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1 Introduction

The purpose of this paper is to determine the KO*-groups of complex Stiefel
manifolds V;, ; which is g-frames in C™. We compute it by using the Atiyah-
Hirzebruch spectral sequence of KO*(V,, ;) and obtain the following.
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Theorem . Let P(t) be the polynomial H (1+t%71), Q(t) be the following
i=n—q+1
and ay, by be the sum of coefficients of tY+F in P(t), t5"F*+1 in Q(t) respectively.
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Then the KO"-groups of V,, 4 is rZ & sZy for (r,s) below.
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(rys) | (ao,b_7+0bo) | (a—1,b_1+0bo) | (a—2,b_1+b_2) | (a—3,b_3+b_2)
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(r,8) | (ag,b—3+b_4) | (a—1,b_5+b_4) | (a—2,b_5+b_) | (a_3,b_7+b_¢)




2 The Atiyah-Hirzebruch spectral sequence
First we recall that the coefficient ring of KO -theory is that
KO* = Z[o, z, 3, 7'/ (20, o3, ax, 2* — 40),

where |a| =1, |z| =4 and |§] = 8.

Let X be a finite CW-complex. The Atiyah-Hirzebruch spectral sequence
of KO*(X) is the spectral sequence with EY'? =~ HP(X; KO1) converging to
KO*(X). It is well known that the differential ds of the Atiyah-Hirzebruch
spectral sequence of KO*(X) is given by the following. (See [F])

S¢*m  q=0(8)
dy? = q S¢? qg=-1(8)
0 otherwise,
where 79 is the modulo 2 reduction.
In this paper we compute the Atiyah-Hirzebruch spectral sequence of KO*(X)
with X in two special classes of CW-complexes.
Let £ be the class of CW-complexes with only even cells and O be the
one with only odd cells and 0-cells. The Atiyah-Hirzebruch spectral sequence of

KO*(X) for X in € is considered in [H-K]. It is easily seen that [HK, Proposition
1] is valid for a CW-complex in O and we have the following.

Proposition 1. Let X be a finite CW-complez in either £ or O and E,.(X) be
the r-th term of the Atiyah-Hirzebruch spectral sequence of KO*(X). Then we
have the following.

1. By TH(X) = HP(H(X; Z2); 5¢°).
2. Let d,. be the first non-trivial differential for r > 3.
(a) =2 (8).
(b) There erists v € EX°(X) such that ax # 0 and ad,z # 0.
3 The S¢*-cohomology of V,,

It is well known that V,, , ~ U(n)/U(n — q) and

H*(Vn,q; Z) = /\(62(n7q)+17 €2(n—q)+37- - > €2n—1)a

where U (k) is the k-dimensional unitary group and |e;| = i. Since Sq®eq;—1 =
eqgit1 (40 +1 < 2n —1), we have the following.

Proposition 2. H*(H*(V,.4;Z2); Sq?) is the exterior algebra generated by the
elements in the table below.



(n,q) = (2k,20) €2(n—q)+15 €2(n—q)+3€2(n—q)+51 - -  €2n—5€2n—3, €2n—1
(n,q) = (2k + 1,2I) €2(n—q)+1€2(n—q)+3» - - - €2n—3€2n—1
(n,q) = (2k,21+ 1) €2(n—q)+1€2(n—q)+3 - - - » €2n—5€2n—3, €2n—1
(n,q) = (2k+1,2141) | €2(n—q)+1,€2(n—q)+3€2(n—q)+5> - - - » €2n—3€2n—1

4 Collapse problem of E,.(V,,)

Let G4 be the complex Grassmannian of k-planes in C¢ which is the ho-
mogeneous space U(q)/U(k) x U(q — k). Let ady : U(k) — GL(k*,R) and
canyg : U(k) — GL(2k,R) be the adjoint and the canonical representation. By
abuse of notation, ady @ mcany denotes the real vector bundle associated to the
representation ady @mcany and the U (k)-principal bundle U (k) — Vg — Gg-

In [M] it is shown that there exists a stable homotopy equivalence as follows.

q
N adk®(n—q)cany
Vi s \/ Gk ) (%)
k=1

where szkk@(n_q)can’“ is the Thom space of the real vector bundle ady & (n —
g)cang on Ggr. Then E.(V,,) splits into ET(GE?;®(n7q)Cank). Note that

dp®(n—gq)cany . . . )
GZ k’“e)(n Deank 4o oither in & or in O.

Proposition 3. Let E — G, be a real vector bundle with wo(E) = 0 and
either k be even or q be odd. Then E,.(ng) collapses at the third term.

Proof. By Thom isomorphism, we have
Ey(GYy) 2 KO* ® ¢pH* (Gai; KO*) 2 KO* @ ¢pEs(Gq),

where ¢g is the Thom class of E. Since do¢p = S¢*ma¢p = we(E)m¢r = 0,
we have

E3(GYy) 2 KO* ® ¢pFs(Gyx).
It is shown in [HK] that E,(Gg) collapses at the third term for any k,q and
H*(H*(Gq.1; Z2); Sq®) has only elements of 8i degree if k is even or ¢ is odd.

Then we see d,.¢p = 0 for » > 3 by degree argument and Proposition 1,2, (a).
Therefore we obtain that d,. = 0 for > 3 by Proposition 1,2, (b). O

By the naturality of the Thom class, we have the following.

Corollary 1. Let E — Gy be a real vector bundle with weo(E) = 0, either
k be even or q be odd and v : Gy_1 — Ggqr be the natural inclusion. Then
E.( ;fjlk) collapses at the third term.



Lemma 1. E.(V,,,) collapses at the third term.

Proof. We show that the elements of Ey ™" (V;, ) & H*(H*(Vy.q; Z2); S¢°) in
the table of Proposition 2 are permanent cycles.
It is easily seen that we(cang) # 0 and

#0 kiseven

wz(adk) {: 0 kis odd

Since wa(adg ®(n—q)cany) = we(ady)+(n—q)wa(cany) and H%(Gx; Zo) = Zo,

ET(GZd,f®("7q)Cank) collapses at r = 3 when n — ¢ is even and k is odd, or, n —q

is odd and k is even by Proposition 3 and Corollary 1. Note that GZ?,:GB(n*qkank
is in &€ (resp. O) if k is even (resp. odd) and that E2T1*(X) = 0 (E24*(X) = 0)
if X is in & (resp. ©), then we see that = € E;~'(V,,) is a permanent cycle
if n — ¢ is even and |z| is odd, or, n — ¢ is odd and |z| is even. Therefore
€2(n—q)+1 15 a permanent cycle. We also see that ey;_1€4;11 is permanent cycle
for any n,q by considering the homomorphisms E3(V;, 4) — E3(V, 4+1) and
Es3(Vt1,q+1) — E3(V,,4) induced by the natural projection V;, 441 — V,, 4 and
the natural inclusion V,, ; — V41 4+1. Note that we have the homomorphism
E3(S%"1) — E3(V,,4) induced from the projection V;, , — V,,.1 = S?"71, then
we see that eo, 1 is the permanent cycle. O

5 Proof of Theorem

It is easily seen that K™(X) is torsion free and concentrated in even (odd)
dimension, if X is in £ (resp.0). Cousider the Bott sequence

N K”(X) N KOTH-Q(X) N K0n+1(X) <, Kn+1(X) e

where ¢ : KO*(X) — K*(X) is the complexification map. Since rc = 2 we have
the following, where r : K*(X) — KO(X) is the realization map. (See [H].)

Proposition 4. If X is in £, we have

KO* (X)) sZy
KO*(X) =rZ o sZs.

If X is in O, we have

KO*(X) =sZy
KO* Y X)2rZ & sZ,.

Proof of Theorem. By Proposition 4 we have

P Erx)=@ErH 2 KO (X)), for X in £
p+qg=2n—1 7



P Erx)=@ELET 2 KO (X), for X in O.
p+g=2n i

Note that the Thom space of a vector bundle on Gy , as in the stable splitting
(x) is either in & or O and that E?~1*(X) = 0 (E**(X) = 0 for i > 0) if X
is in € (resp. O). Then we obtain that KO(V,, ,) & rZ & sZs for (r,s) below,
where s = >, rankHYE(V,, s Z), 1), = Y, dimg, ESTTATL=L(Y, ).

1 0 -1 -2 -3

(7‘, S) (So,t_7 +t0) (S_l,t_l +t0) (S_Q,t_l +t_2) (S_g,t_g +t_2)

1 —4 -5 —6 —7

(rys) | (sost—s+t_a) | (s—1,t—5+t_q) | (5—2,t_5+1t_¢) | (S_3,t—7+t_p)

It is easily seen that the Poincaré series Py (H* (V43 Z)) = >, rankH*(V,, o; Z)t',
PUEL " (Vo)) = X dimz, B (Vo g)t' = 32, dimz, H'(H* (Vg Z2); S°)t*
are P(t),Q(t) respectively by Proposition 2. Then we have a; = s;,b; = t; and
complete the proof. O
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