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Abstract. A Non-autonomous Iterated Function System (NIFS) is a sequence of collections
of uniformly contracting maps. Unlike ordinary iterated function systems, we allow the
contractions applied at each step to vary. In this talk, we give an overview of dimension
results for limit sets of NIFSs, focusing mainly on families of parameterized NIFSs by using
the transversality method.

1. Overview of the theory of non-autonomous iterated fucntion systems

1.1. Iterated function systems.

Definition. Let I be a finite set. Then a collection {ϕi}i∈I of uniformly contracting maps
on Rm is called an Iterated Function System (IFS).

Example. • A collection {
x 7→ 1

3
x, x 7→ 1

3
x+

2

3

}
is an IFS on R. The limit set of this IFS is the middle third Cantor set.

• For 0 < λ < 1 a collection

{x 7→ λx, x 7→ λx+ 1− λ}

is an IFS on R. The invariant measure of this IFS (with respect to (1/2, 1/2)-
probabilty vector) is called the Bernoulli convolution (parameterized by λ).

Dimension results for limit sets of IFS.
• Dimension formula for limit sets of conformal IFS (Mauldin, Urbański [6, 7]).
• Transversality methods for IFS (Pollicott, Simon, Solomyak [11, 15]).
• Additive combinatorics approach (Hochman, Shmerkin [3, 16]).

1.2. Non-autonomous IFS.

Definition. A sequence ({ϕ(j)
i }i∈I(j))∞j=1 of collections of uniformly contracting maps on a

compact set X ⊂ Rm is called a Non-autonomous IFS (NIFS).

Example. (1) Set

Φ1 =

{
x 7→ 1

4
x, x 7→ 1

4
x+

3

4

}
,Φ2 =

{
x 7→ 1

2
x, x 7→ 1

2
x+

1

2

}
.

Then the sequence Φ = Φ1Φ2Φ1Φ1Φ2Φ1Φ1Φ1Φ2 · · · is a NIFS on [0, 1]. In general,
the sequence Φτ = Φτ1Φτ2Φτ3 · · · is a NIFS on [0, 1] for τ = τ1τ2 · · · ∈ {1, 2}N.
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(2) Set

Ψ =

({
x 7→ 1

2
x, x 7→ 1

2
x+

1

j

})∞

j=1

.

Then the sequence Ψ is a NIFS on [0, 2].

Definition (Limit set of NIFS). Let Φ = ({ϕ(j)
i }i∈I(j))∞j=1 be a NIFS on X. For each n ∈ N,

set

Xn :=
∪

(i1,...,in)∈I(1)×···×I(n)

ϕ
(1)
i1

◦ · · · ◦ ϕ(n)
in

(X),

which is a compact set. Then Xn ⊃ Xn+1 for all n. Therefore we can define a nonempty
compact subset J(Φ) as J = J(Φ) :=

∩∞
n=1Xn. The set J is called the limit set of the NIFS

Φ.

Remark.
• Geometrical properties of limit sets of NIFS (Sumi et al. [1]).
• Construction of limit sets of NIFS on unbounded spaces (Inui [4]).
• Dimension results for limit sets of NIFS (This talk).

1.3. Setup and notations. For each j ∈ N, let I(j) be a finite set.
Let X ⊂ Rm be a compact convex set with non-empty interior int(X) ̸= ∅ (as a phase

space).
For each j ∈ N, we set

Φ(j) = {ϕ(j)
i : X → X}i∈I(j) .

Write Φ = (Φ(j))∞j=1.
For n, k ∈ N with n ≤ k, we introduce index sets

Ikn =
k∏

j=n

I(j), I∞n =
∞∏
j=n

I(j), In = In1 and I∞ = I∞1 .

For any ω = ωnωn+1 · · ·ωk ∈ Ikn, we denote

ϕω = ϕ(n)
ωn

◦ · · · ◦ ϕ(k)
ωk

.

Moreover, for any ω = ωnωn+1 · · · ∈ I∞n and j ∈ N, write

ω|j = ωnωn+1 · · ·ωn+j−1 ∈ In+j−1
n .

Let W ⊂ Rm be an open set and let ϕ : W → ϕ(W ) be a diffeomorphism. We say ϕ is
conformal if for any x ∈ W the differential Dϕ(x) : Rm → Rm is a similarity linear map:
Dϕ(x) = cx ·Mx where cx > 0 is a scaling factor at x and Mx is an m×m orthogonal matrix.
We denote by |Dϕ(x)| the scaling factor of ϕ at x.

Definition. We say that Φ = (Φ(j))∞j=1 is a Non-autonomous Conformal Iterated Function

System (NCIFS) if the following holds:

(i) there exists an open connected set V ⊃ X such that for all j ∈ N and i ∈ I(j), ϕ
(j)
i

extends to a C1 conformal map on V such that ϕ
(j)
i (V ) ⊂ V ;

(ii) there exists a constant 0 < γ < 1 such that for all j ∈ N, i ∈ I(j) and x ∈ V ,

|Dϕ
(j)
i (x)| ≤ γ;
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(iii) there exists a constant K > 0 such that for all n ∈ N, ω ∈ I∞n , j ∈ N and x1, x2 ∈ V ,

|Dϕω|j (x1)| ≤ K|Dϕω|j (x2)|.

For a conformal map ϕ : V → ϕ(V ), write

∥Dϕ∥ = sup{|Dϕ(x)| : x ∈ X}.

Definition. For any s ≥ 0, we set

P (s) = PΦ(s) := lim sup
n→∞

1

n
log

∑
ω∈In

||Dϕω||s, P (s) = PΦ(s) := lim inf
n→∞

1

n
log

∑
ω∈In

||Dϕω||s ∈ [−∞,∞].

Then the function P/P : [0,∞) → [−∞,∞] is called the upper/lower pressure function of
the NCIFS Φ.

Definition. The upper/lower pressure function has the following monotonicity. If s1 < s2,
then either both P (s1) and P (s2) are equal to ∞, both are equal to −∞, or P (s1) > P (s2).
Set

s(Φ) := sup{s ≥ 0 : P (s) > 0} = inf{s ≥ 0 : P (s) < 0},

where we set sup ∅ = 0 and inf ∅ = ∞. We define a value s(Φ) associated with P in a similar
way.

Definition (Open set condition). A NCIFS Φ satisfies the Open Set Condition (OSC)
def⇐⇒

For any j ∈ N, and any a ̸= b ∈ I(j), ϕ
(j)
a (int(X)) ∩ ϕ

(j)
b (int(X)) = ∅.

Example. (1) Set

Φ1 =

{
x 7→ 1

4
x, x 7→ 1

4
x+

3

4

}
,Φ2 =

{
x 7→ 1

2
x, x 7→ 1

2
x+

1

2

}
.

Then the NCIFS Φτ = Φτ1Φτ2Φτ3 · · · satisfies the OSC for τ = τ1τ2 · · · ∈ {1, 2}N.
(2) Set

Ψ =

({
x 7→ 1

2
x, x 7→ 1

2
x+

1

j

})∞

j=1

.

Then the NCIFS Ψ does not satisfy the OSC.

Theorem. [12, 8, (Rempe-Gillen and Urbański + N)] Let Φ = ({ϕ(j)
i }i∈I(j))∞j=1 be a NCIFS

satisfying the OSC. If inf{||Dϕ
(j)
i || : j ∈ N, i ∈ I(j)} > 0, then we have

dimBJ = dimP J = s(Φ) (N),

dimH J = s(Φ) (RU),

where dimB/ dimP / dimH : the upper box/ packing/ Hausdorff dimension.

Remark.
• Rempe-Gillen and Urbański [12] give a dimension formula under much weaker as-
sumptions.

• Recently Käenmäki and Rutar [5] give a formula for the Assouad dimension under
similar assumptions.



4 YUTO NAKAJIMA

Example. (1) Fix τ = τ1τ2 · · · ∈ {1, 2}N. The NCIFS Φ = Φτ satisfies the OSC . More-
over,

||Dϕ
(j)
i || ≥ 1/4 for all j ∈ N, i ∈ I(j).

For s ≥ 0,

∑
ω∈In

||Dϕω1ω2···ωn ||s = #In

 n∏
j=1

1

4
τj

s

since ||Dϕ(j)
ωj

|| = 1

4
τj .

Hence, we have

PΦ(s) = lim sup
n→∞

1

n
log

#In

 n∏
j=1

1

4
τj

s
= log 2 + s lim sup

n→∞

1

n

n∑
j=1

log(τj/4),

and

s(Φ) =
log 2

log 4− lim supn→∞
1
n

∑n
j=1 log τj

.

In a similar way, we obtain

s(Φ) =
log 2

log 4− lim infn→∞
1
n

∑n
j=1 log τj

.

By using theorem above,

dimBJ = dimP J =
log 2

log 4− lim supn→∞
1
n

∑n
j=1 log τj

,

dimH J =
log 2

log 4− lim infn→∞
1
n

∑n
j=1 log τj

.

(2) Ψ → Section 2 (NCIFS with overlaps).

2. Transversality methods for NCIFS

2.1. Transversality methods. To obtain typical results from parameterized systems, the
transversality method was developed. The transversality condition, which controls the way
the parameterized systems depend on parameters, asserts that the graphs of two functions

t 7→ πt(ω) and t 7→ πt(τ) for ω ̸= τ ∈ Σ

can only intersect at a nonzero angle (transversality). Here, πt is the natural projection
corresponding to the parameter t and ω, τ are elements of the symbolic space Σ.

Selected results on transversality methods.
• 1995: Self-similar sets with overlaps−{0, 1, 3} problems (Pollicot and Simon [11])
• 1995: Absolute continuity of a.e. Bernoulli convolution−Erdös problems (Solomyak
[15])

• 2001: Limit sets and invariant measures for CIFS with overlaps (Simon, Solomyak,
Urbański [13, 14])

• 2013: Expanding rational semigroups with overlaps (Sumi and Urbański [17])
• 2022: Iterated function systems with inverses (Takahashi [18])
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• 2024: Limit sets and generalized invariant measures for NCIFS with overlaps (N, N
and Takahashi [9, 10])

2.2. Transversal family of NCIFS. Let Φ =
(
{ϕ(j)

i : X → X}i∈I(j)
)∞
j=1

be a NCIFS on

X.

Definition (Address map for NCIFS). For each n ∈ N, define the n-th address map πn : I
∞
n →

X as

{πn(ω)} =

∞∩
j=1

ϕω|j (X) for ω ∈ I∞n .

Remark. Let J be the limit set of Φ. Then π1(I
∞) = J.

Let U ⊂ Rd be an open set (as a parameter space). Now we consider a one-parameter
family of NCIFS

Φt = ({ϕ(j)
i,t }i∈I(j))

∞
j=1, t ∈ U.

From below we always assume the following (we assume that V , γ and K can be taken
independently of t):

(iv) for any n ∈ N, the map

U × I∞n ∋ (t, ω) 7→ πn,t(ω)

is continuous;
(v) for any η > 0 and t0 ∈ U , there exists δ = δ(η, t0) > 0 such that for all t ∈ U with

|t− t0| ≤ δ, n, j ∈ N and ω ∈ I∞n , we have

exp(−jη) ≤
||Dϕω|j ,t0 ||
||Dϕω|j ,t||

≤ exp(jη);

Denote by Ld the d-dimensional Lebesgue measure on Rd.

Definition (Transversality condition). We say that {Φt}t∈U satisfies the transversality con-
dition on U if the following holds: for any compact subset G ⊂ U there exists a sequence
{Cn}∞n=1 of positive constants such that

•
lim
n→∞

logCn

n
= 0;

• for all ω, τ ∈ I∞n with ωn ̸= τn and r > 0, we have

Ld ({t ∈ G : |πn,t(ω)− πn,t(τ)| ≤ r}) ≤ Cnr
m.

Theorem. [9, Main Theorem A] Let {Φt}t∈U satisfy the transversality condition on U . Then

(i)

dimH(Jt) = min{m, s(Φt)} for Ld − a.e. t ∈ U ;

(ii)

Lm(Jt) > 0 for Ld − a.e. t ∈ {t ∈ U : s(t) > m}.

Example. U := (0, 2−2/3), 2−2/3 ≈ 0.6299. For t ∈ U, j ∈ N, Ψ(j)
t = {x 7→ tx, x 7→ tx +

1/j},Ψt = (Ψ
(j)
t )∞j=1. Then {Ψt}t∈U satisfies the transverslity condition. By applyng theorem

above, we obtain
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Corollary. Let Jt be the limit set corresponding to t. Then

dimH(Jt) = min

{
1,

log 2

log t

}
for a.e. t ∈ {t ∈ U : t ≤ 1/2} and

L1(Jt) > 0

for a.e. t ∈ {t ∈ U : 1/2 < t}.

Proof. Let

F :=

t 7→ f(t) = ±1 +

∞∑
j=1

ajt
j : aj ∈ [−1, 1]

 .

Lemma. [15] There exists C > 0 such that for any f ∈ F , any r > 0,

L1({t ∈ U : |f(t)| ≤ r}) ≤ Cr.

Lemma. [9, Lemma 5.3] Let t ∈ U . For any n ∈ N, ω = ωn · · ·ωn+j−1 · · · ∈ I∞n := {1, 2}N,

πn,t(ω) =
∞∑
i=1

b(n+i−1)
ωn+i−1

ti−1,

where b
(n+i−1)
1 = 0, b

(n+i−1)
2 = 1/(n+ i− 1) for i ∈ N.

Then we have for any t ∈ U and any ω, τ ∈ I∞n with ωn ̸= τn,

πn,t(ω)− πn,t(τ) =
∞∑
i=1

b(n+i−1)
ωn+i−1

ti−1 −
∞∑
i=1

b(n+i−1)
τn+i−1

ti−1

= b(n)ωn
− b(n)τn +

∞∑
i=2

(
b(n+i−1)
ωn+i−1

− b(n+i−1)
τn+i−1

)
ti−1

=
1

n

(
±1 +

∞∑
i=2

n
(
b(n+i−1)
ωn+i−1

− b(n+i−1)
τn+i−1

)
ti−1

)
.

Then the function t 7→ ±1 +
∑∞

i=2 n(b
(n+i−1)
ωn+i−1 − b

(n+i−1)
τn+i−1 )ti−1 belongs to F . By Solomyak’s

lemma, there exists C > 0 such that for any ω, τ ∈ I∞n with ωn ̸= τn and any r > 0,

L1({t ∈ U : |πn,t(ω)− πn,t(τ)| ≤ r})

= L1({t ∈ U : | ± 1 +

∞∑
i=2

n(b(n+i−1)
ωn+i−1

− b(n+i−1)
τn+i−1

)ti−1| ≤ nr})

≤ C(nr).

If we set Cn := Cn for any n ∈ N, we have

L1({t ∈ U : |πn,t(ω)− πn,t(τ)| ≤ r}) ≤ Cnr

and
1

n
logCn =

1

n
logC +

1

n
log n → 0

as n → ∞.
Hence, {Ψt}t∈U satisfies the transversality condition. 2
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2.3. Idea of the proof of the main theorem.

Lemma. For any compact subset G ⊂ U and any α with 0 < α < m, there exists a sequence
{C̃n}∞n=1 of positive constants such that

lim
n→∞

log C̃n

n
= 0

and for any ω, τ ∈ I∞n with ωn ̸= τn,∫
G

1

|πn,t(ω)− πn,t(τ)|α
dLd(t) ≤ C̃n.

Proof. Let n ∈ N. By the transversality condition we have that∫
G

1

|πn,t(ω)− πn,t(τ)|α
dLd(t) =

∫ ∞

0
Ld

({
t ∈ G :

1

|πn,t(ω)− πn,t(τ)|α
≥ x

})
dx

=

∫ ∞

0
Ld

({
t ∈ G : |πn,t(ω)− πn,t(τ)| ≤

1

x1/α

})
dx

=

∫ |X|−α

0
Ld(G) dx+

∫ ∞

|X|−α

Cn
1

xm/α
dx

= |X|−αLd(G) + Cn

[
1

1−m/α
x1−m/α

]∞
|X|−α

= |X|−αLd(G) + Cn
1

m/α− 1
|X|m−α =: C̃n.

Since 1
n logCn → 0 as n → ∞, we have 1

n log C̃n → 0 as n → ∞. 2

Lemma. [9, Lemma 4.6 (Existence of a Gibbs-like measure)] Let t ∈ U and let s ≥ 0. Then
there exists a Borel probability measure µt,s on I∞ such that for any ω ∈ In, n ∈ N,

µt,s([ω]) ≤ Ks ||Dϕω,t||s

Zn,t(s)
,

where K is the constant coming from the bounded distortion condition and Zn,t(s) =
∑

ω∈In ||Dϕω,t||s.

The following is a key ingredient.

Proposition. For any t0 ∈ U and any ϵ > 0, there exists δ = δ(t0, ϵ) > 0 such that

dimH(Jt) ≥ min{m, s(Φt0)} − ϵ

for Ld- a.e. t ∈ B(t0, δ).

Proof. For any t0 ∈ U, we set s := min{m, s(Φt0)}. Let µ = µt0,s−ϵ/2 be the Gibbs like
measure ascribed to t0 and s− ϵ/2. We set µ2 = µ× µ and

R(t) :=

∫∫
I∞×I∞

1

|π1,t(ω)− π1,t(τ)|s−ϵ
dµ2.

Let n ∈ N. For any ρ ∈ In ∪ {∅}, we set

Aρ := {(ω, τ) ∈ I∞ × I∞ : ω ∧ τ = ρ},
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and take a sufficiently small δ > 0 coming from the condition (v) ascribed to ϵ and t0. Then∫
B(t0,δ)

R(t) dLd(t) =
∑
n≥0

∑
ρ∈In

∫∫
Aρ

(∫
B(t0,δ)

1

|π1,t(ω)− π1,t(τ)|s−ϵ
dt

)
dµ2(ω, τ)

(by Fubini’s Theorem)

≤ Ot0,ϵ(1)
∑
n≥0

∑
ρ∈In

∫∫
Aρ

(∫
B(t0,δ)

||Dϕρ,t0 ||−s+ϵ/2

|πn+1,t(σnω)− πn+1,t(σnτ)|s−ϵ
dt

)
dµ2(ω, τ)

(by the definition of n-th adderss maps and condition (v))

≤ Ot0,ϵ(1)
∑
n≥0

C̃n+1

∑
ρ∈In

∫∫
Aρ

||Dϕρ,t0 ||−s+ϵ/2 dµ2(ω, τ)

(by the transversality)

≤ Ot0,ϵ(1)
∑
n≥0

C̃n+1

∑
ρ∈In

∫∫
Aρ

Ks−ϵ/2

µ([ρ])Zn,t0(s− ϵ/2)
dµ2(ω, τ)

(by the Gibbs like property)

≤ Ot0,ϵ(1)
∑
n≥0

C̃n+1

Zn,t0(s− ϵ/2)

(since µ2(Aρ) ≤ µ([ρ])2).

Since 1
n log C̃n+1 → 0 as n → ∞, it follows from the fact of exponentially decay property of

1/Zn,t0(s− ϵ/2) that ∫
B(t0,δ)

R(t) Ld(t) < ∞.

Hence we have that for Ld-a.e. t ∈ B(t0, δ),

R(t) =

∫∫
Rm×Rm

1

|x− y|s−ϵ
d (π1,t(µ)× π1,t(µ)) < ∞,

where π1,t(µ) is the push forward measure of µ by π1,t. Since π1,t(µ) (Jt) = 1, by [2, Theorem
4.13 (a)] we have

dimH(Jt) ≥ min{m, s(t0)} − ϵ

for Ld- a.e. t ∈ B(t0, δ).
2
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