
THE Q-PICARD GROUP OF THE MODULI SPACE OF CURVES
IN POSITIVE CHARACTERISTIC

ATSUSHI MORIWAKI

ABSTRACT. In this note, we prove that the Q-Picard group of the moduli space of n-pointed stable
curves of genus g over an algebraically closed field is generated by the tautological classes. We also
prove that the cycle map to the 2nd étale cohomology group is bijective.

INTRODUCTION

Let k be an algebraically closed field, g and n non-negative integers with 2g − 2 + n > 0, and
M̄ g,n (resp. M g,n) the moduli space of n-pointed stable (resp. smooth) curves of genus g over k.
We denote by Pic(M̄ g,n)Q the Q-Picard group of M̄ g,n; that is, Pic(M̄ g,n)Q = Pic(M̄ g,n) ⊗ Q.
Let λ be the Hodge class, ψ1, . . . , ψn the classes of Q-line bundles given by the pull-back of the
relative dualizing sheaf of the universal curve over M̄ g,n in terms of n sections, and {δt}t∈T the
boundary classes in Pic(M̄ g,n)Q (for details, see §§1.6). These classes

λ, ψ1, . . . , ψn and δt’s (t ∈ T )

are called the tautological classes ofPic(M̄ g,n)Q . It is well known (due to Harer) that Pic(M̄ g,n)Q
is generated by the tautological classes if the characteristic of k is zero (see Arbarello-Cornalba [1]
for its proof by means of algebraic geometry). In this note, we would like to show that this still
holds even if the characteristic of k is positive. Namely, we have the following.

Theorem (cf. Theorem 5.1). Pic(M̄ g,n)Q is generated by the tautological classes

λ, ψ1, . . . , ψn andδt’s (t ∈ T )

for any algebraically closed fieldk. Moreover, the cycle map

Pic(M̄ g,n)⊗Q� → H2
et(M̄ g,n,Q�)

is bijective for every prime invertible ink.

We prove the above theorem by using modulo p reduction. The outline of the proof is as fol-
lows: Let M̄g,n be the algebraic stack classifying n-pointed stable curves of genus g. We com-
pare the 2nd étale cohomology group H2

et(M̄g,n(k),Q�) over k with the 2nd cohomology group
H2(M̄g,n(C),Q) of the analytic space M̄g,n(C) via a smooth Galois covering of M̄g,n in terms
of a Teichmüller level structure due to Looijenga-Pikaart-de Jong-Boggi; namely,

dimQ�
H2
et(M̄g,n(k),Q�) ≤ dimQ H

2(M̄g,n(C),Q).

Moreover, using the simple connectedness of the moduli space of curves with a level m ≥ 3 (due
to Boggi-Pikaart), we see that the cycle map

Pic(M̄g,n(k))⊗Q� → H2
et(M̄g,n(k),Q�)
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is injective. In this way, we obtain our theorem together with the linear independence of the
tautological classes.

After writing this note, Prof. Keel informed me that Prof. de Jong had the same idea for the
proof of the above theorem.

1. NOTATIONS AND CONVENTIONS

1.1. For a finite set S, we denote the number of it by |S|.
1.2. If a group G acts on a certain kind of a mathematical object, the induced automorphism by
g ∈ G is denoted by [g].

1.3. Let X be a proper algebraic space over an algebraically closed field k. Let L1 and L2 be
line bundles on X . We say L1 is numerically equivalentto L2, denoted by L1 ≡ L2, if (L1 · C) =
(L2 · C) for all curves C on X . The group Pic(X) modulo the numerical equivalence, denoted by
NSν(X), is called the numerical Néron-Severi group ofX . Moreover, we denote NSν(X)⊗Q by
NSν(X)Q .

1.4. Let X be an algebraic scheme over an algebraically closed field k. We define the Q-Picard
groupPic(X)Q of X to be Pic(X)Q = Pic(X) ⊗ Q. For L1, L2 ∈ Pic(X), we say L1 is al-
gebraically equivalentto L2, denoted by L1 ∼alg L2, if there are a connected and smooth alge-
braic scheme T over k, a line bundle L on T × X and t1, t2 ∈ T such that L|{t1}×X � L1 and
L|{t2}×X � L2. The Néron-Severi group NS(X) of X is defined by Pic(X) modulo the alge-
braic equivalence. In other words, NS(X) = PicX(k)/(Pic

0
X)red(k), where PicX is the Picard

scheme of X and Pic0X is the connected component containing 0. The group NS(X)⊗Q, denoted
by NS(X)Q , is called the Q-Néron-Severi group ofX . We assume that X is projective over k.
It is not difficult to see that L1 ∼alg L2 implies L1 ≡ L2, so that we have the natural surjec-
tive homomorphism NS(X) → NSν(X). It is well known (due to Matsusaka) that the kernel of
NS(X)→ NSν(X) is a finite group. Thus, we can identify NS(X)Q with NSν(X)Q .

1.5. In this note, an algebraic stack always means a separated algebraic stack over a locally
noetherian scheme in the sense of Deligne-Mumford. Let X be a algebraic stack over a locally
noetherian scheme S. For an algebraically closed field L and a morphism Spec(L) → S, the
coarse moduli space of X ×S Spec(L) is denoted by XL (cf. [4, Chapter I, Theorem 4.10] and [9,
Corollary 1.3]).

1.6. Let g and n be non-negative integers with 2g−2+n > 0, and M̄ g,n (resp. M g,n) the moduli
space of n-pointed stable (resp. smooth) curves of genus g over an algebraically closed field.
Roughly speaking, the Q-line bundles λ and ψ1, . . . , ψn on M̄ g,n are defined as follows: Let π :
M̄ g,n+1 → M̄ g,n be the universal curve of M̄ g,n, and s1, . . . , sn : M̄ g,n → M̄ g,n+1 the sections of π
arising from the n-points of M̄ g,n. Then, λ = det(π∗(ωM̄ g,n+1 / M̄ g,n

)) and ψi = s∗i (ωM̄ g,n+1 / M̄ g,n
)

for i = 1, . . . , n. Here we set

[n] = {1, . . . , n} (note that [0] = ∅),
Υg,n = {(i, I) | i ∈ Z, 0 ≤ i ≤ g and I ⊆ [n]} \ {(0, ∅), (0, {1}), . . . , (0, {n})},
Υg,n = {{(i, I), (j, J)} | (i, I), (j, J) ∈ Υg,n, i+ j = g, I ∩ J = ∅, I ∪ J = [n]}.
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The boundary ∆ = M̄ g,n \M g,n has the following irreducible decomposition:

∆ = ∆irr ∪
⋃

{(i,I),(j,J)}∈Υg,n

∆{(i,I),(j,J)}.

A general point of ∆irr represents an n-pointed irreducible stable curve with one node. A general
point of∆{(i,I),(j,J)} represents an n-pointed stable curve consisting of an |I|-pointed smooth curve
C1 of genus i and a |J |-pointed smooth curve C2 of genus j meeting transversally at one point,
where |I|-points on C1 (resp. |J |-points on C2) arise from {st}t∈I (resp. {sl}l∈J ). Let δirr and
δ{(i,I),(j,J)} be the classes of∆irr and∆{(i,I),(j,J)} in Pic(M̄ g,n)Q respectively. For our convenience,
we denote {(i, I), (g − i, [n] \ I)} by [i, I]. Moreover, we set

Υ
e

g,n = Υg,n ∪ {[0, {1}], . . . , [0, {n}]}
and δ[0,{i}] = −ψi for i = 1, . . . , n.

2. COMPARISON OF COHOMOLOGY GROUPS

In this section, we would like to show the following theorem, which is crucial for our note.

Theorem 2.1. Let R be a discrete valuation ring withR ⊂ C, andX a proper algebraic stack
overR (see§§1.5 for assumptions of stacks in this note). We assume that there are(i) a finite group
G, (ii) a smooth, proper and pure dimensional schemeY overR, and (iii) a surjective morphism
π : Y → X overR with the following properties:

(a) G acts onY overX, i.e.,π · [g] = π for all g ∈ G.
(b) X(C) � Y (C)/G as analytic spaces.

LetSpec(k)→ Spec(R) be a geometric point ofSpec(R) (i.e.,k is an algebraically closed field),
andXk the coarse moduli space ofX ×Spec(R) Spec(k). If Xk is a normal algebraic scheme over
k, then

dimQ�
H i
et(Xk,Q�) ≤ dimQ H

i(X(C),Q)

for every non-negative integeri and every prime invertible ink.

Proof. We need two lemmas for the proof of the above theorem.

Lemma 2.2. Letf : Y → X be a finite surjective morphism of normal noetherian schemes. Then,
the natural homomorphism

f ∗ : H i
et(X,Q�)→ H i

et(Y,Q�)

is injective for every non-negative integeri and every prime invertible inH0(X,OX).
Proof. Clearly, we may assume that X and Y are connected. Here we claim the following.

Claim 2.2.1. For every abelian groupΛ, there is a homomorphism

ρf (Λ) : f∗(ΛY )→ ΛX

with the following properties:

(i) ρf (Λ) · f ∗ = deg(f) id, wheref ∗ : ΛX → f∗(ΛY ) is the natural injective homomorphism.
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(ii) Let φ : Λ′ → Λ be a homomorphism of abelian groups. Then, the following diagram is
commutative.

f∗(Λ′
Y )

ρf (Λ′)−−−→ Λ′
X� �

f∗(ΛY )
ρf (Λ)−−−→ ΛX

Let K ′ and K be the function fields of Y and X respectively. First, we assume that K ′ is
separable over K. Let K ′′ be the Galois closure of K ′ over K, and G the Galois group of K ′′/K.
Moreover, let Ỹ be the normalization of Y in K ′′, g : Ỹ → Y the induced morphism, and f̃ : Ỹ

g→
Y

f→ X the composition of morphisms g and f . We denote by (K ′/K)(K ′′) the set of embeddings
of K ′ into K ′′ over K; that is,

(K ′/K)(K ′′) = {σ : K ′ ↪→ K ′′ | σ|K = id}.
For each σ ∈ (K ′/K)(K ′′), there is a morphisms σ̃ : Ỹ → Y over X such that the induced map
of function fields is σ. Here let us consider a homomorphism ρ′ : f∗(ΛY ) → f̃∗(ΛỸ ) given by
ρ′(x) =

∑
σ∈(K′/K)(K′′) σ̃

∗(x). It is easy to see that

Im(ρ′) ⊆ f̃∗(ΛỸ )
G.

Moreover, since G acts transitively on the fibers of Ỹ → X , we can see

f̃∗(ΛỸ )
G ⊆ Im(f̃ ∗ : ΛX → f̃∗(ΛỸ )).

Thus ρ′ gives rise to a homomorphism

ρf (Λ) : f∗(ΛY )→ ΛX .

Next, let us consider a general case. Let K1 be the separable closure of K in K ′, and Y1 the
normalization of X in K1. Then, there are finite morphisms g : Y → Y1 and h : Y1 → X
with f = h · g. Since g is purely inseparable, ΛY1

∼→ g∗(ΛY ). Thus, h∗(ΛY1)
∼→ f∗(ΛY ). Let

ρΛ(h) : h∗(ΛY1)→ ΛX be a homomorphism as above. Then, ρΛ(f) is given by deg(g)ρΛ(h).
The properties (i) and (ii) are obvious by our construction.

Let us go back to the proof of our lemma. Since f is finite, H i(Yet,Z/
mZ) = H i(Xet, f∗(Z/mZ)).

Thus, by the above claim, we have a homomorphism 'm : H i(Yet,Z/
mZ) → H i(Xet,Z/

mZ)
such that 'm · f ∗ = deg(f) id. Here the following diagram is commutative by the property (ii):

H i(Yet,Z/
m+1Z)

�m+1−−−→ H i(Xet,Z/
m+1Z)� �

H i(Yet,Z/
mZ)

�m−−−→ H i(Xet,Z/
mZ)

Thus, we have ' : H i
et(Y,Q�)→ H i

et(X,Q�) with ' · f ∗ = deg(f) id. Therefore, f ∗ is injective.
✷

Lemma 2.3. LetY be a complex manifold, andG a finite group acting onY holomorphically. Let
X be the quotient analytic spaceY/G of Y by the action ofG, andπ : Y → X the canonical
morphism. LetΛ be an abelian group such that|G| idΛ : Λ→ Λ is bijective. Letπ∗ : H i(X,Λ)→
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H i(Y,Λ) be the natural homomorphism of thei-th cohomology groups. Then,π∗ is injective and
its image is theG-invariant partH i(Y,Λ)G ofH i(Y,Λ).

Proof. By abuse of notation, let π∗ : ΛX → π∗(ΛY ) be the natural homomorphism. In the
same way as in Lemma 2.2, if we define ρ : π∗(ΛY )→ ΛX to be

π∗(ρ(x)) =
∑
g∈G
[g]∗(x),

then ρ · π∗ = |G| id. Thus, there is a homomorphism ' : H i(Y,Λ) → H i(X,Λ) with ' · π∗ =
|G| id. In particular, π∗ is injective. Clearly, π∗(H i(X,Λ)) ⊆ H i(Y,Λ)G. Note that π∗('(φ)) =∑

g∈G[g]
∗(φ) for φ ∈ H i(Y,Λ). Thus, if φ ∈ H i(Y,Λ)G, then π∗('(φ)) = |G|φ. Here |G| idΛ :

Λ→ Λ is bijective. Therefore, φ = π∗('(φ)/|G|). ✷

Let us start the proof of Theorem 2.1. Let η̄ be the geometric generic point of Spec(R), and t̄
the geometric closed point of Spec(R). Here we consider two cases:

(i) The image of Spec(k)→ Spec(R) is the generic point.
(ii) The image of Spec(k)→ Spec(R) is the closed point.

In the first case, by the proper base change theorem (cf. [5, Chapter I, Theorem 6.1]),

H i
et(Yk,Q�) = H i

et(Yη̄,Q�).

Here, by virtue of Lemma 2.2, the natural homomorphism H i
et(Xk,Q�)→ H i

et(Yk,Q�) is injective
and its image is contained in H i

et(Yk,Q�)
G because the action of G is given over Xk. Thus,

dimQ�
H i
et(Xk,Q�) ≤ dimQ�

H i
et(Yk,Q�)

G = dimQ�
H i
et(Yη̄,Q�)

G.

Further, by the proper base change theorem, the comparison theorem (cf. [5, Chapter I, Theo-
rem 11.6]) and Lemma 2.3,

dimQ�
H i
et(Yη̄,Q�)

G = dimQ�
H i
et(YC ,Q�)

G = dimQ�
H i(Y (C),Q�)

G

= dimQ�
H i(X(C),Q�) = dimQ H

i(X(C),Q).

Therefore, we get our assertion.

In the second case, by using the proper base change theorem and Lemma 2.2 as before, we have

dimQ�
H i
et(Xk,Q�) ≤ dimQ�

H i
et(Yk,Q�)

G = dimQ�
H i
et(Yt̄,Q�)

G

and

dimQ�
H i
et(Yη̄,Q�)

G = dimQ H
i(X(C),Q).

Therefore, it is sufficient to show that

dimQ�
H i
et(Yt̄,Q�)

G = dimQ�
H i
et(Yη̄,Q�)

G.(2.4)

Indeed, let f : Y → Spec(R) be the canonical morphism, and we set F = Ri
etf∗(Q�). Then, G

acts on the sheaf F of étale topology. Namely, for any étale neighborhood U of Spec(R), G acts
on F (U), and for any étale morphism V → U of étale neighborhoods of Spec(R), the canonical
homomorphism F (U)→ F (V ) is a G-homomorphism. Thus, the specialization map

s : H i
et(Yt̄,Q�) = Ft̄ → Fη̄ = H i

et(Yη̄,Q�)
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is a G-homomorphism. On the other hand, by virtue of the proper-smooth base change theorem
(cf. [5, Chapter I, Lemma 8.13]), s is bijective. Thus, we get (2.4), which completes the proof of
Theorem 2.1. ✷

Corollary 2.5. Letg andn be non-negative integers with2g− 2+n > 0, andM̄g,n the algebraic
stack classifyingn-pointed stable curves of genusg. Then

dimQ�
H i
et((M̄g,n)k,Q�) ≤ dimQ H

i(M̄g,n(C),Q)

for every algebraically closed fieldk, every non-negative integeri and every prime invertible in
k.

Proof. By virtue of smoothness of the moduli of curves with non-abelian level structure due
to Looijenga-Pikaart-de Jong-Boggi ([11], [13], [2]), especially by [2, Proposition 2.6], there are
(1) a positive integer m, (2) a finite group G, (3) a smooth, proper and pure dimensional scheme
Y over Z[1/m], and (4) a surjective morphism π : Y → M̄g,n⊗Z[1/m] over Z[1/m] such that (a)
m is invertible in k, (b) G acts on Y over M̄g,n⊗Z[1/m] (i.e. π · [g] = π for all g ∈ G), and that
(c) M̄g,n(C) � Y (C)/G as analytic spaces. Here, (M̄g,n)k is projective. Therefore, Theorem 2.1
implies our corollary. ✷

3. COMPARISON OF THE Q-PICARD GROUP WITH THE Q-NÉRON-SEVERI GROUP

In this section, we prove the following theorem.

Theorem 3.1. Let g andn be non-negative integers with2g − 2 + n > 0, andM̄ g,n the moduli
space ofn-pointed stable curves of genusg over an algebraically closed fieldk. Then, the natural
homomorphismPic(M̄ g,n)Q → NS(M̄ g,n)Q is bijective.

Proof. We need to prepare several lemmas.

Lemma 3.2. Let f : Y → X be a finite and surjective morphism of normal noetherian schemes.
Then, there is a homomorphismNmX/Y : Pic(Y )→ Pic(X) such thatNmX/Y (f

∗(L)) = L⊗ deg(f)

for all L ∈ Pic(X).
Proof. Let K ′ and K be the function fields of Y and X respectively. Let Nm : K ′ → K be the

norm map of K ′ over K. Here we claim that Nm : K ′ → K gives rise to Nm : f∗(O×
Y ) → O×

X .
This is a local question, so that we may assume that Y = Spec(B) and X = Spec(A). In this case,
our assertion means that Nm(x) ∈ A for all x ∈ B. Since A is normal, to see Nm(x) ∈ A, it is
sufficient to check that Nm(x) ∈ AP for all P ∈ Spec(A) with ht(P ) = 1. Here BP is flat over
AP . Thus, BP is free as AP -module. Hence we can see Nm(BP ) ⊆ AP . Therefore, we get our
claim.

Let L ∈ Pic(Y ). Then, by [12, Lecture 10, Lemma B], there is an open covering {Uα}α∈I of
X such that L|f−1(Uα) is a trivial line bundle; i.e., there is ωα ∈ L(f−1(Uα)) with L|f−1(Uα) =

Of−1(Uα)ωα. Thus, if we set gαβ = ωβ/ωα for α, β ∈ I , then gαβ ∈ O×
Y (f

−1(Uα ∩ Uβ)), so that
Nm(gαβ) ∈ O×

X(Uα ∩ Uβ). Therefore, {Nm(gαβ)} gives rise to a line bundle M on X . This is the
definition of NmX/Y : Pic(Y )→ Pic(X). The remaining assertion is obvious by our construction.

✷
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Lemma 3.3. Let f : Y → X be a finite and surjective morphism of normal varieties over an
algebraically closed fieldk. Then, we have the following.

(1) f ∗ : Pic(X)Q → Pic(Y )Q is injective.
(2) If Pic(Y )Q → NS(Y )Q is injective, then so isPic(X)Q → NS(X)Q .

Proof. (1) This is a consequence of Lemma 3.2.

(2) Let us consider the following commutative diagram:

Pic(X)Q −−−→ NS(X)Q

f∗
� �f∗

Pic(Y )Q −−−→ NS(Y )Q

By (1), f ∗ : Pic(X)Q → Pic(Y )Q is injective. Thus, we have (2) using the above diagram. ✷

Lemma 3.4. Let f : Y → X be a finite and surjective morphism of normal noetherian schemes.
If Y is locally factorial (i.e.,OY,y is UFD for all y ∈ Y ), then, for any Weil divisorD on X,
deg(f)D is a Cartier divisor.

Proof. Clearly, we may assume that D is a prime divisor. Let D′ be a Weil divisor associated
with the scheme f−1(D). Then, D′ is a Cartier divisor. Thus, NmY/X(OY (D′)) ∈ Pic(X). Let X0

be a Zariski open set of X such that D is a Cartier divisor on X0 and codim(X \X0) ≥ 2. Then,
NmY/X(OY (D′)) = OX(deg(f)D) on X0. Thus, NmY/X(OY (D′)) = OX(deg(f)D) on X . In
particular, OX(deg(f)D) is locally free, which means that deg(f)D is a Cartier divisor. ✷

Lemma 3.5. Let Y be a normal projective variety over an algebraically closed fieldk. If Y is
simply connected and there is a finite and surjective morphismf : Z → Y of normal projective
varieties such thatZ is smooth overk, then the natural homomorphism

Pic(Y )⊗ Z[1/ deg(f)]→ NS(Y )⊗ Z[1/ deg(f)]

is bijective. Moreover, ifdeg(f) is invertible ink, thenPic(Y )→ NS(Y ) is bijective.

Proof. We set n = deg(f) and P = (Pic0Y )red, which is a subgroup scheme of PicY . For a
positive integer , let [] : P → P be a homomorphism given by [](x) = x. First we claim the
following.

Claim 3.5.1. [n](P ) is proper overk.

For this purpose, it is sufficient to see that every closed irreducible curve C in [n](P ) is proper
over k. For a curve C as above, there are a proper and smooth curve T over k, a non-empty
Zariski open set T0 of T , and a morphism φ : T0 → P such that the Zariski closure of the image

T0
φ−→ P

[n]−→ P is C. The morphism φ : T0 → P ⊆ PicY gives rise to a line bundle L0 on
T0 × Y such that φ(x) is the class of L0|{x}×Y for all x ∈ T0. Let us take a Cartier divisor D0

such that OT0×Y (D0) = L0. Then, there is a Weil divisor D on T × Y with D|T0×Y = D0. Here
idT ×f : T × Z → T × Y is a finite and surjective morphism of normal varieties such that T × Z
is smooth over k. Note that deg(idT ×f) = deg(f) = n. Thus, by Lemma 3.4, nD is a Cartier
divisor. Let φ′ : T → P be a morphism given by a line bundle OT×Y (nD). Then, φ′|T0

= [n] · φ.
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Here C is closed in P because [n](P ) is closed in P . Thus, we can see that φ′(T ) = C. Hence C
is proper over k.

Next we claim the following.

Claim 3.5.2. [] : P (k)→ P (k) is injective for every positive integer invertible ink.

Since Y is simply connected, by [5, Proposition 2.11], H1(Y, (µ�)Y ) = 0. Thus, the Kummer
exact sequence:

1→ (µ�)Y → O×
Y

�−→ O×
Y → 1

yields an injection [] : Pic(Y )→ Pic(Y ). Hence [] : P (k)→ P (k) is injective.

By Claim 3.5.2, [] : [n](P )(k) → [n](P )(k) is injective for every positive integer  invertible
in k. Thus, [n](P ) = {0} because [n](P ) is an abelian variety by Claim 3.5.1. Hence

P (k)⊗ Z[1/n] = {0}.
Therefore, we get the first assertion becauseNS(X)⊗Z[1/n] = PicY (k)⊗Z[1/n]/P (k)⊗Z[1/n].

Moreover, if n is invertible in k, then [n] : P (k) → P (k) is injective. Therefore, P (k) = {0}.
Hence, we have the second assertion. ✷

Lemma 3.6. Let f : Y → X be a morphism of projective normal varieties over an algebraically
closed fieldk. We assume that(1) X andY are Q-factorial, (2) dim f−1(x) = 1 for all x ∈ X,
and that(3) there is a non-empty open setX0 such thatf−1(x) is a smooth rational curve for every
x ∈ X0(k). If D is a Q-divisor onY with D ≡ 0, then there is aQ-divisor E on X such that
f ∗(E) ∼Q D andE ≡ 0.

Proof. Clearly, we may assume that D is a Cartier divisor. Then, f∗(OY (D)) is a torsion free
sheaf of rank 1 because D|f−1(x) = Of−1(x) for all x ∈ X0(k). Thus, there is a divisor E on X such
that f∗(OY (D))∨∨ = OX(E). Considering the natural homomorphism f ∗f∗(OY (D)) → OY (D).
We can find an effective divisor T on Y such that D ∼Q f ∗(E) + T and f(T ) ⊆ X \ X0. Here
(T · C) = 0 for all curve C with dim f(C) = 0. Thus, using Zariski’s Lemma (cf. Lemma A.1),
there are a Q-divisor S on X and a Zariski open set X1 of X such that f ∗(S) ∼Q T on f−1(X1) and
codim(X \X1) ≥ 2. Therefore, D ∼Q f ∗(E + S) on f−1(X1). Here codim(Y \ f−1(X1)) ≥ 2.
Thus, D ∼Q f ∗(E + S) on Y . It is easy to see that E + S ≡ 0 using D ≡ 0. ✷

Let us start the proof of Theorem 3.1. First, let us consider the case g ≥ 2. Then, by [2,
Proposition 2.6 and Proposition 3.3], there are finite and surjective morphisms Z → Y and Y →
M̄ g,n of normal projective varieties over k such that Y is simply connected and Z is smooth over
k. By Lemma 3.3.2 and Lemma 3.5, Pic(M̄ g,n)Q → NS(M̄ g,n)Q is bijective.

Next let us consider the case g = 0, 1. In order to see our assertion, it is sufficient to show that
if D ≡ 0 for a Q-divisor D on M̄ g,n, then D ∼Q 0. We prove this by induction on n. First, note
that dim M̄ 0,3 = 0, M̄ 0,4 = P1

k and M̄ 1,1 = P1
k. Let us consider π : M̄ g,n → M̄ g,n−1. If g = 0, 1,

then a general fiber of π is a smooth rational curve. Moreover, M̄ g,n and M̄ g,n−1 are Q-factorial
and dimπ−1(x) = 1 for all x ∈ M̄ g,n−1. Thus, by Lemma 3.6, there is a Q-divisor E on M̄ g,n−1

such that D ∼Q π∗(E) and E ≡ 0. By the hypothesis of induction, we have E ∼Q 0. Thus
D ∼Q 0. ✷
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Corollary 3.7. Let g, n, M̄ g,n andk be the same as in Theorem3.1. Then, the cycle map

cl1 : Pic(M̄ g,n)⊗Q� → H2
et(M̄ g,n,Q�)

is injective for every prime invertible ink.

Proof. Since M̄ g,n is projective, the kernel of NS(M̄ g,n) → NSν(M̄ g,n) is finite. Thus, by
Theorem 3.1, we have

Pic(M̄ g,n)Q
∼−→ NS(M̄ g,n)Q

∼−→ NSν(M̄ g,n)Q.

Therefore, it is sufficient to show the following lemma. ✷

Lemma 3.8. Let X be a proper algebraic spaces over an algebraically closed fieldk, and  a
prime invertible ink. Letπ : Pic(X) ⊗ Z� → NSν(X) ⊗ Z� be the natural homomorphism and
cl1 : Pic(X)⊗ Z� → H2

et(X,Z�) the cycle map. Then,Ker(cl1) ⊆ Ker(π). In particular,

Ker(Pic(X)⊗Q� → H2
et(X,Q�)) ⊆ Ker(Pic(X)⊗Q� → NSν(X)⊗Q�).

Proof. Let us consider an exact sequence

Pic(X)
�m−→ Pic(X)→ H2(Xet,Z/

mZ)

arising from the Kummer exact sequence

0→ Z/mZ→ O×
X

�m−→ O×
X → 0.

Since Z� is flat over Z, we have an exact sequence

Pic(X)⊗ Z�
�m−→ Pic(X)⊗ Z�

ρm−→ H2(Xet,Z/
mZ)⊗ Z� = H2(Xet,Z/

mZ)

Note that cl1 is given by lim←− ρm : Pic(X) ⊗ Z� → lim←−H2(Xet,Z/
mZ). Thus, if x ∈ Ker(cl1),

then ρm(x) = 0 for all m. Therefore, there is ym ∈ Pic(X) ⊗ Z� with mym = x. Let C be an
irreducible curve on X . Then, (x · C) = m(ym · C). Here (ym · C) ∈ Z�. Thus,

(x · C) ∈
⋂
m

mZ� = {0}.

Thus, x ∈ Ker(π). ✷

4. LINEAR INDEPENDENCE OF THE TAUTOLOGICAL CLASSES

Let k be an algebraically closed field, g and n non-negative integers with 2g − 2 + n > 0, and
M̄ g,n the moduli space of n-pointed stable curves of genus g over k. Then, we have the following
(see §§1.6 for the definition of Υg,n, Υ

e

g,n and the classes δυ (υ ∈ Υe

g,n)):

Proposition 4.1. (1) If g ≥ 3, thenλ, δirr and δυ ’s (υ ∈ Υ
e

g,n) are linearly independent in
NS(M̄ g,n)Q.

(2) If g = 2, thenλ andδυ ’s (υ ∈ Υe

2,n) are linearly independent inNS(M̄ 2,n)Q .
(3) If g = 1, thenλ andδυ ’s (υ ∈ Υ1,n) are linearly independent inNS(M̄ 1,n)Q .

Proof. First of all, by [7, Theorem 2.2], we have the following.
(a) If g ≥ 3, then there is a morphism ϕirr : P1

k → M̄ g,n such that deg(ϕ∗
irr(λ)) = 0,

deg(ϕ∗
irr(δirr)) = −1 and deg(ϕirr(δυ)) = 0 (∀ υ ∈ Υe

g,n).
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(b) If g ≥ 2, then, for every 0 ≤ i ≤ g − 2 and every I ⊂ {1, . . . , n} with [i, I] ∈ Υe

g,n, there is
a morphism ϕi,I : P

1
k → M̄ g,n such that deg(ϕ∗

i,I(λ)) = 0, deg(ϕ
∗
i,I(δirr)) = 0 and

deg(ϕ∗
i,I(δυ)) =

{
−1 if υ = [i, I]

0 if υ �= [i, I] (∀ υ ∈ Υe

g,n).

(c) If g ≥ 2, then, for every 1 ≤ i ≤ g − 1 and every I ⊂ {1, . . . , n} with [i, I] ∈ Υe

g,n, there is
a morphism ϕi,I : P

1
k → M̄ g,n such that deg(ϕ∗

i,I(λ)) = 0, deg(ϕ
∗
i,I(δirr)) = −2 and

deg(ϕ∗
i,I(δυ)) =

{
1 if υ = [i, I]

0 if υ �= [i, I] (∀ υ ∈ Υe

g,n).

(d) If g ≥ 1, then, for every i, j ≥ 0 and every I, J ⊆ {1, . . . , n} with i+ j ≤ g − 1, I ∩ J = ∅
and [i, I] ∈ Υe

g,n, there is a morphism ϕi,j,I,J : P1
k → M̄ g,n such that deg(ϕ∗

i,j,I,J(λ)) = 0,
deg(ϕ∗

i,j,I,J(δirr)) = 0 and

deg(ϕ∗
i,j,I,J(δυ)) =



1 if υ = [i+ j, I ∪ J ]

−1 if υ = [i, I], [j, J ]

0 otherwise

for all υ ∈ Υe

g,n.

(1) First, let us consider the case g ≥ 3. We assume that

D = aλ+ birrδirr +
∑

υ∈Υ
e
g,n

bυδυ ≡ 0.

Then, since deg(ϕ∗
irr(D)) = 0, we have birr = 0. Here g ≥ 3. Thus, for every υ ∈ Υe

g,n, we can
find i, I such that 0 ≤ i ≤ g − 2, I ⊆ {1, . . . , n} and υ = [i, I]. Thus, by the above (b), we can
see bυ = 0 for all υ ∈ Υe

g,n. Hence D = aλ ≡ 0. Therefore, a = 0.

(2) Next, let us consider the case g = 2. We assume that

D = aλ+
∑

υ∈Υ
e
2,n

bυδυ ≡ 0.

If υ = [0, I] for some I ⊆ {1, . . . , n}, then, using (b), we can see bυ = 0. Otherwise, we can set
υ = [1, I ′] for some I ′ ⊆ {1, . . . , n}. Then, bυ = 0 by (c). Thus D = aλ ≡ 0. Hence, a = 0.

(3) Finally, let us consider the case g = 1. We assume

D = λ+
∑

υ∈Υ
e
1,n

bυδυ ≡ 0,

where b[0,{i}] = 0 for all i = 1, . . . , n. Then, by virtue of (d), For every non-empty I, J ⊆
{1, . . . , n} with I ∩ J = ∅, b[0,I∪J ] = b[0,I ] + b[0,J ]. Therefore,

b[0,I ] =
∑
i∈I

b[0,{i}] = 0

for all non-empty I ⊆ {1, . . . , n}. Hence D = aλ ≡ 0. Therefore, a = 0. ✷
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5. GENERATORS OF THE Q-PICARD GROUP AND THE CYCLE MAP

Let g and n be non-negative integers with 2g − 2 + n > 0, and M̄g,n the algebraic stack
classifying n-pointed stable curves of genus g. For an algebraically closed field k, let (M̄g,n)k be
the coarse moduli scheme of M̄g,n×Spec(Z)Spec(k).

Theorem 5.1. Pic((M̄g,n)k)Q is generated by

λ, ψ1, . . . , ψn, δirr andδυ ’s (υ ∈ Υg,n)

for any algebraically closed fieldk. Moreover, the cycle map

Pic((M̄g,n)k)⊗Q� → H2
et((M̄g,n)k,Q�)

is bijective for every prime invertible ink.

Proof. By Corollary 3.7, the cycle map

Pic((M̄g,n)k)⊗Q� → H2
et((M̄g,n)k,Q�)

is injective. Hence, we get

dimQ Pic((M̄g,n)k)Q ≤ dimQ�
H2
et((M̄g,n)k,Q�).

Moreover, by Corollary 2.5,

dimQ�
H2
et((M̄g,n)k,Q�) ≤ dimQ H

2(M̄g,n(C),Q).

Therefore,

dimQ Pic((M̄g,n)k)Q ≤ dimQ H
2(M̄g,n(C),Q)(5.1.1)

and if the equation holds, then the cycle map is bijective.
In the case g = 0, the assertions of our theorem are well known (for example, see [8]), so that it

is sufficient to show the following (a)–(c) and dimQ Pic((M̄g,n)k)Q = dimQ H
2(M̄g,n(C),Q) for

each case.
(a) If g ≥ 3, then λ, ψ1, . . . , ψn, δirr and δυ’s (υ ∈ Υg,n) form a basis of Pic((M̄g,n)k)Q .
(b) If g = 2, then λ, , ψ1, . . . , ψn and δυ’s (υ ∈ Υ2,n) form a basis of Pic((M̄2,n)k)Q .
(c) If g = 1, then λ and δυ’s (υ ∈ Υ1,n) form a basis of Pic((M̄1,n)k)Q .

First of all, it is well known (cf. [1]) that H2(M̄g,n(C),Q) is generated by

λ, ψ1, . . . , ψn, δirr and δυ’s (υ ∈ Υg,n).

(a) By Proposition 4.1.1, λ, ψ1, . . . , ψn, δirr and δυ’s (υ ∈ Υg,n) are linearly independent in
H2(M̄g,n(C),Q), and these are also linearly independent in Pic((M̄g,n)k)Q . Thus, by (5.1.1),

λ, ψ1, . . . , ψn, δirr and δυ’s (υ ∈ Υg,n)

gives rise to a basis of Pic((M̄g,n)k)Q , and dimQ Pic((M̄g,n)k)Q = dimQ H
2(M̄g,n(C),Q).

(b) We know that 10λ = δirr + 2δ1 on M̄2(C). Thus, H2(M̄2,n(C),Q) is generated by

λ, ψ1, . . . , ψn and δυ’s (υ ∈ Υ2,n).

By Proposition 4.1.2, these are linearly independent in H2(M̄2,n(C),Q). Moreover, these are
also linearly independent in Pic((M̄2,n)k)Q . Thus, (5.1.1) shows us that these form a basis of
NS((M̄2,n)k)Q and that dimQ Pic((M̄2,n)k)Q = dimQ H

2(M̄2,n(C),Q).
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(c) First, we know δirr = 12λ on M̄1,1(C) and ψi = λ +
∑

i∈I,|I |≥2 δ[0,I ] for all i on M̄1,n(C).

Thus, H2(M̄1,n(C),Q) is generated by λ and δυ’s (υ ∈ Υ1,n). Therefore, by using Proposi-
tion 4.1.3 and (5.1.1), λ and δυ’s (υ ∈ Υ1,n) form a basis ofPic((M̄1,n)k)Q and dimQ Pic((M̄1,n)k)Q =
dimQ H

2(M̄1,n(C),Q). ✷

Corollary 5.2. Let g andn be non-negative integers with2g − 2 + n > 0, andM g,n the mod-
uli space ofn-pointed smooth curves of genusg over an algebraically closed fieldk. Then,
Pic(M g,n)Q is generated byλ, ψ1, . . . , ψn.

Proof. Let us consider the restriction map Pic(M̄ g,n)Q → Pic(M g,n)Q . Since M̄ g,n is Q-
factorial, it is surjective. Thus, Theorem 5.1 implies our corollary. ✷

Appendix A. ZARISKI’S LEMMA FOR INTEGRAL SCHEME

Let R be a discrete valuation ring, and f : Y → Spec(R) a flat and projective integral scheme
over R. Let η be the generic point of Spec(R) and o the closed point of Spec(R). We assume that
the genetic fiber Yη of f is geometrically reduced and irreducible curve. Let Yo be the special fiber
of f , i.e., Yo = f ∗(o). Let us consider a paring

Pic(Y )⊗ CH0(Yo)→ CH1(Yo)

given by the composition of homomorphisms

Pic(Y )⊗ CH0(Yo)→ Pic(Yo)⊗ CH0(Yo)→ CH1(Yo).

We denote by x · z the image of x ⊗ z by the above homomorphism. For a Cartier divisor D on
Y , the associated cycle of D is denoted by [D], which is an element of Z1(Y ). Let us consider the
following subgroup Fc(Y ) of Z0(Yo):

Fc(Y ) = {x ∈ Z0(Yo) | x = [D] for some Cartier divisor D on Y }.
For a Cartier divisor D on Y with [D] ∈ Fc(Y ), and y ∈ Fc(Y ), D · y depend only on [D]. For, if
D′ is a Cartier divisor on Y with [D′] = [D], and E is a Cartier divisor on Y with y = [E], then,
by [6, Theorem 2.4],

D · y = E · [D] = E · [D′] = D′ · y.
Thus, we can define a bi-linear map

q : Fc(Y )× Fc(Y )→ CH1(Yo)

by q([D], y) = D ·y. Moreover, [6, Theorem 2.4] says us that q is symmetric; i.e., q(x, y) = q(y, x)
for all x, y ∈ Fc(Y ). Then, we define the quadratic form Q on Fc(Y ) by

Q(x, y) = deg(q(x, y)).

Then, we have the following Zariski’s lemma on integral schemes.

Lemma A.1 (Zariski’s lemma for integral scheme). (1) Q([Yo], x) = 0 for all x ∈ Fc(Y )Q .
(2) Q(x, x) ≤ 0 for anyx ∈ Fc(Y )Q .
(3) Q(x, x) = 0 if and only ifx ∈ Q · [Yo].
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Proof. (1): This is obvious because OY (Yo) � OY .
(2) and (3): If x ∈ Q · [Yo], then by (1), Q(x, x) = 0. Thus, it is sufficient to prove that (a)

Q(x, x) ≤ 0 for any x ∈ Fc(Y )Q , and that (b) if Q(x, x) = 0, then x ∈ Q · [Yo]. Here we need the
following sublemma.

Sublemma A.1.1. LetV be a finite dimensional vector space overR, andQ a quadratic form on
V . We assume that there aree ∈ V and a basis{e1, . . . , en} of V with the following properties:

(i) If we sete = a1e1 + · · ·+ anen, thenai > 0 for all i.
(ii) Q(x, e) ≤ 0 for all x ∈ V .

(iii) Q(ei, ej) ≥ 0 for all i �= j.
(iv) If we setS = {(i, j) | i �= j andQ(ei, ej) > 0}, then, for anyi �= j, there is a sequence

i1, . . . , il such thati1 = i, il = j, and(it, it+1) ∈ S for all 1 ≤ t < l.

Then,Q(x, x) ≤ 0 for all x ∈ V . Moreover, ifQ(x, x) = 0 for somex �= 0, thenx ∈ Re and
Q(y, e) = 0 for all y ∈ V .

Proof. Replacing ei by aiei, we may assume that a1 = · · · = an = 1. If we set x = x1e1 +
· · ·+ xnen, then, by an easy calculation, we can show

Q(x, x) =
∑
i

x2
iQ(ei, e)−

∑
i<j

(xi − xj)
2Q(ei, ej).

Thus, we can easily see our assertions. ✷

Let us go back to the proof of Lemma A.1. First, we assume that Y is regular. Let (Yo)red =
E1 + · · · + En be the irreducible decomposition of (Yo)red. Since Y is regular, Ei’s are Cartier
divisors on Y and [Ei] ∈ Fc(Y ) for all i. Moreover, we can set Yo = a1E1 + · · ·+ anEn for some
positive integers a1, . . . , an. Thus, if we set e = [Yo] and ei = [Ei] for i = 1, . . . , n, then (i),
(ii) and (iii) in the above sublemma hold. Moreover, since Yo is geometrically connected, (iv) also
holds. Thus, we have our assertion in the case where Y is regular.

Next, let us consider a general case. Clearly we may assume that x ∈ Fc(Y ); i.e., x = [D]
for some Cartier divisor D on Y . By virtue of [10], there is a birational morphism µ : Y ′ → Y
of projective schemes over R such that Y ′ is regular. Using the projection formula (cf. [6, (c) of
Proposition 2.4]),

deg(OY ′(µ∗(D)) · [µ∗(D)]) = deg(OY (D) · [D]).
Thus, if Q([µ∗(D)], [µ∗(H)]) ≤ 0, then Q([D], [D]) ≤ 0. Moreover, if there is a rational number
α such that [µ∗(D)] = α[Y ′

o ], then [µ∗(D)] = α[µ∗(Yo)]. Thus, taking the push-forward µ∗, we can
see that [D] = α[Yo] in Z1(Y )Q . Hence, we get our lemma. ✷
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