KO -theory of flag manifolds
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1 Introduction

The purpose of this paper is to determine the KO*-groups of flag manifolds
which are the homogeneous spaces G(n)/T for G = U, Sp,SO and T is the
maximal torus of G(n). We compute it by making use of the Atiyah-Hirzebruch
spectral sequence and obtain the following.

Theorem . The KO- groups of G(n)/T for G = U, Sp,SO are as follows,
where s = n!/2,2" n! for G = U, Sp and s = 2™ 2m!, 2™ m! for G = SO
and n = 2m,2m + 1 respectively.
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2 The Atiyah-Hirzebruch spectral sequence

First we recall that the coefficient ring of KO -theory is that
KO* = Z[a,z, 3,67/ (2a, o®, ax, 2* — 46),

where |a| =1, |x| =4 and |5] = 8.

Let X be a finite CW-complex. The Atiyah-Hirzebruch spectral sequence
of KO*(X) is the spectral sequence with E5'? =~ HP(X; KO1) converging to
KO*(X). It is well known that the differential ds of the Atiyah-Hirzebruch
spectral sequence of KO*(X) is given by the following. (See [F])

S¢*m  q=0(8)
dy? =1 S¢° qg=-1(8)
0 otherwise,

where 79 is the modulo 2 reduction.

It is well known that G/T is a CW-complex with only even cells, where G is
a compact connected Lie group and T is the maximal torus of G. ([B]) The next
proposition, given in [HK1,2], is concerned with the Atiyah-Hirzebruch spectral
sequence of KO*(X) for the special X which can be G/T.

Proposition 2.1. Let X be a CW-complex whose cohomology is torsion free
and concentrated in even dimension, and E.(X) be the r-th term of the Atiyah-
Hirzebruch spectral sequence of KO*(X). Then we have the following.

1. v: EYY(X) = HP(H*(X;Z5); Sq*) for ¢ = —1 (8)
2. Let d, be the first non-trivial differential. (r > 3)
(a) r=2(8).
(b) There exists x € EP9(X) such that ax # 0 and ad,x # 0.
(c) If X admits a map pn: X x X — X which makes H*(H*(X; Z2); Sq*)

to be a Hopf algebra, then t(ax) is indecomposable and 1(d,x) is prim-
itive for the least p and x € EP°(X) in (b).



3 The S¢*-cohomology of flag manifolds

Recall that the cohomology of the flag manifold U(n)/T is
H*(U(n)/T;Z) 2 Z[xy, ... z5]/(c1, ..., Cn),

where |z;| = 2 and ¢; is the j-th elementary symmetric function in 1, --- , x,.
We determine the Sq?-cohomology of U(n)/T by the similar way of [HK1,
Proposition 2].

Proposition 3.1.
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where ys.—o and z are represented by Y, _ ;. @i a3t - Th
spectively.

Proof. Let R be a differential graded algebra (Zz[x1,...,zy],d) with |2;] = 2

and dz; = 27, and c¢; be the j-th elementary symmetric function in x1,..., .

Then we have
dcoi = 441 + c1C24, degip1 = C1C2i41,

where ¢; = 0 for j > n.

Let R; be the graded differential algebra R; = R/(c1) with the differential
induced from R. We construct the differential graded algebra Ry (k < n)
inductively by the following short exact sequences.

0 —Rop1 =% Ryp_1— Ro, — 0 (2k <n)
0 —Rop 2% Ryy —Rop1—0 (2k+1<n)
0—R, 1 R, q1—R, —0 (n is even)
It is obvious that R,, = (H*(U(n)/T;Zs),Sq?) as a differential graded algebra.
We have the following long exact sequences.
o H'(Rop_1) H(-corta) HiH2(Ry 1) — HIT+2(Ry,)

S H™2(Rypq) — -+ (2k < n)

oo H'(Roy) TE2) {4k Ry ) — HIT4 (Ryy )
2 H™*2(Ryy) — -+ (2k+1<n)
Inductively we obtain
H*(Rar) = \ (W6, y14, - - - Ysk—10, Cax)
H*(Rag41) = /\(yﬁ,ym, o Ysk—2),  OYsk—2 = Cop. (2k+ 1< n).



Then ygg_o is represented by
Z 2 2 2
xi1$i2xi3 ttt Z‘iZk
11 <...<12k

and this completes the case that n is odd.
When n is even we have the following exact sequence.

RN Hi(Rn_l) H(_CT;) Hi+2n(Rn_1) N Hi+2n(Rn) i) Hi+2(Rn—1) SN

Then we have

H*(R’ﬂ) = /\(yﬁay14a oo 7y8m71032)7 0z =1. (n = 2m)

Therefore z is represented by zoxs3 - x, = x?fl € R, and this completes the
proof. O

It is well known that

H*(Sp(n)/T;Z) = Zxy, ..., x,)/(c3,...,c2),
where |z;| = 2 and ¢; is the j-th elementary symmetric function in x4, ..., z,.

Proposition 3.2.
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Proof. Let Ry be the differential graded algebra Zs|[x1, ..., z,] with dz; = 22

5.
We construct the differential graded algebra Ry for £ < n inductively by the
following exact sequence.

Chiq
0—>Rki>Rk—>Rk+1—>0

It is obvious that R, is isomorphic to (H*(Sp(n)/T;Z2),Sq?) as differential
graded algebras. We have the following exact sequence.

. .2 . . .
AN Hz(kal) HL)“) H1+4k(Rk71) N Hz+4k(Rk) i HH_Q(R]C,l) .
Then we obtain inductively
H*(Rk) = /\(yQa Y6y - - ay4]€—2)7 6y4k:—2 =1

Therefore y45_o is represented by Zil<”_<ik xilez xfg e x?k and this completes

the proof. O



It is known that
H*(SO(2n +¢€)/U(n); Zz) = Aez, €4, . . ., €2(ntet1)), e%i = ey,

where € = 0,1, |e;| =4, e, = 0 for i > 2(n+¢e— 1) and A(es,...) is the Zy-
algebra whose Zy-module basis are e;, ---¢e;, (i1 < ... < z;,). ([KIJ,[T]) We

see the following by making use of the fibration U(n)/T % SO(2n + €)/T 2
SO(2n +¢€)/U(n).

H*(SO(2n +€)/T;Zo) = Zolxy, ..., xp]/(C1y. .. cn) @ Alez, €4, .., €2(ntet1))s

where Sq*esi_o = e4i, j* (1) = x; € H?*(U(n)/T;Zz2) and p*(e;) = e; €
HY(SO(2n +¢€)/T;Zs). ([KI],[T])

Proposition 3.3.

H*(H*(SO(2n + €)/T;Z); Sq°)

AWe, Y14 - - - Ysm—10,2) @ N(€G, €14y - - - €hm_10s [€am—2]) €=0,n=2m
~ /\(yﬁayl4~"y8m—107z)®/\(e%aell4?"'e/8mf2) €= 1an: 2m
AWe, Y14 - - ysm—2) ® \(eg, €145 - - - €5 —2) e=0,n=2m+1
Ao, Y14 - Ysm—2) @ A(eg, €14, - - €512, [Camt2]) e=1n=2m+1,
where Ygg—2, 2, €4, _o are represented by Zi1<___<i2k xilxiz e xik,x?_l, e4k—2€4k+

esk_o respectively.

Proof. We have the following isomorphism as differential graded algebras with
the differential Sq?.

H*(SO(2n + €)/T; Zo) = H*(U(n)/T; Zs) @ H*(SO(2n + €)/U(n); Zs)

By Proposition 3.1, we obtain H*(H*(U(n)/T;Z2); Sq*). Then we compute
H*(H*(SO(2n + €)/U(n); Z2); Sq°).
Let M; be the following module, where e}; , = €4;_2€4; + €gi—2.

/
M; = Zy(1, e4i—2, €44, €3;_»)

Then we see that M; is the differential graded submodule of H*(SO(2n +
€)/U(n); Zy) with the differential Sq?. We have the following isomorphisms
as differential graded modules with the differential Sq?.

Mi®...0 My—1 @ Aleam—2) €=0,n=2m
M ®...0 My, e=1,n=2m
M ®...0 M, e=0n=2m+1
M1®...®Mm®/\(64m+2) e=1ln=2m+1

H*(SO(2n+¢€)/U(n); Zs) =

Since H*(M;; Sq%) = Zo(1,]el; o)) and e}, ,° = Sq*(esi—sesi + €16i—6), the
proof is completed. O



4 Proof of Theorem

Let BT™ be the classifying space of an n-torus and p,, : BT" x BT"™ — BT?" be
the identity. We can set H*(BT?*",Z) & Z[z1,...,32,), H*(BT™ x BT™;,Z) =
Zzy,...,z,) Q@ Zlxpt,...,Tay,] and

*( ) ;, ®1 1 <n
xT;) =
Hn (T2 1®I1 1> n.

Then we have the following.

x 2 2 2
fn ( E Liy TiyTig xzk)
i1<...<ip<2n

_ 2 2 2 2 2
= E Ty Ty, oo XY, ®1+ E R R A
11<...<ip<n 11 < .. <lp—1 <N<iy
2 2 2 2
+ E TigTiy - Thp ®xik_la:ik + -

11< . <bp—2<nN<ip_1<ig

2 2 2 2
+ g Ty @@y, ... x5, + E 1®@x7, ... x5,

i1 <n<iz<. .. <ig n<ig <...<tp
— 2.2 2 2 2 2
= E Ty T, Th, Ty, © 1+ E Ty Ty, X5, Q]
11<...<1p,<n 11 <...<tp—1<n<ig
2 2 2
+ E Tiy Ly - Ly, DCyF e

11< . <bp—2<n<ip_1<ig

2 2 2 2
+ E Ty, ®cp_1 +1® E Xy T, Ty T

i1 <n<iz<...<ig n<ip<...<ig
where ¢; is the i-th elementary symmetric function in x,,41,...,22,. Then we
have the following for y, = 37, _  _; i ai,a; - @7, € H*(BT>;Z).
k—1
/‘?;o(yk):yk®1+1®yk+zykﬂ'®03 (%)
i=1

Let pug/r : G/T x G/T — G/T be the natural inclusion for G = U, Sp, SO,
then we have the following commutative diagram.

G/T x G/T —— BT x BT

Hc/Tl luoo

G/T —— BT

Note Proposition 3.1, 3.2 and (x), then we see that H*(H*(G/T;Zs); Sq?) is
a Hopf algebra by pug,r for G = U, Sp. Consider the following commutative



diagram, where f is the natural inclusion.

U/TxU/T —— SO/T x SO/T —— S0/U x SO/U

#U/Tl J{P‘SO/T ﬁl

v/r ——  SO/T ——  SO/U

Since SO/U is a Hopf space with the multiplication i and Proposition 3.3 holds,
we see that H*(H*(SO/T;Zs); Sq®) is a Hopf algebra by pso /7.

Proposition 4.1. H*(H*(G/T;Zs); Sq?) is a Hopf algebra by payr for G =
U, Sp, SO.

Lemma 4.1. E.(G/T) collapses at r = 3 for G = U, Sp, SO.

Proof. Let d, : E.(U/T) — E.(U/T) be the first non-trivial differential for r >
3, then we have r = 2 (8) by Proposition 2.1,2,(a). There exists z € EP°(U/T)
such that ¢(ax) is indecomposable, ¢(d,x) is primitive and ax # 0, ad,z # 0
by Proposition 2.1,2,(¢) and 4.1, where ¢ is as in Proposition 2.1,7. By [MM,
Proposition 4.23] and Proposition 3.1, ¢(ax) and ¢(d,z) have degree = —2 (8).
Then we have r = |u(d,x)| — |t(ax)| = 0 (8) and this contradicts to r = 2 (8).
By the same way we see that E,.(Sp/T) and E,.(SO/T) collapse at r =3. O

Consider the homomorphism E.(G/T) — E.(G(n)/T) induced from the
natural inclusion
G(n)/T — G/T,
for G = U, Sp, SO, then we obtain the following for » > 3 by Proposition
3.1, 3.2, 3.3 and Lemma 4.1, where we identify H*(H*(G(n)/T;Z2); Sq?) with
E5 ™' (G(n)/T) by Proposition 2.1,1.

Proposition 4.2. We have the following for r > 3.

drysr—2 = 0 Ysk—2 € EX"H(U(n)/T)
drYak—2 =0 Yak—2 € EX"1(Sp(n)/T)
drysk—2 = dreék—z =0 Ysk—2, eék—z € E:’il(SO(”)/T)

Proposition 4.3. We have the following for r > 3.

dregnya =0 Can42 € E:’_1(50(4n + 3)/T>
dy€4p_2=0 €4n—2 € E;f’*l(SO(éln)/T)

Proof. Consider the following projection.
p:SO(4n +3)/T — SO(4n +3)/SO(4n + 2) = §4"+2

Then we have p*(s) = eqnyo € H*(SO(4n + 3)/T;Zs), where s is a generator
of HAnH+2(§4n+2,7,) = Zy. Tt is easily seen that

B384 F2) = HY(H*(S*"42, Zy); S¢°) = /\([s])'



Since d,.([s]) = 0 (r > 3), we have d,.e4,, 12 = 0 (r > 3) for 4,12 € EF71(SO(4n+
3)/T).

Since it is shown in [HK2, Lemma 2.2] that d.e4,—2 = 0 (r > 3) for
ean—2 € EF7Y(SO(4n) JU(2n)), we have dresn_2 = 0 (r > 3) for €42 €
E»~1(SO(4n)/T) by considering the homomorphism E,.(SO(4n)/U(2n)) —
E.(SO(4n)/T) induced from the projection SO(4n)/T — SO(4n)/U(2n). O

Proposition 4.4. We have the following for r > 3.

dyz=0 z€ E.(SO(4n+¢€)/T) (e=0,1)
drz=0 z € E.(U2n)/T)

Proof. It is shown in [HK2, (2-6) and Theorem 2.5] that E,.(SO(4n+¢€)/SO(2) x
SO(4n + € — 2)) collapses at r = 3 and

A=) e=1,

where t = i*(s®1) € H?(SO(4n+¢)/SO(2) x SO(4n+e—2); Zs), s is a generator
of H*(BSO(2);Zs) = Zy and the map i is as in the following commutative
diagram.

E5 71 (S0(4n)/50(2) x SO(4n + € — 2)) = {/\([t%_l]’ San-2) €=0

SO(4n+¢)/T — BT

/| l

SO(n +¢)/90(2) x SO(n + € = 2) ——— BSO(2) x BSO(4n + ¢~ 2)

Then we have p*(t) = z1 € H*(SO(4n + €)/T;Zs3) and p*([t*"71]) = 2 €
E3 7' (SO(4n + €)/T) by Proposition 3.3. Since d,.([t>"~1]) = 0 (r > 3), we
have d,.z =0 (r > 3).

Consider the homomorphism j* : E.(SO(4n + €)/T) — E.(U(2n)/T) in-
duced from the following inclusion.

j:U@2n)/T — SO(4n+¢€)/T

Then we have j*(z) = z € Ey '(U(2n)/T) for z € Ey ' (SO(4n + €)/T).
Since d,.z = 0 (r > 3) for z € E.(SO(4n +¢€)/T), d.z = 0 (r > 3) for z €
E.(U(2n)/T). O

By Proposition 4.2, 4.3 and 4.4, we have the following.
Lemma 4.2. E.(G(n)/T) collapses at r = 3 for G = U, Sp, SO.



Proof of Theorem. Let X be a finite CW-complex such that H*(X;Z) is torsion
free and concentrated in even dimension. Consider the Bott sequence

= K"(X) - KO" (X)) — KO"™(X) % K" (X)) — -+

)

where ¢ : KO'(X) — K%(X) is the complexification map. Since rc = 2 for the
realization map r : K%(X) — KO*(X) and K*(X) is torsion free and concen-
trated in even dimension, we have the following. ([H])

KO* T (X) = sZy
KO*(X) =rZ® sZo,

rank KO°(X) =rank KO~ *(X)= Z rank H*(X; Z)
rank KO~2(X) =rank KO~ %(X) = rank H**2(X; Z)

?

Hence the extension of @ ERA(X) = @, E8+2-1 0 KO?~1(X) is

p+q=2t—1 "—o0
trivial.
It is well known that the Poincaré series of G(n)/T is as follows. ([KI])

(113 (1)
1-2). - (1-1)
(1—tY. (1= t')
1-2)-1-8)

1 (1=t (1 —t*™)
L+e2m (1—¢2)---(1—#2)
(1=t (1= t'm)
(1—t2)"'(1—t2)

P (G(n)/T) =

G =50,n=2m

G=50,n=2m+1

By substituting ¢t = 1,+/—1 with P,(G(n)/T) we have the following.

nl/2 G=U

2"~ Inl G =Sp

2" 2ml G =S80,n=2m
27" Im!l G=SO0,n=2m+1

ZrankH“(X; Z) = ZrankH“"'Q(X; Z) =

i i

By Proposition 2.1,7 and Lemma 4.2, we see that E* 1 (G(n)/T) = E3 ™ (G(n)/T)
~ H*(H*(G(n)/T;Z2); Sq?). Then the Poincaré series of EX~1(G(n)/T) are
as follows by Proposition 3.1, 3.2 and 3.3, where degrees are taken by .



P(ELTHG(n)/T))

(L+28) - (1457 10) (1 4 t4m—2) G=Un=2m
(1+ %)+ (1 +8m=2) G=Umn=2m+1
(14+¢2) - (1 t4n72) G =5Sp
= (T +¢5) - (14 8m=10)(1 4 ¢Am—2))2 G =S0,n=4m
(L4128 (14 8m=10)2(1 - ¢Am=2) (1 + 5 72) G =SO,n=4m + 1
(1 415) - (14 #8m=2))2 G=80,n=4m+2
(1415 (14 #3m72))2(1 + tAm—2) G=80,n=4m+3
By substituting ¢ = 1,/—1, eV~ 1"/4 with the Poincaré series above we com-
pletes the proof. O
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