平成30年度 京都大学大学院理学研究科(数学・数理解析専攻)

数学系 外国人留学生修士課程入学試験問題

2018 Entrance Examination For Foreign Students Master Course in Mathematics, Graduate School of Science, Kyoto University

数学

Mathematics

- \otimes $\boxed{1}$ から $\boxed{5}$ までの全問を解答せよ. Answer all questions from $\boxed{1}$ to $\boxed{5}$.
- ⊗ 解答時間は 3 時間 である. The duration of the examination is three hours.
- ⊗ 問題は日本語および英語で書かれている. 解答は日本語または英語どちらかで書くこと. The problems are given both in Japanese and in English. The answers should be written either in Japanese or in English.
- ⊗ 参考書・ノート類の持ち込みは <u>禁止</u> する. It is <u>not allowed</u> to refer to any textbooks or notebooks during the examination.

[注意 (Cautions)]

- 1. 指示のあるまで開かないこと. Do not open this sheet until it is permitted.
- 2. 解答用紙·計算用紙のすべてに、受験番号·氏名を記入せよ. Write your name and applicant number in each answer sheet and scratch pad.
- 3. 解答は各問ごとに別の解答用紙を用い、問題番号を各解答用紙の枠内に記入せよ. Use a separate answer sheet for each problem and write the problem number within the box on the sheet.
- 4. 1 問を 2 枚以上にわたって解答するときは、つづきのあることを明示して次の用紙に移ること。If you need more than one answer sheets for a problem, you may continue to another sheet. If you do so, indicate that there is a continuation.
- 5. この問題用紙は持ち帰ってよい. You may take home this problem sheet.

[記号 (Notations)]

以下の問題で \mathbb{R} , \mathbb{C} , \mathbb{Z} はそれぞれ,実数の全体,複素数の全体,整数の全体を表す.

In the problems, we denote the set of all real numbers by \mathbb{R} , the set of all complex numbers by \mathbb{C} , and the set of all integers by \mathbb{Z} .

 $oxed{1}$ a,b,c を実数とする. \mathbb{R}^4 の3つのベクトル

$$\begin{pmatrix} 1 \\ a \\ 1 \\ -2 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 4 \\ b \\ 2 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 1 \\ 1 \\ c \end{pmatrix}$$

が1次従属になる (a,b,c) をすべて決定せよ.

2 積分

$$\int_0^\infty \frac{\sin x}{x(x^2+1)} \, dx$$

を求めよ.

- $oxed{3}$ X を変数とし、 $\mathbb{Z}[X]$ を \mathbb{Z} 上の多項式環とする. $f(X) = X^3 + X^2 + 2X + 2 \in \mathbb{Z}[X]$ とおく. f(X) と 5 で生成された $\mathbb{Z}[X]$ のイデアルを I とおく. $A = \mathbb{Z}[X]/I$ とする.
 - (1) 環 A の元 a であって, $a^2 = a$ を満たすものの個数を求めよ.
 - (2) 環 A の元 b であって, $b^{18} = 1$ を満たすものの個数を求めよ.
- $K_i \subset \mathbb{R}^2 \ (i=1,2)$ を有界閉集合とする. $f\colon K_1 \times K_2 \to \mathbb{R}$ を連続写像とする. 各 $p\in K_1$ に対して

$$g(p) = \max\{f(p,q) \mid q \in K_2\}$$

とおき、関数 $g: K_1 \to \mathbb{R}$ を定める. この時, g は連続であることを示せ.

5 \mathbb{R} 上の実数値連続関数 f について、それが有界であり、かつ、任意の $c \in \mathbb{R}$ に対して

$$A_c = \{ x \in \mathbb{R} \mid f(x) = c \}$$

が空集合もしくは有限集合だとする.このとき f は $\mathbb R$ 上一様連続であることを示せ.

Let
$$a, b, c$$
 be real numbers. Determine all (a, b, c) such that the following three vectors

$$\begin{pmatrix} 1 \\ a \\ 1 \\ -2 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 4 \\ b \\ 2 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 1 \\ 1 \\ c \end{pmatrix}$$

in \mathbb{R}^4 are linearly dependent.

$$\int_0^\infty \frac{\sin x}{x(x^2+1)} \, dx.$$

- **3** Let $\mathbb{Z}[X]$ be the polynomial ring over \mathbb{Z} with variable X. Let $f(X) = X^3 + X^2 + 2X + 2 \in \mathbb{Z}[X]$. Let I be the ideal of $\mathbb{Z}[X]$ generated by f(X) and 5. Put $A = \mathbb{Z}[X]/I$.
 - (1) Find the number of elements $a \in A$ such that $a^2 = a$.
 - (2) Find the number of elements $b \in A$ such that $b^{18} = 1$.
- Let $K_i \subset \mathbb{R}^2$ be a bounded closed subset for i = 1, 2. Let $f: K_1 \times K_2 \to \mathbb{R}$ be a continuous map. Define a function $g: K_1 \to \mathbb{R}$ by

$$g(p) = \max\{f(p,q) \mid q \in K_2\}$$

for $p \in K_1$. Show that g is continuous.

5 Let f be a bounded real-valued continuous function on \mathbb{R} . Suppose that for every $c \in \mathbb{R}$,

$$A_c = \{ x \in \mathbb{R} \mid f(x) = c \}$$

is either the empty set or a finite set. Show that f is uniformly continuous on \mathbb{R} .