平成 28 年度 京都大学大学院理学研究科 (数学・数理解析専攻)

数学系 外国人留学生修士課程入学試験問題

2016 Entrance Examination For Foreign Students Master Course in Mathematics, Graduate School of Science, Kyoto University

数学

Mathematics

- \otimes 1 から 5 までの全問を解答せよ . Answer all questions from 1 to 5.
- ⊗ 解答時間は 3 時間 である. The duration of the examination is three hours.
- ⊗ 問題は日本語および英語で書かれている. 解答は日本語または英語どちらかで書くこと. The problems are given both in Japanese and in English. The answers should be written either in Japanese or in English.
- ⊗ 参考書・ノート類の持ち込みは 禁止 する. It is <u>not allowed</u> to refer to any textbooks or notebooks during the examination.

[注意 (Cautions)]

- 1. 指示のあるまで開かないこと. Do not open this sheet until it is permitted.
- 2. 解答用紙·計算用紙のすべてに,受験番号·氏名を記入せよ.Write your name and applicant number in each answer sheet and scratch pad.
- 3. 解答は各問ごとに別の解答用紙を用い,問題番号を各解答用紙の枠内に記入 せよ. Use a separate answer sheet for each problem and write the problem number within the box on the sheet.
- 4. 1問を2枚以上にわたって解答するときは,つづきのあることを明示して次の用紙に移ること. If you need more than one answer sheets for a problem, you may continue to another sheet. If you do so, indicate that there is a continuation.
- 5. この問題用紙は持ち帰ってよい. You may take home this problem sheet.

[記号 (Notations)]

以下の問題で \mathbb{R} , \mathbb{C} , \mathbb{Z} はそれぞれ,実数の全体,複素数の全体,整数の全体を表す.

In the problems, we denote the set of all real numbers by \mathbb{R} , the set of all complex numbers by \mathbb{C} , and the set of all integers by \mathbb{Z} .

 $|\mathbf{1}|$ 次の実4 imes 5行列を考える.

$$A = \begin{pmatrix} 1 & 4 & 15 & 1 & -9 \\ 0 & 1 & 4 & 0 & -3 \\ 2 & -4 & -18 & -1 & 15 \\ 1 & 0 & -1 & 0 & 2 \end{pmatrix}.$$

線形写像 $f_A:\mathbb{R}^5 \to \mathbb{R}^4$ を $f_A(\mathbf{v})=A\mathbf{v}$ で定める. f_A の核と像の基底を一組ずつ求めよ.

 $|\mathbf{2}|$ 実数列 $\{a_n\}$ が

$$\lim_{n \to \infty} n a_n = \alpha > 0$$

を満たすとする.また $[0,\infty)$ 上の実数値連続関数 f(x) が

$$\lim_{x \to \infty} f(x) = k$$

を満たしているとする.このとき次の極限を求めよ.

$$\lim_{n\to\infty} \frac{1}{n} \int_0^\infty f(x) e^{-a_n x} dx.$$

|3| $\mathbf{v}_1 = (9,4,5), \ \mathbf{v}_2 = (7,2,3), \ \mathbf{v}_3 = (1,6,7)$ とし,商群

$$G = \mathbb{Z}^3/(\mathbb{Z}\mathbf{v}_1 + \mathbb{Z}\mathbf{v}_2 + \mathbb{Z}\mathbf{v}_3)$$

を考える.群Gの位数2の元の個数を求めよ.

 $oxed{4}$ \mathbb{R}^n の空でないコンパクト部分集合 A と正の数 ϵ に対し ,

$$U_{\epsilon}(A) = \{ x \in \mathbb{R}^n \mid \inf\{d(x, a) \mid a \in A\} < \epsilon \}$$

とおき, \mathbb{R}^n の 2 つの空でないコンパクト部分集合 A と B に対して

$$d_H(A,B) = \inf\{\epsilon > 0 \mid A \subset U_{\epsilon}(B)$$
 かつ $B \subset U_{\epsilon}(A)\}$

と定める.ただし d(x,y) $(x,y\in\mathbb{R}^n)$ は x と y のユークリッド距離である.このとき \mathbb{R}^n の空でないコンパクト部分集合 A,B,C に対して次のことを示せ.

- 1. $d_H(A,B)=0$ ならば $A \geq B$ は \mathbb{R}^n の部分集合として一致する.
- 2. $d_H(A, C) \le d_H(A, B) + d_H(B, C)$.
- 5 次の極限を求めよ.

$$\lim_{r \to \infty} \int_{-r}^{r} \frac{x \sin(2\pi x)}{1 + x + x^2} \, dx.$$

2

1 Consider the following real 4×5 matrix.

$$A = \begin{pmatrix} 1 & 4 & 15 & 1 & -9 \\ 0 & 1 & 4 & 0 & -3 \\ 2 & -4 & -18 & -1 & 15 \\ 1 & 0 & -1 & 0 & 2 \end{pmatrix}.$$

Define a linear map $f_A : \mathbb{R}^5 \to \mathbb{R}^4$ by $f_A(\mathbf{v}) = A\mathbf{v}$. Find a basis of the null space of f_A and a basis of the image of f_A , respectively.

2 Let $\{a_n\}$ be a sequence of real numbers with

$$\lim_{n\to\infty} na_n = \alpha > 0$$

and let f(x) be a real-valued continuous function on $[0, \infty)$ with

$$\lim_{x \to \infty} f(x) = k.$$

Then compute the following limit.

$$\lim_{n \to \infty} \frac{1}{n} \int_0^\infty f(x) e^{-a_n x} dx.$$

3 Put $\mathbf{v}_1 = (9, 4, 5)$, $\mathbf{v}_2 = (7, 2, 3)$, $\mathbf{v}_3 = (1, 6, 7)$, and consider the quotient group

$$G = \mathbb{Z}^3/(\mathbb{Z}\mathbf{v}_1 + \mathbb{Z}\mathbf{v}_2 + \mathbb{Z}\mathbf{v}_3).$$

Find the number of elements of order 2 in the group G.

Let A be a nonempty compact subset of \mathbb{R}^n , and let ϵ be a positive number. Put

$$U_{\epsilon}(A) = \{ x \in \mathbb{R}^n \mid \inf\{d(x, a) \mid a \in A\} < \epsilon \}$$

and for two nonempty compact subsets A and B of \mathbb{R}^n , define

$$d_H(A, B) = \inf\{\epsilon > 0 \mid A \subset U_{\epsilon}(B) \text{ and } B \subset U_{\epsilon}(A)\}.$$

Here d(x,y) $(x,y \in \mathbb{R}^n)$ is the Euclidean distance between x and y. Then for nonempty compact subsets A, B, C of \mathbb{R}^n , prove the following.

- 1. If $d_H(A, B) = 0$, then A coincides with B as subsets of \mathbb{R}^n .
- 2. $d_H(A, C) \le d_H(A, B) + d_H(B, C)$.
- **5** Compute the following limit.

$$\lim_{r \to \infty} \int_{-r}^{r} \frac{x \sin(2\pi x)}{1 + x + x^2} dx.$$