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Abstract

The characteristic polynomials of the linear map of the
homologies induced by automorphisms of complex surface and its
restriction to the real slice are studied.

Counting the number of periodic points, using Lefschetz
formula, we conclude that in the case of the surface automorphism
of smallest positive entropy, the entropy of the automorphism and
that of its restriction to the real slice are same.

In some cases, complex Salem numbers appear as the leading
eigenvalues of homology homomorphisms.
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0. Main results



THEOREM. The characteristic polynomial of the linear map of
homology group induced by the real slice of surface automorphisms
are :

(M) ¢n(2) = lerl{Zn+1(z3 —z4+1)— (-1D)"(2 -2 +1)},
() von(2) = S22 42 4 1) 4 (142 4 2 4 1),
(M3) w3k(z) = Z;il{z3k+1(z3+z+ 1) — (-2 +22+1)}.

THEOREM.  The leading eigenvalues of the homology
homomorphisms are :
(F1) case negative Salem,
(M2) and (I'3) cases complex Salem.



1. Surface automorphism



Rational automorphism

For parameters (a, 3) € C?, let

y+a
x4+ B

fa,5(x,y) = (¥, + B)

be a birational map.
The indeterminate point, ps, of f, g and the indeterminate
point, g, of the inverse map fojﬁl are given by

P« = (—B,—O[), ax = (_aaﬁ)'

For n € N, let V, denote the set of parameters (a, 3) € C?
satisfying

foﬁﬁ(q*)#p*ﬂ k:0717 7n_17 and fo?,ﬁ(q*):p*



Surface automorphism

For (a0, B) € Vp, let
TS — CP?
be the blowup of CPP? at n+ 3 points
Gus fa,3(qx), -+ 5 f 5(Gx) = Puy Px = (00,0), py = (0, 00).

THEOREM(Bedford-Kim, 2007)  If (o, ) € Vp, then £, 3
lifts to an automorphism of surface S.



Characteristic polynomial

Let go = q«, gk = fa,p(qk-1), k=1,---,n.
Q=7 q) TS, k=0, ,n,
Ex=m""(px), E, =7 *(py) CS,

HcCS, generic line.
A basis of H?(S,Z) is given by the classes of these lines.

Let F: S — S denote the lift of £, 3.

We abuse the name of a curve for the corresponding
cohomology class.



2H — Ec— E, — Qo,

F*(H)

F*(Ex) = H — Ex — Qu,

F*(E))=H—-E.—-E,,

F*(Qn):H_Ey_Q07

F*(Q)

k=01, -

= Qk+1,



Characteristic polynomial of F* : H*(S,Z) — H?*(S,Z) is the
determinant of

H E, E, Qn Qo @1 - Qno2 Qn
H 2—z 1 1 1
E, -1 —-1—-z -1
E, -1 -1 —-1—-z
Qn —Z 1
Q “1 1 -1 -2
1 1 -z

<

Qn—2 —Z
Qn—l 1 —Z

which gives (by multiplying (—1)"+*%)

Xn(2) =2""H B —z-1)+ 22+ 22— 1.




x7(2)




2. Invariant cubic curve



[ family

For t € C, define parameters o and 5 by

() O+ 5 234 t4+1 8 5 -1
a1 = — =05
! ! 22(t+1)2 Pt T 2e(t 41y
32ttt +1 31
(r2) ap = ) 5 62:77
2t(t+1) 2t(t+1)
(t+1)> t2 -1
[ = = .
(M) a3 TR B3 57

THEOREM(Bedford-Kim 2007)

Let t # 0,41 with t3 # 1 be given. Then there is an invariant
cubic curve of f, g if and only if (a, 5) = («(t), 5j(t)) for some
1<j<3.



Invariant cubic curve

The cubic polynomial Q(x,y) that defines the invariant cubic
curve is a solution of equation
Qofyp =1t Qdet Df, g.
It defines a meromorphic eigenform n = % with

Q(x,y) = 0 defines the invariant curve as follows.

(F1) : irreducible cubic with a cusp.
(F2) : line tangent to a quadric.
(3) : three lines passing through a point.



Surface automorphism with invariant cubic

THEOREM(Bedford-Kim, 2007)
Suppose that n,1 < j < 3, and t are given, and suppose that

(cj(t), Bj(t)) & Vi for any k < n. Then the point («;(t), 8;(t))
belongs to V, if and only if : j divides n and t is a root of x,.



3. Salem number



Salem number

A complex number is an algebraic integer if it is the zero of a
polynomial with integer coefficients and leading coefficient 1.

Its minimal polynomial is the lowest degree polynomial of
that type it satisfies.

Its (Galois)conjugates are the zeros of its minimal polynomial.

A Salem number is an algebraic integer 7 > 1 conjugate to
771, all of whose conjugates, excluding 7 and 771 lie on |z| = 1.

A Salem polynomial is the minimal polynomial of a Salem
number.



x7(2)




Cyclotomic polynomial

It is known that an algebraic integer lying with all its conjugates
on the unit circle must be a root of unity(Kronecker, 1857).

A cyclotomic polynomial is the minimal polynomial of a root
of unity.



Pisot polynomial

An algebraic integer A > 1 is a Pisot number if its Galois
conjugates satisfy |\/| < 1.

A Pisot polynomial is the minimal polynomial of a Pisot
number.

P(z) = z3 — z — 1 is the minimal polynomial of the smallest
Pisot number.






Pisot polynomial and Salem number

If P(z) is a Pisot polynomial, then except possibly for small
values of n, the polynomials

Spp1(z) =2"P(z) £ zdeg PP(z_l)

factor as the minimal polynomial of a Salem number, possibly
multiplied by some cyclotomic polynomials.

P*(z) = z9€ P P(z71) is called the reciprocal polynomial of
P(z).



Characteristic polynomial

For n > 7, the characteristic polynomial
xn(2) =z Y2 —z-1)+ 24+ 221

factors as
xn(z) = Cp(2)Sn(2),

where C,(z) is a product of cyclotomic polynomials and S,(z) is a
Salem polynomial.

Let A, > 1 denote the leading eigenvalue, which is the Salem
number given by x,(z) = 0.



For n <7, xn(2) is a product of cyclotomic polynomials.

xi(z) = -0 +Z2+22+z+1),

xa(z) = (z-1)(z+1)(z" +1)

x3(z) = (z—=1)(Z2+z+1)(2" -2 +1),

xa(z) = (z=1)(* =2 +1)

xs(z) = (z—=1)(L+2' -2 -2* -2+ 2z+1),

x6(z) = z-1(z+1)(Z+z+1)(*+2+22+2+1)



4. Lefschetz formula



Lefschetz number

Let |K| be a finite polyhedra, and let f : |K| — |K]| be a
continuous map.

Let T;(|K|) denote the torsion subgroup of the homology
group Hi(|K|,Z).

Let Bi(|K|) = Hi(IK|,Z)/ Ti(IK]).

f induces a homomorphism £z (k) : Bi(|K[) — Bi(|K]).

Lefschetz number A of f is defined by

dim K

/\f = Z (—]_)i trace(f;‘Bi(IKD).
i=0



Lefschetz formula

Suppose M is a compact smooth manifold without boundary.
And suppose f : M — M is a differentiable map satisfying
det(Df — 1) # 0 at all fixed points.

The Lefschetz index of fixed point p of f is defined as

Ind(f; p) = sign(det(Df, —1)).

The Lefschetz formula is

dim M

Y Ind(fip) = D (—1)Ftrace(F*| e mr))-

f(p)=p k=0



Example

As an example, let us consider the case of F = F,3: S = S
with (a, 8) € Vy, n > 7.

H*(S,Z) ~ Z, trace(F*|ye) =1,
H?(S,Z) ~ 72" 3, trace(F*|2) = 0,
H(S,z) ~ 7, trace(F*|po) =1

By the Lefschetz formula, we conclude that F has two fixed
points, because in the complex dynamical system case, Lefschetz
index is always 1.



As
xn(2)=2""YW 2 -z-1)+ 24+ 22 -1

is the characteristic polynomail of F*|.
The zeros of xn(z) are the eigenvalues of F*|y2.

Let vg, 11, -+ ,Vpnt3 denote the roots of x,, with 19 =1, and
vy =AM > 1.
Let
n+3

« = trace(F¥*|2) = ZV k=1,2,---.

Then
/\Fk == 2 —|— Tk-

gives the number of fixed points of FX.

The topological entropy of F is logr; = log A, > 0.



Real surface case

Consider the case with o, 5 € R.
Let R denote the real slice of the complex surface S.

‘R is a non-orientable real 2-dimensional analytic manifold
without boundary.
In this case, R is invariant under F: S — S .
Let f : R — R denote the restriction of F to R.
Hx(R,Z) ~ 0,
Hi(R,Z) ~ Zo ® Z"3,  Bi(R) ~ Z"*3,
Ho(R,Z) ~ Z.



Local index

In our cases, f has an eigenform n = g?;\‘;y) satisfying

f*n = t1n, in the complement of the invariant cubic curve C.
t > 1is a Salem number.
If p€ R\ Cis an isolated fixed point of ™, then

det Df)" =t~ > 0.

If pis a sink or a source of period m, then Ind(f™, p) = 1, since
Ind(f™, p) = sign(det(Df)" —1)).

If p is a saddle of period m, with eigenvalues 1, p2, then

Ind(f™,p) =1, if u1<—-1<px<0. (bi-flip saddle)

Ind(f",p) = -1, if 0<pu1 <1<y (non-flipsaddle)



Index of saddle

If pis a bi-flip saddle of period m, with Ind(f™, p) = 1, then
Ind(fkm’p) = _(_1)k7 k = 1727 Tt .
If pis a non-flip saddle of period m, with Ind(f™, p) = —1,

then
Ind(F*™, p) = —1, k=1,2---.



5. Irreducible cubic with a cusp



V,l1 case

Let us compute f, for V,I1 case.

For n=7, a = —0.2916161663---, 3 = —0.207880343 - - -,
with qo = (—a, 8), p« = (=5, —«), and

yta

+ y :fk ) + — {n-
oy B),  qk (q0), pP«=gq

fx,y) = (v,
R is obtained by blowing up the real projective plane RP? in
(n+ 3) points :

(OO, 0)7 (Oa 00)7 do,q1, " ,qn-

The invariant curve C = {Q(x,y) = 0} passes through these
ten points.



Real slice, J~




Unstable/stable manifold of fixed saddle

JBK_5: T:r:-0.2079, T:-0.0000, x:-1.5000, 1.5000 y:-1.5000, 1.5000
~—




Unstable/stable manifold of fixed saddle




Unstable/stable manifold of period 3 saddle

JBK_9: T:-0.2079, T:i: 0.0000, x:-1.5000, 1.5000 y:-1.5000, 1.5000

DA



Unstable/stable manifold of period 3 saddle

[ AN NN

o 5 = = £ DA



Fixed repeller and per 2 sink




For k=0,1,2,--- ,n, let e, denote the homology class
representing the blowup fiber 771(qx) C R, with the clockwise
orientation in R? C RP2.

The homology class for blowup fibers at (0, 00) and (oo, 0) will
be denoted as a and b respectively. The orientation is specified by
the inner coordinates x : co — —oo for a, and y : co — —o0 for b.

The 1-dimensional homology class of the invariant curve C will
be denoted as c, orientation is specified to see the cusp point on
the right hand side.

PROPOSITION.
H1(R,Z) is generated by c, a, b, eg, €1, - , €p,

and 2¢ ~ 0.



Va i

cl= —ohdilonE (3--0‘70/7?<~




PROOF.
Let ¢, denote the homology class of the line at infinity, with
counter-clockwise orientation.

Observing the figure, we have
ctete+--+en+Lloo~0,

c—e—e — -—ey—Llog~0.

So, 2¢c ~ 0.



f.: Hi(R,Z) — Hi(R,Z), V,I'1 case

f(a) ~loo~c—e—e1— - —en,
fo(b) ~ a+ Loy + €0 + 2e2 + 2e5 + 265 + - - - + 2,
~Cta-ete—ea—etetet-ten
fi(en) ~ b+ log + €0 + 2€1 + 2e2 + 24 + 265 + 266 + - - - + 26y
~c+bt+et+e—est+est+este+--+en
f.(eo) = —e1, fi(e1) = —e2, fi(ex) =e3, fi(e3) = —eu,

f.(es) = —es, fi(es) = —ep, -, filen-1) = —en,

Let By = H1(R,Z)/Zsc. f. induces an isomorphism of Bj,
which is represented by a matrix below ( case of n = 7).



flg, : B1 — By, V4[1 case

a b e e e e e e e 6

a 1

b 1

e| -1 1 1 -1
€0 -1

el -1 -1 1 -1

el -1 1 1 -1

| -1 -1 -1 1

e| -1 -1 1 -1

es| -1 1 1 -1

e \—1 1 1 -1

Set t = —z, and compute the determinant of the following

matrix.



f.|g, + tl, V71 case

a b €7 e € €& e e e €
a t 1
b t 1
e7| -1 1 1+t -1
e | —1 t
er| -1 -1 1 -1 t
el -1 1 1 -1 t
es| -1 -1 -1 t
e | -1 -1 1 -1 t
es| -1 1 1 -1 t
e \—1 1 1 -1 t

Use the first and second lines with columns ey to eg to simplify
the second and third columns.



a b e e e e e e 6

a t 1

b t 1

ez | -1 1+t

e | —1 t

e | —1 -1 t

e -1 t

e3| —1 1 t

el —1 -1 t

e | —1 -1 t
€6 -1 -1

Use columns ey to e to simplify the first column.

€6




a b ez e e e e e

e | B+12—-1
€ p(t) t

Where p(t) = t® + >+ t* + 3 —t — 1.

det(fi|g, +tI) = t'(3+t*> —1) — p(t).




Lehmer's polynomial

det(filg, + tI) = t'(t3+ > —1) — p(t)

4

R e L L gy R

We obtained the Lehmer's polynomial.
The Lehmer's polynomial is x7(t)/(t — 1).

Hence, the characteristic polynomial of f,|g, is given by

det(fls, —2l) = xi(~2)/(~z —1).



Case of V,[4

Similarly, in the case of V,I1 for n > 7, we get
det(f|g, — 2I) = xn(—2)/(-z—1).

Recall that
xn(z) = 272 —z-1)+ 24+ 22 1.
Let

¢n(2) = det(zl —flg,) = (=1)"xn(-2)/(z2 +1)

_ Zl_i_l{z”+1(z3 1) - (D)2 -2+ 1))



Recall that vp, 11, - , Vp43 denote the roots of x,(z), with
vo=1 and vy = A\, > 1.

n+3
« = trace Fk*|H2 g vk =1,2,---.

/\Fk = 2 =+ Tk-
gives the number of fixed points of F.

The topological entropy of F is log \p.

The roots of ¢,(z) are given by —vq, —vp,- -+, —vpy3. Hence
we have
Apc = 1—(=1)%(1 —1).

The topological entropy of f is same as F.



We got a theorem.

THEOREM 1.
In the case of V,[1, with n > 7,

htop(F) = htop(f)-

All the saddle periodic points of F are in the real slice R.

REMARK  This theorem is stated in papers [BK] and [DK]. But
there are gaps in their proofs.



ViimapF:5— S

By direct calculations, we see that F has two fixed points : a
source and a non-flip saddle in R.

F has one cycle of sinks of period two in S\ R.
There are no other sources, since 0 < det Df "(z)) = A\;" < 1

for m-periodic point zp € S\ C.

From the trace formula, we can say the followings.



There are no other sinks. Because if there exists a periodic
sink of period p > 3, we would have Arp > p — 7p, but
/\f’2p =2- T2p holds.

All periodic points, except the 2-cycle, are in R. Because
Neokr1 = Topr1 = Npavn — 2, and Aok = 2 — 7 = 4 — Npax.

All periodic points of period p > 3 are saddles. Because
they must have negative index for 2P,

Periodic saddles of odd prime period are bi-flip saddles.

Periodic saddles of even prime period are non-flip saddles.



Periodic orbits of V7 maps

f-cycles
3
5
7
3

< ™ Lo
Af00305_703_
% o o
Q2 NN NN ™M -
O ~ ~ « O ~ ~ QO
> e = = e = -
O ~ o e e ~ o o
I L T e R o IR o | e~ = — -
L — —
«

AF2454779459

ToONMmMANLL NN~

X AaNMmMTOON~0S

5

12

1,1,13 13 13
-7
3,5

15

13 13

1,1,2,16 —16 —16

20

16 18



6. Line tangent to a quadric



VoI5 case

For n =2k, k > 4, T, family gives surface automorphisms with
invariant cubic curve, which consists of a line and a quadric
tangent to each other at a point. The automorphism F:S — S
maps the line and the quadric to each other.

Let f = Flg : R = R and C denote the invariant cubic curve
in R.

Let ¢ be the homology class of C in Hi(R,Z).
Generators a, b, ey, €1, -+, e are defined as in the case of I'5.
The class of the line at infinity is denote as /..



Va2

/=016 8% S
SR




PROPOSITION.
Hi(R,Z) is generated by c, a, b, e, €1, - , €24,
and 2¢c ~ 0.
Observing the figure, we have
cteter+ -+ ex+lo~0,

c—e—e — - —ey—Lls~0.

So, 2¢c ~ 0.



Real slice, J* and J—

o 5 = = E DA



Voxlp case, £ : HiI(R,Z) — Hi(R,Z)

ﬁk(a)mgoo’\’c_eo—el—-u—eyﬁ
ﬁk(er)NC+b_el+62+e3—e4—{—e5—e6_|_..._62k’

f(eo) = e, file) = —ex, fi(e2) = —e3, fi(e3) = es,

fi(es) = —es5, fi(es)=es, -+, fi(ek—1) = e,

Let By = H1(R,Z)/Zyc. f. induces an isomorphism of Bj,
which is represented by a matrix below ( case of n =2k = 8).



Vgl') case, f,+tl : By — B

a b eg € € €& € e 6 € €
a t 1
b t 1
eg| -1 —1 —1+4+¢ 1
e | —1 t
el -1 -1 -1 1t
el -1 -1 1 ~-1 t
es| -1 1 1 -1 t
e | -1 -1 -1 1 t
| -1 —1 1 -1 t
| -1 -1 -1 1 ¢t
ez \ -1 —1 1 -1 t

Use the first and second lines with columns ey to eg to simplify
the second and third columns.



Vsl'p case

a b eg e € € € e 65
a t 1
b t 1
€g -1 -1+t
e | —1 t
e | —1 t
e -1 t
es| —1 -1 t
e | —1 t
e | —1 -1 t
€6 -1
e \ —1

Use columns ey to e to simplify the first column.

€6




se
ca
2
Vsl

1
o p(t)
eo

€0

€5
€4

€3

€

€1

1.
t —
3+
th 4+t

5

t

6 _

t

T+

t

t) =

o(

here

W

tl)
det(f|B, +

1) + p(t).
8(£3 2 -
t

€6




Vsl'p case

det(filg, +t/) = t" =t B4t 4+t —t* 2+t -1
= (-0 -t + 2 -3 +1).

Hence, the characteristic polynomial of f,|g, is given by

det(zl — filg,) = (z+ )20+ 2" =22+ 22 +1).



bs(2)/(z +1)




Vsl'p case

The leading eigenvalue, say ug, is outside the unit disk with
absolute value

lug| = 1.170042168 - - -

which is smaller than the leading eigenvalue of F,

Ag = 1.2303039143 - - - .

Unfortunately, this does not give a precise estimate of the
topological entropy.

log [ug| < htOp(f) < log \g = thP(F)'

Note that Apchmer = 1.17628081...



Real slice forward /backward iteration

DA



Real slice, J* and J—

o 5 = = E DA



Fixed source and fixed sink




Unstable/stable manifold of per 2 saddle

o 5 = = E DA



Unstable/stable manifold of per 3 saddle

o 5 = = E DA



Unstable/stable manifold of per 3 saddle




VoI5 case

Similarly, for the case of V,,['», we obtain the characteristic

polynomials
Voxk(z) = det(zl — fi]g,)
as follows.
If k is even,
ka(z) — (Z+ 1)(Z2k+2 +Z2k_1 _ Z2k—3 +Z2k_5 L 23 + 1)
If k is odd,

¢2k(z) _ (Z+l)(22k+2—|—22k_1—sz_3—|—z2k_5—~--+z3—1).



i(2)/(z +1)




Periodic orbits of Vg maps

—~
N 2_.v [ee] R_J
= on G0 ~N Al ™
n S e T e
@ L | —
g la_l._l_ o -
WJ — o~ - i
[ -~ — -~
— — —
—

(o]

-

S

<

)

Al

—

N—r

0

Q [3p) 52_u70ﬂ3:_q
9]

>

ks

—

—

—

— ™ [ee} o)
«

<

% o [oe] [T9)
= AN M AN ~ I~ ~ N -
O « « « N  « N
S o = e e -
O - - - - - P |
T R = = = =S
w — — —

Q o~
AF2454779159

XxXHAaMmMSTOWON~©OOS

1,1,-11
1,1,-2,-3,12

-9
9
15

7
~15
—24

11
~3,-12

11

1,1,11
1,1,2,3,12

13
19
15
25

11

—15
13
-21
23
—24
34

12
13
14

1,1,13
1,1,-2,-7,14

1,1,3,—5,—15
1,1,-2,-8,—16

13
1,1,-2,17,-17

~7,-14

1,1,13
1,1,2,7,14

3,5,15
-8,-16

2

17 x 2

1,1,17 x 2

36

17



k  Ngx F-cycles Ne(T2) f-cycles(I"2)

17 36  1,1,17 x 2 2 1,1,-2,17, -17

34 1160 1,1,2,17x2, —407 1,1,-2,-17x 2,
34 % 33 34 x 23,34 x 10



7. Three lines passing through a
point



Vsl 3 case

For n = 3k, k > 3, I'; family gives surface automorphisms with
invariant cubic curve, which consists of three lines passing through
a point. The automorphism F : & — & maps each line to another
periodically.

Let f = Flg : R = R and C denote the invariant cubic curve
in R.

Let ¢ be the homology class of C in Hi(R,Z).
Generators a, b, e, €1, - -+, e3 are defined as in the case of Is.
The class of the line at infinity is denote as /..



Hi(R,Z)

PROPOSITION.
Hi(R,Z) is generated by c, a, b, e, €1, - , €34,
and 2¢ ~ 0.
Observing the figure, we have
ctete+--+eyt+log~0,

C—EO—el—'”—eg,k—fooNO.

So, 2¢c ~ 0.



Basis of Hi(R)

\/q\’% gh= 2aoufle- @:0.13‘”“‘
(2 §Q¢i €,

€o £b 4=
i




Real slice, J* and J~




Real slice forward /backward iteration

DA



Fixed source and fixed sink




Unstable/stable manifold of per 2 saddle

o 5 = = £ DA



Unstable/stable manifold of per 3 saddle

o 5 = = E DA



Vol'3 case, f, : Hi(R,Z) — Hi(R,Z)

fi(@a) ~log ~Cc—e—e1 — - — €3,
f*(b)N—c+a—e1—|—e2—e3—e4—e5—e6—---—e3k.
fulesk) ~—c+b—e1—e—e3+es—e5s—eg+e— - — €.

f.(eo) = &1, file1) = e, fi(e2) =e3, fi(e3) = —es,
f:k(e4) = 65, ﬁk(e5) = €6, ﬁk(e6) = —€7, - aﬁk(3k - 1) = €3k,

Let By = H1(R,Z)/Zsc. f. induces an isomorphism of Bj,
which is represented by a matrix below ( case of n =3k =9).



Vol 3 case, f, +tl : By — B

a b €9 € €1 € e e, 6 € €7 eg
a 1
b t 1
el -1 -1 -1+t 1
e | —1 t
et -1 -1 -1 t
el -1 1 -1 t
es| -1 -1 -1 t
ea| -1 -1 1 -1 t
es| -1 -1 -1
| -1 -1 -1 t
e7| -1 -1 1 -1 t
eg\ -1 -1 -1 t

Use the first and second lines with columns ey to e7 to simplify
the second and third columns.




Vol 3

a b €9 € €1 € e e, 6 € € eg
a t 1
b t 1
gl -1 -2 -1+t 1
€0 -1
el -1
e | —2 t
es| —1 1 t
€4 1 -1 t
e | —1 1 t
e | —1 1 t
€7 1 -1 t
eg \ —1 1 t

Use columns ey to e7 to simplify the first column.




Vol 3

a b e e e e e e e € € €3

€9 -1 -2 -1+t 1
eo | p(t) t

& e 2

€5 1 t
e 1t

eg 1 t

where

4

p(t)= -t —t"+t° - —t* 422 4t L.




Vol '3
So, we get
det(fy|p, +t) = t2(t3 =t +2t — 1) — p(t)
=12 20 O BT St 2P — 41
= (P —t+1)(t0+ 8+ 2+ 7+ 1)

We prefer the characteristic polynomial of fi|g, in the form

wo(z2) = (22 +z4+ 1)+ 2 -2+ 22 +1).

Compare this with
Yo(2) = (=120~ £ - 25— 2 +1),

po(z2) = (22 —z+ 1) (2P0 - B+ -2 +1).



Vsil'3 case

Similarly, for the case of V3,3, we obtain the characteristic

polynomials
o3k(z) = det(zl — f|g,)

as follows.

If k is even,

o3(2) = (224 2+ 1)(3KH 4 Bk 3kt

If k is odd,

o3k(z) = (2 +z+ 1)K 4 3h1 - B3kd



Vol'3 case, po(2)/(2° + z + 1)




Vol'3 case, po(2)/(2? + z + 1)?




Vial'3 case, 012(2)/(2° + z + 1)

o 5 = = £ DA



8. Complex Salem number



Complex Salem number

A complex Salem number is a non-real algebraic integer T,
|7| > 1, which is Galois conjugate to 7%, and all of whose Galois
conjugates, excluding 771, 7 and 771, lie on |z| = 1.

A complex Salem polynomial is the minimal polynomial of a
complex Salem number.

A complex Pisot number is a non-real algebraic integer A,
|A| > 1, whose Galois conjugates, excluding A and \, satisfy
N < 1.

A complex Pisot polynomial is the minimal polynomial of a
complex Pisot number.



Complex Pisot polynomial and complex Salem number

PropPOSITION
If P(z) is a complex Pisot polynomial, then for n > deg P, the
polynomial

Sppt1(z) =2"P(z) £ zdeg PP(z_l)

has at least (deg(Sn,p +1) — 4) roots on |z| = 1.



PRrROOF

Let o, g, 01, @1, -+ , , Ay, B1, -+ -, Bm be the roots of P(z),
with
laogl > 1, |ojl <1, (1<i<Y), BieR, [B]<1, (1<<m).

Then,
J4 m

P(z) = (z—ao)(z—ao)Hz—a, )(z — &j) Hz—ﬂj
i=1 j=1

The reciprocal polynomial P*(z) = z%&8PP(z71) is

l
P*(z) = (1 — aoz)(1 — Goz) [ J(1 — ciz)(1 — @iz) J](1 - Bj2).
i=1



— l —
Z”P(Z) o,z zZ—Qp Hz—a,- zZ— @ lr—n[z—ﬁj

P*(z) i 1—0oz1—apz ;:11_di21_aiz jzll—ﬁjz

is a finite Blaschke product, and maps the unit circle into itself
with mapping de%ree n+ deg P — 4.

Hence, z" F1 has at least deg(S, p.+1) — 4 solutions on
|z| = 1.




Sufficient condition

PRroOPOSITION
There exists an integer ng, such that for any integer n > ng,
Sp.p+1(z) has a root v, with |y,| > 1.

PROOF
Consider equation
n_ _P(2)
=F P(z)’
whose solutions give roots of the polynomial S, p +1(z).
The modulus of the derivative of the right-hand side is bounded on
the unit circle.  Take an integer ng satisfying

z

d  P*(2)
dz( P(z) )’

ng > sup
|z|= 1

Then S, p +1(2) has exactly deg(S, p +1) — 4 roots on |z| = 1. Half
of the rest of roots are of modulus greater than 1.



Factorization of 14(2)

THEOREM 2.
Except possibly for small values of k, the characteristic

polynomial (case of Va,[2)
LZJzk(Z) = det(zl - f;|31)

factors as
VYor(z) = Dak(z) Tak(2),
where Dy (z) is a product of cyclotomic polynomials and Tyx(z) is

a complex Salem polynomial.

REMARK
Numerically, this holds for k > 4.



Proor

First, we compute the characteristic polynomial 1,4(z) as

follows.
Yok (z) = det(zl — filg,)
_ (Z + 1)(Z2k+2 4 22k71 _ Z2k73 + z2k75 ey (_1)k74z3 + (_1)k)

k—1

= (z+ 1)(22k+2 + (_1)k _ (_1)kZZ(_ZZ)J’)
_2_ (_22)k

= (z+ 1)(Z*? + (-1 - (—1)k2227+1)

::;iﬁu”“@3+z+n+c4vw*+£+1»

From the third line, we see that ), (£i) # 0.



P(z)=22+z+1

o 5 = = £ DA



As z3 4+ z + 1 has a real root —1 < 31 < 0, and a pair of
complex conjugate roots ag and ag of modulus greater than 1,
P(z) = z> + z + 1 is a complex Pisot polynomial.

There exists an integer ng, such that for all 2k + 1 > ng,
Sok41,p,(—1)%(2) has exactly deg(Sy41,p,(—1)x) — 4 roots on
|z| = 1.

From these roots, we exclude %/, and together with z = —1,
ok has exactly 2k — 1 roots on |z| = 1. As deg(¢2x(z)) = 2k + 3,
we conclude that 1ox(z) has four non-unitary roots.

As 5£k+17P7(—1)k(j:1) # 0, z = %1 is at most simple root.
To complete the proof, we show that Sy, 1 p (_1)«(2) has no
real roots with |z| # 1.

If t is a root of Sy 11 p (—1)x(2), then t~1 is a root, too.



If t > 1, then
B e+ 1) > B2 41,

which implies
Sokt1,p,(~1)x(t) > 0.

If t < —1 then,
if k is even,
p2R2 2kl s g k3 kS 50 54 28>0, 10,
and if k is odd,
g2kl 50, — 2R3 kb S0, — 22— 1>0,

which implies (t2 + 1)Sxk+1,p.1(t) > 0. Theorem 2 is proved.



Factorization of 34(z2)

THEOREM 3.
Except possibly for small values of k, the characteristic

polynomial (case of V3,[3)
p3x(z) = det(zl —fp,)

factors as
3k(2) = Esk(z)Usk(2),
where Eyk(z) is a product of cyclotomic polynomials and Upk(z) is

a complex Salem polynomial.

REMARK
Numerically this holds for k > 3.



Proor

The proof is similar to that for 1) (z).

224741

P (B4 z+1) - (DB + 22+ 1)).

par(z) =
Complex Pisot polynomial P(z) = z3 + z + 1 is same as before.
The cubic roots of —1 are not roots of y3x(z).

The polynomial Ssiy1 p (—1)x+1(2) has at least 3k roots on |z| = 1.
For sufficiently large k, the number of unitary roots of ¢3x(z) is exactly
3k —1. (Numerically, this holds for k > 3.)

As Sflik+1 P )M(:tl) #0, z==+1 is at most simple root.

Next, we show that ¢34(z) has no real roots with |z| # 1.

If t is a root of S3jy1 p (—1)c1(2), then t~1 s a root, too.



If t > 1, then
BBt ) >+ 41> 0.

which Implles 53k+1,P,(71)k+1(t) > 0.
In the case of t < —1, we have two cases.
If k is even, recall that in this case,

s03,((2) _ (Z2+Z+1)(Z3k+1+23k_1—Z3k_4+~--—22—1).

As all terms in the second factor are negative, we see that
53k+1_’p1(,1)k+1(t) < 0. Hence (p3k(t) < 0.
If k is odd, recall that in this case,

p3(z) = (P +z+ 1)+ -2 224,
As all terms in the second factor are positive, we see that

53k+1,p7(_1)k+1(t) > 0. Hence @3 (t) > 0.
These complete the proof.



Summary of characteristic polynomials
Vo, F: 8= S. (Salem)

xn(z) =22 —z-1)+ 24+ 22 1.

Val1, f 1 R = R. (negative Salem)
on(2) = £ {2 — 2+ 1)~ ((1(E - 2+ D),
Vorla, f: R — R. (complex Salem)

Vau(z) = 222—:_11{22k+1(z3 +z+1)+ (~DK + 2 + 1))

Vi3, f: R = R. (complex Salem)

224+ z41
pau(2) = 5 T {Z @+ 2+ ) - (CD(E + 2+ 1))



REMARK

If all the roots of the characteristic polynomial are on the unit
circle, then all the eigenvalues are roots of unity.

In this case, the operation on the cohomology is periodic.
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