KO -theory of complex Stiefel manifolds

Daisuke KISHIMOTO, Akira KONO and Akihiro OHSHITA

1 Introduction

The purpose of this paper is to determine the KO^* -groups of complex Stiefel manifolds $V_{n,q}$ which is q-frames in \mathbb{C}^n . We compute it by using the Atiyah-Hirzebruch spectral sequence of $KO^*(V_{n,q})$ and obtain the following.

Theorem. Let P(t) be the polynomial $\prod_{i=n-q+1}^{n} (1+t^{2i-1})$, Q(t) be the following and a_k , b_k be the sum of coefficients of t^{4i+k} in P(t), t^{8i+k+1} in Q(t) respectively.

$$Q(t) = \begin{cases} (1+t^{2(n-q)+1})(1+t^{2n-1})\prod_{i=n-q+2}^{n-2}(1+t^{4i}) & (n,q) = (2k,2l) \\ (1+t^{2(n-q)+1})\prod_{i=n-q+2}^{n-1}(1+t^{4i}) & (n,q) = (2k+1,2l) \\ (1+t^{2n-1})\prod_{i=n-q+1}^{n-2}(1+t^{4i}) & (n,q) = (2k,2l+1) \\ \prod_{i=n-q+1}^{n-1}(1+t^{4i}) & (n,q) = (2k+1,2l+1) \end{cases}$$

Then the KO^i -groups of $V_{n,q}$ is $r\mathbf{Z} \oplus s\mathbf{Z}_2$ for (r, s) below.

i	0	-1	-2	-3
(r,s)	$(a_0, b_{-7} + b_0)$	$(a_{-1}, b_{-1} + b_0)$	$(a_{-2}, b_{-1} + b_{-2})$	$(a_{-3}, b_{-3} + b_{-2})$
i	-4	-5	-6	-7
(r,s)	$(a_0, b_{-3} + b_{-4})$	$(a_{-1}, b_{-5} + b_{-4})$	$(a_{-2}, b_{-5} + b_{-6})$	$(a_{-3}, b_{-7} + b_{-6})$

2 The Atiyah-Hirzebruch spectral sequence

First we recall that the coefficient ring of KO-theory is that

$$KO^* = \mathbf{Z}[\alpha, x, \beta, \beta^{-1}]/(2\alpha, \alpha^3, \alpha x, x^2 - 4\beta),$$

where $|\alpha| = 1$, |x| = 4 and $|\beta| = 8$.

Let X be a finite CW-complex. The Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ is the spectral sequence with $E_2^{p,q} \cong H^p(X; KO^q)$ converging to $KO^*(X)$. It is well known that the differential d_2 of the Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ is given by the following. (See [F])

$$d_2^{*,q} = \begin{cases} Sq^2 \, \pi_2 & q \equiv 0 \, (8) \\ Sq^2 & q \equiv -1 \, (8) \\ 0 & \text{otherwise,} \end{cases}$$

where π_2 is the modulo 2 reduction.

In this paper we compute the Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ with X in two special classes of CW-complexes.

Let \mathcal{E} be the class of CW-complexes with only even cells and \mathcal{O} be the one with only odd cells and 0-cells. The Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ for X in \mathcal{E} is considered in [H-K]. It is easily seen that [HK, Proposition 1] is valid for a CW-complex in \mathcal{O} and we have the following.

Proposition 1. Let X be a finite CW-complex in either \mathcal{E} or \mathcal{O} and $E_r(X)$ be the r-th term of the Atiyah-Hirzebruch spectral sequence of $KO^*(X)$. Then we have the following.

1.
$$E_3^{p,-1}(X) \cong H^p(H^*(X; \mathbf{Z}_2); Sq^2).$$

- 2. Let d_r be the first non-trivial differential for $r \geq 3$.
 - (a) $r \equiv 2$ (8).
 - (b) There exists $x \in E_r^{*,0}(X)$ such that $\alpha x \neq 0$ and $\alpha d_r x \neq 0$.

3 The Sq^2 -cohomology of $V_{n,q}$

It is well known that $V_{n,q} \simeq U(n)/U(n-q)$ and

$$H^*(V_{n,q}; \mathbf{Z}) \cong \bigwedge (e_{2(n-q)+1}, e_{2(n-q)+3}, \dots, e_{2n-1}),$$

where U(k) is the k-dimensional unitary group and $|e_i| = i$. Since $Sq^2e_{4i-1} = e_{4i+1}$ ($4i + 1 \le 2n - 1$), we have the following.

Proposition 2. $H^*(H^*(V_{n,q}; \mathbb{Z}_2); Sq^2)$ is the exterior algebra generated by the elements in the table below.

(n,q) = (2k,2l)	$e_{2(n-q)+1}, e_{2(n-q)+3}e_{2(n-q)+5}, \dots, e_{2n-5}e_{2n-3}, e_{2n-1}$
(n,q) = (2k+1,2l)	$e_{2(n-q)+1}e_{2(n-q)+3},\ldots,e_{2n-3}e_{2n-1}$
(n,q) = (2k, 2l+1)	$e_{2(n-q)+1}e_{2(n-q)+3},\ldots,e_{2n-5}e_{2n-3},e_{2n-1}$
(n,q) = (2k+1, 2l+1)	$e_{2(n-q)+1}, e_{2(n-q)+3}e_{2(n-q)+5}, \dots, e_{2n-3}e_{2n-1}$

4 Collapse problem of $E_r(V_{n,q})$

Let $G_{q,k}$ be the complex Grassmannian of k-planes in \mathbb{C}^q which is the homogeneous space $U(q)/U(k) \times U(q-k)$. Let $\mathrm{ad}_k : U(k) \to GL(k^2, \mathbb{R})$ and $\mathrm{can}_k : U(k) \to GL(2k, \mathbb{R})$ be the adjoint and the canonical representation. By abuse of notation, $\mathrm{ad}_k \oplus m\mathrm{can}_k$ denotes the real vector bundle associated to the representation $\mathrm{ad}_k \oplus m\mathrm{can}_k$ and the U(k)-principal bundle $U(k) \to V_{q,k} \to G_{q,k}$.

In [M] it is shown that there exists a stable homotopy equivalence as follows.

$$V_{n,q} \simeq \bigvee_{k=1}^{q} G_{q,k}^{\mathrm{ad}_k \oplus (n-q)\mathrm{can}_k}, \qquad (*)$$

where $G_{q,k}^{\mathrm{ad}_k \oplus (n-q)\mathrm{can}_k}$ is the Thom space of the real vector bundle $\mathrm{ad}_k \oplus (n-q)\mathrm{can}_k$ on $G_{q,k}$. Then $E_r(V_{n,q})$ splits into $E_r(G_{q,k}^{\mathrm{ad}_k \oplus (n-q)\mathrm{can}_k})$. Note that $G_{q,k}^{\mathrm{ad}_k \oplus (n-q)\mathrm{can}_k}$ is either in \mathcal{E} or in \mathcal{O} .

Proposition 3. Let $E \to G_{q,k}$ be a real vector bundle with $w_2(E) = 0$ and either k be even or q be odd. Then $E_r(G_{q,k}^E)$ collapses at the third term.

Proof. By Thom isomorphism, we have

$$E_2(G_{q,k}^E) \cong KO^* \oplus \phi_E H^*(G_{q,k}; KO^*) \cong KO^* \oplus \phi_E E_2(G_{q,k}),$$

where ϕ_E is the Thom class of *E*. Since $d_2\phi_E = Sq^2\pi_2\phi_E = w_2(E)\pi_2\phi_E = 0$, we have

$$E_3(G_{q,k}^E) \cong KO^* \oplus \phi_E E_3(G_{q,k}).$$

It is shown in [HK] that $E_r(G_{q,k})$ collapses at the third term for any k, q and $H^*(H^*(G_{q,k}; \mathbb{Z}_2); Sq^2)$ has only elements of 8i degree if k is even or q is odd. Then we see $d_r\phi_E = 0$ for $r \geq 3$ by degree argument and Proposition 1, 2, (a). Therefore we obtain that $d_r = 0$ for $r \geq 3$ by Proposition 1, 2, (b).

By the naturality of the Thom class, we have the following.

Corollary 1. Let $E \to G_{q,k}$ be a real vector bundle with $w_2(E) = 0$, either k be even or q be odd and $i : G_{q-1,k} \to G_{q,k}$ be the natural inclusion. Then $E_r(G_{q-1,k}^{i^*E})$ collapses at the third term.

Lemma 1. $E_r(V_{n,q})$ collapses at the third term.

Proof. We show that the elements of $E_3^{*,-1}(V_{n,q}) \cong H^*(H^*(V_{n,q}; \mathbb{Z}_2); Sq^2)$ in the table of Proposition 2 are permanent cycles.

It is easily seen that $w_2(\operatorname{can}_k) \neq 0$ and

$$w_2(\mathrm{ad}_k) \begin{cases} \neq 0 & k \text{ is even} \\ = 0 & k \text{ is odd.} \end{cases}$$

Since $w_2(\mathrm{ad}_k \oplus (n-q)\mathrm{can}_k) = w_2(\mathrm{ad}_k) + (n-q)w_2(\mathrm{can}_k)$ and $H^2(G_{q,k}; \mathbb{Z}_2) \cong \mathbb{Z}_2$, $E_r(G_{q,k}^{\mathrm{ad}_k \oplus (n-q)\mathrm{can}_k})$ collapses at r = 3 when n-q is even and k is odd, or, n-qis odd and k is even by Proposition 3 and Corollary 1. Note that $G_{q,k}^{\mathrm{ad}_k \oplus (n-q)\mathrm{can}_k}$ is in \mathcal{E} (resp. \mathcal{O}) if k is even (resp. odd) and that $E_r^{2l+1,*}(X) = 0$ ($E_r^{2l,*}(X) = 0$) if X is in \mathcal{E} (resp. \mathcal{O}), then we see that $x \in E_3^{*,-1}(V_{n,q})$ is a permanent cycle if n-q is even and |x| is odd, or, n-q is odd and |x| is even. Therefore $e_{2(n-q)+1}$ is a permanent cycle. We also see that $e_{4i-1}e_{4i+1}$ is permanent cycle for any n, q by considering the homomorphisms $E_3(V_{n,q}) \to E_3(V_{n,q+1})$ and $E_3(V_{n+1,q+1}) \to E_3(V_{n,q})$ induced by the natural projection $V_{n,q+1} \to V_{n,q}$ and the natural inclusion $V_{n,q} \to V_{n+1,q+1}$. Note that we have the homomorphism $E_3(S^{2n-1}) \to E_3(V_{n,q})$ induced from the projection $V_{n,q} \to V_{n,1} = S^{2n-1}$, then we see that e_{2n-1} is the permanent cycle. \Box

5 Proof of Theorem

It is easily seen that $K^n(X)$ is torsion free and concentrated in even (odd) dimension, if X is in \mathcal{E} (resp. \mathcal{O}). Consider the Bott sequence

$$\cdots \to K^n(X) \to KO^{n+2}(X) \to KO^{n+1}(X) \xrightarrow{\mathbf{c}} K^{n+1}(X) \to \cdots,$$

where $\mathbf{c}: KO^i(X) \to K^i(X)$ is the complexification map. Since $\mathbf{rc} = 2$ we have the following, where $\mathbf{r}: K^i(X) \to KO^i(X)$ is the realization map. (See [H].)

Proposition 4. If X is in \mathcal{E} , we have

$$KO^{2i+1}(X) \cong s\mathbf{Z}_2$$
$$KO^{2i}(X) \cong r\mathbf{Z} \oplus s\mathbf{Z}_2.$$

If X is in \mathcal{O} , we have

$$KO^{2i}(X) \cong s\mathbf{Z}_2$$
$$KO^{2i-1}(X) \cong r\mathbf{Z} \oplus s\mathbf{Z}_2.$$

Proof of Theorem. By Proposition 4 we have

$$\bigoplus_{p+q=2n-1} E^{p,q}_{\infty}(X) \cong \bigoplus_{i} E^{2n+8i,-1}_{\infty} \cong KO^{2n-1}(X), \text{ for } X \text{ in } \mathcal{E}$$

$$\bigoplus_{+q=2n} E^{p,q}_{\infty}(X) \cong \bigoplus_{i} E^{2n+8i+1,-1}_{\infty} \cong KO^{2n}(X), \text{ for } X \text{ in } \mathcal{O}.$$

Note that the Thom space of a vector bundle on $G_{q,k}$ as in the stable splitting (*) is either in \mathcal{E} or \mathcal{O} and that $E_r^{2i-1,*}(X) = 0$ ($E_r^{2i,*}(X) = 0$ for i > 0) if X is in \mathcal{E} (resp. \mathcal{O}). Then we obtain that $KO^i(V_{n,q}) \cong r\mathbf{Z} \oplus s\mathbf{Z}_2$ for (r,s) below, where $s_k = \sum_i \operatorname{rank} H^{4i+k}(V_{n,q}; \mathbf{Z}), t_k = \sum_i \dim_{\mathbf{Z}_2} E_{\infty}^{8i+k+1,-1}(V_{n,q})$.

i	0	-1	-2	-3
(r,s)	$(s_0, t_{-7} + t_0)$	$(s_{-1}, t_{-1} + t_0)$	$(s_{-2}, t_{-1} + t_{-2})$	$(s_{-3}, t_{-3} + t_{-2})$
i	-4	-5	-6	-7
(r,s)	$(s_0, t_{-3} + t_{-4})$	$(s_{-1}, t_{-5} + t_{-4})$	$(s_{-2}, t_{-5} + t_{-6})$	$(s_{-3}, t_{-7} + t_{-6})$

It is easily seen that the Poincaré series $P_t(H^*(V_{n,q}; \mathbf{Z})) = \sum_i \operatorname{rank} H^*(V_{n,q}; \mathbf{Z})t^i$, $P_t(E_{\infty}^{*,-1}(V_{n,q})) = \sum_i \dim_{\mathbf{Z}_2} E_{\infty}^{i,-1}(V_{n,q})t^i = \sum_i \dim_{\mathbf{Z}_2} H^i(H^*(V_{n,q}; \mathbf{Z}_2); Sq^2)t^i$ are P(t), Q(t) respectively by Proposition 2. Then we have $a_i = s_i, b_i = t_i$ and complete the proof.

References

p

- [F] M. Fujii, KO-groups of projective spaces, Osaka J. Math., 4 (1967), 141-49.
- [HK] S. Hara and A. Kono, KO-theory of complex Grassmannians, J. Math. Kyoto Univ., 31 (1991), 827-33.
- [H] S.G. Hogger, On KO theory of Grassmannians, Quart. J. Math. Oxford (2), 20 (1969), 447-63.
- [M] H. Miller, Stable splitting of Stiefel manifolds, Topology, 24 (1985), 411-19.

Department of Mathematics, Kyoto University Department of Mathematics, Kyoto University Osaka University of Economics