of refined Northcott’s
theorem.

Theorem 6.3.1. Let f : X — B be a morphism of projective arithmetic varieties.
Let K be the function field of B. Let H1,...,Hq be a fine polarization of B, where
d = dim Bg. Let L be a nef C*-hermitian line bundle on X such that Ly is
ample. For an integer | with d+1 <1 < dim X, as in (1.1.2), let Z(X/B) be the
set of effective cycles on X generated by integral closed l-dimensional subschemes
I on X with f(T) = B. We denote by Zf™(X/B, k,h) the set of effective cycle
V € Z¢%(X/B) with deg(Ly - Vi) < k and
deg (@1(Z)' @ (" (L) -+ @ (f*(Ha) | V) < b
Then, for a fized k, there is a constant C' such that
#2;"(X/B. k. h) < exp(C - h**1)

for all h > 1.

Let us begin with a variant of Proposition 5.2.1.
Proposition 6.3.2. Let us fix a positive real number A\. Let n and d be non-
negative integers with n > d + 1. Let piq : (IP’%)" — (P%)d be the morphism
as in (1.1.4). Let p; : (PL)™ — PL be the projection to the i-th factor. For an
integer | with d+1 <1 < n, we denote by ZFE((PL)"/(PL)?) the set of all effective

cycles on (PL)" generated by l-dimensional integral closed subschemes of (P%)™
which dominate (PL)? by pia. We set

d
— — |~ = —~ , 4, ~FS
degy (V) = deg [ &(D)"- []a@;(© (1) |V
j=1

for Ve ZSE((PL"/(PL)?), where L = @ p*(@FSA

"D (1)). (Note that degy(V)
is given by d/e\g(a(f)'lH/).) Let K be the function field of (P3)¢. For V €
ZEE((PL)™/(PL)Y), we denote by degy (V) the degree of V in the generic fiber of
7 (PL)"™ — (PL)? with respect to Ot yn-a(l,...,1). Then, for a fived k, there is
a constant C' such that

#{V € Z7T((PL)"/(Py)?) | degq)(V) < h and degy (V) < k} < exp(C - h*H)

for all h > 1.
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Proof. We set
S = {1 [d) CTC ], #()=1-1}.
Then, it is easy to see that

Zi (P, =Y Z(@p)" ().

Iex

Thus, it is sufficient to see that, for each I, there is a constant C’ such that
#{V € Zi"(BL)" % ()" ™") | degyqy(V) < h and degye(V) < k} < exp(C” - h*H)

for all h > 1. By changing the coordinate, we may assume that I = [[ — 1]. Here
we denote py by p. For n > [, we set

T, ={V € Z{"((Pp)" = (P3)'"") | deg (V) < k}.

Let a, : (PL)™ — (P})"~ ! and b, : (PL)" — (P})! be morphisms given by a, =
Pn—1] and b, = p_1ju{n}- Then, since

(an)}(o(]}”k)”*d*1 (]-7 ) 1)) ®p:;(0]1]’}( (1)) = O(P}()”*d(lv ) 1)
and

(bn) % (O(Pl 1—a( ®®pZ O]pl Opl)n a(1,...,1),
we have maps o, : T, — T,,—1 and ﬁn : T, — T; given by a, (V) = (an)«(V) and
Bn(V) = (bp)«(V). Moreover, we set

hn (V) = degig (V)
for V € T,,. Then, it is easy to see that
hn—1(an (V) < hn, (V) and hi(B.(V)) < hp(V)
for all V € T,,. Note that
k > degy (V) > 6(V) = the number of irreducible components of V.

Here we set e; as follows: if [ > 2 and d > 1, then

-1 d-d g
o =deg | & <®pf(OFSA(1))> H 0" (1)) | on (BY)

if I > 2 and d = 0, then
1

er = deg | @ (@pz o™ (1 ) on (P3)";

if | =1, then

e1 = deg(1(Z,exp(—))| - |)) on Spec(Z).

Moreover, we set
kvs-t

€

A(s,t) =
Then, by Lemma 5.2.2,
#{CE S Tn | O‘n(f) =Y, ﬂn(x) = Z} S A(hn—l(y)vhl(z))



THE NUMBER OF ALGEBRAIC CYCLES WITH BOUNDED DEGREE 49

for all x € T,,_1 and y € T;. Further, in the case where n =1,
degc(V) = degyyy (V) + -+ + deg, (V).

Therefore, by Proposition 5.1.1, there is a constant C” such that
#{x €T | hi(z) < h} < exp(C” - h*T)

for all h > 1. Hence, by Lemma 1.2.1, there is a constant C’ such that
#{x €T | ha(V) < h} <exp(C- )

for all h > 1. Thus, we get our assertion. O

Let us start the proof of Theorem 6.3.1. First, we claim the following:

Claim 6.3.2.1. Let ﬁll, . ,F/d be nef C*°-hermitian Q-line bundles on B with
ﬁ; > H; for all i. If the assertion of the theorem holds for Hy,...,Hg, then so

/

doesforﬁ/l,...,Hd.

By virtue of Lemma 4.2.3,

deg (&(L)"~" - & (f*(H)) - (H) | V)
> deg (&(Z)" @ (f () @ (f*(Ha)) | V)
for all V € Zf(X/B). Thus, we get our claim.
Next we claim the following:

Claim 6.3.2.2. We assume that the generic fiber of f : X — B is geometrically
irreducible. Let p: B’ — B be a generically finite morphism of projective arithmetic
varieties. Let X' be the main part of X xg B', i.e., X' is the Zariski closure of the
generic fiber X xg B’ — B’ in X xg B'. Let f' : X' — B’ and y/ : X' — X be the
induced morphisms by the projections X xg B’ — B’ and X xg B’ — X respectively.
Then, the assertion of the theorem holds for f : X — B, L and H1,...,Hgq if and
only if so does for f': X' — B', /" (L) and p*(Hy),...,pu*(Hg).

First of all, note that the following diagram is commutative.

x -2 . x

Thus, for V' € Z(X'/B’), we have

(6.3.2.3) deg (c1(/ (L))"~ - & (f"* (u* (H1))) - & (f" (u* (Ha))) | V)

= deg ((D)" - @ (f*(H) - a(f*(Ha)) | 1(V))
and
(6.3.2.4) deg(p/" (L) ™1 - Vi) = deg(Ly 71 - il (V') ),

where K’ is the function field of B’. B
__ First we assume that the assertion of the theorem holds for f: X — B, L and
Hy,...,H4. Then, by using (6.3.2.3) and (6.3.2.4), it is sufficient to see that, for a
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fixed V € Z(X/B), the number of effective cycles V'’ on X’ with p/ (V') =V is
less than or equal to

exp (deg(p') deg (L ' Vk)) .

For, let V' =3 ¢;V; be the irreducible decomposition. Then by Lemma 1.3.2, the
above number is less than or equal to exp(deg(y’) > e;). On the other hand, we
can see

Zei < Zei deg (Lig ™' (Vi)k) =deg (Lig * ' - Vk).

Next we assume that the assertion of the theorem holds for f': X’ — B’, i/*(L)

and pu*(Hy),...,u*(Hqa). In this case, by using (6.3.2.3) and (6.3.2.4), it is sufficient

to construct a homomorphism

W Z(X/B) — Z(X'|B)
with u (/" (V)) = deg(u/)V. Let By be the locus of points of B over which
p: B — Band f: X — B are flat. Here we set Xo = f~1(By), By = u~(Bp) and
X, = f’_l(B(’)). Then, we can see that X, = Xy x g, Bj, by [5, Lemma 4.2]. Thus,
o = u’|X6 is flat. For V € Zf(X/B), no component of Supp(V) is contained in
X\ Xo. Hence, p/*(V) is defined by the Zariski closure of u5" (V| )-

Here, let us consider a case where X = P} xz B, f is the natural projection
X — Band L = p* (6551(1)), where p : X — P¥ is the natural projection. Since
the polarization H, ..., H is fine, by Proposition 6.1.1, there are generically finite
morphisms p: B — Band v: B — (P%)d of projective arithmetic varieties, and

positive rational numbers a1, ..., aq such that p*(H;) = v*(r} (6;;1 (a;))) for all 4,

where 7; : (]P’%)d — P}, is the projection to the i-th factor.

Bt Bt (Bl B
We set X' = P2 xz B/, B = (PL)? and X" = P} xz B". Let p/ : X' — P2
and p” : X" — PZ be the projections to the first factor and f’ : X’ — B’ and
f"” : X" — B the projections to the last factor. Here we claim the following.

Claim 6.3.2.5. The assertion of the theorem holds for f" : X" — B”, 7" and
r(O5 (L) -,75(O8 (1), where I = p" (O3 (1)):

Fixing [, we prove this lemma by induction on n. If n = —d — 1, then the
assertion is trivial, so that we assume n > [ —d — 1. Let ¢ : P} --» (P1)" be the
rational map given by

(Xo: - Xn)— (Xo: X1) x - x (Xo: Xp).

We set ¢ = ¢xid : PExB” --» (P})"xB"” and U = (P2\{Xo = 0}) x B”. Moreover,
let g: Y = (P3)" x B” — B” be the natural projection, and s; : Y = (PL)"*¢ — PL
the projection to the i-th factor. We set

M= észw*’%)).
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For V e Zt%(X"/B";U) (i.e. V € ZF(X"/B") and any component of Supp(V)
is not contained in X" \ U), let V' be the strict transform of V via ¢. Then,
Lemma 4.2.5 and Lemma 2.2.2,

nl=Ddeg (@ (L") @ (/7 (0@ () @ (S (3@ ()| V)
> deg (&:(M) '~ @ (g (7 (@ (1) -+ &l (@ (1)) [ V')
and
nl=10 deg(L" (/™ Vign) > deg(Mi ™1 - Vi),
where K" is the function field of B”. Moreover, if we set
i nrd
M- @0 1) =Me Q) 10 (1),
= i
then
deg (&:(M)' =" &a(g" (r{ (@ (1)) - @alg" (3@ () V)
= deg (&:(M) "~ &(g"(r{ (@ (1) -+ &g (30" (W) V)

+ (1 — d)d deg(M;54" - Vi )deg (a @

(1))?).
On the other hand, {Xy =0} xB = ]P’zf1 x B. Thus, by the hypothesis of induction
and Proposition 6.3.2, we have our claim.

Therefore, gathering Claim 6.3.2.1, Claim 6.3.2.2 and Claim 6.3.2.5, we have our
assertion in the case where X =P} xz B.

_ Finally let us consider the proof of the theorem in a general case. Replacing
L by a positive multiple of it, we may assume that Lg is very ample. Thus we
have an embedding ¢ : Xx — P% with ¢*(O(1)) = Lg. Let X’ be the Zariski

closure of Xi in P} xz B and ' : X’ — B the induced morphism. Let p :

P% xz B — P be the projection to the first factor and I = p*(@FSl(l)) =

Then there are birational morphisms p : Z — X and v : Z — X' of projective
arithmetic varieties. We set ¢ = f-u = f'-v. Let A be an ample line bundle
on B such that g.(u*(L) ® v*(L')®~!) ® A is generated by global sections. Thus
there is a non-zero global section s € H(Z, u*(L) ® v*(L')®~! ® g*(4)). Since
(p*(L)@v*(L)® 1)k = Ox,, we can see that f(div(s)) C B. We choose a metric
of A with ||s|| < 1. For V € Zf(X/B), let V4 be the strict transform of V by p
and V' = v, (V7). Then,

deg (&1 (" (L@ f*(A)™* -e(g*(H)) - --a(g*(Ha)) | Va
= deg (&1 (2)™ - & (f*(H)) - - a(f*(Ha)) | V)
+ (I +1) deg(LY - Vic)deg (€1(A) -eu(Hy) -~ ai(Ha))
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Moreover,
deg (&1 (u" (L ® f* ()™ E1(g" (HD) -+~ 219" (Ha)) | )
> deg (&1L - aug" (1) ---@1(g" (Ha) | Vi)
= deg (&(Z)™ - (" (H) - af” (Ha) | V')

Thus, we may assume that there is an embedding X < P% xz B and L =

p* (@FSI (1)). Therefore we get our Theorem. O

6.4. The number of rational points over a finitely generated field. In this
subsection, we would like to prove the following two theorems.

Theorem 6.4.1. Let K be a finitely generated field over Q, and B a fine polariza-
tion of K. Let X be a projective variety over K and L an ample line bundle on X.
Then _

#{ € X(K) | BB () < b} < exp(C - h*)
for all h > 0, where d = tr. degg(K).
Theorem 6.4.2. Let K be a finitely generated field over Q and B a fine polarization
of K. Then,

log #{w € P"(K) | hB,(x) < h}
hd+1 >

lim sup
h—o0

0,

where d = tr. degg (K).

Theorem 6.4.1 is a consequence of Theorem 6.3.1. Let us consider the proof of
Theorem 6.4.2. If we set d = tr.deggp(K), then there is a subfield Q(z1,...,z2q)

such that K is finite over Q(21,...,24). Let By be the standard polarization of
Q(z1,...,24) as in the following Lemma 6.4.3. Then, by Lemma 6.4.3,

log #{x € P"(Q(z1,....2a)) | hBly (x) < h}
hd+1 >0

lim sup
h—o0

Let Ef be the polarization of K induced by B;. Then,

K Qe 2)WBh (2) = BEE, (@) + O(1)

K —
for all z € P*(K). Moreover, by Proposition 6.2.2.1, hg%l) = hgu)' Thus, we get

our theorem. O

Lemma 6.4.3. Let us consider the polarization

— d . =FS « ~A~FS

By = ((PY)"5pi (@5 (1),..p3(051" (1))
of Q(z1,...,24), where p; : (P%)d — }P’% is the projection to the i-th factor. The
polarization By is called the standard polarization of Q(z1,...,z4). Then, we have
the following:

1 P hB1 h
P Og#{l‘ € (Q(21;1d+1, Zd)) | nuv (SE) S } > 0.

lim su
h—o0
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(See §6.2 for the definition of hB1.)

Proof. We set H; = pf(@]g;l(l)) for i = 1,...,d. Clearly, it is sufficient to
consider the case n = 1, ‘phat is, rational points of P'. Let A, be the closure of
oo € Py, in P We set AY = pi(As). Then
(6.4.3.1) deg (a(ﬁl) - E(Hy)| Agg) =1

Let P be a Q(z1,...,2q)-valued point of P1. Then, there are fo, f1 € Z[z1," - , 24]
such that fo and f; are relatively prime and P = (fo : f1). Thus, by (6.4.3.1)

hBl Z max{degl(fo) degz (fl)}

+/ log (max{|fol, | £1[}) e1 (1) A+ A ey (Fa).
(P1)d

Let a be a positive number with 1 — 2da > 0. We set
S(h)y={f € Zlz,...,z) | v(1, f) < exp((1 — da)h) and deg,;(f) < [ah] for all i} .
(See (4.3.3) for the definition v.)

First we claim that hB1((1: f)) < hfor all f € S(h). If f = 0, then the assertion
is obvious. We assume that f # 0. Then,

KB (( Zdegz +log(v(1, f)) < d[ah] + (1 — da)h < h.

Next we claim that
1 —2ad)h
oo < SROZ 20N 1) < exp((1 — ad)h).
V2
For this purpose, we may assume that f # 0. Moreover, note that /1 + 22 < \/2z
for x > 1. Thus, using (4.3.1) and Proposition 4.3.4,
dlah dah dah

o, ) < V214 17 < VRVE" Il < VBVE (14 [ohl) P o

1 — 2ad)h)

< V2exp(dah/2) exp(dah/2)|f|sc < V2exp(dah) exp(( N

=exp((1 — ad)h).

By the second claim,

#S8(h) > (1 +92 {mﬂ(l—\/;wl)h)])([ahm)d . (W>(ah)d

> exp((1 — 2ad)h — 1) = exp(a(1 — 2ad)h* — a?h?).

Thus, we get our lemma by the first claim. O

7. THE CONVERGENCE OF ZETA FUNCTIONS OF ALGEBRAIC CYCLES

In this section, we would like to propose a kind of zeta functions arising from
the number of algebraic cycles. First let us consider a local case, i.e., the case over
a finite field.
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7.1. The local case. Let X be a projective variety over a finite field F, and H an
ample line bundle on X. For a non-negative integer k, we denote by ni (X, H,1) the
number of all effective [-dimensional cycles V on X with deg; (V) = k. We define a
zeta function Z (X, H,1) of I-dimensional cycles on a polarized scheme (X, H) over
F, to be

Z(X, H,1)(T anXHl)T’“+
k=0
Then, we have the following:

Theorem 7.1.1. Z(X, H,1)(T) is a convergent power series at the origin.

Proof. First note that n,,i, (X, H®™ 1) = ng(X, H,1). Moreover, if we choose
m > 0 with H®™ very ample, then, by Corollary 2.2.5, there is a constant C' with
ni(X, H®™ 1) < ¢, Thus,

(X, H 1) = (X, HE™ 1) < g7
where €’ = Cm!(+1), Therefore, if |¢°'T| < 1, then

I+1 1+1
anXHl )| T* |<Z\q Al <Z|q Tk = |C,T‘

Thus, we get our theorem. O

See Remark 7.4.2 for Wan’s zeta functions. Next, let us consider height zeta
functions in the local case, which is a local analogue of Batyrev-Manin-Tschinkel’s
height zeta functions (cf. [1]).

Theorem 7.1.2. Let K be a finitely generated field over a finite field F, with
d= tr.deg]Fq(K) > 1. Let X be a projective variety over K and L a ample line

bundle on X. Let hy, be a representative of the class of height functions associated
with (X, L) as in 3.3. Then, for a fixed k, a series

Z q*S(hL(Z))d

zeX(K),
(K (z):K]<k

converges absolutely and uniformly on the compact set in {s € C | R(s) > C} for
some C.

Proof. We set
X,={z€X(K)|n—1<hp(z) <nand [K(z): K] <k}
for n > 1 and
Xi={r e X(K) |hp(x) <1and [K(z): K] <k}

Then, by Corollary 3.3.2, there is a constant C such that #(X,) < qC"d for all
n > 1. Hence,

Z |q—s(hL(w))d| — i Z q—%(S)(hL(CE))d

;KEX(?), n=1zxeX,
[K(z):K]<k

oo d

i Rt — 37 (q—m(s)—c))"

n=1
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Thus, we have our assertion. O

7.2. The global case. Let K be a number field and Ok the ring of integers in K.
Let f : X — Spec(Og) be a flat and projective scheme over Ok and H an f-ample
line bundle on X. For P € Spec(Og) \ {0}, we denote by Xp the fiber of f at P.
Here let us consider an infinite product

L(X,H,1)(s) = 11 Z(Xp, Hp, ))(#(x(P))™*)

PeSpec(Ok)\{0}
for s € C. Then, we have the following;:

Theorem 7.2.1. There is a constant C' such that the infinite product L(X, H,1)(s)
converges absolutely and uniformly on the compact set in {s € C | R(s) > C}.

Proof. Since Z(Xp, HE",1)(q~*) = Z(Xp, Hp,1)(qg~*"""""), replacing H by

H®™ for some positive number n, we may assume that H is very f-ample. For
non-negative integer k, we set

ni(Xp, Hp,l) = #{V € Z{"(Xp) | degy, (V) = k}.
Then,

Z(Xp, Hp,))(#(s(P))"") =1+ ink(Xp,HP’l)#(H(P))—skHl.
k=1

We denote Y-, ni(Xp, Hp, l)aéé(fi(P))’Sk“rl by up(s). Weset N =rk(f.(H))—1.
Then, for each P, we have an embedding tp : Xp — ]P’KN(P) with ¢5(O(1)) = Hp.
Thus, by Theorem 2.2.1, there is a constant C' depending only on [ and N with
niw(Xp, Hp,1) < k(P)°F"" for all k > 1. Thus, for s € C with R(s) > C + 1,

#(k(P) O g (w(P)) RO = Z# R(»)-Cpk'+

WE

lup(s)] <

>
Il
—

#(K(P))‘m‘s)‘c)
1= #(r(P))~R()-0)

#(r(P)) - = < #(x(P) "R,

M

~

1
Therefore, we have

S ) S #k(P) RO

PeSpec(Ok)\{0} PeSpec(Ok)\{0}

- Y Y #wey e

p : prime P€Spec(O)
PAZ=pZ

K:Q > p®O=9 <K :QI¢(R(s) - C).

p : prime

IN

IA

Hence, we get our theorem by the criterion of the convergence of infinite products.
O
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7.3. The arithmetic case. Next let us consider an analogue in Arakelov geometry.
Let X be a projective arithmetic variety and H an ample C'°°-hermitian Q-line
bundle on X'. For an effective cycle V' of I-dimension, the norm of V is defined by

N (V) = exp (d/(%ﬁ(V)lH) .
Then, the zeta function of (X, H) for cycles of dimension [ is defined by
CXH(s)= Y Ne(v)™

Vezet(x)

Theorem 7.3.1. There is a constant C such that the above (X, H,1)(s) converges
absolutely and uniformly on the compact set in {s € C | R(s) > C}.

Proof. We denote Z{(X,H, h) the set of all I-dimensional effective cycles on
X with degz;(V) < h. By Corollary 5.3.2, there is a constant C' such that

# (28" (X, H, h)) < exp(C - b
for all h > 1. We choose a positive constant C’ with
exp(C - (h 4 1)) < exp(C’ - BIFY)

for all h > 1. Moreover, for a real number z, we set [¢] = max{n € Z | n < z}.
Note that if k& = [degz(V)], then k < degz(V) < k + 1. Thus, for s € C with
R(s) > ',

oo
—s —R(s
> INRWTI=X X eI
Vezsf(x) k=0 vezi"(x)
[degz(V)]=k

k=0
< Zexp(C- (k + 1)l+1) exp(kl"'l)_%(s)
k=0

< exp(C) + ) exp(—(R(s) — C))
k=1

exp(—(R(s) —
1 —exp(—(R(s) — C))’

Thus, we get our theorem. O

<exp(C) +

7.4. Remarks. Here let us discuss remarks of the previous zeta functions. The
first one is the abscissa of convergence of zeta functions.

Remark 7.4.1. Let I be an index set and {\; };cr a sequence of real numbers such
that the set I(t) = {i € I | \; < t} is finite for every real number ¢. Then the
abscissa o( of convergence of the Dirichlet series

Zexp(—)\is) = tli>r£o Z exp(—A;s)

il icl(t)
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is given by
e — ey B IO
t—o0 t

Let X be a projective scheme over F,; and H an ample line bundle on X. More-
over, let X’ be a projective arithmetic variety and H an C'*®-hermitian line bundle
on X. We denote by oo(X, H,1) (resp. oo(X,H, 1)) the abscissa of convergence of
Z(X,H,1)(g~*) (resp. ¢(X,H,1)(s)). Then, oo(X, H,l) and oo(X,H, 1) are given
by
log, # ({V € Z/"(X) | degyy (V) < h})

oo(X, H,l) = limsup

h—o0 hl+1
and
_ log # ({V" € Zi(x) | degg(V) < h})
X, H,l) =lims
UO( 7H7 ) lhnl—>bol<l>p hl+1
respectively.

For example, let X be an n-dimensional projective scheme over F, with Pic(X) =
Z - H, where H is ample. Then,
1

O'[)(X7H7’n,_ 1) = W

Remark 7.4.2. Let X be a projective variety over a finite field F, and H an ample
line bundle on X. As before, the number of all effective [-dimensional cycles V' on
X with degy (V) = k is denoted by ni (X, H,1). In [10], Wan defined a zeta function

Z(X, H,1) by

Z(X,H,1)(T) = ink(x, H,)T".
k=0

He proved Z (X, H, l)~(T) is p-adically analytic and proposed several kinds of con-
jectures. Of course, Z (X, H,1)(T) is never analytic as C-valued functions if 0 < [ <

dim X. In order to get classical analytic functions, we need to replace T* by T+,

Remark 7.4.3. Let 0(T) be a theta function given by

o) =S 1" = 1+2iT’“2.
k=1

keZ

Let p be a prime number. Virtually, the typical p-local zeta function for 1-dimensional
cycles might be

2 2
Zp(T) = 0(pT) = Zpk .
kEZ
Here let us consider
(s)= [I 2.
p : prime
Then, we can see

o0

T C@mls — 1)C(2@m — 1)(s — 1))
7 =11 R CES)
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where ((s) is the Riemann-zeta function. This formula follows from Jacobi’s triple
product formula:

0(T) = ﬁ (1—T2™)(1 + T2 12

Appendix A. BoGOMOLOV PLUS LANG IN TERMS OF A FINE POLARIZATION

In this appendix, we show that the main results in [6] and [7] hold even if a
polarization is fine.

Theorem A.1 ([6, Theorem 4.3]). We assume that the polarization B is fine. Let
X be a geometrically irreducible projective variety over K, and L an ample line
bundle on X. Then, for any number M and any positive integer e, the set

{r e X(B) | hf(@) < M, [K(x):K]<e}
s finite.
Theorem A.2 ([7, Theorem A]). We assume that the polarization B is fine. Let
A be an abelian variety over K, and L a symmetric ample line bundle on A. Let

(VP AK) x AK) - R

be a paring given by

For x1,...,m € A(K), we denote det ((xi,xj>§) by 6B (x1,...,1).

Let T be a subgroup of finite rank in A(K) (i.e., T ® Q is finite-dimensional),
and X a subvariety of Ax. Fiz a basis {7y1,..., 7} of T ® Q. If the set

{z e X(K) |62 (v, s mrw) < €}

is Zariski dense in X for every positive number €, then X is a translation of an
abelian subvariety of Az by an element of

Taiv = {z € A(K) | nz € T for some positive integer n}.

The proof of Theorem A.1 and Theorem A.2: Here, let us give the proof
of Theorem A.1, Theorem A.2. Theorem A.l is obvious by [6, Theorem 4.3] and
Proposition 6.2.2.1, or Theorem 6.3.1. Theorem A.2 is a consequence of [7], Propo-
sition 6.2.2.1 and the following lemma.

Lemma A.3. Let V be a vector space over R, and { , ) and { , ) be two inner

products on V. If (z,x) < (z,x) for all x € V, then det ({(x;,x;)) < det ((z;,z;)")
forall xi,...,x, € V.

Proof. 1If xq,...,x, are linearly dependent, then our assertion is trivial. Oth-
erwise, it is nothing more than [4, Lemma 3.4]. O

Remark A.4. In order to guarantee Northcott’s theorem, the fineness of a polar-
ization is crucial. The following example shows us that even if the polarization is
ample in the geometric sense, Northcott’s theorem does not hold in general.

Let k = Q(v/29), e = (5 ++/29)/2, and Oy, = Z[¢]. We set
E =Proj (Ox[X.Y,Z]/(Y?Z + XY Z + €Y Z*? — X?)).
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Then, E is an abelian scheme over Oy,. Thus, as in the proof of [6, Proposition 3.1.1],
we can construct a nef C*°-hermitian line bundle H on F such that [2]*(H) = 7
and Hy, is ample on Ey, ¢i(H) is positive on E(C), and that deg (ci(H)?) =0. Let
K be the function field of E. Then, B = (E; H) is a polarization of K. Here we
claim that Northcott’s theorem dose not hold for the polarization (E, H) of K.
Let p; : E xo, E — E be the projection to the i-th factor. Then, considering
2 Exo, E— E, (E %o, E,p{(H)) gives rise to a model of (Ex, Hg). Let T,
be the graph of [2]" : E — FE, i.e., I'y, = {([2]"(z),z) | = € E}. Moreover, let z,, be
a K-valued point of Ex arising from I',,. Then, if we denote the section £ — T,
by s,, then

5, (x,) = deg (pi(H) - p5(H) - T,) = deg (s5(pi (H)) - 575 (3 (H)))
— deg (([21")"(H) - H) = deg (A*"" - H) = 4"deg (H

On the other hand, z,,’s are distinct points in Fx (K).

H) =o.

Appendix B. WEAK GEOMETRIC NORTHCOTT’S THEOREM

In §3, we worked over a finite field, so that we can prove Northcott’s type theorem
in general. However, if we consider it over an algebraically closed field of charac-
teristic zero, Northcott’s type theorem does not hold in general. Nevertheless, we
have the following weak form.

Proposition B.1. Let X be a smooth projective variety over an algebraically closed
field k of characteristic zero, C' a smooth projective curve over k, and f : X — C
a surjective morphism whose generic fiber is geometrically irreducible. Let L be an
ample line bundle on X. If deg(f*(w}/c)) > 0 for some n > 0, then, for any
number A, the set

{A] A is a section of f: X — C with (L-A) < A}
is not dense in X.
Proof. Let us begin with the following lemma.

Lemma B.2. Let f : X — Y be a surjective morphism of smooth projective vari-
eties over an algebraically closed field k of characteristic zero. If there are a projec-
tive smooth algebraic variety T over k and a dominant rational map ¢ : T XY --»
X overY, then the double dual f*(w}/y)vv of [« (w}/y) is a free Oy -sheaf for all
n > 0.

Proof. Let A be a very ample line bundle on 7. If dim7 > dim f and 77 is
a general member of |Al, then ¢, .y @ T1 X Y --» X still dominates X. Thus,
considering induction on dim 7T, we may assume that dim7 = dim f.

Let p: Z — T x Y be a birational morphism of smooth projective varieties such
that ¢ = ¢ - p: Z — X is a morphism. Then, v is generically finite. Thus, there
is a natural injection ¥*(wx,y) < wz/y. Hence, w*(w}’(/y) — wg/y for all n > 0.
Therefore,

WSL{/Y - ¢*(TP*(W?(/Y)) - 7/’*(Wg/y)~
Applying f, to the above injection, we have

f*(w?(/Y) - f*(d)*(wTZL/Y))



60 ATSUSHI MORIWAKI

Further, letting p be the natural projection p: T xY — Y,
f*(w*(wg/y)) = P*(N*(Wg/y)) = p*(ngy/y) = HO(Ta wr) @ Oy

Thus, f.(w/y)"" is a subsheaf of the free sheaf HO(T,w?) @ Oy.
Here we claim

(B.2.1) (q (f*(w;;/y)W) -Hd‘1> >0,

where H is an ample line bundle on Y and d = dimY. This is an immediate
consequence of weak positivity of f.(w )" due to Viehweg [9]. We can however
conclude our claim by a weaker result of Kawamata [3], namely deg(f«(w% y)) > 0
if dimY = 1. For, considering complete intersections by general members of |H™|
(m > 0), we may assume dimY = 1.

We can find a projection o : HO(T, wh)®;Oy — O;‘?T" such that r,, = rk f, (w}/y)vv
and the composition

Fulwyy)"Y = HO(T,w}) @) Oy — Op"™

vV is reflexive, the above homomorphism is

an isomorphism by (B.2.1). O

is injective. Therefore, since fi(w¥ y)

Let us go back to the proof of Proposition B.1. Let Homy (C, X) be a scheme con-
sisting of morphisms from C to X. Then, there is a morphism « : Homy (C, X) —
Homy (C, C) given by a(s) = f-s. We set Sec(f) = a~1(idg). Then, there is a
natural morphism ( : Sec(f) x C' — X given by ((s,y) = s(y). Since L is ample,

{A ] Aisasection of f: X — C with (L-A) < A}
is a bounded family, so that there are finitely many connected components

Sec(f)la R Sec(f)r

of Sec(f) such that, for all sections A with (L - A) < A, there is s € Sec(f); for
some ¢ with A = s(C). On the other hand, by Lemma B.2, Sec(f); x C — X is
not a dominant morphism for every 7. Thus, we get our proposition. O
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