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1 Introduction

The purpose of this paper is to determine the KO∗-groups of complex Stiefel
manifolds Vn,q which is q-frames in Cn. We compute it by using the Atiyah-
Hirzebruch spectral sequence of KO∗(Vn,q) and obtain the following.

Theorem . Let P (t) be the polynomial
n∏

i=n−q+1

(1+t2i−1), Q(t) be the following

and ak, bk be the sum of coefficients of t4i+k in P (t), t8i+k+1 in Q(t) respectively.

Q(t) =





(1 + t2(n−q)+1)(1 + t2n−1)
n−2∏

i=n−q+2

(1 + t4i) (n, q) = (2k, 2l)

(1 + t2(n−q)+1)
n−1∏

i=n−q+2

(1 + t4i) (n, q) = (2k + 1, 2l)

(1 + t2n−1)
n−2∏

i=n−q+1

(1 + t4i) (n, q) = (2k, 2l + 1)

n−1∏

i=n−q+1

(1 + t4i) (n, q) = (2k + 1, 2l + 1)

Then the KOi-groups of Vn,q is rZ⊕ sZ2 for (r, s) below.

i 0 −1 −2 −3

(r, s) (a0, b−7 + b0) (a−1, b−1 + b0) (a−2, b−1 + b−2) (a−3, b−3 + b−2)

i −4 −5 −6 −7

(r, s) (a0, b−3 + b−4) (a−1, b−5 + b−4) (a−2, b−5 + b−6) (a−3, b−7 + b−6)
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2 The Atiyah-Hirzebruch spectral sequence

First we recall that the coefficient ring of KO -theory is that

KO∗ = Z[α, x, β, β−1]/(2α, α3, αx, x2 − 4β),

where |α| = 1, |x| = 4 and |β| = 8.
Let X be a finite CW-complex. The Atiyah-Hirzebruch spectral sequence

of KO∗(X) is the spectral sequence with Ep,q
2

∼= Hp(X; KOq) converging to
KO∗(X). It is well known that the differential d2 of the Atiyah-Hirzebruch
spectral sequence of KO∗(X) is given by the following. (See [F])

d∗,q2 =





Sq2 π2 q ≡ 0 (8)
Sq2 q ≡ −1 (8)
0 otherwise,

where π2 is the modulo 2 reduction.
In this paper we compute the Atiyah-Hirzebruch spectral sequence of KO∗(X)

with X in two special classes of CW-complexes.
Let E be the class of CW-complexes with only even cells and O be the

one with only odd cells and 0-cells. The Atiyah-Hirzebruch spectral sequence of
KO∗(X) for X in E is considered in [H-K]. It is easily seen that [HK, Proposition
1] is valid for a CW-complex in O and we have the following.

Proposition 1. Let X be a finite CW-complex in either E or O and Er(X) be
the r-th term of the Atiyah-Hirzebruch spectral sequence of KO∗(X). Then we
have the following.

1. Ep,−1
3 (X) ∼= Hp(H∗(X;Z2); Sq2).

2. Let dr be the first non-trivial differential for r ≥ 3.

(a) r ≡ 2 (8).

(b) There exists x ∈ E∗,0
r (X) such that αx 6= 0 and αdrx 6= 0.

3 The Sq2-cohomology of Vn,q

It is well known that Vn,q ' U(n)/U(n− q) and

H∗(Vn,q;Z) ∼=
∧

(e2(n−q)+1, e2(n−q)+3, . . . , e2n−1),

where U(k) is the k-dimensional unitary group and |ei| = i. Since Sq2e4i−1 =
e4i+1 (4i + 1 ≤ 2n− 1), we have the following.

Proposition 2. H∗(H∗(Vn,q;Z2); Sq2) is the exterior algebra generated by the
elements in the table below.
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(n, q) = (2k, 2l) e2(n−q)+1, e2(n−q)+3e2(n−q)+5, . . . , e2n−5e2n−3, e2n−1

(n, q) = (2k + 1, 2l) e2(n−q)+1e2(n−q)+3, . . . , e2n−3e2n−1

(n, q) = (2k, 2l + 1) e2(n−q)+1e2(n−q)+3, . . . , e2n−5e2n−3, e2n−1

(n, q) = (2k + 1, 2l + 1) e2(n−q)+1, e2(n−q)+3e2(n−q)+5, . . . , e2n−3e2n−1

4 Collapse problem of Er(Vn,q)

Let Gq,k be the complex Grassmannian of k-planes in Cq which is the ho-
mogeneous space U(q)/U(k) × U(q − k). Let adk : U(k) → GL(k2,R) and
cank : U(k) → GL(2k,R) be the adjoint and the canonical representation. By
abuse of notation, adk⊕mcank denotes the real vector bundle associated to the
representation adk⊕mcank and the U(k)-principal bundle U(k) → Vq,k → Gq,k.

In [M] it is shown that there exists a stable homotopy equivalence as follows.

Vn,q '
s

q∨

k=1

G
adk⊕(n−q)cank

q,k , (∗)

where G
adk⊕(n−q)cank

q,k is the Thom space of the real vector bundle adk ⊕ (n −
q)cank on Gq,k. Then Er(Vn,q) splits into Er(G

adk⊕(n−q)cank

q,k ). Note that

G
adk⊕(n−q)cank

q,k is either in E or in O.

Proposition 3. Let E → Gq,k be a real vector bundle with w2(E) = 0 and
either k be even or q be odd. Then Er(GE

q,k) collapses at the third term.

Proof. By Thom isomorphism, we have

E2(GE
q,k) ∼= KO∗ ⊕ φEH∗(Gq,k; KO∗) ∼= KO∗ ⊕ φEE2(Gq,k),

where φE is the Thom class of E. Since d2φE = Sq2π2φE = w2(E)π2φE = 0,
we have

E3(GE
q,k) ∼= KO∗ ⊕ φEE3(Gq,k).

It is shown in [HK] that Er(Gq,k) collapses at the third term for any k, q and
H∗(H∗(Gq,k;Z2); Sq2) has only elements of 8i degree if k is even or q is odd.
Then we see drφE = 0 for r ≥ 3 by degree argument and Proposition 1,2,(a).
Therefore we obtain that dr = 0 for r ≥ 3 by Proposition 1,2,(b).

By the naturality of the Thom class, we have the following.

Corollary 1. Let E → Gq,k be a real vector bundle with w2(E) = 0, either
k be even or q be odd and ı : Gq−1,k → Gq,k be the natural inclusion. Then
Er(Gı∗E

q−1,k) collapses at the third term.
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Lemma 1. Er(Vn,q) collapses at the third term.

Proof. We show that the elements of E∗,−1
3 (Vn,q) ∼= H∗(H∗(Vn,q;Z2); Sq2) in

the table of Proposition 2 are permanent cycles.
It is easily seen that w2(cank) 6= 0 and

w2(adk)

{
6= 0 k is even
= 0 k is odd.

Since w2(adk⊕(n−q)cank) = w2(adk)+(n−q)w2(cank) and H2(Gq,k;Z2) ∼= Z2,
Er(G

adk⊕(n−q)cank

q,k ) collapses at r = 3 when n− q is even and k is odd, or, n− q

is odd and k is even by Proposition 3 and Corollary 1. Note that G
adk⊕(n−q)cank

q,k

is in E (resp. O) if k is even (resp. odd) and that E2l+1,∗
r (X) = 0 (E2l,∗

r (X) = 0)
if X is in E (resp. O), then we see that x ∈ E∗,−1

3 (Vn,q) is a permanent cycle
if n − q is even and |x| is odd, or, n − q is odd and |x| is even. Therefore
e2(n−q)+1 is a permanent cycle. We also see that e4i−1e4i+1 is permanent cycle
for any n, q by considering the homomorphisms E3(Vn,q) → E3(Vn,q+1) and
E3(Vn+1,q+1) → E3(Vn,q) induced by the natural projection Vn,q+1 → Vn,q and
the natural inclusion Vn,q → Vn+1,q+1. Note that we have the homomorphism
E3(S2n−1) → E3(Vn,q) induced from the projection Vn,q → Vn,1 = S2n−1, then
we see that e2n−1 is the permanent cycle.

5 Proof of Theorem

It is easily seen that Kn(X) is torsion free and concentrated in even (odd)
dimension, if X is in E (resp.O). Consider the Bott sequence

· · · → Kn(X) → KOn+2(X) → KOn+1(X) c→ Kn+1(X) → · · · ,

where c : KOi(X) → Ki(X) is the complexification map. Since rc = 2 we have
the following, where r : Ki(X) → KOi(X) is the realization map. (See [H].)

Proposition 4. If X is in E, we have

KO2i+1(X)∼= sZ2

KO2i(X) ∼= rZ⊕ sZ2.

If X is in O, we have

KO2i(X) ∼= sZ2

KO2i−1(X)∼= rZ⊕ sZ2.

Proof of Theorem. By Proposition 4 we have
⊕

p+q=2n−1

Ep,q
∞ (X) ∼=

⊕

i

E2n+8i,−1
∞ ∼= KO2n−1(X), for X in E

4



⊕
p+q=2n

Ep,q
∞ (X) ∼=

⊕

i

E2n+8i+1,−1
∞ ∼= KO2n(X), for X in O.

Note that the Thom space of a vector bundle on Gq,k as in the stable splitting
(∗) is either in E or O and that E2i−1,∗

r (X) = 0 (E2i,∗
r (X) = 0 for i > 0) if X

is in E (resp. O). Then we obtain that KOi(Vn,q) ∼= rZ ⊕ sZ2 for (r,s) below,
where sk =

∑
i rankH4i+k(Vn,q;Z), tk =

∑
i dimZ2 E8i+k+1,−1

∞ (Vn,q).

i 0 −1 −2 −3

(r, s) (s0, t−7 + t0) (s−1, t−1 + t0) (s−2, t−1 + t−2) (s−3, t−3 + t−2)

i −4 −5 −6 −7

(r, s) (s0, t−3 + t−4) (s−1, t−5 + t−4) (s−2, t−5 + t−6) (s−3, t−7 + t−6)

It is easily seen that the Poincaré series Pt(H∗(Vn,q;Z)) =
∑

i rankH∗(Vn,q;Z)ti,
Pt(E∗,−1

∞ (Vn,q)) =
∑

i dimZ2 Ei,−1
∞ (Vn,q)ti =

∑
i dimZ2 Hi(H∗(Vn,q;Z2); Sq2)ti

are P (t), Q(t) respectively by Proposition 2. Then we have ai = si, bi = ti and
complete the proof.
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