平成29年度 京都大学大学院理学研究科(数学・数理解析専攻)

数学系 外国人留学生修士課程入学試験問題

2017 Entrance Examination For Foreign Students Master Course in Mathematics, Graduate School of Science, Kyoto University

数学

Mathematics

- \otimes $\boxed{1}$ から $\boxed{5}$ までの全問を解答せよ. Answer all questions from $\boxed{1}$ to $\boxed{5}$.
- ⊗ 解答時間は 3 時間 である. The duration of the examination is three hours.
- ⊗ 問題は日本語および英語で書かれている. 解答は日本語または英語どちらかで書くこと. The problems are given both in Japanese and in English. The answers should be written either in Japanese or in English.
- ⊗ 参考書・ノート類の持ち込みは <u>禁止</u> する. It is <u>not allowed</u> to refer to any textbooks or notebooks during the examination.

[注意 (Cautions)]

- 1. 指示のあるまで開かないこと. Do not open this sheet until it is permitted.
- 2. 解答用紙・計算用紙のすべてに、受験番号・氏名を記入せよ. Write your name and applicant number in each answer sheet and scratch pad.
- 3. 解答は各間ごとに別の解答用紙を用い、問題番号を各解答用紙の枠内に記入 せよ. Use a separate answer sheet for each problem and write the problem number within the box on the sheet.
- 4. 1間を2枚以上にわたって解答するときは、つづきのあることを明示して次の用紙に移ること. If you need more than one answer sheets for a problem, you may continue to another sheet. If you do so, indicate that there is a continuation.
- 5. この問題用紙は持ち帰ってよい. You may keep this problem sheet after the examination.

[記号 (Notations)]

以下の問題で \mathbb{R} , \mathbb{C} , \mathbb{Z} , \mathbb{N} はそれぞれ,実数の全体,複素数の全体,整数の全体,正の整数全体を表す.

In the problems, we denote the set of all real numbers by \mathbb{R} , the set of all complex numbers by \mathbb{C} , the set of all integers by \mathbb{Z} and the set of all positive integers by \mathbb{N} .

 $oxed{1}$ a,b を実数とする.次のベクトルで生成される \mathbb{R}^5 の部分空間の次元を求めよ.

$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 5 \\ 1 \\ 3 \\ 6 \\ 2 \end{pmatrix} \quad \begin{pmatrix} 5 \\ 8 \\ 3 \\ 6 \\ 2 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 2a - b + 2 \\ -a + b - 1 \\ -a + 2b - 1 \\ 3a - 2b \end{pmatrix}$$

2 関数 $f_n(x)$, $n=1,2,\ldots$ を次のように定める.

$$f_n(x) = n^2 x e^{-n^2 x} \quad (x \in \mathbb{R}).$$

- (1) a が正数のとき級数 $\sum_{n=1}^{\infty} f_n(x)$ は $[a,\infty)$ 上で一様収束することを示せ.
- (2) 級数 $\sum_{n=1}^{\infty} f_n(x)$ は $[0,\infty)$ 上では一様収束しないことを示せ.
- $G = (\mathbb{Z}/133\mathbb{Z})^{\times}$ を環 $\mathbb{Z}/133\mathbb{Z}$ の乗法群とする.このとき G の位数 9 の元の個数を求めよ.
- 4 n を正の整数とする. M を境界のないコンパクトなn 次元 C^{∞} 級多様体とする. このとき, M 上の 非退化な臨界点しかもたない 任意の C^{∞} 級関数は高々有限個の非退化臨界点しか持たないことを証明せよ. ただし, M 上の C^{∞} 級関数 f の臨界点 p に対して次の条件 (C) が成り立つとき, p は f の非退化臨界点と呼ばれる.
 - (C) p の近傍で定義された M の局所座標系を (x_1, \ldots, x_n) とするとき, 正方行列

$$\left(\frac{\partial^2 f}{\partial x_i \partial x_j}(p)\right)_{1 \le i, j \le n}$$

が逆行列を持つ.

5 領域 D を $D = \{z \in \mathbb{C} | |z| < 1\}$ で定めるとし, \bar{D} と ∂D はそれぞれ D の閉包と境界を表す.D 上で正則かつ \bar{D} 上で連続な関数 f と g は g 3 つの条件

$$|f(z)| \le |g(z)| \quad (z \in D),$$
$$|f(z)| = |g(z)| \quad (z \in \partial D),$$
$$f(z) \ne 0 \quad (z \in \bar{D} \setminus \{0\})$$

を満たすものとする.このとき, $|\alpha|=1$ であるような $\alpha\in\mathbb{C}$ と $m\in\mathbb{N}\cup\{0\}$ が存在して, $f(z)=\alpha z^m g(z)$ となることを示せ.

Let a, b be real numbers. Determine the dimension of the subspace of \mathbb{R}^5 generated by the following vectors.

$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 5 \\ 1 \\ 3 \\ 6 \\ 2 \end{pmatrix} \quad \begin{pmatrix} 5 \\ 8 \\ 3 \\ 6 \\ 2 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 2a - b + 2 \\ -a + b - 1 \\ -a + 2b - 1 \\ 3a - 2b \end{pmatrix}$$

2 We define the functions $f_n(x)$, n = 1, 2... by

$$f_n(x) = n^2 x e^{-n^2 x} \quad (x \in \mathbb{R}).$$

- (1) Show that the series $\sum_{n=1}^{\infty} f_n(x)$ is uniformly convergent on $[a, \infty)$ if a is a positive number.
- (2) Show that the series $\sum_{n=1}^{\infty} f_n(x)$ is not uniformly convergent on $[0,\infty)$.
- Let $G = (\mathbb{Z}/133\mathbb{Z})^{\times}$ be the group of units of the ring $\mathbb{Z}/133\mathbb{Z}$. Find the number of elements of G of order 9.
- Let n be a positive integer. Let M be an n-dimensional compact C^{∞} manifold without boundary. Prove that every C^{∞} function on M has at most finitely many non-degenerate critical points if its critical points are all non-degenerate. Here a critical point p of a C^{∞} function f on M is said to be non-degenerate if the following condition (\mathbf{C}) is satisfied:
 - (C) If (x_1, \ldots, x_n) is a system of local coordinates of M around p, then the following square matrix is invertible:

$$\left(\frac{\partial^2 f}{\partial x_i \partial x_j}(p)\right)_{1 \le i, j \le n}.$$

Let $D = \{z \in \mathbb{C} | |z| < 1\}$. \bar{D} and ∂D denote the closure and the boundary of D, respectively. Let f and g be functions holomolphic on D and continuous on \bar{D} , which satisfy the following three conditions:

$$|f(z)| \le |g(z)| \quad (z \in D),$$
$$|f(z)| = |g(z)| \quad (z \in \partial D),$$
$$f(z) \ne 0 \quad (z \in \bar{D} \setminus \{0\}).$$

Show there exist $\alpha \in \mathbb{C}$ with $|\alpha| = 1$ and $m \in \mathbb{N} \cup \{0\}$ such that $f(z) = \alpha z^m g(z)$.