Non-symmetric diffusions on a Riemannian manifold

Ichiro Shigekawa

Kyoto University

October 21, 2012 Geometry and Probability in Yamagata

URL: http://www.math.kyoto-u.ac.jp/~ichiro/

Contents

- 1. Non-symmetric diffusions on a Riemannian manifold
- 2. Criterion for normal operators
- 3. Examples of normal operators

1. Non-symmetric diffusions on a Riemannian manifold

- (M,g): d-dimensional connected complete Riemannian manifold.
- vol: the Riemannian volume.
- $d\nu = e^{-U} d\text{vol}$: a reference measure
- b: a vector field on M.
- ullet V: a potential function on M.
- ▲: the Laplace-Beltrami operator.

We consider the following operaror in $L^2(\nu)$:

(1)
$$\mathfrak{A} = \frac{1}{2} \triangle + \nabla_b - V.$$

We need to change the expression of \mathfrak{A} .

▼: the covariant differentiation

$$\bullet \ \triangle = -\nabla^*\nabla$$

• ∇^* : the dual operator of ∇ with respect to vol.

The dual operator of ∇ with respect to ν is given by

$$\nabla^*_{\nu} = e^U \nabla^* e^{-U}$$

Then

$$\triangle u = -\nabla_{\nu}^* \nabla u + (\nabla U, \nabla u).$$

So we set

(2)
$$\tilde{b} = \frac{1}{2} \nabla U^{\sharp} + b.$$

Then

$$\mathfrak{A} = -rac{1}{2}
abla^*_
u
abla +
abla_{ ilde{b}} - V$$

The dual operrator of $\mathfrak A$ with respect to ν is given by

(3)
$$\mathfrak{A}_{\nu}^* = -\frac{1}{2} \nabla_{\nu}^* \nabla - \nabla_{\tilde{b}} - \operatorname{div}_{\nu} \tilde{b} - V.$$

Here

$$\operatorname{div}_{\nu} X = e^{U} \operatorname{div}(e^{-U}X) = \operatorname{div} X - XU.$$

They are well-defined in $C_0^{\infty}(M)$.

The bilinear form associated with $\mathfrak A$ is

$$egin{align} \mathcal{E}(u,v) &= -(\mathfrak{A}u,v)_2 \ &= rac{1}{2} \int_M (
abla u,
abla v) \, d
u - \int_M (
abla_{ ilde b}u) v \, d
u + \int_M V u v \, d
u.
onumber \end{aligned}$$

We denote the symmetrization of \mathcal{E} by $\tilde{\mathcal{E}}$:

$$ilde{\mathcal{E}}(u,v) = rac{1}{2} \int_M (
abla u,
abla v) \, d
u + rac{1}{2} \int_M (\operatorname{div}_
u \, ilde{b}) u v \, d
u + \int_M V u v \, d
u.$$

 $\tilde{\mathcal{E}}$ is associated with $\frac{1}{2}\{\mathfrak{A}+\mathfrak{A}_{\nu}^*\}$.

We are interested in when the semigroup associated to $\mathfrak A$ exists in L^2 .

We impose the following condition to ensure that $-\mathfrak{A}$ is bounded from below.

(B.1)
$$\exists \gamma \in \mathbb{R}: \frac{1}{2}\operatorname{div}_{\nu} \tilde{b} + V \geq -\gamma.$$

Under this condition, $\tilde{\mathcal{E}}$ is bounded from below and closable.

- d: the distance function
- $o \in M$: a fixed reference point

We add the following condition for \tilde{b} :

(B.2)
$$\exists \, \kappa \colon [0,\infty) o [0,1]$$
 with $\int_0^\infty \kappa(x) \, dx = \infty$ so that $\kappa(\rho)
abla_{\tilde{b}}
ho \geq -1.$

A typical example is $\kappa(x) = \frac{1}{x}$. $\nabla_{\tilde{b}} \rho(x) \geq -\rho(x)$.

No problem OK No! $\rho = r$ $\rho = r$ $ilde{m{b}}$ $ilde{m{b}}$

Theorem 1. Under the assumptions (B.1) and (B.2), the closure of $(\mathfrak{A}, C_0^{\infty}(M))$ generates a positivity preserving C_0 -semigroup in $L^2(m)$.

We claim the following:

- the dissipativity: $((\mathfrak{A} \gamma)u, u)_2 \leq 0$.
- the maximality: $(\mathfrak{A}-\gamma-1)(C_0^\infty(M))$ is dense in L^2 .

In fact,

$$((\mathfrak{A}-\gamma)u,u)_2=-rac{1}{2}\int_M(|
abla u|^2+u^2\operatorname{div}b)\,dm-\int_M(V+\gamma)u^2\,dm$$

$$(\mathfrak{A} - \gamma - 1)^* u = 0 \quad \Rightarrow \quad u \in C^{\infty}(M)$$

$$\Rightarrow \quad (u, (\mathfrak{A} - \gamma - 1)(\chi_n^2 u))_2 = 0$$

$$\Rightarrow \quad u = 0$$

The positivity preserving property is checked by the following criterion:

(4)
$$(\mathfrak{A}u, u_+)_2 \le \gamma ||u_+||_2^2.$$

Assume the following Sobolev inequality: there exist p>2 and C>0 so that

$$||u||_p^2 \le C(||\nabla u||_2^2 + ||u||_2^2).$$

Then the condition (B.1) can be relaxed as follows:

$$(\mathsf{B}.\mathsf{1})' \quad \exists \, \gamma \in \mathbb{R} : (\tfrac{1}{2} \operatorname{div}_{\nu} \tilde{b} + V + \gamma)_{-} \in L^{p/(p-2)}(\nu).$$

Markovian property

The semigroup generated by \mathfrak{A} is denoted by $\{T_t\}$. We can also give a criterion for the Markovian property of $\{T_t\}$.

Proposition 2. Under the assumptions (B.1) and (B.2), $\{e^{-\alpha t}T_t\}$ is Markovian if and only if $V + \alpha \geq 0$.

To show this, we use the following characterization: $\{e^{-\alpha t}T_t\}$ is Markovian if and only if

$$((\mathfrak{A} - \alpha)u, (u - 1)_{+})_{2} \le (\gamma - \alpha) \|(u - 1)_{+}\|_{2}^{2}$$

L^1 contraction property

Similarly, we have

Proposition 3. Under the assumptions (B.1) and (B.2), $\{e^{-\beta t}T_t\}$ has the L^1 contraction property if and only if $\operatorname{div}_{\nu} \tilde{b} + V \geq -\beta$.

To show this, we use the following characterization: $\{e^{-\beta t}T_t\}$ has L^1 contraction property if and only if

$$\|((\mathfrak{A} - \beta)u, u_+ \wedge 1)_2 \le (\gamma - \beta)\|u_+ \wedge 1\|_2^2$$

As for \mathfrak{A}_{ν}^*

$$\mathfrak{A}^* = -rac{1}{2}
abla^*_
u
abla -
abla_{ ilde{b}} - \operatorname{div}_
u \, ilde{b}.$$

We need the following condition:

(B.2)*
$$\exists \, \kappa \colon [0,\infty) o [0,1]$$
 with $\int_0^\infty \kappa(x) \, dx = \infty$ so that $\kappa(\rho) \nabla_{\tilde b} \rho \le 1.$

Theorem 4. Under the assumptions (B.1), (B.2)*, the closure of $(\mathfrak{A}^*_{\nu}, C_0^{\infty}(M))$ generates a positivity preserving C_0 -semigroup in $L^2(m)$. We denote the associated semigroup by $\{T_t^*\}$. $\{e^{-\alpha t}T_t\}$ is Markovian if and only if $\operatorname{div}_{\nu} \tilde{b} + V \geq -\beta$. Further $\{e^{-\beta t}T_t\}$ has the L^1 contraction property if and only if $V + \alpha \geq 0$.

2. Criterion for normal operators

normal operator

An operator A in a Hilbert space H is called normal if $AA^* = A^*A$.

- A, B: dissipative operators on \mathcal{D}
- ullet Assume that $\overline{m{A}}$, $\overline{m{B}}$ are $m{m}$ -dissipative

Theorem 5. Assume that $A\mathcal{D}\subseteq\mathcal{D}$, $B\mathcal{D}\subseteq\mathcal{D}$ and

$$AB=BA$$
 on $\mathcal{D},$ $(Au,v)=(u,Bv), \quad u,v\in \mathcal{D}.$

Then \overline{A} is normal and $\overline{A}^* = \overline{B}$.

Examples on a Riemannian manifold

- M: a complete Riemannian manifold
- vol: the Riemannian volume
- $\nu = e^{-U} d$ vol.

Define an operator on $H=L^2(
u)$ by

$$\mathfrak{A}=rac{1}{2} riangle_{
u}+oldsymbol{
abla}_{b}$$

where $\triangle_{\nu} = -\nabla_{\nu}^* \nabla$. Then

$$\mathfrak{A}_{
u}^* = rac{1}{2} \triangle_{
u} - \nabla_b - \operatorname{div}_{
u} b.$$

Here div_{ν} denotes the divergence with respect to ν .

Theorem 6. Let b a Killing vector field and assume that $\operatorname{div}_{\nu} b$ is bounded from below. Then the closures of $\mathfrak A$ and $\mathfrak A^*_{\nu}$ are m-dissipative.

We give a criterion for $\mathfrak{A}=\frac{1}{2}\triangle_{
u}+\nabla_{b}$ being a normal operator.

Theorem 7. Assume that $\operatorname{div}_{\nu} b$ is bounded from below. Then \mathfrak{A} is normal if and only if b is a Killing vector field and the following identies hold:

$$(rac{1}{2} riangle_
u +
abla_b) \operatorname{div}_
u b = 0, \ [(
abla U)^\sharp, b] + (
abla \operatorname{div}_
u b)^\sharp = 0.$$

If M is a compact manifold, the above theorem simplified as follows:

Theorem 8. \mathfrak{A} is normal if and only if b is a Killing vector field and the following identies hold:

$$\mathrm{div}_{
u}\,b=0, \ [(
abla U)^\sharp,b]=0.$$

3. Examples of normal operators

Ornstein-Uhlenbeck operator with rotation

- ullet $M=\mathbb{R}^2$
- $\bullet \ \nu = \frac{1}{2\pi} e^{-(x^2+y^2)/2} dx dy$
- $b = c(y\frac{\partial}{\partial x} x\frac{\partial}{\partial y})$

Then $\mathfrak{A} = -\nabla_{\nu}^* \nabla + \nabla_{b}$ is a normal operator in $L^2(\nu)$.

Theorem 9. The spectrum of $\mathfrak A$ is

(5)
$$\{(p+q) - (p-q)ci\}_{p,q=0}^{\infty}$$

the spectrum of $-\mathfrak{A}$

the spectrum of $abla_{
u}^*
abla$

One-dimensional Brownian motion with drift

We consider an operator $\mathfrak{A}=rac{d^2}{dx^2}-crac{d}{dx}$ on $L^2(\mathbb{R},
u)$. Here u is a measure defined by

(6)
$$\nu(dx) = e^{-cx}dx.$$

Then **A** is a self-adjoint operator with

$$(\mathfrak{A}f,g)=-\int_{\mathbb{R}}f'(x)g'(x)\,
u(dx).$$

To investigate the spectrum of \mathfrak{A} , we use the following isometric map $I \colon L^2(\nu) \longrightarrow L^2(dx)$:

$$If(x) = e^{-cx/2}f(x).$$

We have

$$I \circ \mathfrak{A} \circ I^{-1} = \frac{d^2}{dx^2} - \frac{c^2}{4},$$

i.e., the following diagram is commutative:

$$egin{array}{cccc} L^2(
u) & \stackrel{\mathfrak{A}}{\longrightarrow} & L^2(
u) \ & & & & \downarrow I \ & & & \downarrow I \ & & & & \downarrow L^2(dx) \end{array}$$

Hence the spectrum $-\mathfrak{A}$ is

(7)
$$\sigma(-\mathfrak{A}) = \left[\frac{c^2}{4}, \infty\right).$$

We now consider an perturbation of \mathfrak{A} . Let b be an vector field defined

by

$$b = k \frac{d}{dx}.$$

We consider an operator of the form $\mathfrak{A}+b$. We are interested in how the spectrum changes. b is clearly an Killing vector field. The divergence of b with respect to ν

$$\operatorname{div}_{\nu} b = -ck$$

and so it satisfies

$$(\mathfrak{A}+b)\operatorname{div}_{
u}b=0, \ [(
abla U)^\sharp,b]+
abla\operatorname{div}_{
u}b=0.$$

Here U(x) = cx. By Theorem 7, $\mathfrak{A} + b$ is a normal operator. Under the

transformation of I, we have

$$I\circ(\mathfrak{A}+b)\circ I^{-1}=rac{d^2}{dx^2}+krac{d}{dx}-rac{c(c-2k)}{4}.$$

It is enough to get the spectrum of $\frac{d^2}{dx^2} + k \frac{d}{dx}$. Recall the Fourier transform as

$$\hat{f}(\xi) = rac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-i \xi x} \, dx.$$

This gives an isometry from $L^2(dx)$ onto $L^2(d\xi)$. Note that

$$\int_{\mathbb{R}} (rac{d^2}{dx^2} + krac{d}{dx})f(x)\overline{g(x)}\,dx = \int_{\mathbb{R}} (-\xi^2 + ik\xi)\hat{f}(\xi)\overline{\hat{g}(\xi)}\,d\xi$$

which means that

$$\sigma(rac{d^2}{dx^2}+krac{d}{dx})=\{-\xi^2+ik\xi;\xi\in\mathbb{R}\}.$$

Theorem 10. We have

$$\sigma(-\mathfrak{A})=[\frac{c^2}{4},\infty)$$

and

$$\sigma(-\mathfrak{A}-b)=\{rac{c(c-k)}{2}+\xi^2+ik\xi;\,\xi\in\mathbb{R}\}.$$

Normal operator on S^2

The Laplace-Berltrami operaotr on S^2 is given as follows;

$$\triangle = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}.$$

Here, we take the polar coordinates as follows

Eigenvalues are n(n+1), $n=0,1,2,\ldots$

Corresponding eigenfunctions are given as follows:

Legendre polynomials

$$P_n(x) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} (1 - x^2)^n.$$

ODE of Legendre polynomials

$$(1-x^2)P_n''-2xP_n'=-n(n+1)P_n.$$

Associated Legendre functions of the first kind

$$P_n^m(x) = (-1)^m (1-x^2)^{m/2} \frac{d^m}{dx^m} P_n(x).$$

ODE of associated Legendre functions

$$(1-x^2)rac{d^2}{dx^2}P_n^m(x) - 2xrac{d}{dx}P_n^m(x) + \left[n(n+1) - rac{m^2}{1-x^2}
ight]P_n^m(x) = 0.$$

Now eigenfunctions for the eigenvalue -n(n+1) are

$$P_n^m(\cos heta)e^{imarphi}, \quad P_n^m(\cos heta)e^{-imarphi}, \ n=0,1,\ldots,\, m=0,1,\ldots,n.$$

Thanks!