THE Q-PICARD GROUP OF THE MODULI SPACE OF CURVES
IN POSITIVE CHARACTERISTIC

ATSUSHI MORIWAKI

ABSTRACT. Inthisnote, we prove that the Q-Picard group of the moduli space of n-pointed stable
curves of genus g over an algebraically closed field is generated by the tautological classes. We also
prove that the cycle map to the 2nd étale cohomology group is bijective.

INTRODUCTION

Let k£ be an algebraically closed field, ¢ and n non-negative integers with 2g — 2 +n > 0, and
M,,, (resp. M,,) the moduli space of n-pointed stable (resp. smooth) curves of genus g over k.
We denote by Pic(M,,,)q the Q-Picard group of M, ,; that is, Pic(M,,)q = Pic(M,,) ® Q.
Let \ be the Hodge class, v, . . . , 1, the classes of Q-line bundles given by the pull-back of the
relative dualizing sheaf of the universal curve over M/ s INterms of n sections, and {0, }:c7 the

boundary classesin Pic(M )¢ (for details, see 881.6). These classes
N1,y and st € T)

are called the tautological classes &fic(M ). It iswell known (due to Harer) that Pic(M ,,.)g
isgenerated by the tautological classesif the characteristic of k iszero (see Arbarello-Cornalba[1]
for its proof by means of algebraic geometry). In this note, we would like to show that this still
holds even if the characteristic of k is positive. Namely, we have the following.

Theorem (cf. Theorem 5.1). Pic(M,,)o iS generated by the tautological classes
N, andé’s (e T)
for any algebraically closed field. Moreover, the cycle map
PiC(Mg,N) ®Q, — Hth(Mg,nv Qr)

is bijective for every primé invertible ink.

We prove the above theorem by using modulo p reduction. The outline of the proof is as fol-
lows: Let M, , be the algebraic stack classifying n-pointed stable curves of genus g. We com-
pare the 2nd étale cohomology group HZ, (M,..(k),Q,) over k with the 2nd cohomology group

H*(M,,(C),Q) of the analytic space M, ,,(C) via a smooth Galois covering of M, ,, in terms
of aTeichmller level structure due to L ooijenga-Pikaart-de Jong-Boggi; namely,

dimg, H% (Mg (k), Q) < dimg H*(M,,(C), Q).

Moreover, using the simple connectedness of the moduli space of curves with alevel m > 3 (due
to Boggi-Pikaart), we see that the cycle map

PiC(Mg,n(k)) ®Qp — Hegt(/\;lgm(k)v Q)
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is injective. In this way, we obtain our theorem together with the linear independence of the
tautological classes.

After writing this note, Prof. Keel informed me that Prof. de Jong had the same idea for the
proof of the above theorem.

1. NOTATIONS AND CONVENTIONS

1.1. For afinite set S, we denote the number of it by |S|.

1.2. If agroup G actson acertain kind of a mathematical object, the induced automorphism by
g € G isdenoted by [g].

1.3. Let X be aproper algebraic space over an algebraically closed field k. Let L; and L, be
line bundleson X. We say L, isnumerically equivalento L,, denoted by L, = Lo, if (L, - C) =
(Lo - C) for al curves C' on X. The group Pic(X') modulo the numerical equivalence, denoted by
NS”(X), iscaled the numerical Néron-Severi group &f. Moreover, we denote NS”(X) ® Q by
NS”(X)q.

1.4. Let X bean algebraic scheme over an algebraically closed field k. We define the Q-Picard
group Pic(X)g of X to be Pic(X)g = Pic(X) ® Q. For Ly, L, € Pic(X), wesay L, isal-
gebraically equivalento L,, denoted by L ~, Lo, if there are a connected and smooth alge-
braic scheme T" over k, alinebundle L on T x X and t,,t, € T such that L‘]{tl}xX ~ [, and
Ll xx = L2. The Néron-Severi group NS(X) of X is defined by Pic(X') modulo the alge-
braic equivalence. In other words, NS(X) = Picx(k)/(Pic%)..a(k), where Picy is the Picard
scheme of X and Pic}; isthe connected component containing 0. The group NS(X) ® Q, denoted
by NS(X)q, is caled the Q-Néron-Severi group oK. We assume that X is projective over k.
It is not difficult to see that Ly ~g, Lo implies L; = L,, so that we have the natural surjec-
tive homomorphism NS(X) — NS”(X). It iswell known (due to Matsusaka) that the kernel of
NS(X) — NS”(X) isafinitegroup. Thus, we can identify NS(.X ) with NS”(X)q.

1.5. In this note, an agebraic stack aways means a separated algebraic stack over a locally
noetherian scheme in the sense of Deligne-Mumford. Let X be a algebraic stack over a locally
noetherian scheme S. For an algebraically closed field L and a morphism Spec(L) — S, the
coarse moduli space of X xg Spec(L) isdenoted by X, (cf. [4, Chapter |, Theorem 4.10] and [9,
Corollary 1.3]).

1.6. Let g andn be non-negativeintegerswith 2g —2+n > 0, and M, ,, (resp. M ,,,) the moduli
space of n-pointed stable (resp. smooth) curves of genus g over an algebraically closed field.
Roughly speaking, the Q-line bundles A and vy, . .. , ¢, on M, are defined as follows. Let  :
Mgy ,1 — M, betheuniversa curveof M, ,,,and s, ... ,s,: M,, — M, thesectionsof 7
arising from the n-points of M. Then, A = det(m.(wir, ., /i1,.,.)) @AV = 53 (wWir, o/ i1,.0)
fori =1,...,n. Here we set

[n] ={1,...,n} (notethat[0] = 0),
Yon=A{01)]i€Z 0<i<gandlC [n]}\{(0,0),(0,{1}),...,(0,{n})},
Yoo = {60 G, N} (6, 1), (5, J) € Tgnyitj=g,INT=0,TUJ=[n]}.
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The boundary A = M, \ M, hasthe following irreducible decomposition:

A=Ay U U A0,G.0)}-
{(ivl)v(‘ﬁj)}eTg,"

A genera point of A, represents an n-pointed irreducible stable curve with one node. A generd
point of A(; 1.¢;,7)) represents an n-pointed stable curve consisting of an |I|-pointed smooth curve
(4 of genus i and a |.J|-pointed smooth curve C; of genus j meeting transversally at one point,
where |I|-points on C (resp. |J|-points on Cs) arise from {s;}er (resp. {s;}ies). Let 4, and
(i, .0y betheclassesof A, and Ay, 1), ¢,y iNPic(M ) respectively. For our convenience,
we denote { (i, I), (¢ — i, [n| \ 1)} by [z, I]. Moreover, we set

Tyn = Ton U0, {1}],- - . 0, {n}]}
and (5[0,{1-}} = —; fori=1,... n.

2. COMPARISON OF COHOMOLOGY GROUPS

In this section, we would like to show the following theorem, which is crucial for our note.

Theorem 2.1. Let R be a discrete valuation ring witlk C C, and X a proper algebraic stack
over R (see881.5 for assumptions of stacks in this npt#/e assume that there &ti¢ a finite group

G, (ii) a smooth, proper and pure dimensional schémever R, and (iii) a surjective morphism
7Y — X over R with the following properties:

(@ G actsonY overX,i.e.,m-[g]=nforall g € G.

(b) X(C) ~ Y (C)/G as analytic spaces.
LetSpec(k) — Spec(R) be a geometric point dpec(R) (i.e., k is an algebraically closed fie)d
and X, the coarse moduli space of xg,c.(r) Spec(k). If X, is a normal algebraic scheme over
k, then

dlng Hét(Xk, Qg) S dlmQ HZ(X(C), @)
for every non-negative integeland every primée invertible ink.
Proof. 'We need two lemmas for the proof of the above theorem.

Lemma22. Letf:Y — X be afinite surjective morphism of normal noetherian schemes. Then,
the natural homomorphism

F* o Hoy(X, Qo) — Hey (Y, Q)
is injective for every non-negative integesind every prime invertible in H°(X, Ox).
Proof. Clearly, we may assumethat X and Y are connected. Here we claim the following.
Claim 2.2.1. For every abelian group\, there is a homomorphism
pr(A) : fi(Ay) — Ax

with the following properties:
(i) pr(A) - f* =deg(f)id, wheref* : Ay — f.(Ay) is the natural injective homomorphism.
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(ii) Letyp : A’ — A be a homomorphism of abelian groups. Then, the following diagram is
commutative.

pr(A)

fAy) —— Ay

! l

pf(A)

fo(Ay) —— Ax
Let K’ and K be the function fields of Y and X respectively. First, we assume that K’ is
separable over K. Let K" bethe Galois closure of K’ over K, and G the Galois group of K"/ K.
Moreover, let Y bethe normalization of Y in K, g : Y — Y theinduced morphism,and f : ¥ %

v L X the composition of morphisms g and f. We denoteby (K’/K)(K") the set of embeddings
of K’ into K" over K; that is,

(K'/K)(K")={o: K'— K"| 0|, =1id}.

For each o € (K'/K)(K"), thereisamorphisms : ¥ — Y over X such that the induced map
of function fields is o. Here let us consider a homomorphism o' : f.(Ay) — f.(Ay) given by
P(T) =2 ek /iy 0 (). 1tis easy to see that

Im(p) € fu(Ag)“.
Moreover, since GG actstransitively on thefibers of Y — X, we can see
Fo(Ap)S CIm(f* 2 Ax — fu(Ag)).
Thus o’ givesrise to a homomorphism
pr(A) = fu(Ay) — Ax.

Next, let us consider a general case. Let K; be the separable closure of K in K’, and Y; the
normalization of X in K;. Then, there are finite morphismsg : ¥ — Yiand h : Y7 — X
with f = h - g. Since g is purely inseparable, Ay, — g.(Ay). Thus, h.(Ay,) = f.(Ay). Let
pa(h) @ he(Ay,) — Ax beahomomorphism as above. Then, p,(f) isgiven by deg(g)pa(h).

The properties (i) and (ii) are obvious by our construction.

L et usgo back to the proof of our lemma. Since f isfinite, H (Y., Z/{™7Z) = H (X, f«(Z/("Z)).
Thus, by the above claim, we have a homomorphism o,,, : H (Y., Z/("Z) — H (X, Z/(™7Z)
such that o,,, - f* = deg(f)id. Here the following diagram is commutative by the property (ii):

Hi(Yy, 2)0" 7)) 222 H(Xy, 7)0M 7))

l !

Hi (Y, Z)0"Z) -2  HY(X,, 7/I"T)

Thus, wehave o : H',(Y,Q,) — H',(X, Q) with o - f* = deg(f) id. Therefore, f* isinjective.
O

Lemma2.3. LetY be a complex manifold, ar@ a finite group acting ory” holomorphically. Let
X be the quotient analytic spadé/G of Y by the action of7, andw : Y — X the canonical
morphism. Let\ be an abelian group such th&®|id, : A — A is bijective. Letr* : H (X, A) —
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H(Y,A) be the natural homomorphism of tih cohomology groups. Then? is injective and
its image is theG-invariant part H(Y, A)“ of H(Y, A).
Proof. By abuse of notation, let 7* : Ax — m.(Ay) be the natural homomorphism. In the
sameway asin Lemma 2.2, if wedefinep : m.(Ay) — Ax tobe
w(p(a) = ) _[g] (),
geG

then p - 7* = |G|id. Thus, there is a homomorphism ¢ : H'(Y,A) — H'(X,A) with o - 7* =
|G| id. In particular, 7* isinjective. Clearly, 7*(H'(X,A)) C H(Y,A)¢. Notethat 7*(o(¢)) =
> eclal*(9) for ¢ € HU(Y,A). Thus, if ¢ € H'(Y,A)9, then 7(o(¢)) = |G|¢. Here |G|id,
A — Aisbijective. Therefore, ¢ = 7*(0(¢)/|G|). O

Let us start the proof of Theorem 2.1. Let 77 be the geometric generic point of Spec(R), and ¢
the geometric closed point of Spec(R). Here we consider two cases:

(i) Theimage of Spec(k) — Spec(R) isthe generic point.
(i) Theimage of Spec(k) — Spec(R) isthe closed point.

In the first case, by the proper base change theorem (cf. [5, Chapter |, Theorem 6.1]),
Hét(kaQZ) = Hét(yﬁa(@ﬁ)-

Here, by virtue of Lemma 2.2, the natural homomorphism H:, (X, Q) — H:, (Y, Q) isinjective
and itsimageis contained in H, (Y}, Q,)¢ because the action of G is given over X.. Thus,

dimg, H,(Xy, Q) < dimg, H,(Yy, Q)¢ = dimg, H,,(Y7, Q).

Further, by the proper base change theorem, the comparison theorem (cf. [5, Chapter |, Theo-
rem 11.6]) and Lemma 2.3,

dimg, HZ,(Yy, Q)% = dimg, HZ,(Ye, Q)¢ = dimg, H (Y (C), Q,)“
= dimg, H'(X(C), Q) = dimg H'(X(C), Q).
Therefore, we get our assertion.
In the second case, by using the proper base change theorem and Lemma 2.2 as before, we have
dimg, H},(Xg, Qi) < dimg, Hi, (Y, Q)¢ = dimg, H, (Y, Q)¢
and
dimg, H,(Yy, Q)% = dimg H'(X(C), Q).
Therefore, it is sufficient to show that
(2.4) dimg, HZ,(Y;, Q)¢ = dimg, HZ,(Yy, Q).
Indeed, let f : Y — Spec(R) be the canonical morphism, and we set F' = R!, f.(Q,). Then, G
acts on the sheaf I of étale topology. Namely, for any éale neighborhood U of Spec(R), G acts

on F(U), and for any étale morphism V' — U of éale neighborhoods of Spec(R), the canonical
homomorphism F(U) — F (V') isaG-homomorphism. Thus, the specialization map

st H\(Yi,Qp) = Fy — Fy = H\(Yy, Q)
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is a G-homomorphism. On the other hand, by virtue of the proper-smooth base change theorem
(cf. [5, Chapter I, Lemma 8.13]), s is bijective. Thus, we get (2.4), which completes the proof of
Theorem 2.1. O

Corollary 2.5. Letg andn be non-negative integers witly — 2 +n > 0, and M, ,, the algebraic
stack classifyingi-pointed stable curves of genysThen

dim@e Hét((Mgm)k? Qf) < dim@ Hi(/\;lg,n(@)a Q)

for every algebraically closed field, every non-negative integeiand every primé invertible in
k.

Proof. By virtue of smoothness of the moduli of curves with non-abelian level structure due
to Looijenga-Pikaart-de Jong-Boggi ([11], [13], [2]), especialy by [2, Proposition 2.6], there are
(1) apositive integer m, (2) afinite group G, (3) a smooth, proper and pure dimensional scheme
Y over Z[1/m], and (4) asurjective morphism 7 : Y — M, ®Z[1/m] over Z[1/m] such that (a)
m isinvertiblein k, (b) G actson Y over M, ,, ®Z[1/m] (i.e. 7 - [g] = m for al g € G), and that
(€) M,.(C) ~ Y(C)/G asanalytic spaces. Here, (M, ) is projective. Therefore, Theorem 2.1
implies our corollary. O

3. COMPARISON OF THE Q-PICARD GROUP WITH THE Q-NERON-SEVERI GROUP
In this section, we prove the following theorem.

Theorem 3.1. Letg andn be non-negative integers witty — 2 +n > 0, and M ,,, the moduli
space of:-pointed stable curves of gengver an algebraically closed field Then, the natural
homomorphisnic(M,,,)o — NS(M,,,)q is bijective.

Proof. We need to prepare severa lemmas.

Lemma3.2. Letf : Y — X be a finite and surjective morphism of normal noetherian schemes.
Then, there is a homomorphis¥m y,y : Pic(Y) — Pic(X) such thalNmy (f*(L)) = L&)
for all L € Pic(X).

Proof. Let K’ and K bethefunction fieldsof Y and X respectively. Let Nm : K/ — K bethe
norm map of K’ over K. Herewe claim that Nm : K’ — K givesriseto Nm : f,.(Oy) — Ox%.
Thisisalocal question, so that we may assumethat Y = Spec(B) and X = Spec(A). Inthiscase,
our assertion means that Nm(z) € A for all € B. Since A isnormal, to see Nm(z) € A, itis
sufficient to check that Nm(x) € Ap for al P € Spec(A) with ht(P) = 1. Here Bp isflat over
Ap. Thus, Bp isfree as Ap-module. Hence we can see Nm(Bp) C Ap. Therefore, we get our
claim.

Let L € Pic(Y). Then, by [12, Lecture 10, Lemma B], there is an open covering {U, }aecs Of
X such that L|,.,,, isatrivid line bundle; i.e, thereis w, € L(f~Y(U,)) with Ly, =
Of-1(v,)Wa- Thus, if we set go5 = ws/w, for a, 8 € I, then go3 € O3 (f 1 (Us N Up)), so that
Nm(gas) € Ox(Us N Up). Therefore, {Nm(g.5)} givesriseto aline bundle A/ on X. Thisisthe

definition of Nmy/y : Pic(Y") — Pic(X). Theremaining assertion is obvious by our construction.
O
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Lemma33. Letf : Y — X be a finite and surjective morphism of normal varieties over an
algebraically closed field. Then, we have the following.

(1) f*: Pic(X)p — Pic(Y)q is injective.

(2) If Pic(Y)o — NS(Y)g is injective, then so i®ic(X)g — NS(X)qg.

Proof. (1) Thisisaconsequence of Lemma 3.2.

(2) Let us consider the following commutative diagram:

f*l l -
Pic(Y)g —— NS(Y)g
By (1), f* : Pic(X)g — Pic(Y)g isinjective. Thus, we have (2) using the above diagram. O

Lemma34. Letf : Y — X be a finite and surjective morphism of normal noetherian schemes.
If Y is locally factorial (i.e., Oy, is UFD for all y € Y’), then, for any Weil divisoD on X,
deg(f)D is a Cartier divisor.

Proof. Clearly, we may assume that D isaprime divisor. Let D’ be a Well divisor associated
withthe scheme f~*(D). Then, D’ isaCartier divisor. Thus, Nmy, x (Oy (D’)) € Pic(X). Let X,
be a Zariski open set of X such that D isa Cartier divisor on X, and codim (X \ X,) > 2. Then,
Nmy, x (Oy(D')) = Ox(deg(f)D) on X,. Thus, Nmy,x(Oy (D)) = Ox(deg(f)D) on X. In
particular, Ox(deg(f)D) islocaly free, which meansthat deg(f)D isa Cartier divisor. O

Lemma3.5. LetY be a normal projective variety over an algebraically closed fieldif Y is
simply connected and there is a finite and surjective morplfisn¥ — Y of normal projective
varieties such tha¥ is smooth ovek, then the natural homomorphism

Pic(Y) © Z[1/ deg(f)] — NS(Y) @ Z[1/ deg(f)]
is bijective. Moreover, ifleg( f) is invertible ink, thenPic(Y) — NS(Y') is bijective.

Proof. Weset n = deg(f) and P = (Pic}),eq, Which is a subgroup scheme of Picy. For a
positive integer ¢, let [¢] : P — P be ahomomorphism given by [¢](x) = ¢x. First we claim the
following.

Claim 3.5.1. [n|(P) is proper overk.

For this purpose, it is sufficient to see that every closed irreducible curve C'in [n](P) is proper
over k. For a curve C' as above, there are a proper and smooth curve 7' over k, a non-empty
Zariski open set T, of 7', and amorphism ¢ : T, — P such that the Zariski closure of the image

T <, pMop isC. The morphism ¢ : T, — P C Picy givesrise to aline bundle L, on

To x Y such that ¢(x) is the class of LO\{m}XY for all x € T,. Let ustake a Cartier divisor D,
such that Or,xy (Do) = Lo. Then, thereisaWeil divisor D onT' x Y with D[, = Dy. Here
idr xf: T x Z — T x Y isafinite and surjective morphism of normal varietiessuchthat ' x Z
is smooth over k. Note that deg(idr x f) = deg(f) = n. Thus, by Lemma 3.4, nD is a Cartier
divisor. Let ¢' : T' — P be amorphism given by aline bundie Orxy (nD). Then, ¢'|, = [n] - ¢.
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Here C'isclosed in P because [n](P) isclosed in P. Thus, we can seethat ¢'(T') = C. Hence C'
IS proper over k.

Next we claim the following.
Claim 3.5.2. [¢] : P(k) — P(k) is injective for every positive integéiinvertible ink.

Since Y is simply connected, by [5, Proposition 2.11], H*(Y, (1¢)y) = 0. Thus, the Kummer
exact segquence:

— (pe)y — OF =5 05 — 1
yieldsan injection [¢] : Pic(Y) — PIC(Y) Hence [(] : P(k) — P(k) isinjective.
(
[

By Claim 3.5.2, [{] : [n](P)(k) — [n](P)(k) isinjective for every positive integer ¢ invertible
in k. Thus, [n](P) = {0} because [n](P) isan abelian variety by Claim 3.5.1. Hence

P(k) ® Z[1/n] = {0}.

Therefore, we get thefirst assertion because NS(X) ® Z[1/n] = Picy (k) RZ[1/n]/P(k) ® Z[1/n].
Moreover, if n isinvertiblein k, then [n] : P(k) — P(k) isinjective. Therefore, P(k) = {0}.
Hence, we have the second assertion. O

Lemma3.6. Letf : Y — X be a morphism of projective normal varieties over an algebraically
closed fieldk. We assume thdfl) X andY are Q-factorial, (2) dim f~'(x) = 1 forall z € X,
and that(3) there is a non-empty open s&t such thatf ~!(x) is a smooth rational curve for every

x € Xo(k). If Dis aQ-divisor onY with D = 0, then there is a-divisor £ on X such that
f*(E) ~9 DandE = 0.

Proof. Clearly, we may assumethat D isa Cartier divisor. Then, f.(Oy (D)) isatorsion free
sheaf of rank 1 because D|;-.,) = Oj-1() forall z € Xo(k). Thus, thereisadivisor £'on X such
that f.(Oy (D))" OX( ). Considering the natural homomorphism f* f.(Oy (D)) — Oy (D).
We can find an effective divisor 7' on Y such that D ~¢ f*(E) + T and f(T') € X \ X,. Here
(T - C) = 0for al curve C with dim f(C') = 0. Thus, using Zariski’s Lemma (cf. LemmaA.1),
thereareaQ-divisor S on X and aZariski open set X; of X suchthat f*(S) ~¢ T on f~'(X;) and
codim(X \ X;) > 2. Therefore, D ~q f*(E + S) on f~1(X;). Here codim(Y" \ f~'(X;)) > 2.
Thus, D ~q f*(E+S)onY. Itiseasy toseethat £+ S = 0using D = 0. O

Let us start the proof of Theorem 3.1. First, let us consider the case ¢ > 2. Then, by [2,
Proposition 2.6 and Proposition 3.3], there are finite and surjective morphisms 7 — Y and Y —
M, of normal projective varieties over k such that Y is simply connected and Z is smooth over
k. By Lemma3.3.2 and Lemma 3.5, Pic(M,,)o — NS(M,,)o is bijective.

Next let us consider the case g = 0, 1. In order to see our assertion, it is sufficient to show that
if D =0 foraQ-divisor D on Mgn, then D NQ 0. We prove this by induction on n. First, note
thatdlmMog =0, M04 = ]P) and M11 = ]P) Let us consider 7 : Mgn — Mgn 1. |fg = 0,1,
then a general fiber of |sasmooth rational curve. Moreover, M, and M, are Q- factonal
and dim7~!(z) = 1 foral z € M,,1. Thus, by Lemma 3.6, thereis a Q-divisor £ on M ,,,_;
such that D ~q n*(F) and E = 0. By the hypothesis of induction, we have £ ~¢ 0. Thus
D ~Q 0. O
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Corollary 3.7. Letg, n, M,,, andk be the same as in Theoredii. Then, the cycle map
clt Pic(M,,) @ Q; — Hft(Mgvn, Qp)
is injective for every primé invertible ink.

Proof. Since M,,, is projective, the kernel of NS(M,,,) — NS”(M,,) is finite. Thus, by
Theorem 3.1, we have

PiC(Mg,n)Q — NS(Mg,n)Q — NSV(Mg,n)Q-
Therefore, it is sufficient to show the following lemma. O
Lemma3.8. Let X be a proper algebraic spaces over an algebraically closed fieldnd ¢ a

prime invertible ink. Letr : Pic(X) ® Z, — NS”(X) ® Z, be the natural homomorphism and
cl' : Pie(X) ® Z, — H%(X,7Z,) the cycle map. ThefKer(cl') C Ker(r). In particular,

Ker(Pic(X) ® Q, — H%(X,Q)) C Ker(Pic(X) ® Q, — NS (X) @ Qy).
Proof. Let usconsider an exact sequence
Pic(X) 25 Pic(X) — H*(X., Z/0™Z)
arising from the Kummer exact sequence
0—Z/m7 — 0 25 0% — 0.
Since Z, isflat over Z, we have an exact sequence
Pic(X) ® Z¢ — Pic(X) ® Zy 2% H*(Xo, Z)0"Z) @ Zy = HX(X,0, /(" 7.)

Note that cI' is given by lim p,,, : Pic(X) ® Z, — lim H*(X., Z/(™Z). Thus, if z € Ker(cl"),
then p,,(z) = 0 for al m. Therefore, thereisy,, € Pic(X) ® Z, with ("y,, = z. Let C be an
irreducible curveon X. Then, (z - C) = (" (y,, - C). Here (y,,, - C') € Zy. Thus,

(z-C) e ()2 = {0}.
Thus, z € Ker(r). O

4. LINEAR INDEPENDENCE OF THE TAUTOLOGICAL CLASSES

_ Let k bean algebraicaly closed field, g and » non-negative integers with 2g — 2 +n > 0, and
M, ,, the moduli space of n-pointed stable curves of genus g over k. Then, we have the following
(see §81.6 for the definition of Ty, T, and the classes §,, (v € T, ,)):

Proposition4.1. (1) If ¢ > 3, then )\, d;,.. andd,’s (v € T;n) are linearly independent in
NS(M!/,H)Q' . N
(2 If g=2,thenx andd,’s (v € T,,,) are linearly independent itvS (M5 ,,)q.
() If g =1, thenx andd,’s (v € T;,,) are linearly independent itNS (1 ,,)q.
Proof. First of al, by [7, Theorem 2.2], we have the following.
(@ If g > 3, then there is a morphism ;. : P — M,, such that deg(p}.,.(\) = 0,
deg (g5, (0sr)) = —1 and deg (s, (6,)) =0 (Vv € T,

g,n)'
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(b) 1f g > 2, then, forevery 0 < i < g—2andevery I C {1,... ,n}with[i,I] € T, ,thereis

g’n’

amorphism ¢; ; : P, — M, such that deg(¢; (X)) = 0, deg(¢} ;(diry)) = 0 and

-1 ifv=1[iI]

0 itozpn UE Ten)

deg (7 1(00)) = {

(c) If g > 2,then, forevery 1 <i<g—1landeveryI C {1,... ,n}with[i,I] € T, ,thereis

g7n’

amorphism ¢, ; : P, — M, such that deg(p; () = 0, deg (¢} ;(dirr)) = —2 and

deg(p;;(0,)) = {(1) ::Z; 52

(d) If g > 1,then,foreveryi,j > 0andevery I,J C{1,... ,n}withi+j<g—1,INJ =10
and [i,I] € T,,, thereisamorphism ¢; ;. ; : P — M, such that deg(¢};; ;(\)) = 0,

deg(¢; ;7,4(0irr)) = 0 and

Vove Tz’n).

1 fo=[i+yjIUJ]
deg(pi;1s(00) = ¢ =1 ifv=[i1][j,J]
0  otherwise
foralveT,,.
(1) First, let us consider the case g > 3. We assume that
D = aX +biebi + > byb, =0.
veTy ,

€

Then, since deg(¢},,.(D)) = 0, we have b;,, = 0. Here g > 3. Thus, for every v € T, we can
findé, I suchthat 0 <i <g¢g—2,71 C{l,...,n}andv = [i, I]. Thus, by the above (b), we can
seeb, = 0foralv e T,,. Hence D = a) = 0. Therefore, a = 0.

(2) Next, let us consider the case g = 2. We assume that
D=a)\+ Y byd,=0.
veTs
If v =[0,I] forsomel C {1,...,n}, then, using (b), we can see b, = 0. Otherwise, we can set
v=|[1,I'|forsome!” C {1,... ,n}. Then, b, = 0 by (c). Thus D = a\ = 0. Hence, a = 0.

(3) Findly, let us consider the case g = 1. We assume
D=X+ Y b, =0,

veTT ,
where by ;) = O forali = 1,...,n. Then, by virtue of (d), For every non-empty /,J C
{1,...,n}withInJ =0, by 0 = b, + bpo,s). Therefore,

by = Y bio,gay) =0

1€l

for al non-empty I C {1,... ,n}. Hence D = a) = 0. Therefore, a = 0. O
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5. GENERATORS OF THE (Q-PICARD GROUP AND THE CYCLE MAP

Let g and n be non-negative integers with 2g — 2 + n > 0, and M, the algebraic stack

classifying n-pointed stable curves of genus g. For an algebraically closed field k, let (M, ), be
the coarse moduli scheme of M, ,, Xgpec(z) Spec(k).

Theorem 5.1. Pic((M,,.)x)o is generated by
/\7 ¢17 s ﬂﬁn, 5irr andév’s (U € Tg,n)
for any algebraically closed field. Moreover, the cycle map

Pic((Mgn)k) ® Qe — HE (Mg, Qo)

is bijective for every primé invertible ink.
Proof. By Corollary 3.7, the cycle map

Pic((Mgu)k) @ Qe — He (Mg )k, Qc)

isinjective. Hence, we get
dimg Pic((Myn)i)o < dimg, Hg((Mgn)r, Qo).
Moreover, by Corollary 2.5,
dimg, Hezt((Mg,n)k‘a Q) < dimg Hz(Mg,n((c)a Q).

Therefore,
(5.1.1) dimg Pic((My,)k)g < dimg H*(M,,(C), Q)

and if the equation holds, then the cycle map is bijective.

In the case g = 0, the assertions of our theorem are well known (for example, see[8]), so that it
is sufficient to show the following (a)—(c) and dimg Pic((M,.,.)x)g = dimg H*(M,,,(C), Q) for
each case.

@ If g >3, then X\, ¥y, ..., ¥, 8 and 8,’s (v € T,,,) form abasis of Pic((M,,)k)o-
(b) If g =2,then \, 4y, ... ¢, andd,’s (v € Ty,,) form abasis of Pic((May,,)x)o-
(¢) If g=1,then Aand 6,’s (v € T,,) form abasis of Pic((M;,)r)o-

First of all, itiswell known (cf. [1]) that H2(M,,(C), Q) is generated by

MLy U, 0 and 6,'s (U € Ty ).
() By Proposition 4.1.1, A, ¢y, ... , ¢y, 8, and 6,'s (v € T,,,) are linearly independent in
H?*(M,,(C),Q), and these are aso linearly independent in Pic((M,.,.)x)o. Thus, by (5.1.1),
M1, U, 0 @nd 6,'s (v € Ty )
givesriseto abasis of Pic((M,,)x)o, and dimg Pic((M,,)x)o = dimg H?(M, ,(C), Q).
(b) We know that 10\ = 4, + 28, on My (C). Thus, H2(M,,,(C), Q) is generated by
Ny, .., and 8,'s (v € Ta).

By Proposition 4.1.2, these are linearly independent in H?(M,,,(C), Q). Moreover, these are
aso linearly independent in Pic((My,,)x)q- Thus, (5.1.1) shows us that these form a basis of
NS((Mgm)k)Q and that dlm@ PiC((Mgm)k)Q = dlm@ H2(M27n((C), Q)
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(c) First, we know d;,, = 12X on My 1(C) and ¢ = A + 3,1 1155 50,1 for @l i on M, (C).
Thus, H*(M,,(C),Q) is generated by \ and 6,’s (v € T;,). Therefore, by using Proposi-
tion4.1.3and (5.1.1), A\andd,’s (v € T ,,) formabasisof Pic((My.,)x)o and dimg Pic((Mi,)r)o =
dimQ H2(./\;l17n((C), Q) O

Corollary 5.2. Let g andn be non-negative integers witty — 2 +n > 0, and M/ ,,, the mod-
uli space ofn-pointed smooth curves of genysover an algebraically closed field. Then,
Pic(M )0 is generated by, ¢y, ... , 1,

Proof. Let us consider the restriction map Pic(M,,)o — Pic(M,,)q. Since M, is Q-
factorial, it is surjective. Thus, Theorem 5.1 implies our corollary. a

Appendix A. ZARISKI’S LEMMA FOR INTEGRAL SCHEME

Let R be adiscrete valuationring, and f : Y — Spec(R) aflat and projective integral scheme
over R. Let n bethe generic point of Spec(R) and o the closed point of Spec(R). We assume that
the genetic fiber Y;, of f isgeometrically reduced and irreducible curve. Let Y, be the special fiber
of f,i.e, Y, = f*(0). Let usconsider aparing

Pic(Y) ® CH’(Y,) — CH'(Y,)
given by the composition of homomorphisms
Pic(Y) ® CH’(Y,) — Pic(Y,) ® CH(Y,) — CH'(Y,).

We denote by = - =z the image of = ® z by the above homomorphism. For a Cartier divisor D on
Y, the associated cycle of D isdenoted by [D], which isan element of Z!(Y"). Let us consider the
following subgroup F.(Y) of Z°(Y,):

F.(Y) = {z € Z°(Y,) | z = [D] for some Cartier divisor D on Y'}.

For aCartier divisor D onY with [D] € F.(Y),andy € F.(Y), D - y depend only on [D]. For, if
D' isaCartier divisor on Y with [D’] = [D], and E is a Cartier divisor on Y with y = [E], then,
by [6, Theorem 2.4],

D.-y=E-[D|=E-[D]=D"-y.
Thus, we can define a bi-linear map
q: F.(Y) x F.(Y) — CHYY,)

by ¢([D],y) = D-y. Moreover, [6, Theorem 2.4] saysusthat g issymmetric; i.e., ¢(z,y) = q(y, x)
foral x,y € F.(Y). Then, we define the quadratic form @ on F.(Y") by

Q(z,y) = deg(q(z,y)).
Then, we have the following Zariski’slemma on integral schemes.

LemmaA.l (Zariski'slemmafor integral scheme). (1) Q([Y,],z) =0forall z € F.(Y)g.
(2 Q(z,x) < 0foranyx € F.(Y)q.
(3) Q(z,z) =0ifand only ifr € Q- [Y,].
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Proof. (1): Thisisobviousbecause Oy (Y,) ~ Oy.

(2and (3): If x € Q- [Y,], then by (1), Q(x,z) = 0. Thus, it is sufficient to prove that (a)
Q(z,z) < 0forany z € F.(Y)q, and that (b) if Q(x,x) =0, thenxz € Q - [Y,]. Here we need the
following sublemma.

Sublemma A.1.1. LetV be a finite dimensional vector space o®erand() a quadratic form on
V. We assume that there ave= V' and a basige, . .. , e, } of V with the following properties:

@) If we sete = aieq + - - - + aye,, thena; > 0 for all i.
(i) Q(z,e) < Oforall z € V.
(iif) Q(ei, e;) > 0forall i # j.
(iv) If we setS = {(i,j) | i # j andQ(e;, e;) > 0}, then, for any; # j, there is a sequence
i1,...,4 suchthat; =i, 4 = j,and(i;,i,41) € Sforall 1 <t <.
Then,Q(z,z) < 0 for all x € V. Moreover, ifQ(z,z) = 0 for somex # 0, thenz € Re and
Q(y,e) =0forally e V.

Proof. Replacing e; by a;e;, we may assumethat a; = --- = a, = 1. Ifweset x = x1e; +
-+ x,e,, then, by an easy calculation, we can show

szQ e;,e —Z( —1;)°Qe;, e5).

1<j
Thus, we can easily see our assertions. O

Let us go back to the proof of Lemma A.1. First, we assume that Y isregular. Let (Y,),cq =
E, + --- + E, betheirreducible decomposition of (Y,),.q. Since Y isregular, E;’s are Cartier
divisorsonY and [E;] € F.(Y) for al i. Moreover, wecanset Y, = a1 E; + - - - + a, F,, for some
positive integers ay, ... ,a,. Thus, if wesete = [V, ande; = [E;] fori = 1,... ,n, then (i),
(it) and (iii) in the above sublemma hold. Moreover, since Y, is geometrically connected, (iv) also
holds. Thus, we have our assertion in the case where Y isregular.

Next, let us consider a general case. Clearly we may assume that = € F.(Y); i.e, x = [D]
for some Cartier divisor D on Y. By virtue of [10], there is a birational morphism 1 : Y/ — Y
of projective schemes over R such that Y isregular. Using the projection formula (cf. [6, (c) of
Proposition 2.4]),

deg(Oy(u"(D)) - [p*(D)]) = deg(Oy (D) - [D]).
Thus, if Q([u*(D)], [n*(H)]) < 0, then Q([D], [D]) < 0. Moreovey, if there is a rational number
a such that [1*(D)] :a[ Y], then [*(D)] = a[u*(Y,)]. Thus, taking the push-forward 1., we can
seethat [D] = a[Y,] in Z*(Y)q. Hence, we get our lemma. O
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