平成 22 年度 京都大学大学院理学研究科 (数学・数理解析専攻)

数学系 外国人留学生入学試験問題

2010 Entrance Examination For Foreign Students Master Course in Mathematics, Graduate School of Science, Kyoto University

数学

Mathematics

- \otimes 1 から 5 までの全問を解答せよ. Answer all problems from 1 to 5.
- ⊗ 解答時間は 3 時間 である. The duration of the examination is three hours.
- ⊗ 問題は日本語および英語で書かれている.解答は日本語・英語どちらで書いて もよい. The problems are given both in Japanese and in English. The answers should be written either in Japanese or in English.
- ⊗ 参考書・ノート類の持ち込みは 禁止 する. It is <u>not allowed</u> to refer to any textbooks or notebooks during the examination.

[注意 (Cautions)]

- 1. 指示のあるまで開かぬこと. Do not open this sheet until it is permitted.
- 2. 解答用紙·計算用紙のすべてに,受験番号·氏名を記入せよ.Write your name and applicant number in each answer sheet.
- 3. 解答は各間ごとに別の解答用紙を用い,問題番号を各解答用紙の枠内に記入 せよ. Use a separate answer sheet for each problem and write the problem number within the box on the sheet.
- 4. 1問を2枚以上にわたって解答するときは,つづきのあることを用紙下端に明示して次の用紙に移ること. If you need more than one answer sheets for a problem, you may continue to another sheet.
- 5. この問題用紙は持ち帰ってよい. You may take home this problem sheet.

[記号 (Notations)]

以下の問題で ℝ, ℂ はそれぞれ、実数の全体、複素数の全体を表す。

In the problems, we denote the set of all real numbers by \mathbb{R} , and the set of all complex numbers by \mathbb{C} .

 $|\mathbf{1}|$ x を実数とするとき,次の行列の階数を求めよ:

$$\left(\begin{array}{ccccc}
1 & x & x & x \\
x & 1 & x & x \\
x & x & 1 & x \\
x & x & x & 1
\end{array}\right)$$

2 次の重積分の値を求めよ:

$$\iint_D e^{-x^2 - y^2} dx dy, \quad D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$$

 $oxed{3}$ $\mathbb{C}[x,y]$ を複素数体 \mathbb{C} 上の 2 変数多項式環とし,I を 3 つの多項式

$$x^{2} + 4x + 4$$
, $xy + x + 2y + 2$, $y^{3} + 3y^{2} + 3y + 1$

によって生成される $\mathbb{C}[x,y]$ のイデアルとする.剰余環 $\mathbb{C}[x,y]/I$ の \mathbb{C} 上のベクトル空間としての次元を求めよ.

 $oxed{4}$ $f:\mathbb{R}^2 o\mathbb{R}$ は C^∞ 級の関数で f(0,0)=0 を満たすとする. $rac{\partial f}{\partial y}(0,0)
eq 0$ であるとき,(0,0) の 2 つの開近傍 $U,V\subset\mathbb{R}^2$ と微分同相写像 $\varphi:U o V$ であって,

$$f \circ \varphi(x, y) = 0 \Longleftrightarrow y = 0$$

を満たすものが存在することを示せ.

5 次の等式を示せ:

$$\int_{-\infty}^{\infty} \frac{e^{ix}}{x^2 + 1} \ dx = \frac{\pi}{e}.$$

1 Let x be a real number. Compute the rank of the following matrix:

$$\left(\begin{array}{ccccc}
1 & x & x & x \\
x & 1 & x & x \\
x & x & 1 & x \\
x & x & x & 1
\end{array}\right)$$

2 Compute the following integral:

$$\iint_D e^{-x^2 - y^2} dx dy, \quad D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$$

3 Let $\mathbb{C}[x,y]$ be the polynomial ring with two variables over the field \mathbb{C} of complex numbers and let I be the ideal of $\mathbb{C}[x,y]$ generated by the three polynomials

$$x^{2} + 4x + 4$$
, $xy + x + 2y + 2$, and $y^{3} + 3y^{2} + 3y + 1$.

Compute the dimension of the quotient ring $\mathbb{C}[x,y]/I$ as a vector space over \mathbb{C} .

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a C^{∞} function with f(0,0) = 0. Suppose $\frac{\partial f}{\partial y}(0,0) \neq 0$. Then verify that there exist two open neighbourhoods $U, V \subset \mathbb{R}^2$ of (0,0) and a diffeomorphism $\varphi: U \to V$ such that

$$f \circ \varphi(x, y) = 0 \Longleftrightarrow y = 0.$$

5 Show the following equality:

$$\int_{-\infty}^{\infty} \frac{e^{ix}}{x^2 + 1} \, dx = \frac{\pi}{e}.$$