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1. Non-symmetric diffusions on a Riemannian
manifold

e (M, g): d-dimensional connected complete Riemannian manifold.
e vol : the Riemannian volume.

o dv = e~ Ydvol : areference measure

e b: avectorfield on M.

e V : apotential funciton on M.

e A\: the Laplace-Beltrami operator.

We consider the following opetaror in L?(v):
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We need to change the expression of .
e V: the covariant differentiation
o AN =-V*V
e V*: the dual operator of V with respect to vol.

The dual operator of V with respect to v is given by

V> = eV!v*e U

Then

Au = -V Vu+ (VU, Vu).
So we set
(2) b= %VUﬁ + b.



Then
1
A = —EV;ﬁV-l—V,;—V
The dual opetrator of 21 with respect to v is given by

1 _
(3) A* = ——V*V — V; —div, b— V.
2

v

Here
div, X = eV div(e7 Y X) = divX — XU.

They are well-defined in C§°(M).



The bilinear form associated with 2 is

E(u,v) = —(Au, v)2
1
= —/ (Vu, Vo) du—/ (Viu)v du—l—/ Vuvdv.
2 Jm M M

We denote the symmetrization of £ by &:
1 1 ~

E(u,v) = —/ (Vu, Vo) dv + —/ (div, b)uv dv —I—/ Vuv dv.
2 Jm 2 /M M

€ is associated with 2 {20 + 2*}.
We are interested in when the semigroup associated to 2( exists in L.

We impose the following condition to ensure that —%( is bounded from
below.

. 1 g; A
(B.1) JIve€eR: Sdivpb+V > —~.



Under this condition, € is bounded from below and closable.
e d: the distance function
e o € M: afixed reference point
o p(x) = d(o,x)

We add the following condition for b :

(B.2) Ik: [0,00) — [0,1] with [~ k(x) dzz = oo so that

k(p)Vgp > —1.

A typical example is k(z) = . Vjip(x) > —p(x).



No problem

p=r

St



L?(m).

Theorem 1. Under the assumptions (B.1) and (B.2), the closure
of (A, C§°(M)) generates a positivity preserving Cp-semigroup in

We claim the following:

e the dissipativity: ((2A — v)u,u)2 < 0.

e the maximality: (A — v — 1)(Cg°(M)) is dense in L?.

In fact,

(&= uua =~ [ (Vul

u? div b) dm — / (V
M

Y)u? dm



(A—~v—1)*u=0 = uwuelC>®M)
= (u,(A—v—-1)(xpu))2 =0
= u=20

The positivity preserving property is checked by the following criterion:

(4) (RAu,u )2 < vlluls.

Assume the following Sobolev inequality: there existp > 2and C > 0
so that

lull; < CUIVull3 + [lull3)-
Then the condition (B.1) can be relaxed as follows:

(B.1) Iy €ER:(2div,b+V +v)_ € L/ P2 (),
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Markovian property

The semigroup generated by 2 is denoted by {T;}. We can also give a
criterion for the Markovian property of {T;}.

Proposition 2. Under the assumptions (B.1) and (B.2), {e~**T;} is
Markovian ifandonly if V.4+ a > 0.

To show this, we use the following characterization: {e=**T}} is
Markovian if and only if

(A -a)u,(u—1) )2 < (v —a)|l(u—1) 5
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L' contraction property

Similarly, we have

Proposition 3. Under the assumptions (B.1) and (B.2), {e="!T;}
has the L contraction property if and only if div, b + V > —8.

To show this, we use the following characterization: {e=P*T;} has L?!
contraction property if and only if

(A= Bu,uy AL)z < (v = B)lluy AL
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As for A%

~

1
A" = —-V'V — Vi —div, b.
2
We need the following condition:
(B.2)* Jk: [0,00) — [0,1] with [~ k(x) dz = oo so that

k(p)Vip < 1.

Theorem 4. Under the assumptions (B.1), (B.2)*, the closure of
(2*,Cs°(M)) generates a positivity preserving Cp-semigroup in
L?(m). We denote the associated semigroup by {T;"}.

{e~°tT,} is Markovian if and only if div, b + V > —p. Further
{e~PtT,} has the L' contraction property if and only if V 4+ o > 0.
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2. Criterion for normal operators

normal operator

An operator A in a Hilbert space H is called normal if AA* = A* A.
e A, B: dissipative operators on D

e Assume that A, B are m-dissipative

Theorem 5. Assume that AD C D, BD C D and

AB = BA on?D,
(Au,v) = (u, Bv), wu,v € D.

Then A is normal and A* = B.




Examples on a Riemannian manifold

e M a complete Riemannian manifold
e vol: the Riemannian volume
o v = e Ydvol.

Define an operator on H = L?(v) by
1
2 = _AI/ + Vb
2
where A, = —V>V. Then

1
2[; — EAV — Vb — diV,/ b.

Here div, denotes the divergence with respect to v.
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Theorem 6. Let b a Killing vector field and assume that div, b
is bounded from below. Then the closures of A and 20* are m-
dissipative.

We give a criterion for A = %A,, + V4 being a normal operator.

Theorem 7. Assume that div, b is bounded from below. Then 2( is
normal if and only if b is a Killing vector field and the following identies
hold:

1 :
(EAV —|— Vb) leV b= O,

[(VU)#, b] + (V div, b)¥ = 0.
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f M is a compact manifold, the above theorem simplified as follows:

Theorem 8. 2( is normal if and only if b is a Killing vector field and
the following identies hold:

div, b = 0,
[(VU)%, b] = 0.




3. Examples of normal operators

Ornstein-Uhlenbeck operator with rotation

o M = R?
o V= %e_(‘”2+y2)/2dwdy

o b:c(y%—w%

Then 2l = —V*V + V, is a normal operator in L?(v).

Theorem 9. The spectrum of 21 is

(5) {p+q9) —(P—q)ei} )




the spectrum of VIV
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the spectrum of —A
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One-dimensional Brownian motion with drift

We consider an operator 2 = d‘f; — c% on L?(R,v). Here vis a
measure defined by
(6) v(dx) = e~ ““dx.

Then 2( is a self-adjoint operator with

(2Af,g) = — / f'(2)g' () v(da).

To investigate the spectrum of 2, we use the following isometric map
I: L?(v) — L?*(dx):

If(z) = e/ f().
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We have

d? c?
ToANol =" —
dx? 4
l.e., the following diagram is commutative:
A

L?*(v) —— L*)

/| |+

d2 _c2

L?(dz) 2==—2% L2?(dx)

Hence the spectrum —2( is

2

(7) o (=) = [, 00).

We now consider an perturbation of 2(. Let b be an vector field defined
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d
b=k—.

dx

We consider an operator of the form 2( + b. We are interested in how
the spectrum changes. b is clearly an Killing vector field. The divergence
of b with respect to v

div, b = —ck
and so it satisfies

(A + b) div, b = 0,
[((VU)#, b] + V div, b = 0.

Here U(x) = cx. By Theorem 7, 2( + b is a normal operator. Under the
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transformation of I, we have

d? d c(c— 2k)
To(A+b)oI = L k— — :
°o(A+b)o dx2  dx 4

It is enough to get the spectrum of dd; - k-2 . Recall the Fourier
transform as

R 1 .
= —— r)e % de.
FO == [ 1@
This gives an isometry from L?(dx) onto L?(d¢). Note that

[ Gz + ko) @@ de = [ (—€+ k) f(©)3(€) de

which means that
d2
dx?

o (

d
Fk—) = {—¢* 4 ik&; € € RY.
dx
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Theorem 10. We have

and

o(—A —b) = {°

2

o (=2) = [ o0)

(c — k)
2

- &% + ik€; € € RY.




)
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c(c—2Zk)

d
—A — kL



Normal operator on S?

The Laplace-Berltrami operaotr on S2 is given as follows;

1 0 /. 0, 1 9?2
AN = — sin 6 | 5 :
sin 0 00 00 sin“ 0 0p?

Here, we take the polar coordinates as follows
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polar coordinates
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Eigenvaluesare n(n + 1), n = 0,1, 2,....
Corresponding eigenfunctions are given as follows:
e Legendre polynomials

(~1)" d7

27! dx™

Pn(w) — (]. — $2)n.

e ODE of Legendre polynomials
(1 —x*)P! — 2zP/ = —n(n + 1)P,.

e Associated Legendre functions of the first kind

Pm(z) = (—1)™(1 — a®)™2 % p.(a).

a;m



e ODE of associated Legendre functions

1 — 2d—2Pm — 2 iPm
(1 - %) P7'(z) — 22—~ P7"(x)

2

m
+ n(n—l—l)—1 5 | P (z) = 0.

Now eigenfunctions for the eigenvalue —n(n + 1) are

P (cos H)eim“", P (cos H)e_":m“’,

n=0,1,..., m=0,1,...,n.
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Thanks !
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