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数学教室同窓会の講演会でお話をする機会をいただけたこと，たいへん光栄に思い
ます．ひょんなことから始めた折り紙に関する研究が，一般にも分かりやすいという
ことからメディアにも取り上げられて，それをご覧になった世話人の方からお声がけ
を頂いたのだと思います．
この記事では，その講演をもとに，折り紙のおもちゃ「カライドサイクル」をめぐっ
て，どのような数学的話題が提起されるのかを，未解決の問題を交えて紹介します．
また，その過程で明らかになったリンク機構や離散曲線，可積分系との関係にも触れ
ます．一見遊びのように見える研究が，予想以上に深い数学的背景を持っていたこと，
さらには特許出願など珍しい経験をしたことなどの体験談もお伝えできればと思い
ます．

私は京都大学数学教室を 2008年 3月に離れ，福岡大学応用数学科に 2年勤めた後，
2010年から 2018年まで山口大学理学部数学科に在籍していました．そこでは以下の
二つの理由から，数学にまつわる分かりやすく面白い話題を見つけるというのが大き
な仕事でした．

• 小中高校生を対象とする「夏休みジュニア科学教室」や「やまぐちサイエンス・
キャンプ」といった講座が年に数回開催されていた

• 学部生全員が卒業論文を執筆する必要があり，毎年 5名程度の研究テーマを用
意する必要があった

どちらも数学は好きだけれど知識は十分でないという子どもや学生を対象に，短期間
で興味を惹きつける必要のある難しい要求です．湯田温泉に浸かりながら題材探しに
励む毎日だったのですが，当時のネタ帳の中には例えば，ヘクサフレクサゴンという
折り紙の話題があります．これは，平坦に折り畳まれた状態から順に「めくる」こと
で，異なる図柄が次々に現れる構造を持つ折り紙です．この題材は，小学生向けの工
作講座で用いたほか，台湾で 2018 年に学部生向けに行われたサマーコースにおいて
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図 1左に示す作品の制作を行いました．正六角形の各面には世界地図の一部が等角写
像によって配置されており，参加学生は Schwarz–Christoffel写像 (多角形領域を上半
平面に等角に写す複素関数)を理論的に学ぶとともに，その具体的な計算 [11]を行い，
デザインに活かすという課題に取り組みました．
もう一つ，動く折り紙の話題としてネタ帳にしまっていたのが，今回のテーマであ
るカライドサイクルでした (図 1右)．これはヘクサフレクサゴンの３次元版とも言え
るもので，数珠繋ぎになった四面体を，イルカのバブルリングのようにクルクル回す
ことができます．この折り紙については，長らく一つの疑問を抱いていました．

カライドサイクルは紙だから回るのか？ 鉄板で作っても回るのか？

つまり，回転の過程で各四面体がわずかに変形しており，その柔軟性によって回転運動
が可能になっているのではないか，という疑問です．幸いなことに，この問いに 2011

年当時に学部４年生だったある学生さんも興味を持ってくれたので，卒業研究の題材
にすることにしました．大学院には進学しないことを決めていた学生さんだったので，
「簡単」でおもしろいことをやろうという軽い気持ちでスタートしたのですが，まさか
その後 10年以上も研究を続けることになるとは思ってもみませんでした．

図 1 左：世界地図ヘクサフレクサゴン．https://github.com/shizuo-kaji/

worldhexaflexにて型紙が入手可能．右：カライドサイクル．https://github.

com/shizuo-kaji/Kaleidocycleから型紙や 3Dプリンタ設計図が入手可能．ま
た，九州大学マス・フォア・インダストリ研究所では，ミシン目を切り取ること
で簡単に組み立て可能な体験キットを作成・配布しています：https://www.imi.

kyushu-u.ac.jp/public/kaleidocycle 必要部数をご連絡いただいたら，在庫
がある限りお送りします．

以下は，2024年 10月 26日に行われた京都大学数学教室同窓会総会における講演内
容をもとに再構成したものです．流行にのって，文字起こしや下書きを 2024 年を象
徴する大規模言語モデル達に手伝ってもらいました．文章化にあたってかなり内容や
構成も変わっているのですが，その点はご了承ください．
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1 講演会の模様
1.1 はじまり

まずは司会の菊地克彦さん*1が，ちょうど同日に重なってしまった解散総選挙に絡
めて会場を和ませ，続いて座長の小磯深幸さんによるご紹介をいただいて，温かな雰
囲気のもと講演会が始まりました．

図 2 選挙の喧騒から離れた，理学部３号館 110号室．

改めまして，九州大学の鍛冶です．このような場でお話しさせていただくことを大
変光栄に思っておりますが，同時に緊張しております．どうぞよろしくお願いいたし
ます．まず，自己紹介をさせてください．私は 1999 年の入学で，現在数学教室にい
らっしゃる方の中では，入谷寛さんの一つ後輩にあたります．指導教員は河野明先生
で，ポケットゼミという制度を利用して一回生の頃からマンツーマンでご指導いただ
きました．大変恵まれた環境だったことを，非常に感謝しております．また，河野先
生には，西門を出てすぐの小料理屋によく連れて行っていただきました．学部の講究
では加藤文元さんにお世話になり，お寺で合宿をしたのも良い思い出です．
修士課程に進学後，会場にいらっしゃる稲生啓行さんと，当時数学教室におられた
荒井迅さんに誘われ，計算機管理の仕事をすることになりました．名前こそ「計算機
管理」ですが，実際には計算機とはあまり関係のない力仕事も多く，一番の大仕事は，
耐震補強工事のために教室全体が理学部一号館に一時的に移転し，1年後に元の建物
に戻るという２度の引越しでした．また，重川一郎さんが最近の同窓会誌に記事を書
かれていますが，雑誌室の並べ替えにも参加しました．
博士課程では有理ホモトピー論に関する博士論文を執筆しましたが，その分野で論

*1 敬称をどうするか，当日の座長も悩まれていましたが，ここでは指導教員の先生以外は「さん」で統
一したいと思います．
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文を書いたのはそれが最初で最後です．その後，福岡大学，山口大学を経て，現在は
九州大学マス・フォア・インダストリ研究所に所属しています．九州大学といえば箱
崎キャンパスのイメージが強い方も多いかと思いますが，現在は伊都キャンパスに移
転しています．伊都キャンパスのある糸島半島は自然に恵まれていて，数学をするに
は良い環境です．図 3左は学内，右は最寄りというより唯一の路線である JR筑肥線
から大学へ向かう風景です．

図 3 左：日本一広い九州大学伊都キャンパスには，広大な散歩道があり，イノシ
シも出没します．右：鉄道駅とキャンパスの間には，田んぼと牧場が広がっていま
す．風向きによって芳しい香りが漂うことがあるのは，私が通っていた頃の京大北
部キャンパス (近くに養豚場がありました)と共通しています．

マス・フォア・インダストリ研究所 (Institute of Mathematics for Industry)は，名
前がカタカナなので分かりづらいですが，「産業のための数学」を研究する研究所とい
うことになっています．産業に限らず，数学を様々な分野に応用すること，また応用
可能な数学を生み出すことを目標としています．時に，仕事なのか遊びなのか分から
ないと思われるような研究もしていて，私自身，稲生さんと VR(バーチャル・リアリ
ティー) 技術を使って 4 次元図形を見るというようなことにも取り組んでいます．稲
生さんとは，一回生の時に自主ゼミを見ていただいたのに始まり，計算機管理の “戦
友”として，そして現在は「京大数学サイクリング部」でもご一緒しています．

1.2 リンク機構

この講演の主役は「カライドサイクル」です．折り紙で作れる立体模型で，ご存知
の方，あるいは作ってみたことのある方もいらっしゃるかもしれません．カライドサ
イクルが本当に存在するのか，つまり，紙の柔軟性に頼らず，硬い素材でも滑らかに回
転できるのか，というのが本日のテーマです．この問題を定式化するには様々なアプ
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ローチがあり得ますが，ここでは「リンク機構」の枠組みで考えることにします．リ
ンク機構とは，複数のリンク (節)と呼ばれる剛体が，可動式のジョイント (関節)で繋
がっているような構造物です．身の回りでも使われているのですが，中でも私が仕組
みを知って感心したのは，車のワイパーでした．ワイパーの往復運動は，普通のモー
ターで生成できる一定速度の回転運動をリンク機構によって変換することで実現され
ていて，とても単純なからくりですが，エネルギー効率が良く，コストも低い優れた
機構です (図 5左から２番目)．他にも，ジェームズ・ワットが蒸気機関のために発明
した機構や，車のサスペンションなど，工学的に様々な場面で活躍している他，魚の
顎など生物の中にもリンク機構が現れます [8]．
リンク機構の解析を紹介する例として，まずはパンタグラフを取り上げます．パン
タグラフといえば，電車の屋根の上にある電力供給装置が有名ですが，語源は「コピー
機」を意味し，もともとは図形を拡大・縮小する製図道具でした． このパンタグラフ
の動作は，図 4のように三角形の相似を使って説明できます． このように基本的なリ
ンク機構は，小中学生にも理解できる内容であり，生活と結びつけて算数を扱う題材
としても有用だと思っています．

図 4 左：パンタグラフ (画像はWikipediaより．パブリックドメイン)．右：赤色
と緑色の三角形が常に相似であることから，拡大コピーが実現できることが分かる．

さらに一般的なリンク機構を記述するために，グラフのユークリッド空間への実現
という数学モデルを考えます．頂点も辺も有限個であるグラフ Gの各辺に長さが定め
られているとします．このグラフ Gの頂点を，定められた辺の長さを満たすように，
d次元ユークリッド空間に配置したものを d次元の実現と呼ぶことにします．ここで
頂点はジョイント，辺はそれらを繋ぐリンクを表し，リンクはジョイント間の距離を
一定に保つ役割を持ちます．実用上は通常 d = 2または d = 3を考え，それぞれを平
面リンク機構，空間リンク機構と呼びます．
この枠組みにおいて，カライドサイクルは，四面体の頂点をジョイント，辺をリン
クとする空間リンク機構として定式化できます．例えば，標準的なカライドサイクル
は 6個の四面体を連結した構造で，12個のジョイントと 30個のリンクで構成されま
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す．四面体の全辺をリンクとするのは冗長にも思われますが，後でもう少し効率的な
表現を考えます．

カライドサイクルに話を移す前に，リンク機構に関する重要な古典的結果として，
ケンペ（Kempe）の定理を紹介します．

“One can design a linkage which will sign your name”

として知られるこの定理の主張は，任意の平面代数曲線の有界部分に対して，一部の
ジョイントを固定したときに，特定のジョイントがその曲線をなぞるような 1自由度
の平面リンク機構を構成できるというものです．[9]には二つの線分を描く機構の例が
示されていますが，この定理に基づく構成の複雑さが実感できます．ケンペは 19世紀
にこの定理を示しましたが，証明に間違いがあり，最終的には 100年後に正しい証明
が与えられました [7]．ちなみにケンペは 4色定理の提唱者としても知られており，や
はり正しい証明には 100年かかりました．ケンペは，誤りながらも優れた発想で問題
提起や証明を試みる数学者だったようです．
グラフ Gと辺の長さが与えられた時に，それを実現する頂点配置の全体 (のユーク

リッド空間の等長変換による同値類) を配置空間と呼びます．リンク機構にまつわる
問題の多くは，この配置空間の言葉で表現することができます [3]．例えば，ある状
態から別の状態に遷移できるかという問題は，配置空間の中の与えられた二点が道で
結べるかと言い換えられます．このようにして，機構学の問いにトポロジーや幾何を
使って答えることが可能になります．
配置空間は，辺の長さについての連立 2次方程式の実数解集合として表され，その

各解がリンク機構の具体的な状態に対応します．2 次方程式なので簡単そうに思われ
るかもしれませんが，なかなか手強い対象です．そのことは，よく研究されているリ
ンク機構の一つである「平面 4節リンク機構」からもわかります．この機構は，4つ
のリンクが 4つのジョイントで繋がった四角形の平面機構で，辺の長さによって様々
な動きを生み出します．たとえば，全ての辺が等しい場合は平行四辺形となり，一対
のリンクが連動して回転運動を行います． 一方で，長さの比を調整すると，片方が回
転，もう片方が往復する「クランク・ロッカー機構」が現れます（図 5）．このように，
同じグラフ構造でも，リンクの長さという連続的パラメータの違いによって，運動の
性質が大きく変わるのです．平面 4節リンク機構の配置空間は空集合，一点集合，円
周，線分 (やその和集合) と様々なトポロジーを持ちます．*2．リンク機構を設計する
という観点からは，グラフと辺の長さが設計変数になりますが，離散的であるグラフ

*2 ウェブページ https://dynref.engr.illinois.edu/aml.htmlでは，平面 4節リンク機構のイン
タラクティブなシミュレーションを試すことができます．
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の方を固定すれば，連続的なパラメーターの最適化問題となります．後にお話しする
カライドサイクルの設計では，この方針で特殊な動作をするものが見つかりました．

図 5 平面 4節リンク機構 (画像はWikipediaより．作者 Cdang, Salix alba, CC

BY-SA 3.0)．運動の途中で辺が交差することも起きるが，現実的には各リンクが
乗る平面を平行に少しずつずらすことで，自己交叉を避けるように設計される．

ところで，実は与えられたリンク機構の配置空間が空集合かどうか，すなわちその
構造が実現可能かどうかを調べることさえ容易ではありません．例えば，辺の長さが
与えられた多角形を 1 次元のユークリッド空間に実現する問題，つまり，多角形を
直線に折り畳むことができるかという問題を考えてみましょう．折り畳むには，各辺
を左に伸ばすか右に伸ばすか決めるわけですが，これは辺長の集合を和が等しくなる
ように 2 つの部分集合に分割する問題に帰着されます． この「分割問題（Partition

problem）」は NP完全であることが知られています．つまり，この問いに答える効率
的なアルゴリズムを見つければ，ミレニアム懸賞問題である P = NPを解決したこと
になり，100万ドルが手に入るわけです．

1.3 カライドサイクル

カライドサイクルが誰によってどのように発見されたか，私が調べた限りでは明確
な起源を示す文献は見つかりませんでした．比較的古い文献の一つに [1] があります
が，初版には掲載されておらず，後の版で追加されたようです．広く知られるように
なったのには，エッシャーの絵がプリントされた型紙が多数収録された書籍 [10]が大
きく貢献したと思います．また現在では，天童智也さんという方がコンピュータグラ
フィックスを用いて多彩なカライドサイクルを制作しており，独創的なアイデアに富
んでいて見飽きることがありません． Youtube で “The Variety of Kaleidocycles”

で検索してみてください．
20 世紀初頭に活躍したブリカール (Bricard) という数学者は，今日 Bricard6R と

呼ばれる，本質的にカライドサイクルと同じ構造を含む一連のリンク機構を考察して
います (図 6 左)．ブリカールは動く幾何学的構造に関心を持っており，「ブリカール
の 8面体」という模型も作っています．これは，「凸多面体を，面を合同に保ったまま
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変形することはできない」というコーシーの剛性定理と関連があります．「凸」という
条件を外すと，面角だけが変化するフレキシブルな多面体が存在するのですが，ブリ
カールの 8面体は，自己交差を許容するものの，このような可動多面体の最初の例を
与えました．

図 6 左：全てのリンクが合同である Bricard6R 機構の特別な場合．古典的なカ
ライドサイクルと見なせる．中：古典的なカライドサイクル．右：カライドサイク
ルの中心線として得られる空間多角形の一部分を矢印で表示．この多角形は一つの
平面に載るとは限らない．

カライドサイクルをリンク機構として理解するため，まず古典的な例（図 6 中央）
を詳しく観察してみましょう． 以下のような特徴が見られます：

1. 偶数個（6個, 8個, 10個, …）の合同な四面体が連なっている．
2. 四面体は正四面体ではないが，各面は合同な三角形（等面）である．
3. 隣接する四面体は一つの辺ヒンジ (蝶番)として共有している．
4. ヒンジ辺は，それぞれの四面体において対辺の位置にある．
5. 各ヒンジ辺の中点を順につないでいくと空間多角形が得られる．
6. この中心多角形の各辺は，接続するヒンジと常に直交する（図 6右）．

後半の二つは，すべての面が合同な「等面四面体」で構成されていることから従いま
す．この性質に注目することで，カライドサイクルの自然な一般化が得られます．他
にも一般化の可能性はありえますが，実はこの等面性から従う性質こそが，カライド
サイクルを離散曲線としてモデル化できることや，ベネット機構 (Bennett’s linkage)

という関連する機構の本質に繋がっているということで，その重要性が後から次第に
分かってきました．運の良い着眼点であったと思います．
以降では，N を自然数として，N 個の合同な等面四面体でできたカライドサイクル

を N-カライドサイクルと呼ぶことにします．古典的な 6-カライドサイクルは，ヒン
ジの役割を持つ四面体の対辺が 90度捩れているという特別な場合です．N = 6の場
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合はこの 90度捻れのものしか存在しないですが，N > 6の場合は，捩れる角度を変
えることで，様々なN -カライドサイクルが構成できます．対辺の捩れる角度は四面体
の形で決まりますが，この角度が動きに大きく影響を与えることを後で見ます．

今日ここで実際にカライドサイクルを作ってもらえるように，工作キットをお配り
します．ミシン目と差し込みのみで組み立て可能な設計で，ハサミも糊も不要です．
このキットは，九州大学 IMIのリエゾン戦略部門というところにご協力いただき制作
されました．以前小学生や中高生向けの講座でカライドサイクルを扱った時には，前
日に人数分の紙を切り抜いておいたり，糊を用意したりと準備が大変だったのですが，
このキットを使えば子どもでも 30 分程度で作ることができます．講演がつまらなく
ても，工作ができると大抵満足してもらえるので，その意味でも重宝しています．

図 7 メビウス・カライドサイクル工作キット．左：ミシン目の入った厚紙製で，
ハサミも糊も不要です．右：メビウスの帯になっていることがわかる模様が入って
います．また後に §1.7で触れるように，一自由度という特別な性質を持つように設
計されています．

カライドサイクルの設計には，四面体の形と個数という 2つのパラメータが関与し
ます． ここでは，すべての四面体が等面であると仮定しているため，その形状は面と
なる三角形によって一意に決まります．注意点として，たとえば 6個の正四面体では
カライドサイクルは構成できません．隣接するパーツが干渉してしまうためです．し
かし，ヒンジに相当する辺を短くして「細長い」四面体とすることで，物理的な衝突を
回避できます．このような修正を加えても，リンク機構としての運動構造自体には変
化がなく，本質的には同じ動作が維持されるため，以下では衝突の問題は考慮しない
ことにします．さらによく考えてみると，カライドサイクルの構造はヒンジの相対的
な配置，すなわち隣接ヒンジ間の距離と捩れ角度だけで決まることが分かります．で
すから，四面体である必要はなく，隣り合うヒンジの位置関係を固定するものであれ
ば，捩れた板やその他の形状で代用しても良いわけです．キャラクターが手を繋いで
輪になっているデザインも楽しいかもしれません．
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以上の注意から，カライドサイクルの状態は，ヒンジが定める直線の向きの情報で
決まることが分かります．ヒンジ間を結ぶ最短線分は，隣り合うヒンジの方向の外積
でかけるため，ヒンジの方向ベクトルさえ決まれば，(スケールと平行移動の不定性を
除いて)ヒンジ辺の位置が定まります．つまり，2次元球面 S2 上の順序づいた点の配
置 b0, b1, . . . , bN ∈ S2 を用いて，

γk =
k∑

i=1

(bi−1 × bi)

x2k = γk + ϵbk

x2k+1 = γk − ϵbk (1)

とカライドサイクルの 2N 個の頂点座標 xk を書き下すことができます．ここで 2ϵは
ヒンジ辺の長さですが，これはカライドサイクルの構造には影響しません．中心多角
形の頂点が γk で，γ0 = 0とすることで平行移動による不定性を除いています．
S2 上の点の配置がカライドサイクルの状態に対応するためには，次の条件 (☆)

1. 閉じる条件：b0 = ±bN ,
∑N

i=1(bi−1 × bi) = 0

2. 一様捩れ角条件：定数 cが存在して，内積 〈bi, bi+1〉 = c (0 ≤ i < N)

が成り立つことが必要十分です．条件 1は，一箇所でヒンジ辺を切り，輪を開いた状
態で考えておいて，一周回って 0番目と N 番目のヒンジが重なって閉じる，というこ
とを表しています．外積の総和が 0になるという式は，中心の最短線分を繋いででき
る曲線が閉じる，つまり中心多角形が取れることに対応します．ここで，ヒンジの向
きが反転して b0 = −bN として閉じる場合は，捩れた板で作るとメビウスの帯になり
ます．条件 2は，四面体が合同なので，隣り合うヒンジのなす角度（捩れ角）がどこ
でも一定であるということを表しています．定数 c = cosµは捩れ角 µの余弦で，四
面体の形状から決まる，カライドサイクルの設計パラメータです．
上述の 2条件はいずれも 2次式で表されるため，カライドサイクルを構成すること
は，連立 2次方程式の実解を求めることに帰着されます．したがって，「どのような四
面体の形（すなわち捩れ角）に対して，N -カライドサイクルが存在するか」という問
いは， 捩れ角 µを固定したときに，この方程式系が実解を持つかどうかという形に定
式化されます．そして，実解の空間である配置空間上の連結成分一つ一つが，動かし
て互いに移り合えるカライドサイクルの状態の集合に対応します．

1.4 離散的な曲線

カライドサイクルに連立方程式の実解という代数的な実体が与えられましたが，次
に空間閉曲線の離散化という幾何的な姿も見てみようと思います．
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まず，空間曲線のことを思い出します．可微分な写像 γ : R → R3 であって，速度
も加速度も 0にならないようなものを考えます．各時刻 t ∈ Rにおいて，速度ベクト
ル γ̇(t)と加速度ベクトル γ̈(t) の両方に直交するベクトルを陪法線ベクトルというの
でした．折れ線からなる空間多角形 γ : Z → R3 に対して，微分を差分に置き換えて

γ̇i = γi+1 − γi, γ̈i = γ̇i − γ̇i−1, i ∈ Z

とします．式 (1) で表されるカライドサイクルの中心多角形 γi では，辺ベクトル γ̇i

と，そこに接続するヒンジは直交するのでしたから，

γ̇i ⊥ bi, γ̈i ⊥ bi

が成り立ちます．すなわち，bi が陪法線ベクトルの離散的なアナロジーになってい
ます．
多角形の頂点の角度 κi = ∠γ̇i−1γ̇i は，曲線の曲率に対応し，ヒンジ間の捩れ角

µ = ∠bi−1bi は，曲線に沿った陪法線の回転，すわなち捩率に対応します．ここで，
κi はヒンジの向き bi に対して右ネジの向きを正として，符号付きで考えることにしま
す．なお，四面体が全て合同であるため，捩れ角 µは iに依らず一定です．
中心多角形の辺は全て同じ長さですから，空間曲線が曲率と捩率で (合同を除いて)

決まるという事実のアナロジーで，

カライドサイクルは各ヒンジにおける曲率と捩率でその状態が決まる

ことが分かります．このうち，捩率 µは四面体の形から与えられる設計パラメータで
固定されているため，カライドサイクルの運動は，曲率の時間変化で記述されることに
なります．これは，捩率一定曲線の，長さと捩率を保った変形ということができます．

カライドサイクル 離散閉曲線

全四面体が合同 辺長と捩率が一定
状態 曲率で指定される
配置空間 連立二次方程式の実解
運動 等長かつ捩率保存の変形

クルクル運動 半離散 mKdV方程式

表 1 カライドサイクルと離散曲線の対応
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1.5 カライドサイクルの存在

条件 (☆)が一次元以上の実解空間を持つことを示すことができれば，動くカライド
サイクルの存在が言えたことになります．
ここでカライドサイクルの存在は後回しにして，仮に存在したとするならば，その
動きはどのような性質を持つか，という問いから出発します．これには，実際に多数
の模型を作って実験と観察を繰り返すという，アナログな手段で挑みました．特に注
目したのは，カライドサイクルの中心多角形の動きです． 観察の結果，どうやら「全
ての頂点が，ヒンジと直交する平面内を進む」という運動をすることを見つけまし
た．逆にこの仮定のもとで，辺長と捩率を保つ多角形の変形を考えてみると，そこに
mKdV方程式というよく知られた可積分な偏微分方程式との関連が現れました ([5])．
空間方向は多角形なので離散化され，時間方向は連続なままなので，半離散mKdV方
程式という差分-微分混在の方程式になります．おもちゃの解析から由緒ある数理構造
が浮かび上がるのは面白いところです．とはいえ，連続曲線の変形でも mKdV 方程
式が現れるので，それほど不思議ではないとも言えます．
ただし，観察からこの特別な性質を持つ運動を見つけるのは簡単ではありませんで
した．というのも，空間全体を回転・平行移動させる合同変換は無視して，本質的な
「クルクル運動」のみを抽出する必要があるからです． しかし，空間に固定された座
標系の取り方は一意ではなく，座標に依存しない方法（たとえば曲率の時間変化）に
注目すると，「ヒンジと直交する平面」という空間的な情報を扱いづらくなります．
さらに，カライドサイクルは回転運動だけでなく，たわみやねじれなど多様な自由
度を持つため，その運動全体を単純に記述することは困難です．この問題に対しては，
後で述べる一自由度を持つ特別なカライドサイクルが先に発見された，という幸運が
ありました．一自由度ではクルクル運動だけをするので，その運動だけに注目できる
わけです．

さて，攻略の糸口が見えてきました．曲線の変形と可積分系の関係については，た
くさんの先行研究があります．特殊関数を用いて解を具体的に構成しようというのが
一つの方針です．しかし，これは手こずりました．連続曲線についての似たような問
題に対しては，楕円関数による明示解が知られているのですが，なかなかうまく離散
化できません．そこで運良く強力な助けを得ることができました．共同研究者の九州
大学の梶原健司さん，そして当時その学生で，現在は九州大学助教の重富尚太さんが，
ヤコビのテータ関数を用いて解の構成に成功したのです [6]．重富さんはテータ関数の
満たす恒等式を駆使して解を作り上げました．得られた式が正しい解であることは機
械的に検証可能ですが，作り方は発見的で，何度か本人に秘訣を教えてもらおうとし
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たのですが，私には分かりませんでした．
図 8に示すのは，このテータ関数によって構成された明示解に対応するカライドサ

イクルの例です． 右図のように，中心多角形が結び目を形成するようなものも得られ
ます．図中の構造はぶつかることなく回すことができますが，今回の定式化では自己
交叉は考慮していないので，一般には結び目型が運動中に保存されるとは限りません．
どのような結び目型がカライドサイクル・捩率一定の離散曲線で実現されうるかとい
う問題も面白いと思います．カライドサイクルの配置空間の連結成分，つまり切り開
かなければ互いに移り合えないカライドサイクルの種類を分類するという問題も考え
られます．

図 8 明示解で構成されるカライドサイクル．左：9-カライドサイクル．右：15-カ
ライドサイクル．

1.6 保存量

カライドサイクルは存在するのか，動くのか，という問いにはめでたく答えること
ができたのですが，その過程で可積分系が出てきましたので，その観点からもう少し
カライドサイクルの性質を調べてみましょう．可積分系には保存量が存在するので，
何か物理的に意味のある保存量を探すのは面白そうです．
カライドサイクルの実現は中心多角形で決まり，捩率が一定なので，動きは時間を
変数とする曲率の列 (κ1, . . . , κN )で表されるのでした．曲率の関数といえば，まず弾
性エネルギー

∑N
i=1 κ

2
i が思い付きます．これは連続曲線に対して定義される曲率の自

乗積分を，安直に和分にして離散化したものです．物理的には，フックの法則の成り
立つ範囲で，各ヒンジに (洗濯バサミで使われているような)ねじりコイルばねを取り
付けた際のポテンシャルエネルギーとみなすことができます．
たくさん数値実験をしてみると，この値が長時間にわたってほとんど一定に保たれ
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ます．やった！と一旦は喜ぶのですが，よく見るとわずかに振動しているのです．と
ても惜しくて，計算誤差と信じたいのですが，精密にやればやるほど振動がはっきり
としました．実は，単純に積分をシグマに変えるという離散化がまずかったのでした．
離散曲線の弾性エネルギーについては，先行研究でいくつかのバリエーションが知ら
れているのですが，中でも Bobenko と Suris [2]による定義

N∑
i=1

log
(
1 + tan2(κi/2)

)

を採用すると，mKdVに従う運動によって厳密に保存されることが示せました．この
手のものは，候補となる量が見つかってしまえば，それが保存量となることを証明す
るのは簡単です．
連続の場合に知られていることのアナロジーを離散で考えるとき，連続極限では一
致するけれど，離散の段階では同値でない対応物が複数あるというのは良くあること
で，状況に応じて適切なものを選ぶのは難しくも楽しいところです．
弾性エネルギーが保存量であるということは，運動中にポテンシャルが一定値を取
ることを意味します．つまり，理想的に摩擦などの損失がなければ，カライドサイク
ルを軽く押すと永久に回転し続けるということになります．強力なバネを取り付けれ
ば，局所的に見ると強く戻ろうとする大きな力が働きますが，全体としてはそれらの
力が打ち消し合い，小さな力でまわるというのが不思議です．

もう一つの保存量として，「捻り数」があります．これは，四面体でなく図 9に示す
ような捩れた板でカライドサイクルを構成すると直感的に理解しやすくなります． 捻
り数は「半捻りを 1と数えるとして，帯が何回捻られているか」を整数値で表す量で
あり，連続的な運動中に変化しない不変量です．捻り数は 2 つの要素に分解でき，1

つはヒンジの捩れ角度 µの総和 nµ，もう 1つは曲線自体のうねりを表すライジング
という量です．それぞれは実数値を取りますが，その和を π で割ったものは整数値に
なり (Călugăreanu-Fuller-White theorem)，この偶奇が条件 (☆) の最初の等式の符
号に対応します．図 9では捻り数 3で，3回捻りのメビウスの帯になっています．
捻り数はヒンジの捩れ角度だけで決まるようにも思えますが，曲線が３次元的にう
ねりをもつため，その形から決まるライジングにも依存するわけです．例えば，N = 6

で µ = π/2の古典的なカライドサイクルでは，ヒンジの捩れ角度の総和は 3π，ライ
ジングは 0です．ライジングが 0であることは，運動の途中で中心多角形が平面上に
載る瞬間があること，平面曲線のライジングは 0 であることから分かります．一方，
図 9右の N = 9，µ ≈ 0.301π の例では，ライジングはおよそ 0.291π です．捩れ角の
総和は nµ ≈ 2.709π でこれだけでは捻り数 3に満たないのですが，ライジングが足り
ない捻りを補っています．N = 9の場合は，例えば µ = π/2のカライドサイクルも存
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在します．
カライドサイクルではヒンジの捩れ角は一定なので，捻り数が保存することからラ

イジングも保存されることが分かります．捻り数が整数値となるのは，カライドサイ
クルが閉じていることが本質的ですから，ここでは位相的な制約が形状の性質を規定
していると言えます．
それに関係して，不思議な未解決の予想があります．カライドサイクルは，一定の
捩れ率を持つ帯の離散化とみなすことができます．連続の場合は，一定の捩れ率を持
つ１回捻りのメビウスの帯が存在することが知られていますが，この離散化ではその
ようなものは作れなさそうです．

予想：１回あるいは２回の捻り数を持つカライドサイクルは存在しない．

このことは証明はできていませんが，たくさんの数値実験から，少なくとも中心多角
形が自明な結び目型を持つ場合には正しいであろうと信じています．離散と連続の違
いが顕在化する興味深い現象と思います．

図 9 四面体の代わりに，同等の捩れた帯状の板を用いてカライドサイクルを構成
できる．左：四面体と対応する捩れた帯状の板．右：図 8左を捩れた板に置き換え
たもの．３回捻られたメビウスの帯をなしているのが見て取れる．

1.7 一自由度の発見と特許化

リンク機構の一種，あるいは折り紙のおもちゃであるカライドサイクルが，ひょん
なことから研究の対象となったのですが，さらに思いがけないことに特許 [14]にもな
りました．それは，設計パラメータである捩れ角をうまく選ぶことで，劣決定ながら
も一自由度であるという特別な性質を備えたリンク機構として実現できる，という (証
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明はできていない)観察に基づいています．
リンク機構では，動きの自由度という基本概念があります．ロボットアームでは，

各ジョイントに接続方向といったパラメータがあり，例えば回転軸を持つヒンジタイ
プのジョイントであれば，一つにつき一自由度を持ちます．複数のジョイントを組み
合わせて高い自由度を持たせることで，さまざまな動作ができるようになります．
一方，地図で用いられるミウラ折りは，端点を引っ張れば一意的に動作が定まり，ス
ムーズに広げたり畳んだりできるわけですが，これはミウラ折りが，一つ一つの折れ
線がヒンジとして働くリンク機構として見れば，一自由度を持つという性質に由来し
ます．狙った通りの動作をさせたければ，一自由度に設計すると良いわけです．
リンク機構においては，全てのジョイントのパラメータを決めることでその状態が
規定されるので，単純な機構では，その自由度は全てのジョイントの自由度の総和に
なります．リンク機構にループが存在する場合には，各ジョイントが独立に動くこと
ができずに自由度が下がります．つまり，全てのジョイントのパラメータの総数から，
拘束条件としての方程式の数を引き，さらに全体の並進・回転自由度を除くことで自
由度を見積もることができます．
N 個の四面体からなる N -カライドサイクルでは，ジョイント数は 2N，リンク数は

5N です．各ジョイントは 3次元空間上の点として 3自由度を持つため，変数の総数
は 3× 2N = 6N 個になります．一方，5N 本のリンクはそれぞれ固定長を保つ拘束条
件として 5N 本の方程式を定めます．したがって，残りの自由度は 6N − 5N = N と
なりますが，この中には剛体運動（平行移動 3，自由回転 3）の 6自由度が含まれるた
め，実質的な自由度は N − 6と見積もられます．これは，ヒンジ一つあたり一自由度
で，N − 1個のヒンジの角度を決めたとき，最後の一つが最初のヒンジに重なるため
に，位置の 3自由度と方向の 2自由度の合わせて 5自由度失うとしても理解できます．
このような見積もりは，Chebyshev–Grüebler–Kutzbach 公式*3と知られ，方程式

系が冗長でないといった仮定においてのみ成り立ちます．成り立たない場合も多く，
たとえば捩れ角 µ = 0のカライドサイクルは平面多角形と同値ですが，その場合の自
由度は N − 3になります．また，古典的な捩れ角 90度で N = 6のカライドサイクル
では，対称性に由来する冗長性のため，見積もりより多い自由度 1を持ちます [4]．こ
の 6-カライドサイクルのように，見積もりよりも大きな自由度を持つ機構は「過剰決
定」と呼ばれますが，冗長な辺を加えることでも作ることができるので珍しくありま
せん．一方で，見積もりより小さな自由度を持つ「劣決定」と呼ばれる機構はあまり
知られていません．配置空間を定める方程式系で，複素数解の次元よりも実解の次元
が下がる場合に対応します．

*3 この Chebyshevはチェビシェフの不等式のパフヌティ・チェビシェフ
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平面４節リンク機構では，辺の長さというパラメータを変えることで，配置空間の
トポロジーが変化しました．カライドサイクルにおいても，設計パラメータであるヒ
ンジ数 (四面体の数)N と捩れ角 (四面体の形)µを変化させることで，配置空間のトポ
ロジーが変化することが期待されます．
条件 (☆)において，一定捩れ角を表す内積の値 cを定数ではなく変数とした系を考

えます．この上の (b0, . . . , bN ) �→ 〈b0, b1〉という写像に対して，その特定の値 cに対
する逆像が，捩れ角 cを持つカライドサイクルの配置空間に対応します．何か面白い
ことが起きるとすれば，この写像の特異点に対する逆像においてであろうと想像する
のは自然です．そこで，できる限り小さい捩れ角でカライドサイクルを作ることを考
えます．もちろん，捩れ角 0とすると平面機構と同値になって面白くないので，メビ
ウスの帯 b0 = −bN となる中で，できるだけ小さな捩れ角を持つカライドサイクルを
作ることを考えます．全体としてメビウスの帯として捻れるためには，各ヒンジにお
いて少しずつ捻れている必要があるわけですが，その捩れをなるべく小さく設計して，
「最小捩率のメビウスの帯」を考えるわけです．
この値を正確に求めるためには，条件 (☆)(かつ b0 = −bN )が実解を持つ「判別式

が正」に対応する条件を導ければ良いのですが，これは原理的には Tarski–Seidenberg

の定理により可能である一方で，現実的に求めるのは困難です．そこで，N を固定し
て，条件 (☆)のもとで cを最大化するという制約付き最適化問題として数値解を求め
ました．こうして配置空間を数値的に追跡したところ，もくろみ通りに，それが 1次
元となることが観察できました．つまり，どんな N ≥ 6に対しても，一自由度を持つ
カライドサイクルがこうして構成できると予想されます．（N < 6の場合は制約を満
たす解が存在しません．）ちなみに，こうして得られた最小捩率のメビウスの帯は捻り
数 3となるようで，先に §1.6で述べた予想とも整合します．
工作キット（図 7）では，まず一列に連なった四面体を作って，それを最後に輪っ

かになるように繋げます．もし四面体の捩れが小さすぎると，メビウスの帯状に閉じ
ることはできません．そのように閉じることができるようなギリギリの捩れ角で設計
された四面体を用いると，完成したカライドサイクルは一次元自由度をもち，クルク
ル運動のみをするというわけです．一自由度なので，たわむことなく滑らかに動き，
気持ちよく回るので，操作がしやすく効率もよいという利点があります．実際，工作
キットは一自由度を持つように設計されています．
機構学的には，劣決定ながらも一自由度を持つというリンク機構を (N > 7の任意

のヒンジ数で)見つけることができたことになりますが，私の知る限り，他にこのよう
な例は存在しません．この珍しい機構には，メビウス・カライドサイクルという名前
をつけました．
このメビウスカライドサイクルはまた，§1.5で触れた明示解，§1.6で扱った弾性エ
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ネルギーを最小化するものとしても特徴づけられそうだということが，数値実験から
期待されていて，面白い性質が交差する対象になっていそうです．
さて，一自由度であることは証明はできておらず数学の論文にはならないのですが，
応用的価値があるので特許にはなりえます．特許も明細書という文章で発見を説明を
するのですが，権利を主張するという点で目的が異なり，論文を書くのとは違った難
しさがあります．特許は出願した後，審査があり，大抵一旦は拒絶され，修正して最
終的に認められると，晴れて登録されます．出願や登録には数十万円単位でお金がか
かり，登録後も維持費がかかります．こうして手間暇とお金をかけて手に入れた特許，
使用料収入があるかというと，今のところゼロです．いくつかの企業に営業をしたの
ですが，ライセンス契約に至るには高いハードルがありそうです．
特許取得により大学からプレスリリースが発行され，それを見た新聞社からの取材
や，オンラインテレビ番組にも取り上げられるなど，これまで経験のなかったことが
立て続けに起こりました．一方で，この研究では色々とトラブルにも見舞われること
もありました．その際には國府寛司さんをはじめ，多くの方に助けていただいて，科
学コミュニティーの温かさを感じました．この場をお借りしてお礼申し上げます．

1.8 終わりに

カライドサイクルの研究は，リンク機構，空間曲線，可積分系といった様々な分野と
繋がり，予想外の展開を見せました．最初は遊びのつもりで研究になるとは思ってい
ませんでしたが，4年生の卒業研究のテーマとして取り組んだことがきっかけとなっ
て，様々な発見がありました．一自由度の証明を含めて，まだまだ解決すべき問題が
山積みで，当分は楽しめそうです．もし興味を持ってくださった方がいらしたら，少
し古いですが解説記事 [13, 12]や講演の録画*4もご覧いただければ幸いです．
ここまで，運良くという言葉が何度か出てきましたけれど，改めて研究とは幸運と
時々不運の連続と感じました．私はもともと数学の応用に興味があり，10年ちょっと
前にコンピューター・グラフィックス (CG)の研究に誘っていただいたのがきっかけ
で，応用分野に足を踏み入れました．数学と CGには似たところがあると感じていま
す．自然科学は現象を正確に記述することが目標ですが，数学は面白ければ何でもあ
りです．人をびっくりさせることも目的の一つですが，これは CGも同じで，価値観
において数学と CGの感覚はかなり近いように感じます．CGを含めて応用研究の良
いところは，研究成果が直接的に目に見える形で表れることです．数学の研究では，
自分の研究内容を他人に伝えるのが難しいことが多いですが，折り紙や映像という形
で，子どもにもその面白さを伝えられるのは嬉しいです．これからも，驚きや楽しさ

*4 https://www.youtube.com/watch?v=N8z3nhPQKYo
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に満ちた研究を続けていければと思います．

図 10 一次元自由度を持つ，メビウス・カライドサイクル．左：幾何学おもちゃ作
家・西原明さんに制作いただいた針金製．右：3Dプリンタによる模型．データファ
イルは https://github.com/shizuo-kaji/Kaleidocycle/で入手可能．

2 質疑応答
• 質問：特許を取得されたとのことですが，明細書を書く際に苦労された点はあ
りましたか？

• 回答：はい，特許では「一自由度」というような一般的な性質を述べるだけで
は不十分で，それに基づく実用的な価値を主張する必要がありますが，これが
なかなか難しく，最終的には「新しいおもちゃ」という扱いにしました．おも
ちゃというカテゴリであれば，何 %の効率改善といった数値的な裏付けがなく
とも通りやすいからです．おもちゃ以外の応用の可能性としては，スムーズに
連続的に回転できることを活かしたスクリュー構造や，「falling cat」として知
られる，角運動量を保存したまま自らの姿勢を変える運動（落下中の猫が足か
ら着地できる現象）を活かした宇宙アンテナなどがあると思います．しかし，
それらを特許のクレームに含めるには，実現可能性を具体的に示す必要がある
ため，今回は断念しました．

• 質問：弾性エネルギーの離散版について，連続の場合はピアノ線を曲げた時の
ようなエネルギーが表現されているのでしょうか？

• 回答：はい，関連があります． ピアノ線のような細い弾性体では，曲率による
エネルギーだけでなく，中心線の (捩率とは別の概念である)断面の捩れからく
るエネルギーも重要になります． これは「キルヒホッフ棒」と呼ばれるモデル
で表され，その離散化が研究されており，カライドサイクルとも関連が見出さ
れつつあります．
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• 質問：応用を探す時には，現実的な狙いが先にあり，それを実現する構成を与
えるという流れになるのでしょうか．

• 回答：カライドサイクルの場合は，むしろ逆でした． 特定の応用を狙って設計
したのではなく，数値実験や模型制作を通して思いがけない性質を発見したと
いう流れです． 「狙って作ったもの」ではなく「たまたま作ってみたら面白
かったもの」が出発点で，この性質を活かせる応用を今も模索しています．

3 ご挨拶
この原稿を書いている時点ではまだ福岡にいるのですが，2025年 4月より京都大学

理学研究科に着任することになりました．附属サイエンス連携探索センター (Center

for Science Adventure and Collaborative Research Advancement, 略称 SACRA)

というところの所属になります．山口大学創成科学研究科，九州大学マス・フォア・
インダストリ研究所 (IMI)，そして SACRA と，これまで不思議な響きの職場に縁が
あるようです．新しい環境で，これからも楽しく研究や教育を続けて行きたいと思い
ます．どうぞよろしくお願いします．
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