平成21年度 京都大学大学院理学研究科(数学・数理解析専攻)

数学系 外国人留学生入学試験問題

2009 Entrance Examination For Foreign Students
Master Course in Mathematics, Graduate School of Science, Kyoto University

数学

Mathematics

- \otimes $\boxed{1}$ から $\boxed{5}$ までの全問を解答せよ. Answer all problems from $\boxed{1}$ to $\boxed{5}$.
- ⊗ 解答時間は 3 時間 である. The duration of the examination is three hours.
- ⊗ 問題は日本語および英語で書かれている。解答は日本語・英語どちらで書いてもよい。 The problems are given both in Japanese and in English. The answers should be written either in Japanese or in English.
- ⊗ 参考書・ノート類の持ち込みは <u>禁止</u> する. It is <u>not allowed</u> to refer to any textbooks or notebooks during the examination.

[注意 (Cautions)]

- 1. 指示のあるまで開かぬこと. Do not open this sheet until it is permitted.
- 2. 解答用紙·計算用紙のすべてに、受験番号·氏名を記入せよ. Write your name and applicant number in each answer sheet.
- 3. 解答は各問ごとに別の解答用紙を用い、問題番号を各解答用紙の枠内に記入せよ. Use a separate answer sheet for each problem and write the problem number within the box on the sheet.
- 4. 1 間を 2 枚以上にわたって解答するときは、つづきのあることを用紙下端に明示して次の用紙に移ること。 If you need more than one answer sheets for a problem, you may continue to another sheet.
- 5. この問題用紙は持ち帰ってよい. You may take home this problem sheet.

[記号 (Notations)]

以下の問題で ℝ, ℂ はそれぞれ, 実数の全体, 複素数の全体を表す.

In the problems, we denote the set of all real numbers by \mathbb{R} , and the set of all complex numbers by \mathbb{C} .

 $\boxed{\mathbf{1}}$ a,b を実数とするとき、次の行列の階数を求めよ:

$$\begin{pmatrix} 1 & -1 & 0 & 1 \\ 2 & a+b-2 & a+b & -a-b-2 \\ 1 & -a-b-1 & -a-b-1 & a+b-1 \\ -1 & -a-b+1 & -a-b-1 & 2a-3 \end{pmatrix}$$

|2| 次の広義積分の値を求めよ:

$$\int \int_D x^2 e^{-x^2 - y^2} \, dx dy, \quad D = \{ (x, y) \in \mathbb{R}^2 \mid 0 \le y \le x \}.$$

3 複素数体 ℂ上の多項式環 ℂ[x] の部分集合 *I* を

$$I = \{ f(x) \in \mathbb{C}[x] \mid f(1) = f'(1) = 0 \}$$

によって定義する。ここで、f' は f の導関数を表す。このとき、I は $\mathbb{C}[x]$ のイデアルであることを示せ。また、剰余環 $\mathbb{C}[x]/I$ の \mathbb{C} 上のベクトル空間としての次元を求めよ。

- $oxed{4}$ X を位相空間, Y をハウスドルフ位相空間とし, f,g を X から Y への連続 写像とする.
 - (1) 集合

$$\{x \in X \mid f(x) = g(x)\}$$

は X の閉部分集合であることを示せ.

- (2) X の部分集合 A で, $\overline{A} = X$, $f|_A = g|_A$ をみたすものが存在するとき,f = g であることを示せ.ここで, \overline{A} は A の閉包を, $f|_A$, $g|_A$ はそれぞれ f,g の A への制限を表わすものとする.
- f(z) を $\{z \in \mathbb{C} \mid |z| > 1\}$ で定義された正則関数とする. f がすべての z において

$$|f(z)| \le \sqrt{|z|}$$

をみたすとき、極限 $\lim_{z\to\infty} f(z)$ が存在することを示せ.

 $\mathbf{1}$ Let a and b be real numbers. Compute the rank of the following matrix:

$$\begin{pmatrix} 1 & -1 & 0 & 1 \\ 2 & a+b-2 & a+b & -a-b-2 \\ 1 & -a-b-1 & -a-b-1 & a+b-1 \\ -1 & -a-b+1 & -a-b-1 & 2a-3 \end{pmatrix}$$

2 Compute the following integral:

$$\int \int_D x^2 e^{-x^2 - y^2} \, dx dy, \quad D = \{ (x, y) \in \mathbb{R}^2 \mid 0 \le y \le x \}.$$

Let $\mathbb{C}[x]$ be the polynomial ring over the field \mathbb{C} of complex numbers. We define a subset I of $\mathbb{C}[x]$ by

$$I = \{ f(x) \in \mathbb{C}[x] \mid f(1) = f'(1) = 0 \},\$$

where f' denotes the derivative of f. Show that I is an ideal of $\mathbb{C}[x]$ and compute the dimension of the quotient ring $\mathbb{C}[x]/I$ as a vector space over \mathbb{C} .

- Let X be a topological space, Y be a Hausdorff topological space, and f, g be two continuous maps from X to Y.
 - (1) Show that a subset

$$\{x \in X \mid f(x) = g(x)\}\$$

of X is closed.

- (2) Suppose that there exists a subset A of X such that $\overline{A} = X$ and $f|_A = g|_A$, where \overline{A} is the closure of A and $f|_A, g|_A$ are the restrictions of f, g to A, respectively. Show that f = g.
- Let f(z) be a holomorphic function defined on $\{z \in \mathbb{C} \mid |z| > 1\}$. Suppose that f satisfies

$$|f(z)| \le \sqrt{|z|}$$

for all z. Show that $\lim_{z\to\infty} f(z)$ exists.