平成31年度 京都大学大学院理学研究科(数学・数理解析専攻)

数学系 外国人留学生修士課程入学試験問題

2019 Entrance Examination For Foreign Students Master Course in Mathematics, Graduate School of Science, Kyoto University

数学

Mathematics

- \otimes $\boxed{1}$ から $\boxed{5}$ までの全問を解答せよ. Answer all questions from $\boxed{1}$ to $\boxed{5}$.
- ⊗ 解答時間は 3 時間 である. The duration of the examination is three hours.
- ⊗ 問題は日本語および英語で書かれている. 解答は日本語または英語どちらかで書くこと. The problems are given both in Japanese and in English. The answers should be written either in Japanese or in English.
- ⊗ 参考書・ノート類の持ち込みは <u>禁止</u> する. It is <u>not allowed</u> to refer to any textbooks or notebooks during the examination.

[注意 (Cautions)]

- 1. 指示のあるまで開かないこと. Do not open this sheet until it is permitted.
- 2. 解答用紙·計算用紙のすべてに、受験番号·氏名を記入せよ. Write your name and applicant number in each answer sheet and scratch pad.
- 3. 解答は各問ごとに別の解答用紙を用い、問題番号を各解答用紙の枠内に記入せよ. Use a separate answer sheet for each problem and write the problem number within the box on the sheet.
- 4. 1 問を 2 枚以上にわたって解答するときは、つづきのあることを明示して次の用紙に移ること。 If you need more than one answer sheets for a problem, you may continue to another sheet. If you do so, indicate that there is a continuation.
- 5. この問題用紙は持ち帰ってよい. You may take home this problem sheet.

[記号 (Notation)]

以下の問題で \mathbb{R} , \mathbb{C} , \mathbb{Z} はそれぞれ,実数の全体,複素数の全体,整数の全体を表す.

In the problems, we denote the set of all real numbers by \mathbb{R} , the set of all complex numbers by \mathbb{C} , and the set of all integers by \mathbb{Z} .

 $oxed{1}$ c を複素数とし、A(c) を次で定まる正方行列とする.

$$A(c) = \begin{pmatrix} 2c & 1 - 2c & 0 \\ c & 1 - c & 0 \\ -c - 2 & c + 4 & -1 \end{pmatrix}$$

- (1) 行列 A(c) の固有値をすべて求めよ.
- (2) A(c) が対角化可能でないような $c \in \mathbb{C}$ をすべて決定せよ.

2 複素積分

$$\frac{1}{2\pi i} \int_{|z|=2} \frac{\sqrt{z^2 - 1}}{z - 3} dz$$

を求めよ. ここで $\sqrt{z^2-1}$ は, z>1 のときに $\sqrt{z^2-1}>0$ を満たす分枝とする.

- **3** アーベル群 $G=\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}\times\mathbb{Z}/6\mathbb{Z}$ の元 $a=(1+2\mathbb{Z},3+4\mathbb{Z},2+6\mathbb{Z})$ で 生成される部分群を H とする.剰余群 G/H を巡回群の直積で表せ.
- **4** 連続曲線 $\gamma:[0,+\infty)\to\mathbb{R}^2$ の像が有界であるとする. 集合

$$X = \bigcap_{T>0} \overline{\{\gamma(t) \mid t \ge T\}}$$

が連結であることを示せ、ただし、 \mathbb{R}^2 の部分集合 S に対してその閉包を \overline{S} で表わすものとする.

 $oxedsymbol{5}$ f を区間 [0,1] 上の実数値連続関数とする.次の極限を求めよ.

$$\lim_{t \to +0} t^2 \int_t^1 \frac{f(s)}{s^3} ds.$$

1 Let c be a complex number, and let A(c) be a square matrix given by

$$A(c) = \begin{pmatrix} 2c & 1 - 2c & 0 \\ c & 1 - c & 0 \\ -c - 2 & c + 4 & -1 \end{pmatrix}.$$

- (1) Find all the eigenvalues of A(c).
- (2) Determine all $c \in \mathbb{C}$ for which A(c) is not diagonalizable.
- 2 Compute the following complex integral

$$\frac{1}{2\pi i} \int_{|z|=2} \frac{\sqrt{z^2 - 1}}{z - 3} dz,$$

taking a branch of $\sqrt{z^2-1}$ satisfying $\sqrt{z^2-1}>0$ for z>1.

- Consider the abelian group $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ and its subgroup H generated by an element $a = (1 + 2\mathbb{Z}, 3 + 4\mathbb{Z}, 2 + 6\mathbb{Z})$ of G. Express the quotient group G/H as a product of cyclic groups.
- Let $\gamma:[0,+\infty)\to\mathbb{R}^2$ be a continuous curve whose image is bounded. Prove that the set

$$X = \bigcap_{T \geq 0} \overline{\{\gamma(t) \mid t \geq T\}}$$

is connected, where \overline{S} denotes the closure of a subset S of \mathbb{R}^2 .

Let f be a continuous real-valued function on the interval [0,1]. Compute the following limit:

$$\lim_{t \to +0} t^2 \int_t^1 \frac{f(s)}{s^3} ds.$$